1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 */
31
32/*
33 * Implementation of turnstiles used to hold queue of threads blocked on
34 * non-sleepable locks.  Sleepable locks use condition variables to
35 * implement their queues.  Turnstiles differ from a sleep queue in that
36 * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
37 * when one thread is enqueued onto a turnstile, it can lend its priority
38 * to the owning thread.
39 *
40 * We wish to avoid bloating locks with an embedded turnstile and we do not
41 * want to use back-pointers in the locks for the same reason.  Thus, we
42 * use a similar approach to that of Solaris 7 as described in Solaris
43 * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
44 * in a hash table based on the address of the lock.  Each entry in the
45 * hash table is a linked-lists of turnstiles and is called a turnstile
46 * chain.  Each chain contains a spin mutex that protects all of the
47 * turnstiles in the chain.
48 *
49 * Each time a thread is created, a turnstile is allocated from a UMA zone
50 * and attached to that thread.  When a thread blocks on a lock, if it is the
51 * first thread to block, it lends its turnstile to the lock.  If the lock
52 * already has a turnstile, then it gives its turnstile to the lock's
53 * turnstile's free list.  When a thread is woken up, it takes a turnstile from
54 * the free list if there are any other waiters.  If it is the only thread
55 * blocked on the lock, then it reclaims the turnstile associated with the lock
56 * and removes it from the hash table.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD$");
61
62#include "opt_ddb.h"
63#include "opt_turnstile_profiling.h"
64#include "opt_sched.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/kdb.h>
69#include <sys/kernel.h>
70#include <sys/ktr.h>
71#include <sys/lock.h>
72#include <sys/mutex.h>
73#include <sys/proc.h>
74#include <sys/queue.h>
75#include <sys/sched.h>
76#include <sys/sdt.h>
77#include <sys/sysctl.h>
78#include <sys/turnstile.h>
79
80#include <vm/uma.h>
81
82#ifdef DDB
83#include <ddb/ddb.h>
84#include <sys/lockmgr.h>
85#include <sys/sx.h>
86#endif
87
88/*
89 * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
90 * number chosen because the sleep queue's use the same value for the
91 * shift.  Basically, we ignore the lower 8 bits of the address.
92 * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
93 */
94#define	TC_TABLESIZE	128			/* Must be power of 2. */
95#define	TC_MASK		(TC_TABLESIZE - 1)
96#define	TC_SHIFT	8
97#define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
98#define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
99
100/*
101 * There are three different lists of turnstiles as follows.  The list
102 * connected by ts_link entries is a per-thread list of all the turnstiles
103 * attached to locks that we own.  This is used to fixup our priority when
104 * a lock is released.  The other two lists use the ts_hash entries.  The
105 * first of these two is the turnstile chain list that a turnstile is on
106 * when it is attached to a lock.  The second list to use ts_hash is the
107 * free list hung off of a turnstile that is attached to a lock.
108 *
109 * Each turnstile contains three lists of threads.  The two ts_blocked lists
110 * are linked list of threads blocked on the turnstile's lock.  One list is
111 * for exclusive waiters, and the other is for shared waiters.  The
112 * ts_pending list is a linked list of threads previously awakened by
113 * turnstile_signal() or turnstile_wait() that are waiting to be put on
114 * the run queue.
115 *
116 * Locking key:
117 *  c - turnstile chain lock
118 *  q - td_contested lock
119 */
120struct turnstile {
121	struct mtx ts_lock;			/* Spin lock for self. */
122	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
123	struct threadqueue ts_pending;		/* (c) Pending threads. */
124	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
125	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
126	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
127	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
128	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
129};
130
131struct turnstile_chain {
132	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
133	struct mtx tc_lock;			/* Spin lock for this chain. */
134#ifdef TURNSTILE_PROFILING
135	u_int	tc_depth;			/* Length of tc_queues. */
136	u_int	tc_max_depth;			/* Max length of tc_queues. */
137#endif
138};
139
140#ifdef TURNSTILE_PROFILING
141u_int turnstile_max_depth;
142static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0,
143    "turnstile profiling");
144static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
145    "turnstile chain stats");
146SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
147    &turnstile_max_depth, 0, "maximum depth achieved of a single chain");
148#endif
149static struct mtx td_contested_lock;
150static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
151static uma_zone_t turnstile_zone;
152
153/*
154 * Prototypes for non-exported routines.
