subr_turnstile.c revision 218272
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 */
31
32/*
33 * Implementation of turnstiles used to hold queue of threads blocked on
34 * non-sleepable locks.  Sleepable locks use condition variables to
35 * implement their queues.  Turnstiles differ from a sleep queue in that
36 * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
37 * when one thread is enqueued onto a turnstile, it can lend its priority
38 * to the owning thread.
39 *
40 * We wish to avoid bloating locks with an embedded turnstile and we do not
41 * want to use back-pointers in the locks for the same reason.  Thus, we
42 * use a similar approach to that of Solaris 7 as described in Solaris
43 * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
44 * in a hash table based on the address of the lock.  Each entry in the
45 * hash table is a linked-lists of turnstiles and is called a turnstile
46 * chain.  Each chain contains a spin mutex that protects all of the
47 * turnstiles in the chain.
48 *
49 * Each time a thread is created, a turnstile is allocated from a UMA zone
50 * and attached to that thread.  When a thread blocks on a lock, if it is the
51 * first thread to block, it lends its turnstile to the lock.  If the lock
52 * already has a turnstile, then it gives its turnstile to the lock's
53 * turnstile's free list.  When a thread is woken up, it takes a turnstile from
54 * the free list if there are any other waiters.  If it is the only thread
55 * blocked on the lock, then it reclaims the turnstile associated with the lock
56 * and removes it from the hash table.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/kern/subr_turnstile.c 218272 2011-02-04 14:16:41Z jhb $");
61
62#include "opt_ddb.h"
63#include "opt_turnstile_profiling.h"
64#include "opt_sched.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/kernel.h>
69#include <sys/ktr.h>
70#include <sys/lock.h>
71#include <sys/mutex.h>
72#include <sys/proc.h>
73#include <sys/queue.h>
74#include <sys/sched.h>
75#include <sys/sysctl.h>
76#include <sys/turnstile.h>
77
78#include <vm/uma.h>
79
80#ifdef DDB
81#include <sys/kdb.h>
82#include <ddb/ddb.h>
83#include <sys/lockmgr.h>
84#include <sys/sx.h>
85#endif
86
87/*
88 * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
89 * number chosen because the sleep queue's use the same value for the
90 * shift.  Basically, we ignore the lower 8 bits of the address.
91 * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
92 */
93#define	TC_TABLESIZE	128			/* Must be power of 2. */
94#define	TC_MASK		(TC_TABLESIZE - 1)
95#define	TC_SHIFT	8
96#define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
97#define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
98
99/*
100 * There are three different lists of turnstiles as follows.  The list
101 * connected by ts_link entries is a per-thread list of all the turnstiles
102 * attached to locks that we own.  This is used to fixup our priority when
103 * a lock is released.  The other two lists use the ts_hash entries.  The
104 * first of these two is the turnstile chain list that a turnstile is on
105 * when it is attached to a lock.  The second list to use ts_hash is the
106 * free list hung off of a turnstile that is attached to a lock.
107 *
108 * Each turnstile contains three lists of threads.  The two ts_blocked lists
109 * are linked list of threads blocked on the turnstile's lock.  One list is
110 * for exclusive waiters, and the other is for shared waiters.  The
111 * ts_pending list is a linked list of threads previously awakened by
112 * turnstile_signal() or turnstile_wait() that are waiting to be put on
113 * the run queue.
114 *
115 * Locking key:
116 *  c - turnstile chain lock
117 *  q - td_contested lock
118 */
119struct turnstile {
120	struct mtx ts_lock;			/* Spin lock for self. */
121	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
122	struct threadqueue ts_pending;		/* (c) Pending threads. */
123	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
124	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
125	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
126	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
127	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
128};
129
130struct turnstile_chain {
131	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
132	struct mtx tc_lock;			/* Spin lock for this chain. */
133#ifdef TURNSTILE_PROFILING
134	u_int	tc_depth;			/* Length of tc_queues. */
135	u_int	tc_max_depth;			/* Max length of tc_queues. */
136#endif
137};
138
139#ifdef TURNSTILE_PROFILING
140u_int turnstile_max_depth;
141SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0, "turnstile profiling");
142SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
143    "turnstile chain stats");
144SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
145    &turnstile_max_depth, 0, "maxmimum depth achieved of a single chain");
146#endif
147static struct mtx td_contested_lock;
148static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
149static uma_zone_t turnstile_zone;
150
151/*
152 * Prototypes for non-exported routines.
