subr_turnstile.c revision 89392
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 * $FreeBSD: head/sys/kern/subr_turnstile.c 89392 2002-01-15 14:20:33Z jhb $
31 */
32
33/*
34 * Machine independent bits of mutex implementation.
35 */
36
37#include "opt_ddb.h"
38
39#include <sys/param.h>
40#include <sys/bus.h>
41#include <sys/kernel.h>
42#include <sys/lock.h>
43#include <sys/malloc.h>
44#include <sys/mutex.h>
45#include <sys/proc.h>
46#include <sys/resourcevar.h>
47#include <sys/sysctl.h>
48#include <sys/systm.h>
49#include <sys/vmmeter.h>
50#include <sys/ktr.h>
51
52#include <machine/atomic.h>
53#include <machine/bus.h>
54#include <machine/clock.h>
55#include <machine/cpu.h>
56
57#include <ddb/ddb.h>
58
59#include <vm/vm.h>
60#include <vm/vm_extern.h>
61
62/*
63 * Internal utility macros.
64 */
65#define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
66
67#define mtx_owner(m)	(mtx_unowned((m)) ? NULL \
68	: (struct thread *)((m)->mtx_lock & MTX_FLAGMASK))
69
70#define SET_PRIO(td, pri)	(td)->td_ksegrp->kg_pri.pri_level = (pri)
71
72/*
73 * Lock classes for sleep and spin mutexes.
74 */
75struct lock_class lock_class_mtx_sleep = {
76	"sleep mutex",
77	LC_SLEEPLOCK | LC_RECURSABLE
78};
79struct lock_class lock_class_mtx_spin = {
80	"spin mutex",
81	LC_SPINLOCK | LC_RECURSABLE
82};
83
84/*
85 * Prototypes for non-exported routines.
86 */
87static void	propagate_priority(struct thread *);
88
89static void
90propagate_priority(struct thread *td)
91{
92	struct ksegrp *kg = td->td_ksegrp;
93	int pri = kg->kg_pri.pri_level;
94	struct mtx *m = td->td_blocked;
95
96	mtx_assert(&sched_lock, MA_OWNED);
97	for (;;) {
98		struct thread *td1;
99
100		td = mtx_owner(m);
101
102		if (td == NULL) {
103			/*
104			 * This really isn't quite right. Really
105			 * ought to bump priority of thread that
106			 * next acquires the mutex.
107			 */
108			MPASS(m->mtx_lock == MTX_CONTESTED);
109			return;
110		}
111		kg = td->td_ksegrp;
112
113		MPASS(td->td_proc->p_magic == P_MAGIC);
114		KASSERT(td->td_proc->p_stat != SSLEEP, ("sleeping thread owns a mutex"));
115		if (kg->kg_pri.pri_level <= pri) /* lower is higher priority */
116			return;
117
118		/*
119		 * Bump this thread's priority.
120		 */
121		SET_PRIO(td, pri);
122
123		/*
124		 * If lock holder is actually running, just bump priority.
125		 */
126		 /* XXXKSE this test is not sufficient */
127		if (td->td_kse && (td->td_kse->ke_oncpu != NOCPU)) {
128			MPASS(td->td_proc->p_stat == SRUN
129			|| td->td_proc->p_stat == SZOMB
130			|| td->td_proc->p_stat == SSTOP);
131			return;
132		}
133
134#ifndef SMP
135		/*
136		 * For UP, we check to see if td is curthread (this shouldn't
137		 * ever happen however as it would mean we are in a deadlock.)
138		 */
139		KASSERT(td != curthread, ("Deadlock detected"));
140#endif
141
142		/*
143		 * If on run queue move to new run queue, and quit.
144		 * XXXKSE this gets a lot more complicated under threads
145		 * but try anyhow.
