1/*-
2 * Copyright (c) 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This software was developed by the Computer Systems Engineering group
6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 * contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: stable/11/sys/libkern/qdivrem.c 319284 2017-05-31 05:45:06Z delphij $");
36
37/*
38 * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
39 * section 4.3.1, pp. 257--259.
40 */
41
42#include <libkern/quad.h>
43
44#define	B	(1 << HALF_BITS)	/* digit base */
45
46/* Combine two `digits' to make a single two-digit number. */
47#define	COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b))
48
49/* select a type for digits in base B: use unsigned short if they fit */
50#if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff
51typedef unsigned short digit;
52#else
53typedef u_long digit;
54#endif
55
56/*
57 * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
58 * `fall out' the left (there never will be any such anyway).
59 * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
60 */
61static void
62__shl(digit *p, int len, int sh)
63{
64	int i;
65
66	for (i = 0; i < len; i++)
67		p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
68	p[i] = LHALF(p[i] << sh);
69}
70
71/*
72 * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
73 *
74 * We do this in base 2-sup-HALF_BITS, so that all intermediate products
75 * fit within u_long.  As a consequence, the maximum length dividend and
76 * divisor are 4 `digits' in this base (they are shorter if they have
77 * leading zeros).
78 */
79u_quad_t
80__qdivrem(uq, vq, arq)
81	u_quad_t uq, vq, *arq;
82{
83	union uu tmp;
84	digit *u, *v, *q;
85	digit v1, v2;
86	u_long qhat, rhat, t;
87	int m, n, d, j, i;
88	digit uspace[5], vspace[5], qspace[5];
89
90	/*
91	 * Take care of special cases: divide by zero, and u < v.
92	 */
93	if (vq == 0) {
94		/* divide by zero. */
95		static volatile const unsigned int zero = 0;
96
97		tmp.ul[H] = tmp.ul[L] = 1 / zero;
98		if (arq)
99			*arq = uq;
100		return (tmp.q);
101	}
102	if (uq < vq) {
103		if (arq)
104			*arq = uq;
105		return (0);
106	}
107	u = &uspace[0];
108	v = &vspace[0];
109	q = &qspace[0];
110
111	/*
112	 * Break dividend and divisor into digits in base B, then
113	 * count leading zeros to determine m and n.  When done, we
114	 * will have:
115	 *	u = (u[1]u[2]...u[m+n]) sub B
116	 *	v = (v[1]v[2]...v[n]) sub B
117	 *	v[1] != 0
118	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)
119	 *	m >= 0 (otherwise u < v, which we already checked)
120	 *	m + n = 4
121	 * and thus
122	 *	m = 4 - n <= 2
123	 */
124	tmp.uq = uq;
125	u[0] = 0;
126	u[1] = HHALF(tmp.ul[H]);
127	u[2] = LHALF(tmp.ul[H]);
128	u[3] = HHALF(tmp.ul[L]);
129	u[4] = LHALF(tmp.ul[L]);
130	tmp.uq = vq;
131	v[1] = HHALF(tmp.ul[H]);
132	v[2] = LHALF(tmp.ul[H]);
133	v[3] = HHALF(tmp.ul[L]);
134	v[4] = LHALF(tmp.ul[L]);
135	for (n = 4; v[1] == 0; v++) {
136		if (--n == 1) {
137			u_long rbj;	/* r*B+u[j] (not root boy jim) */
138			digit q1, q2, q3, q4;
139
140			/*
141			 * Change of plan, per exercise 16.
142			 *	r = 0;
143			 *	for j = 1..4:
144			 *		q[j] = floor((r*B + u[j]) / v),
145			 *		r = (r*B + u[j]) % v;
146			 * We unroll this completely here.