155 */
156static void	init_turnstile0(void *dummy);
157#ifdef TURNSTILE_PROFILING
158static void	init_turnstile_profiling(void *arg);
159#endif
160static void	propagate_priority(struct thread *td);
161static int	turnstile_adjust_thread(struct turnstile *ts,
162		    struct thread *td);
163static struct thread *turnstile_first_waiter(struct turnstile *ts);
164static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
165#ifdef INVARIANTS
166static void	turnstile_dtor(void *mem, int size, void *arg);
167#endif
168static int	turnstile_init(void *mem, int size, int flags);
169static void	turnstile_fini(void *mem, int size);
170
171SDT_PROVIDER_DECLARE(sched);
172SDT_PROBE_DEFINE(sched, , , sleep);
173SDT_PROBE_DEFINE2(sched, , , wakeup, "struct thread *",
174    "struct proc *");
175
176/*
177 * Walks the chain of turnstiles and their owners to propagate the priority
178 * of the thread being blocked to all the threads holding locks that have to
179 * release their locks before this thread can run again.
180 */
181static void
182propagate_priority(struct thread *td)
183{
184	struct turnstile *ts;
185	int pri;
186
187	THREAD_LOCK_ASSERT(td, MA_OWNED);
188	pri = td->td_priority;
189	ts = td->td_blocked;
190	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
191	/*
192	 * Grab a recursive lock on this turnstile chain so it stays locked
193	 * for the whole operation.  The caller expects us to return with
194	 * the original lock held.  We only ever lock down the chain so
195	 * the lock order is constant.
196	 */
197	mtx_lock_spin(&ts->ts_lock);
198	for (;;) {
199		td = ts->ts_owner;
200
201		if (td == NULL) {
202			/*
203			 * This might be a read lock with no owner.  There's
204			 * not much we can do, so just bail.
205			 */
206			mtx_unlock_spin(&ts->ts_lock);
207			return;
208		}
209
210		thread_lock_flags(td, MTX_DUPOK);
211		mtx_unlock_spin(&ts->ts_lock);
212		MPASS(td->td_proc != NULL);
213		MPASS(td->td_proc->p_magic == P_MAGIC);
214
215		/*
216		 * If the thread is asleep, then we are probably about
217		 * to deadlock.  To make debugging this easier, show
218		 * backtrace of misbehaving thread and panic to not
219		 * leave the kernel deadlocked.
220		 */
221		if (TD_IS_SLEEPING(td)) {
222			printf(
223		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
224			    td->td_tid, td->td_proc->p_pid);
225			kdb_backtrace_thread(td);
226			panic("sleeping thread");
227		}
228
229		/*
230		 * If this thread already has higher priority than the
231		 * thread that is being blocked, we are finished.
232		 */
233		if (td->td_priority <= pri) {
234			thread_unlock(td);
235			return;
236		}
237
238		/*
239		 * Bump this thread's priority.
240		 */
241		sched_lend_prio(td, pri);
242
243		/*
244		 * If lock holder is actually running or on the run queue
245		 * then we are done.
246		 */
247		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
248			MPASS(td->td_blocked == NULL);
249			thread_unlock(td);
250			return;
251		}
252
253#ifndef SMP
254		/*
255		 * For UP, we check to see if td is curthread (this shouldn't
256		 * ever happen however as it would mean we are in a deadlock.)
257		 */
258		KASSERT(td != curthread, ("Deadlock detected"));
259#endif
260
261		/*
262		 * If we aren't blocked on a lock, we should be.
263		 */
264		KASSERT(TD_ON_LOCK(td), (
265		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
266		    td->td_tid, td->td_name, td->td_state,
267		    ts->ts_lockobj->lo_name));
268
269		/*
270		 * Pick up the lock that td is blocked on.
271		 */
272		ts = td->td_blocked;
273		MPASS(ts != NULL);
274		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
275		/* Resort td on the list if needed. */
276		if (!turnstile_adjust_thread(ts, td)) {
277			mtx_unlock_spin(&ts->ts_lock);
278			return;
279		}
280		/* The thread lock is released as ts lock above. */
281	}
282}
283
284/*
285 * Adjust the thread's position on a turnstile after its priority has been
286 * changed.
287 */
288static int
289turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
290{
291	struct thread *td1, *td2;
292	int queue;
293
294	THREAD_LOCK_ASSERT(td, MA_OWNED);
295	MPASS(TD_ON_LOCK(td));
296
297	/*
298	 * This thread may not be blocked on this turnstile anymore
299	 * but instead might already be woken up on another CPU
300	 * that is waiting on the thread lock in turnstile_unpend() to
301	 * finish waking this thread up.  We can detect this case
302	 * by checking to see if this thread has been given a
303	 * turnstile by either turnstile_signal() or
304	 * turnstile_broadcast().  In this case, treat the thread as
305	 * if it was already running.
306	 */
307	if (td->td_turnstile != NULL)
308		return (0);
309
310	/*
311	 * Check if the thread needs to be moved on the blocked chain.
312	 * It needs to be moved if either its priority is lower than
313	 * the previous thread or higher than the next thread.
314	 */
315	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
316	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
317	td2 = TAILQ_NEXT(td, td_lockq);
318	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
319	    (td2 != NULL && td->td_priority > td2->td_priority)) {
320
321		/*
322		 * Remove thread from blocked chain and determine where
323		 * it should be moved to.