146		 */
147		if (td->td_proc->p_stat == SRUN) {
148			MPASS(td->td_blocked == NULL);
149			remrunqueue(td);
150			setrunqueue(td);
151			return;
152		}
153
154		/*
155		 * If we aren't blocked on a mutex, we should be.
156		 */
157		KASSERT(td->td_proc->p_stat == SMTX, (
158		    "process %d(%s):%d holds %s but isn't blocked on a mutex\n",
159		    td->td_proc->p_pid, td->td_proc->p_comm, td->td_proc->p_stat,
160		    m->mtx_object.lo_name));
161
162		/*
163		 * Pick up the mutex that td is blocked on.
164		 */
165		m = td->td_blocked;
166		MPASS(m != NULL);
167
168		/*
169		 * Check if the thread needs to be moved up on
170		 * the blocked chain
171		 */
172		if (td == TAILQ_FIRST(&m->mtx_blocked)) {
173			continue;
174		}
175
176		td1 = TAILQ_PREV(td, threadqueue, td_blkq);
177		if (td1->td_ksegrp->kg_pri.pri_level <= pri) {
178			continue;
179		}
180
181		/*
182		 * Remove thread from blocked chain and determine where
183		 * it should be moved up to.  Since we know that td1 has
184		 * a lower priority than td, we know that at least one
185		 * thread in the chain has a lower priority and that
186		 * td1 will thus not be NULL after the loop.
187		 */
188		TAILQ_REMOVE(&m->mtx_blocked, td, td_blkq);
189		TAILQ_FOREACH(td1, &m->mtx_blocked, td_blkq) {
190			MPASS(td1->td_proc->p_magic == P_MAGIC);
191			if (td1->td_ksegrp->kg_pri.pri_level > pri)
192				break;
193		}
194
195		MPASS(td1 != NULL);
196		TAILQ_INSERT_BEFORE(td1, td, td_blkq);
197		CTR4(KTR_LOCK,
198		    "propagate_priority: p %p moved before %p on [%p] %s",
199		    td, td1, m, m->mtx_object.lo_name);
200	}
201}
202
203/*
204 * Function versions of the inlined __mtx_* macros.  These are used by
205 * modules and can also be called from assembly language if needed.
206 */
207void
208_mtx_lock_flags(struct mtx *m, int opts, const char *file, int line)
209{
210
211	MPASS(curthread != NULL);
212	_get_sleep_lock(m, curthread, opts, file, line);
213	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
214	    line);
215	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
216}
217
218void
219_mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line)
220{
221
222	MPASS(curthread != NULL);
223	mtx_assert(m, MA_OWNED);
224 	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
225	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
226	    line);
227	_rel_sleep_lock(m, curthread, opts, file, line);
228}
229
230void
231_mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line)
232{
233
234	MPASS(curthread != NULL);
235	_get_spin_lock(m, curthread, opts, file, line);
236	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
237	    line);
238	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
239}
240
241void
242_mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line)
243{
244
245	MPASS(curthread != NULL);
246	mtx_assert(m, MA_OWNED);
247 	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
248	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
249	    line);
250	_rel_spin_lock(m);
251}
252
253/*
254 * The important part of mtx_trylock{,_flags}()
255 * Tries to acquire lock `m.' We do NOT handle recursion here; we assume that
256 * if we're called, it's because we know we don't already own this lock.
257 */
258int
259_mtx_trylock(struct mtx *m, int opts, const char *file, int line)
260{
261	int rval;
262
263	MPASS(curthread != NULL);
264
265	rval = _obtain_lock(m, curthread);
266
267	LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line);
268	if (rval) {
269		/*
270		 * We do not handle recursion in _mtx_trylock; see the
271		 * note at the top of the routine.
272		 */
273		KASSERT(!mtx_recursed(m),
274		    ("mtx_trylock() called on a recursed mutex"));
275		WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
276		    file, line);
277	}
278
279	return (rval);
280}
281
282/*
283 * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
284 *
285 * We call this if the lock is either contested (i.e. we need to go to
286 * sleep waiting for it), or if we need to recurse on it.