153 */
154static void	init_turnstile0(void *dummy);
155#ifdef TURNSTILE_PROFILING
156static void	init_turnstile_profiling(void *arg);
157#endif
158static void	propagate_priority(struct thread *td);
159static int	turnstile_adjust_thread(struct turnstile *ts,
160		    struct thread *td);
161static struct thread *turnstile_first_waiter(struct turnstile *ts);
162static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
163#ifdef INVARIANTS
164static void	turnstile_dtor(void *mem, int size, void *arg);
165#endif
166static int	turnstile_init(void *mem, int size, int flags);
167static void	turnstile_fini(void *mem, int size);
168
169/*
170 * Walks the chain of turnstiles and their owners to propagate the priority
171 * of the thread being blocked to all the threads holding locks that have to
172 * release their locks before this thread can run again.
173 */
174static void
175propagate_priority(struct thread *td)
176{
177	struct turnstile *ts;
178	int pri;
179
180	THREAD_LOCK_ASSERT(td, MA_OWNED);
181	pri = td->td_priority;
182	ts = td->td_blocked;
183	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
184	/*
185	 * Grab a recursive lock on this turnstile chain so it stays locked
186	 * for the whole operation.  The caller expects us to return with
187	 * the original lock held.  We only ever lock down the chain so
188	 * the lock order is constant.
189	 */
190	mtx_lock_spin(&ts->ts_lock);
191	for (;;) {
192		td = ts->ts_owner;
193
194		if (td == NULL) {
195			/*
196			 * This might be a read lock with no owner.  There's
197			 * not much we can do, so just bail.
198			 */
199			mtx_unlock_spin(&ts->ts_lock);
200			return;
201		}
202
203		thread_lock_flags(td, MTX_DUPOK);
204		mtx_unlock_spin(&ts->ts_lock);
205		MPASS(td->td_proc != NULL);
206		MPASS(td->td_proc->p_magic == P_MAGIC);
207
208		/*
209		 * If the thread is asleep, then we are probably about
210		 * to deadlock.  To make debugging this easier, just
211		 * panic and tell the user which thread misbehaved so
212		 * they can hopefully get a stack trace from the truly
213		 * misbehaving thread.
214		 */
215		if (TD_IS_SLEEPING(td)) {
216			printf(
217		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
218			    td->td_tid, td->td_proc->p_pid);
219#ifdef DDB
220			db_trace_thread(td, -1);
221#endif
222			panic("sleeping thread");
223		}
224
225		/*
226		 * If this thread already has higher priority than the
227		 * thread that is being blocked, we are finished.
228		 */
229		if (td->td_priority <= pri) {
230			thread_unlock(td);
231			return;
232		}
233
234		/*
235		 * Bump this thread's priority.
236		 */
237		sched_lend_prio(td, pri);
238
239		/*
240		 * If lock holder is actually running or on the run queue
241		 * then we are done.
242		 */
243		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
244			MPASS(td->td_blocked == NULL);
245			thread_unlock(td);
246			return;
247		}
248
249#ifndef SMP
250		/*
251		 * For UP, we check to see if td is curthread (this shouldn't
252		 * ever happen however as it would mean we are in a deadlock.)
253		 */
254		KASSERT(td != curthread, ("Deadlock detected"));
255#endif
256
257		/*
258		 * If we aren't blocked on a lock, we should be.
259		 */
260		KASSERT(TD_ON_LOCK(td), (
261		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
262		    td->td_tid, td->td_name, td->td_state,
263		    ts->ts_lockobj->lo_name));
264
265		/*
266		 * Pick up the lock that td is blocked on.
267		 */
268		ts = td->td_blocked;
269		MPASS(ts != NULL);
270		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
271		/* Resort td on the list if needed. */
272		if (!turnstile_adjust_thread(ts, td)) {
273			mtx_unlock_spin(&ts->ts_lock);
274			return;
275		}
276		/* The thread lock is released as ts lock above. */
277	}
278}
279
280/*
281 * Adjust the thread's position on a turnstile after its priority has been
282 * changed.
283 */
284static int
285turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
286{
287	struct thread *td1, *td2;
288	int queue;
289
290	THREAD_LOCK_ASSERT(td, MA_OWNED);
291	MPASS(TD_ON_LOCK(td));
292
293	/*
294	 * This thread may not be blocked on this turnstile anymore
295	 * but instead might already be woken up on another CPU
296	 * that is waiting on the thread lock in turnstile_unpend() to
297	 * finish waking this thread up.  We can detect this case
298	 * by checking to see if this thread has been given a
299	 * turnstile by either turnstile_signal() or
300	 * turnstile_broadcast().  In this case, treat the thread as
301	 * if it was already running.