324		 */
325		queue = td->td_tsqueue;
326		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
327		mtx_lock_spin(&td_contested_lock);
328		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
329		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
330			MPASS(td1->td_proc->p_magic == P_MAGIC);
331			if (td1->td_priority > td->td_priority)
332				break;
333		}
334
335		if (td1 == NULL)
336			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
337		else
338			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
339		mtx_unlock_spin(&td_contested_lock);
340		if (td1 == NULL)
341			CTR3(KTR_LOCK,
342		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
343			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
344		else
345			CTR4(KTR_LOCK,
346		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
347			    td->td_tid, td1->td_tid, ts->ts_lockobj,
348			    ts->ts_lockobj->lo_name);
349	}
350	return (1);
351}
352
353/*
354 * Early initialization of turnstiles.  This is not done via a SYSINIT()
355 * since this needs to be initialized very early when mutexes are first
356 * initialized.
357 */
358void
359init_turnstiles(void)
360{
361	int i;
362
363	for (i = 0; i < TC_TABLESIZE; i++) {
364		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
365		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
366		    NULL, MTX_SPIN);
367	}
368	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
369	LIST_INIT(&thread0.td_contested);
370	thread0.td_turnstile = NULL;
371}
372
373#ifdef TURNSTILE_PROFILING
374static void
375init_turnstile_profiling(void *arg)
376{
377	struct sysctl_oid *chain_oid;
378	char chain_name[10];
379	int i;
380
381	for (i = 0; i < TC_TABLESIZE; i++) {
382		snprintf(chain_name, sizeof(chain_name), "%d", i);
383		chain_oid = SYSCTL_ADD_NODE(NULL,
384		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
385		    chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
386		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
387		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
388		    NULL);
389		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
390		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
391		    0, NULL);
392	}
393}
394SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
395    init_turnstile_profiling, NULL);
396#endif
397
398static void
399init_turnstile0(void *dummy)
400{
401
402	turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
403	    NULL,
404#ifdef INVARIANTS
405	    turnstile_dtor,
406#else
407	    NULL,
408#endif
409	    turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
410	thread0.td_turnstile = turnstile_alloc();
411}
412SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
413
414/*
415 * Update a thread on the turnstile list after it's priority has been changed.
416 * The old priority is passed in as an argument.
417 */
418void
419turnstile_adjust(struct thread *td, u_char oldpri)
420{
421	struct turnstile *ts;
422
423	MPASS(TD_ON_LOCK(td));
424
425	/*
426	 * Pick up the lock that td is blocked on.
427	 */
428	ts = td->td_blocked;
429	MPASS(ts != NULL);
430	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
431	mtx_assert(&ts->ts_lock, MA_OWNED);
432
433	/* Resort the turnstile on the list. */
434	if (!turnstile_adjust_thread(ts, td))
435		return;
436	/*
437	 * If our priority was lowered and we are at the head of the
438	 * turnstile, then propagate our new priority up the chain.
439	 * Note that we currently don't try to revoke lent priorities
440	 * when our priority goes up.
441	 */
442	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
443	    td->td_tsqueue == TS_SHARED_QUEUE);
444	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
445	    td->td_priority < oldpri) {
446		propagate_priority(td);
447	}
448}
449
450/*
451 * Set the owner of the lock this turnstile is attached to.
452 */
453static void
454turnstile_setowner(struct turnstile *ts, struct thread *owner)
455{
456
457	mtx_assert(&td_contested_lock, MA_OWNED);
458	MPASS(ts->ts_owner == NULL);
459
460	/* A shared lock might not have an owner. */
461	if (owner == NULL)
462		return;
463
464	MPASS(owner->td_proc->p_magic == P_MAGIC);
465	ts->ts_owner = owner;
466	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
467}
468
469#ifdef INVARIANTS
470/*
471 * UMA zone item deallocator.
472 */
473static void
474turnstile_dtor(void *mem, int size, void *arg)
475{
476	struct turnstile *ts;
477
478	ts = mem;
479	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
480	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
481	MPASS(TAILQ_EMPTY(&ts->ts_pending));
482}
483#endif
484
485/*
486 * UMA zone item initializer.
487 */
488static int
489turnstile_init(void *mem, int size, int flags)
490{
491	struct turnstile *ts;
492
493	bzero(mem, size);
494	ts = mem;
495	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
496	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
497	TAILQ_INIT(&ts->ts_pending);
498	LIST_INIT(&ts->ts_free);
499	mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN | MTX_RECURSE);
500	return (0);
501}
502
503static void
504turnstile_fini(void *mem, int size)
505{
506	struct turnstile *ts;
507
508	ts = mem;
509	mtx_destroy(&ts->ts_lock);
510}
511
512/*
513 * Get a turnstile for a new thread.