287 */
288void
289_mtx_lock_sleep(struct mtx *m, int opts, const char *file, int line)
290{
291	struct thread *td = curthread;
292	struct ksegrp *kg = td->td_ksegrp;
293
294	if ((m->mtx_lock & MTX_FLAGMASK) == (uintptr_t)td) {
295		m->mtx_recurse++;
296		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
297		if (LOCK_LOG_TEST(&m->mtx_object, opts))
298			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
299		return;
300	}
301
302	if (LOCK_LOG_TEST(&m->mtx_object, opts))
303		CTR4(KTR_LOCK,
304		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
305		    m->mtx_object.lo_name, (void *)m->mtx_lock, file, line);
306
307	while (!_obtain_lock(m, td)) {
308		uintptr_t v;
309		struct thread *td1;
310
311		mtx_lock_spin(&sched_lock);
312		/*
313		 * Check if the lock has been released while spinning for
314		 * the sched_lock.
315		 */
316		if ((v = m->mtx_lock) == MTX_UNOWNED) {
317			mtx_unlock_spin(&sched_lock);
318			continue;
319		}
320
321		/*
322		 * The mutex was marked contested on release. This means that
323		 * there are threads blocked on it.
324		 */
325		if (v == MTX_CONTESTED) {
326			td1 = TAILQ_FIRST(&m->mtx_blocked);
327			MPASS(td1 != NULL);
328			m->mtx_lock = (uintptr_t)td | MTX_CONTESTED;
329
330			if (td1->td_ksegrp->kg_pri.pri_level < kg->kg_pri.pri_level)
331				SET_PRIO(td, td1->td_ksegrp->kg_pri.pri_level);
332			mtx_unlock_spin(&sched_lock);
333			return;
334		}
335
336		/*
337		 * If the mutex isn't already contested and a failure occurs
338		 * setting the contested bit, the mutex was either released
339		 * or the state of the MTX_RECURSED bit changed.
340		 */
341		if ((v & MTX_CONTESTED) == 0 &&
342		    !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
343			(void *)(v | MTX_CONTESTED))) {
344			mtx_unlock_spin(&sched_lock);
345			continue;
346		}
347
348		/*
349		 * We deffinately must sleep for this lock.
350		 */
351		mtx_assert(m, MA_NOTOWNED);
352
353#ifdef notyet
354		/*
355		 * If we're borrowing an interrupted thread's VM context, we
356		 * must clean up before going to sleep.
357		 */
358		if (td->td_ithd != NULL) {
359			struct ithd *it = td->td_ithd;
360
361			if (it->it_interrupted) {
362				if (LOCK_LOG_TEST(&m->mtx_object, opts))
363					CTR2(KTR_LOCK,
364				    "_mtx_lock_sleep: %p interrupted %p",
365					    it, it->it_interrupted);
366				intr_thd_fixup(it);
367			}
368		}
369#endif
370
371		/*
372		 * Put us on the list of threads blocked on this mutex.
373		 */
374		if (TAILQ_EMPTY(&m->mtx_blocked)) {
375			td1 = (struct thread *)(m->mtx_lock & MTX_FLAGMASK);
376			LIST_INSERT_HEAD(&td1->td_contested, m, mtx_contested);
377			TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_blkq);
378		} else {
379			TAILQ_FOREACH(td1, &m->mtx_blocked, td_blkq)
380				if (td1->td_ksegrp->kg_pri.pri_level > kg->kg_pri.pri_level)
381					break;
382			if (td1)
383				TAILQ_INSERT_BEFORE(td1, td, td_blkq);
384			else
385				TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_blkq);
386		}
387
388		/*
389		 * Save who we're blocked on.