302	 */
303	if (td->td_turnstile != NULL)
304		return (0);
305
306	/*
307	 * Check if the thread needs to be moved on the blocked chain.
308	 * It needs to be moved if either its priority is lower than
309	 * the previous thread or higher than the next thread.
310	 */
311	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
312	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
313	td2 = TAILQ_NEXT(td, td_lockq);
314	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
315	    (td2 != NULL && td->td_priority > td2->td_priority)) {
316
317		/*
318		 * Remove thread from blocked chain and determine where
319		 * it should be moved to.
320		 */
321		queue = td->td_tsqueue;
322		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
323		mtx_lock_spin(&td_contested_lock);
324		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
325		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
326			MPASS(td1->td_proc->p_magic == P_MAGIC);
327			if (td1->td_priority > td->td_priority)
328				break;
329		}
330
331		if (td1 == NULL)
332			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
333		else
334			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
335		mtx_unlock_spin(&td_contested_lock);
336		if (td1 == NULL)
337			CTR3(KTR_LOCK,
338		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
339			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
340		else
341			CTR4(KTR_LOCK,
342		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
343			    td->td_tid, td1->td_tid, ts->ts_lockobj,
344			    ts->ts_lockobj->lo_name);
345	}
346	return (1);
347}
348
349/*
350 * Early initialization of turnstiles.  This is not done via a SYSINIT()
351 * since this needs to be initialized very early when mutexes are first
352 * initialized.
353 */
354void
355init_turnstiles(void)
356{
357	int i;
358
359	for (i = 0; i < TC_TABLESIZE; i++) {
360		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
361		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
362		    NULL, MTX_SPIN);
363	}
364	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
365	LIST_INIT(&thread0.td_contested);
366	thread0.td_turnstile = NULL;
367}
368
369#ifdef TURNSTILE_PROFILING
370static void
371init_turnstile_profiling(void *arg)
372{
373	struct sysctl_oid *chain_oid;
374	char chain_name[10];
375	int i;
376
377	for (i = 0; i < TC_TABLESIZE; i++) {
378		snprintf(chain_name, sizeof(chain_name), "%d", i);
379		chain_oid = SYSCTL_ADD_NODE(NULL,
380		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
381		    chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
382		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
383		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
384		    NULL);
385		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
386		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
387		    0, NULL);
388	}
389}
390SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
391    init_turnstile_profiling, NULL);
392#endif
393
394static void
395init_turnstile0(void *dummy)
396{
397
398	turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
399	    NULL,
400#ifdef INVARIANTS
401	    turnstile_dtor,
402#else
403	    NULL,
404#endif
405	    turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
406	thread0.td_turnstile = turnstile_alloc();
407}
408SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
409
410/*
411 * Update a thread on the turnstile list after it's priority has been changed.
412 * The old priority is passed in as an argument.
413 */
414void
415turnstile_adjust(struct thread *td, u_char oldpri)
416{
417	struct turnstile *ts;
418
419	MPASS(TD_ON_LOCK(td));
420
421	/*
422	 * Pick up the lock that td is blocked on.
423	 */
424	ts = td->td_blocked;
425	MPASS(ts != NULL);
426	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
427	mtx_assert(&ts->ts_lock, MA_OWNED);
428
429	/* Resort the turnstile on the list. */
430	if (!turnstile_adjust_thread(ts, td))
431		return;
432	/*
433	 * If our priority was lowered and we are at the head of the
434	 * turnstile, then propagate our new priority up the chain.
435	 * Note that we currently don't try to revoke lent priorities
436	 * when our priority goes up.
437	 */
438	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
439	    td->td_tsqueue == TS_SHARED_QUEUE);
440	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
441	    td->td_priority < oldpri) {
442		propagate_priority(td);
443	}
444}
445
446/*
447 * Set the owner of the lock this turnstile is attached to.
448 */
449static void
450turnstile_setowner(struct turnstile *ts, struct thread *owner)
451{
452
453	mtx_assert(&td_contested_lock, MA_OWNED);
454	MPASS(ts->ts_owner == NULL);
455
456	/* A shared lock might not have an owner. */
457	if (owner == NULL)
458		return;
459
460	MPASS(owner->td_proc->p_magic == P_MAGIC);
461	ts->ts_owner = owner;
462	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
463}
464
465#ifdef INVARIANTS
466/*
467 * UMA zone item deallocator.