514 */
515struct turnstile *
516turnstile_alloc(void)
517{
518
519	return (uma_zalloc(turnstile_zone, M_WAITOK));
520}
521
522/*
523 * Free a turnstile when a thread is destroyed.
524 */
525void
526turnstile_free(struct turnstile *ts)
527{
528
529	uma_zfree(turnstile_zone, ts);
530}
531
532/*
533 * Lock the turnstile chain associated with the specified lock.
534 */
535void
536turnstile_chain_lock(struct lock_object *lock)
537{
538	struct turnstile_chain *tc;
539
540	tc = TC_LOOKUP(lock);
541	mtx_lock_spin(&tc->tc_lock);
542}
543
544struct turnstile *
545turnstile_trywait(struct lock_object *lock)
546{
547	struct turnstile_chain *tc;
548	struct turnstile *ts;
549
550	tc = TC_LOOKUP(lock);
551	mtx_lock_spin(&tc->tc_lock);
552	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
553		if (ts->ts_lockobj == lock) {
554			mtx_lock_spin(&ts->ts_lock);
555			return (ts);
556		}
557
558	ts = curthread->td_turnstile;
559	MPASS(ts != NULL);
560	mtx_lock_spin(&ts->ts_lock);
561	KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
562	ts->ts_lockobj = lock;
563
564	return (ts);
565}
566
567void
568turnstile_cancel(struct turnstile *ts)
569{
570	struct turnstile_chain *tc;
571	struct lock_object *lock;
572
573	mtx_assert(&ts->ts_lock, MA_OWNED);
574
575	mtx_unlock_spin(&ts->ts_lock);
576	lock = ts->ts_lockobj;
577	if (ts == curthread->td_turnstile)
578		ts->ts_lockobj = NULL;
579	tc = TC_LOOKUP(lock);
580	mtx_unlock_spin(&tc->tc_lock);
581}
582
583/*
584 * Look up the turnstile for a lock in the hash table locking the associated
585 * turnstile chain along the way.  If no turnstile is found in the hash
586 * table, NULL is returned.
587 */
588struct turnstile *
589turnstile_lookup(struct lock_object *lock)
590{
591	struct turnstile_chain *tc;
592	struct turnstile *ts;
593
594	tc = TC_LOOKUP(lock);
595	mtx_assert(&tc->tc_lock, MA_OWNED);
596	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
597		if (ts->ts_lockobj == lock) {
598			mtx_lock_spin(&ts->ts_lock);
599			return (ts);
600		}
601	return (NULL);
602}
603
604/*
605 * Unlock the turnstile chain associated with a given lock.
606 */
607void
608turnstile_chain_unlock(struct lock_object *lock)
609{
610	struct turnstile_chain *tc;
611
612	tc = TC_LOOKUP(lock);
613	mtx_unlock_spin(&tc->tc_lock);
614}
615
616/*
617 * Return a pointer to the thread waiting on this turnstile with the
618 * most important priority or NULL if the turnstile has no waiters.
619 */
620static struct thread *
621turnstile_first_waiter(struct turnstile *ts)
622{
623	struct thread *std, *xtd;
624
625	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
626	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
627	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
628		return (std);
629	return (xtd);
630}
631
632/*
633 * Take ownership of a turnstile and adjust the priority of the new
634 * owner appropriately.
635 */
636void
637turnstile_claim(struct turnstile *ts)
638{
639	struct thread *td, *owner;
640	struct turnstile_chain *tc;
641
642	mtx_assert(&ts->ts_lock, MA_OWNED);
643	MPASS(ts != curthread->td_turnstile);
644
645	owner = curthread;
646	mtx_lock_spin(&td_contested_lock);
647	turnstile_setowner(ts, owner);
648	mtx_unlock_spin(&td_contested_lock);
649
650	td = turnstile_first_waiter(ts);
651	MPASS(td != NULL);
652	MPASS(td->td_proc->p_magic == P_MAGIC);
653	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
654
655	/*
656	 * Update the priority of the new owner if needed.
657	 */
658	thread_lock(owner);
659	if (td->td_priority < owner->td_priority)
660		sched_lend_prio(owner, td->td_priority);
661	thread_unlock(owner);
662	tc = TC_LOOKUP(ts->ts_lockobj);
663	mtx_unlock_spin(&ts->ts_lock);
664	mtx_unlock_spin(&tc->tc_lock);
665}
666
667/*
668 * Block the current thread on the turnstile assicated with 'lock'.  This
669 * function will context switch and not return until this thread has been
670 * woken back up.  This function must be called with the appropriate
671 * turnstile chain locked and will return with it unlocked.
672 */
673void
674turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
675{
676	struct turnstile_chain *tc;
677	struct thread *td, *td1;
678	struct lock_object *lock;
679
680	td = curthread;
681	mtx_assert(&ts->ts_lock, MA_OWNED);
682	if (owner)
683		MPASS(owner->td_proc->p_magic == P_MAGIC);
684	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
685
686	/*
687	 * If the lock does not already have a turnstile, use this thread's
688	 * turnstile.  Otherwise insert the current thread into the
689	 * turnstile already in use by this lock.