390		 */
391		td->td_blocked = m;
392		td->td_mtxname = m->mtx_object.lo_name;
393		td->td_proc->p_stat = SMTX;
394		propagate_priority(td);
395
396		if (LOCK_LOG_TEST(&m->mtx_object, opts))
397			CTR3(KTR_LOCK,
398			    "_mtx_lock_sleep: p %p blocked on [%p] %s", td, m,
399			    m->mtx_object.lo_name);
400
401		td->td_proc->p_stats->p_ru.ru_nvcsw++;
402		mi_switch();
403
404		if (LOCK_LOG_TEST(&m->mtx_object, opts))
405			CTR3(KTR_LOCK,
406			  "_mtx_lock_sleep: p %p free from blocked on [%p] %s",
407			  td, m, m->mtx_object.lo_name);
408
409		mtx_unlock_spin(&sched_lock);
410	}
411
412	return;
413}
414
415/*
416 * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
417 *
418 * This is only called if we need to actually spin for the lock. Recursion
419 * is handled inline.
420 */
421void
422_mtx_lock_spin(struct mtx *m, int opts, const char *file, int line)
423{
424	int i = 0;
425
426	if (LOCK_LOG_TEST(&m->mtx_object, opts))
427		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
428
429	for (;;) {
430		if (_obtain_lock(m, curthread))
431			break;
432
433		/* Give interrupts a chance while we spin. */
434		critical_exit();
435		while (m->mtx_lock != MTX_UNOWNED) {
436			if (i++ < 10000000)
437				continue;
438			if (i++ < 60000000)
439				DELAY(1);
440#ifdef DDB
441			else if (!db_active)
442#else
443			else
444#endif
445			panic("spin lock %s held by %p for > 5 seconds",
446			    m->mtx_object.lo_name, (void *)m->mtx_lock);
447		}
448		critical_enter();
449	}
450
451	if (LOCK_LOG_TEST(&m->mtx_object, opts))
452		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
453
454	return;
455}
456
457/*
458 * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
459 *
460 * We are only called here if the lock is recursed or contested (i.e. we
461 * need to wake up a blocked thread).
462 */
463void
464_mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
465{
466	struct thread *td, *td1;
467	struct mtx *m1;
468	int pri;
469	struct ksegrp *kg;
470
471	td = curthread;
472	kg = td->td_ksegrp;
473
474	if (mtx_recursed(m)) {
475		if (--(m->mtx_recurse) == 0)
476			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
477		if (LOCK_LOG_TEST(&m->mtx_object, opts))
478			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
479		return;
480	}
481
482	mtx_lock_spin(&sched_lock);
483	if (LOCK_LOG_TEST(&m->mtx_object, opts))
484		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
485
486	td1 = TAILQ_FIRST(&m->mtx_blocked);
487	MPASS(td->td_proc->p_magic == P_MAGIC);
488	MPASS(td1->td_proc->p_magic == P_MAGIC);
489
490	TAILQ_REMOVE(&m->mtx_blocked, td1, td_blkq);
491
492	if (TAILQ_EMPTY(&m->mtx_blocked)) {
493		LIST_REMOVE(m, mtx_contested);
494		_release_lock_quick(m);
495		if (LOCK_LOG_TEST(&m->mtx_object, opts))
496			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
497	} else
498		atomic_store_rel_ptr(&m->mtx_lock, (void *)MTX_CONTESTED);
499
500	pri = PRI_MAX;
501	LIST_FOREACH(m1, &td->td_contested, mtx_contested) {
502		int cp = TAILQ_FIRST(&m1->mtx_blocked)->td_ksegrp->kg_pri.pri_level;
503		if (cp < pri)
504			pri = cp;
505	}
506
507	if (pri > kg->kg_pri.pri_native)
508		pri = kg->kg_pri.pri_native;
509	SET_PRIO(td, pri);