468 */
469static void
470turnstile_dtor(void *mem, int size, void *arg)
471{
472	struct turnstile *ts;
473
474	ts = mem;
475	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
476	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
477	MPASS(TAILQ_EMPTY(&ts->ts_pending));
478}
479#endif
480
481/*
482 * UMA zone item initializer.
483 */
484static int
485turnstile_init(void *mem, int size, int flags)
486{
487	struct turnstile *ts;
488
489	bzero(mem, size);
490	ts = mem;
491	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
492	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
493	TAILQ_INIT(&ts->ts_pending);
494	LIST_INIT(&ts->ts_free);
495	mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN | MTX_RECURSE);
496	return (0);
497}
498
499static void
500turnstile_fini(void *mem, int size)
501{
502	struct turnstile *ts;
503
504	ts = mem;
505	mtx_destroy(&ts->ts_lock);
506}
507
508/*
509 * Get a turnstile for a new thread.
510 */
511struct turnstile *
512turnstile_alloc(void)
513{
514
515	return (uma_zalloc(turnstile_zone, M_WAITOK));
516}
517
518/*
519 * Free a turnstile when a thread is destroyed.
520 */
521void
522turnstile_free(struct turnstile *ts)
523{
524
525	uma_zfree(turnstile_zone, ts);
526}
527
528/*
529 * Lock the turnstile chain associated with the specified lock.
530 */
531void
532turnstile_chain_lock(struct lock_object *lock)
533{
534	struct turnstile_chain *tc;
535
536	tc = TC_LOOKUP(lock);
537	mtx_lock_spin(&tc->tc_lock);
538}
539
540struct turnstile *
541turnstile_trywait(struct lock_object *lock)
542{
543	struct turnstile_chain *tc;
544	struct turnstile *ts;
545
546	tc = TC_LOOKUP(lock);
547	mtx_lock_spin(&tc->tc_lock);
548	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
549		if (ts->ts_lockobj == lock) {
550			mtx_lock_spin(&ts->ts_lock);
551			return (ts);
552		}
553
554	ts = curthread->td_turnstile;
555	MPASS(ts != NULL);
556	mtx_lock_spin(&ts->ts_lock);
557	KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
558	ts->ts_lockobj = lock;
559
560	return (ts);
561}
562
563void
564turnstile_cancel(struct turnstile *ts)
565{
566	struct turnstile_chain *tc;
567	struct lock_object *lock;
568
569	mtx_assert(&ts->ts_lock, MA_OWNED);
570
571	mtx_unlock_spin(&ts->ts_lock);
572	lock = ts->ts_lockobj;
573	if (ts == curthread->td_turnstile)
574		ts->ts_lockobj = NULL;
575	tc = TC_LOOKUP(lock);
576	mtx_unlock_spin(&tc->tc_lock);
577}
578
579/*
580 * Look up the turnstile for a lock in the hash table locking the associated
581 * turnstile chain along the way.  If no turnstile is found in the hash
582 * table, NULL is returned.
583 */
584struct turnstile *
585turnstile_lookup(struct lock_object *lock)
586{
587	struct turnstile_chain *tc;
588	struct turnstile *ts;
589
590	tc = TC_LOOKUP(lock);
591	mtx_assert(&tc->tc_lock, MA_OWNED);
592	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
593		if (ts->ts_lockobj == lock) {
594			mtx_lock_spin(&ts->ts_lock);
595			return (ts);
596		}
597	return (NULL);
598}
599
600/*
601 * Unlock the turnstile chain associated with a given lock.
602 */
603void
604turnstile_chain_unlock(struct lock_object *lock)
605{
606	struct turnstile_chain *tc;
607
608	tc = TC_LOOKUP(lock);
609	mtx_unlock_spin(&tc->tc_lock);
610}
611
612/*
613 * Return a pointer to the thread waiting on this turnstile with the
614 * most important priority or NULL if the turnstile has no waiters.
615 */
616static struct thread *
617turnstile_first_waiter(struct turnstile *ts)
618{
619	struct thread *std, *xtd;
620
621	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
622	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
623	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
624		return (std);
625	return (xtd);
626}
627
628/*
629 * Take ownership of a turnstile and adjust the priority of the new
630 * owner appropriately.