690	 */
691	tc = TC_LOOKUP(ts->ts_lockobj);
692	mtx_assert(&tc->tc_lock, MA_OWNED);
693	if (ts == td->td_turnstile) {
694#ifdef TURNSTILE_PROFILING
695		tc->tc_depth++;
696		if (tc->tc_depth > tc->tc_max_depth) {
697			tc->tc_max_depth = tc->tc_depth;
698			if (tc->tc_max_depth > turnstile_max_depth)
699				turnstile_max_depth = tc->tc_max_depth;
700		}
701#endif
702		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
703		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
704		    ("thread's turnstile has pending threads"));
705		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
706		    ("thread's turnstile has exclusive waiters"));
707		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
708		    ("thread's turnstile has shared waiters"));
709		KASSERT(LIST_EMPTY(&ts->ts_free),
710		    ("thread's turnstile has a non-empty free list"));
711		MPASS(ts->ts_lockobj != NULL);
712		mtx_lock_spin(&td_contested_lock);
713		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
714		turnstile_setowner(ts, owner);
715		mtx_unlock_spin(&td_contested_lock);
716	} else {
717		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
718			if (td1->td_priority > td->td_priority)
719				break;
720		mtx_lock_spin(&td_contested_lock);
721		if (td1 != NULL)
722			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
723		else
724			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
725		MPASS(owner == ts->ts_owner);
726		mtx_unlock_spin(&td_contested_lock);
727		MPASS(td->td_turnstile != NULL);
728		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
729	}
730	thread_lock(td);
731	thread_lock_set(td, &ts->ts_lock);
732	td->td_turnstile = NULL;
733
734	/* Save who we are blocked on and switch. */
735	lock = ts->ts_lockobj;
736	td->td_tsqueue = queue;
737	td->td_blocked = ts;
738	td->td_lockname = lock->lo_name;
739	td->td_blktick = ticks;
740	TD_SET_LOCK(td);
741	mtx_unlock_spin(&tc->tc_lock);
742	propagate_priority(td);
743
744	if (LOCK_LOG_TEST(lock, 0))
745		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
746		    td->td_tid, lock, lock->lo_name);
747
748	SDT_PROBE0(sched, , , sleep);
749
750	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
751	mi_switch(SW_VOL | SWT_TURNSTILE, NULL);
752
753	if (LOCK_LOG_TEST(lock, 0))
754		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
755		    __func__, td->td_tid, lock, lock->lo_name);
756	thread_unlock(td);
757}
758
759/*
760 * Pick the highest priority thread on this turnstile and put it on the
761 * pending list.  This must be called with the turnstile chain locked.
762 */
763int
764turnstile_signal(struct turnstile *ts, int queue)
765{
766	struct turnstile_chain *tc;
767	struct thread *td;
768	int empty;
769
770	MPASS(ts != NULL);
771	mtx_assert(&ts->ts_lock, MA_OWNED);
772	MPASS(curthread->td_proc->p_magic == P_MAGIC);
773	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
774	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
775
776	/*
777	 * Pick the highest priority thread blocked on this lock and
778	 * move it to the pending list.
779	 */
780	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
781	MPASS(td->td_proc->p_magic == P_MAGIC);
782	mtx_lock_spin(&td_contested_lock);
783	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
784	mtx_unlock_spin(&td_contested_lock);
785	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
786
787	/*
788	 * If the turnstile is now empty, remove it from its chain and
789	 * give it to the about-to-be-woken thread.  Otherwise take a
790	 * turnstile from the free list and give it to the thread.
791	 */
792	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
793	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
794	if (empty) {
795		tc = TC_LOOKUP(ts->ts_lockobj);
796		mtx_assert(&tc->tc_lock, MA_OWNED);
797		MPASS(LIST_EMPTY(&ts->ts_free));
798#ifdef TURNSTILE_PROFILING
799		tc->tc_depth--;
800#endif
801	} else
802		ts = LIST_FIRST(&ts->ts_free);
803	MPASS(ts != NULL);
804	LIST_REMOVE(ts, ts_hash);
805	td->td_turnstile = ts;
806
807	return (empty);
808}
809
810/*
811 * Put all blocked threads on the pending list.  This must be called with
812 * the turnstile chain locked.
813 */
814void
815turnstile_broadcast(struct turnstile *ts, int queue)
816{
817	struct turnstile_chain *tc;
818	struct turnstile *ts1;
819	struct thread *td;
820
821	MPASS(ts != NULL);
822	mtx_assert(&ts->ts_lock, MA_OWNED);
823	MPASS(curthread->td_proc->p_magic == P_MAGIC);
824	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
825	/*
826	 * We must have the chain locked so that we can remove the empty
827	 * turnstile from the hash queue.