510
511	if (LOCK_LOG_TEST(&m->mtx_object, opts))
512		CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p contested setrunqueue %p",
513		    m, td1);
514
515	td1->td_blocked = NULL;
516	td1->td_proc->p_stat = SRUN;
517	setrunqueue(td1);
518
519	if (td->td_critnest == 1 && td1->td_ksegrp->kg_pri.pri_level < pri) {
520#ifdef notyet
521		if (td->td_ithd != NULL) {
522			struct ithd *it = td->td_ithd;
523
524			if (it->it_interrupted) {
525				if (LOCK_LOG_TEST(&m->mtx_object, opts))
526					CTR2(KTR_LOCK,
527				    "_mtx_unlock_sleep: %p interrupted %p",
528					    it, it->it_interrupted);
529				intr_thd_fixup(it);
530			}
531		}
532#endif
533		setrunqueue(td);
534		if (LOCK_LOG_TEST(&m->mtx_object, opts))
535			CTR2(KTR_LOCK,
536			    "_mtx_unlock_sleep: %p switching out lock=%p", m,
537			    (void *)m->mtx_lock);
538
539		td->td_proc->p_stats->p_ru.ru_nivcsw++;
540		mi_switch();
541		if (LOCK_LOG_TEST(&m->mtx_object, opts))
542			CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
543			    m, (void *)m->mtx_lock);
544	}
545
546	mtx_unlock_spin(&sched_lock);
547
548	return;
549}
550
551/*
552 * All the unlocking of MTX_SPIN locks is done inline.
553 * See the _rel_spin_lock() macro for the details.
554 */
555
556/*
557 * The backing function for the INVARIANTS-enabled mtx_assert()
558 */
559#ifdef INVARIANT_SUPPORT
560void
561_mtx_assert(struct mtx *m, int what, const char *file, int line)
562{
563
564	if (panicstr != NULL)
565		return;
566	switch (what) {
567	case MA_OWNED:
568	case MA_OWNED | MA_RECURSED:
569	case MA_OWNED | MA_NOTRECURSED:
570		if (!mtx_owned(m))
571			panic("mutex %s not owned at %s:%d",
572			    m->mtx_object.lo_name, file, line);
573		if (mtx_recursed(m)) {
574			if ((what & MA_NOTRECURSED) != 0)
575				panic("mutex %s recursed at %s:%d",
576				    m->mtx_object.lo_name, file, line);
577		} else if ((what & MA_RECURSED) != 0) {
578			panic("mutex %s unrecursed at %s:%d",
579			    m->mtx_object.lo_name, file, line);
580		}
581		break;
582	case MA_NOTOWNED:
583		if (mtx_owned(m))
584			panic("mutex %s owned at %s:%d",
585			    m->mtx_object.lo_name, file, line);
586		break;
587	default:
588		panic("unknown mtx_assert at %s:%d", file, line);
589	}
590}
591#endif
592
593/*
594 * The MUTEX_DEBUG-enabled mtx_validate()
595 *
596 * Most of these checks have been moved off into the LO_INITIALIZED flag
597 * maintained by the witness code.
598 */
599#ifdef MUTEX_DEBUG
600
601void	mtx_validate __P((struct mtx *));
602
603void
604mtx_validate(struct mtx *m)
605{
606
607/*
608 * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
609 * we can re-enable the kernacc() checks.
610 */
611#ifndef __alpha__
612	/*
613	 * Can't call kernacc() from early init386(), especially when
614	 * initializing Giant mutex, because some stuff in kernacc()
615	 * requires Giant itself.
616	 */
617	if (!cold)
618		if (!kernacc((caddr_t)m, sizeof(m),
619		    VM_PROT_READ | VM_PROT_WRITE))
620			panic("Can't read and write to mutex %p", m);
621#endif
622}
623#endif
624
625/*
626 * Mutex initialization routine; initialize lock `m' of type contained in
627 * `opts' with options contained in `opts' and description `description.'