147			 */
148			t = v[2];	/* nonzero, by definition */
149			q1 = u[1] / t;
150			rbj = COMBINE(u[1] % t, u[2]);
151			q2 = rbj / t;
152			rbj = COMBINE(rbj % t, u[3]);
153			q3 = rbj / t;
154			rbj = COMBINE(rbj % t, u[4]);
155			q4 = rbj / t;
156			if (arq)
157				*arq = rbj % t;
158			tmp.ul[H] = COMBINE(q1, q2);
159			tmp.ul[L] = COMBINE(q3, q4);
160			return (tmp.q);
161		}
162	}
163
164	/*
165	 * By adjusting q once we determine m, we can guarantee that
166	 * there is a complete four-digit quotient at &qspace[1] when
167	 * we finally stop.
168	 */
169	for (m = 4 - n; u[1] == 0; u++)
170		m--;
171	for (i = 4 - m; --i >= 0;)
172		q[i] = 0;
173	q += 4 - m;
174
175	/*
176	 * Here we run Program D, translated from MIX to C and acquiring
177	 * a few minor changes.
178	 *
179	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
180	 */
181	d = 0;
182	for (t = v[1]; t < B / 2; t <<= 1)
183		d++;
184	if (d > 0) {
185		__shl(&u[0], m + n, d);		/* u <<= d */
186		__shl(&v[1], n - 1, d);		/* v <<= d */
187	}
188	/*
189	 * D2: j = 0.
190	 */
191	j = 0;
192	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */
193	v2 = v[2];	/* for D3 */
194	do {
195		digit uj0, uj1, uj2;
196
197		/*
198		 * D3: Calculate qhat (\^q, in TeX notation).
199		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
200		 * let rhat = (u[j]*B + u[j+1]) mod v[1].
201		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
202		 * decrement qhat and increase rhat correspondingly.
203		 * Note that if rhat >= B, v[2]*qhat < rhat*B.
204		 */
205		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */
206		uj1 = u[j + 1];	/* for D3 only */
207		uj2 = u[j + 2];	/* for D3 only */
208		if (uj0 == v1) {
209			qhat = B;
210			rhat = uj1;
211			goto qhat_too_big;
212		} else {
213			u_long nn = COMBINE(uj0, uj1);
214			qhat = nn / v1;
215			rhat = nn % v1;
216		}
217		while (v2 * qhat > COMBINE(rhat, uj2)) {
218	qhat_too_big:
219			qhat--;
220			if ((rhat += v1) >= B)
221				break;
222		}
223		/*
224		 * D4: Multiply and subtract.
225		 * The variable `t' holds any borrows across the loop.
226		 * We split this up so that we do not require v[0] = 0,
227		 * and to eliminate a final special case.
228		 */
229		for (t = 0, i = n; i > 0; i--) {
230			t = u[i + j] - v[i] * qhat - t;
231			u[i + j] = LHALF(t);
232			t = (B - HHALF(t)) & (B - 1);
233		}
234		t = u[j] - t;
235		u[j] = LHALF(t);
236		/*
237		 * D5: test remainder.
238		 * There is a borrow if and only if HHALF(t) is nonzero;
239		 * in that (rare) case, qhat was too large (by exactly 1).
240		 * Fix it by adding v[1..n] to u[j..j+n].
241		 */
242		if (HHALF(t)) {
243			qhat--;
244			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
245				t += u[i + j] + v[i];
246				u[i + j] = LHALF(t);
247				t = HHALF(t);
248			}
249			u[j] = LHALF(u[j] + t);
250		}
251		q[j] = qhat;
252	} while (++j <= m);		/* D7: loop on j. */
253
254	/*
255	 * If caller wants the remainder, we have to calculate it as
256	 * u[m..m+n] >> d (this is at most n digits and thus fits in
257	 * u[m+1..m+n], but we may need more source digits).
258	 */
259	if (arq) {
260		if (d) {
261			for (i = m + n; i > m; --i)
262				u[i] = (u[i] >> d) |
263				    LHALF(u[i - 1] << (HALF_BITS - d));
264			u[i] = 0;
265		}
266		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
267		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
268		*arq = tmp.q;
269	}
270
271	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
272	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
273	return (tmp.q);
274}
275