828	 */
829	tc = TC_LOOKUP(ts->ts_lockobj);
830	mtx_assert(&tc->tc_lock, MA_OWNED);
831	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
832
833	/*
834	 * Transfer the blocked list to the pending list.
835	 */
836	mtx_lock_spin(&td_contested_lock);
837	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
838	mtx_unlock_spin(&td_contested_lock);
839
840	/*
841	 * Give a turnstile to each thread.  The last thread gets
842	 * this turnstile if the turnstile is empty.
843	 */
844	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
845		if (LIST_EMPTY(&ts->ts_free)) {
846			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
847			ts1 = ts;
848#ifdef TURNSTILE_PROFILING
849			tc->tc_depth--;
850#endif
851		} else
852			ts1 = LIST_FIRST(&ts->ts_free);
853		MPASS(ts1 != NULL);
854		LIST_REMOVE(ts1, ts_hash);
855		td->td_turnstile = ts1;
856	}
857}
858
859/*
860 * Wakeup all threads on the pending list and adjust the priority of the
861 * current thread appropriately.  This must be called with the turnstile
862 * chain locked.
863 */
864void
865turnstile_unpend(struct turnstile *ts, int owner_type)
866{
867	TAILQ_HEAD( ,thread) pending_threads;
868	struct turnstile *nts;
869	struct thread *td;
870	u_char cp, pri;
871
872	MPASS(ts != NULL);
873	mtx_assert(&ts->ts_lock, MA_OWNED);
874	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
875	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
876
877	/*
878	 * Move the list of pending threads out of the turnstile and
879	 * into a local variable.
880	 */
881	TAILQ_INIT(&pending_threads);
882	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
883#ifdef INVARIANTS
884	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
885	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
886		ts->ts_lockobj = NULL;
887#endif
888	/*
889	 * Adjust the priority of curthread based on other contested
890	 * locks it owns.  Don't lower the priority below the base
891	 * priority however.
892	 */
893	td = curthread;
894	pri = PRI_MAX;
895	thread_lock(td);
896	mtx_lock_spin(&td_contested_lock);
897	/*
898	 * Remove the turnstile from this thread's list of contested locks
899	 * since this thread doesn't own it anymore.  New threads will
900	 * not be blocking on the turnstile until it is claimed by a new
901	 * owner.  There might not be a current owner if this is a shared
902	 * lock.
903	 */
904	if (ts->ts_owner != NULL) {
905		ts->ts_owner = NULL;
906		LIST_REMOVE(ts, ts_link);
907	}
908	LIST_FOREACH(nts, &td->td_contested, ts_link) {
909		cp = turnstile_first_waiter(nts)->td_priority;
910		if (cp < pri)
911			pri = cp;
912	}
913	mtx_unlock_spin(&td_contested_lock);
914	sched_unlend_prio(td, pri);
915	thread_unlock(td);
916	/*
917	 * Wake up all the pending threads.  If a thread is not blocked
918	 * on a lock, then it is currently executing on another CPU in
919	 * turnstile_wait() or sitting on a run queue waiting to resume
920	 * in turnstile_wait().  Set a flag to force it to try to acquire
921	 * the lock again instead of blocking.
922	 */
923	while (!TAILQ_EMPTY(&pending_threads)) {
924		td = TAILQ_FIRST(&pending_threads);
925		TAILQ_REMOVE(&pending_threads, td, td_lockq);
926		SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
927		thread_lock(td);
928		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
929		MPASS(td->td_proc->p_magic == P_MAGIC);
930		MPASS(TD_ON_LOCK(td));
931		TD_CLR_LOCK(td);
932		MPASS(TD_CAN_RUN(td));
933		td->td_blocked = NULL;
934		td->td_lockname = NULL;
935		td->td_blktick = 0;
936#ifdef INVARIANTS
937		td->td_tsqueue = 0xff;
938#endif
939		sched_add(td, SRQ_BORING);
940		thread_unlock(td);
941	}
942	mtx_unlock_spin(&ts->ts_lock);
943}
944
945/*
946 * Give up ownership of a turnstile.  This must be called with the
947 * turnstile chain locked.
948 */
949void
950turnstile_disown(struct turnstile *ts)
951{
952	struct thread *td;
953	u_char cp, pri;
954
955	MPASS(ts != NULL);
956	mtx_assert(&ts->ts_lock, MA_OWNED);
957	MPASS(ts->ts_owner == curthread);
958	MPASS(TAILQ_EMPTY(&ts->ts_pending));
959	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
960	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
961
962	/*
963	 * Remove the turnstile from this thread's list of contested locks
964	 * since this thread doesn't own it anymore.  New threads will
965	 * not be blocking on the turnstile until it is claimed by a new
966	 * owner.