628 */
629void
630mtx_init(struct mtx *m, const char *description, int opts)
631{
632	struct lock_object *lock;
633
634	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
635	    MTX_SLEEPABLE | MTX_NOWITNESS)) == 0);
636
637#ifdef MUTEX_DEBUG
638	/* Diagnostic and error correction */
639	mtx_validate(m);
640#endif
641
642	lock = &m->mtx_object;
643	KASSERT((lock->lo_flags & LO_INITIALIZED) == 0,
644	    ("mutex %s %p already initialized", description, m));
645	bzero(m, sizeof(*m));
646	if (opts & MTX_SPIN)
647		lock->lo_class = &lock_class_mtx_spin;
648	else
649		lock->lo_class = &lock_class_mtx_sleep;
650	lock->lo_name = description;
651	if (opts & MTX_QUIET)
652		lock->lo_flags = LO_QUIET;
653	if (opts & MTX_RECURSE)
654		lock->lo_flags |= LO_RECURSABLE;
655	if (opts & MTX_SLEEPABLE)
656		lock->lo_flags |= LO_SLEEPABLE;
657	if ((opts & MTX_NOWITNESS) == 0)
658		lock->lo_flags |= LO_WITNESS;
659
660	m->mtx_lock = MTX_UNOWNED;
661	TAILQ_INIT(&m->mtx_blocked);
662
663	LOCK_LOG_INIT(lock, opts);
664
665	WITNESS_INIT(lock);
666}
667
668/*
669 * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
670 * passed in as a flag here because if the corresponding mtx_init() was
671 * called with MTX_QUIET set, then it will already be set in the mutex's
672 * flags.
673 */
674void
675mtx_destroy(struct mtx *m)
676{
677
678	LOCK_LOG_DESTROY(&m->mtx_object, 0);
679
680	if (!mtx_owned(m))
681		MPASS(mtx_unowned(m));
682	else {
683		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
684
685		/* Tell witness this isn't locked to make it happy. */
686		WITNESS_UNLOCK(&m->mtx_object, LOP_EXCLUSIVE, __FILE__,
687		    __LINE__);
688	}
689
690	WITNESS_DESTROY(&m->mtx_object);
691}
692
693/*
694 * Encapsulated Giant mutex routines.  These routines provide encapsulation
695 * control for the Giant mutex, allowing sysctls to be used to turn on and
696 * off Giant around certain subsystems.  The default value for the sysctls
697 * are set to what developers believe is stable and working in regards to
698 * the Giant pushdown.  Developers should not turn off Giant via these
699 * sysctls unless they know what they are doing.
700 *
701 * Callers of mtx_lock_giant() are expected to pass the return value to an
702 * accompanying mtx_unlock_giant() later on.  If multiple subsystems are
703 * effected by a Giant wrap, all related sysctl variables must be zero for
704 * the subsystem call to operate without Giant (as determined by the caller).
705 */
706
707SYSCTL_NODE(_kern, OID_AUTO, giant, CTLFLAG_RD, NULL, "Giant mutex manipulation");
708
709static int kern_giant_all = 0;
710SYSCTL_INT(_kern_giant, OID_AUTO, all, CTLFLAG_RW, &kern_giant_all, 0, "");
711
712int kern_giant_proc = 1;	/* Giant around PROC locks */
713int kern_giant_file = 1;	/* Giant around struct file & filedesc */
714SYSCTL_INT(_kern_giant, OID_AUTO, proc, CTLFLAG_RW, &kern_giant_proc, 0, "");
715SYSCTL_INT(_kern_giant, OID_AUTO, file, CTLFLAG_RW, &kern_giant_file, 0, "");
716
717int
718mtx_lock_giant(int sysctlvar)
719{
720	if (sysctlvar || kern_giant_all) {
721		mtx_lock(&Giant);
722		return(1);
723	}
724	return(0);
725}
726
727void
728mtx_unlock_giant(int s)
729{
730	if (s)
731		mtx_unlock(&Giant);
732}
733
734