967	 */
968	mtx_lock_spin(&td_contested_lock);
969	ts->ts_owner = NULL;
970	LIST_REMOVE(ts, ts_link);
971	mtx_unlock_spin(&td_contested_lock);
972
973	/*
974	 * Adjust the priority of curthread based on other contested
975	 * locks it owns.  Don't lower the priority below the base
976	 * priority however.
977	 */
978	td = curthread;
979	pri = PRI_MAX;
980	thread_lock(td);
981	mtx_unlock_spin(&ts->ts_lock);
982	mtx_lock_spin(&td_contested_lock);
983	LIST_FOREACH(ts, &td->td_contested, ts_link) {
984		cp = turnstile_first_waiter(ts)->td_priority;
985		if (cp < pri)
986			pri = cp;
987	}
988	mtx_unlock_spin(&td_contested_lock);
989	sched_unlend_prio(td, pri);
990	thread_unlock(td);
991}
992
993/*
994 * Return the first thread in a turnstile.
995 */
996struct thread *
997turnstile_head(struct turnstile *ts, int queue)
998{
999#ifdef INVARIANTS
1000
1001	MPASS(ts != NULL);
1002	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1003	mtx_assert(&ts->ts_lock, MA_OWNED);
1004#endif
1005	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
1006}
1007
1008/*
1009 * Returns true if a sub-queue of a turnstile is empty.
1010 */
1011int
1012turnstile_empty(struct turnstile *ts, int queue)
1013{
1014#ifdef INVARIANTS
1015
1016	MPASS(ts != NULL);
1017	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1018	mtx_assert(&ts->ts_lock, MA_OWNED);
1019#endif
1020	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
1021}
1022
1023#ifdef DDB
1024static void
1025print_thread(struct thread *td, const char *prefix)
1026{
1027
1028	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
1029	    td->td_proc->p_pid, td->td_name);
1030}
1031
1032static void
1033print_queue(struct threadqueue *queue, const char *header, const char *prefix)
1034{
1035	struct thread *td;
1036
1037	db_printf("%s:\n", header);
1038	if (TAILQ_EMPTY(queue)) {
1039		db_printf("%sempty\n", prefix);
1040		return;
1041	}
1042	TAILQ_FOREACH(td, queue, td_lockq) {
1043		print_thread(td, prefix);
1044	}
1045}
1046
1047DB_SHOW_COMMAND(turnstile, db_show_turnstile)
1048{
1049	struct turnstile_chain *tc;
1050	struct turnstile *ts;
1051	struct lock_object *lock;
1052	int i;
1053
1054	if (!have_addr)
1055		return;
1056
1057	/*
1058	 * First, see if there is an active turnstile for the lock indicated
1059	 * by the address.
1060	 */
1061	lock = (struct lock_object *)addr;
1062	tc = TC_LOOKUP(lock);
1063	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1064		if (ts->ts_lockobj == lock)
1065			goto found;
1066
1067	/*
1068	 * Second, see if there is an active turnstile at the address
1069	 * indicated.
1070	 */
1071	for (i = 0; i < TC_TABLESIZE; i++)
1072		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1073			if (ts == (struct turnstile *)addr)
1074				goto found;
1075		}
1076
1077	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1078	return;
1079found:
1080	lock = ts->ts_lockobj;
1081	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1082	    lock->lo_name);
1083	if (ts->ts_owner)
1084		print_thread(ts->ts_owner, "Lock Owner: ");
1085	else
1086		db_printf("Lock Owner: none\n");
1087	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1088	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1089	    "\t");
1090	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1091
1092}
1093
1094/*
1095 * Show all the threads a particular thread is waiting on based on
1096 * non-sleepable and non-spin locks.
1097 */
1098static void
1099print_lockchain(struct thread *td, const char *prefix)
1100{
1101	struct lock_object *lock;
1102	struct lock_class *class;
1103	struct turnstile *ts;
1104
1105	/*
1106	 * Follow the chain.  We keep walking as long as the thread is
1107	 * blocked on a turnstile that has an owner.
1108	 */
1109	while (!db_pager_quit) {
1110		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1111		    td->td_proc->p_pid, td->td_name);
1112		switch (td->td_state) {
1113		case TDS_INACTIVE:
1114			db_printf("is inactive\n");
1115			return;
1116		case TDS_CAN_RUN:
1117			db_printf("can run\n");
1118			return;
1119		case TDS_RUNQ:
1120			db_printf("is on a run queue\n");
1121			return;
1122		case TDS_RUNNING:
1123			db_printf("running on CPU %d\n", td->td_oncpu);
1124			return;
1125		case TDS_INHIBITED:
1126			if (TD_ON_LOCK(td)) {
1127				ts = td->td_blocked;
1128				lock = ts->ts_lockobj;
1129				class = LOCK_CLASS(lock);
1130				db_printf("blocked on lock %p (%s) \"%s\"\n",
1131				    lock, class->lc_name, lock->lo_name);
1132				if (ts->ts_owner == NULL)
1133					return;
1134				td = ts->ts_owner;
1135				break;
1136			}
1137			db_printf("inhibited\n");
1138			return;
1139		default:
1140			db_printf("??? (%#x)\n", td->td_state);
1141			return;
1142		}
1143	}
1144}
1145
1146DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1147{
1148	struct thread *td;
1149
1150	/* Figure out which thread to start with. */
1151	if (have_addr)
1152		td = db_lookup_thread(addr, true);
1153	else
1154		td = kdb_thread;
1155
1156	print_lockchain(td, "");
1157}
1158
1159DB_SHOW_ALL_COMMAND(chains, db_show_allchains)
1160{
1161	struct thread *td;
1162	struct proc *p;
1163	int i;
1164
1165	i = 1;
1166	FOREACH_PROC_IN_SYSTEM(p) {
1167		FOREACH_THREAD_IN_PROC(p, td) {
1168			if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) {
1169				db_printf("chain %d:\n", i++);
1170				print_lockchain(td, " ");
1171			}
1172			if (db_pager_quit)
1173				return;
1174		}
1175	}
1176}
1177DB_SHOW_ALIAS(allchains, db_show_allchains)
1178
1179/*
1180 * Show all the threads a particular thread is waiting on based on
1181 * sleepable locks.
1182 */
1183static void
1184print_sleepchain(struct thread *td, const char *prefix)
1185{
1186	struct thread *owner;
1187
1188	/*
1189	 * Follow the chain.  We keep walking as long as the thread is
1190	 * blocked on a sleep lock that has an owner.
1191	 */
1192	while (!db_pager_quit) {
1193		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1194		    td->td_proc->p_pid, td->td_name);
1195		switch (td->td_state) {
1196		case TDS_INACTIVE:
1197			db_printf("is inactive\n");
1198			return;
1199		case TDS_CAN_RUN:
1200			db_printf("can run\n");
1201			return;
1202		case TDS_RUNQ:
1203			db_printf("is on a run queue\n");
1204			return;
1205		case TDS_RUNNING:
1206			db_printf("running on CPU %d\n", td->td_oncpu);
1207			return;
1208		case TDS_INHIBITED:
1209			if (TD_ON_SLEEPQ(td)) {
1210				if (lockmgr_chain(td, &owner) ||
1211				    sx_chain(td, &owner)) {
1212					if (owner == NULL)
1213						return;
1214					td = owner;
1215					break;
1216				}
1217				db_printf("sleeping on %p \"%s\"\n",
1218				    td->td_wchan, td->td_wmesg);
1219				return;
1220			}
1221			db_printf("inhibited\n");
1222			return;
1223		default:
1224			db_printf("??? (%#x)\n", td->td_state);
1225			return;
1226		}
1227	}
1228}
1229
1230DB_SHOW_COMMAND(sleepchain, db_show_sleepchain)
1231{
1232	struct thread *td;
1233
1234	/* Figure out which thread to start with. */
1235	if (have_addr)
1236		td = db_lookup_thread(addr, true);
1237	else
1238		td = kdb_thread;
1239
1240	print_sleepchain(td, "");
1241}
1242
1243static void	print_waiters(struct turnstile *ts, int indent);
1244
1245static void
1246print_waiter(struct thread *td, int indent)
1247{
1248	struct turnstile *ts;
1249	int i;
1250
1251	if (db_pager_quit)
1252		return;
1253	for (i = 0; i < indent; i++)
1254		db_printf(" ");
1255	print_thread(td, "thread ");
1256	LIST_FOREACH(ts, &td->td_contested, ts_link)
1257		print_waiters(ts, indent + 1);
1258}
1259
1260static void
1261print_waiters(struct turnstile *ts, int indent)
1262{
1263	struct lock_object *lock;
1264	struct lock_class *class;
1265	struct thread *td;
1266	int i;
1267
1268	if (db_pager_quit)
1269		return;
1270	lock = ts->ts_lockobj;
1271	class = LOCK_CLASS(lock);
1272	for (i = 0; i < indent; i++)
1273		db_printf(" ");
1274	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1275	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1276		print_waiter(td, indent + 1);
1277	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1278		print_waiter(td, indent + 1);
1279	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1280		print_waiter(td, indent + 1);
1281}
1282
1283DB_SHOW_COMMAND(locktree, db_show_locktree)
1284{
1285	struct lock_object *lock;
1286	struct lock_class *class;
1287	struct turnstile_chain *tc;
1288	struct turnstile *ts;
1289
1290	if (!have_addr)
1291		return;
1292	lock = (struct lock_object *)addr;
1293	tc = TC_LOOKUP(lock);
1294	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1295		if (ts->ts_lockobj == lock)
1296			break;
1297	if (ts == NULL) {
1298		class = LOCK_CLASS(lock);
1299		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1300		    lock->lo_name);
1301	} else
1302		print_waiters(ts, 0);
1303}
1304#endif
1305