631 */
632void
633turnstile_claim(struct turnstile *ts)
634{
635	struct thread *td, *owner;
636	struct turnstile_chain *tc;
637
638	mtx_assert(&ts->ts_lock, MA_OWNED);
639	MPASS(ts != curthread->td_turnstile);
640
641	owner = curthread;
642	mtx_lock_spin(&td_contested_lock);
643	turnstile_setowner(ts, owner);
644	mtx_unlock_spin(&td_contested_lock);
645
646	td = turnstile_first_waiter(ts);
647	MPASS(td != NULL);
648	MPASS(td->td_proc->p_magic == P_MAGIC);
649	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
650
651	/*
652	 * Update the priority of the new owner if needed.
653	 */
654	thread_lock(owner);
655	if (td->td_priority < owner->td_priority)
656		sched_lend_prio(owner, td->td_priority);
657	thread_unlock(owner);
658	tc = TC_LOOKUP(ts->ts_lockobj);
659	mtx_unlock_spin(&ts->ts_lock);
660	mtx_unlock_spin(&tc->tc_lock);
661}
662
663/*
664 * Block the current thread on the turnstile assicated with 'lock'.  This
665 * function will context switch and not return until this thread has been
666 * woken back up.  This function must be called with the appropriate
667 * turnstile chain locked and will return with it unlocked.
668 */
669void
670turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
671{
672	struct turnstile_chain *tc;
673	struct thread *td, *td1;
674	struct lock_object *lock;
675
676	td = curthread;
677	mtx_assert(&ts->ts_lock, MA_OWNED);
678	if (owner)
679		MPASS(owner->td_proc->p_magic == P_MAGIC);
680	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
681
682	/*
683	 * If the lock does not already have a turnstile, use this thread's
684	 * turnstile.  Otherwise insert the current thread into the
685	 * turnstile already in use by this lock.
686	 */
687	tc = TC_LOOKUP(ts->ts_lockobj);
688	mtx_assert(&tc->tc_lock, MA_OWNED);
689	if (ts == td->td_turnstile) {
690#ifdef TURNSTILE_PROFILING
691		tc->tc_depth++;
692		if (tc->tc_depth > tc->tc_max_depth) {
693			tc->tc_max_depth = tc->tc_depth;
694			if (tc->tc_max_depth > turnstile_max_depth)
695				turnstile_max_depth = tc->tc_max_depth;
696		}
697#endif
698		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
699		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
700		    ("thread's turnstile has pending threads"));
701		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
702		    ("thread's turnstile has exclusive waiters"));
703		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
704		    ("thread's turnstile has shared waiters"));
705		KASSERT(LIST_EMPTY(&ts->ts_free),
706		    ("thread's turnstile has a non-empty free list"));
707		MPASS(ts->ts_lockobj != NULL);
708		mtx_lock_spin(&td_contested_lock);
709		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
710		turnstile_setowner(ts, owner);
711		mtx_unlock_spin(&td_contested_lock);
712	} else {
713		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
714			if (td1->td_priority > td->td_priority)
715				break;
716		mtx_lock_spin(&td_contested_lock);
717		if (td1 != NULL)
718			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
719		else
720			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
721		MPASS(owner == ts->ts_owner);
722		mtx_unlock_spin(&td_contested_lock);
723		MPASS(td->td_turnstile != NULL);
724		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
725	}
726	thread_lock(td);
727	thread_lock_set(td, &ts->ts_lock);
728	td->td_turnstile = NULL;
729
730	/* Save who we are blocked on and switch. */
731	lock = ts->ts_lockobj;
732	td->td_tsqueue = queue;
733	td->td_blocked = ts;
734	td->td_lockname = lock->lo_name;
735	td->td_blktick = ticks;
736	TD_SET_LOCK(td);
737	mtx_unlock_spin(&tc->tc_lock);
738	propagate_priority(td);
739
740	if (LOCK_LOG_TEST(lock, 0))
741		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
742		    td->td_tid, lock, lock->lo_name);
743
744	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
745	mi_switch(SW_VOL | SWT_TURNSTILE, NULL);
746
747	if (LOCK_LOG_TEST(lock, 0))
748		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
749		    __func__, td->td_tid, lock, lock->lo_name);
750	thread_unlock(td);
751}
752
753/*
754 * Pick the highest priority thread on this turnstile and put it on the
755 * pending list.  This must be called with the turnstile chain locked.
756 */
757int
758turnstile_signal(struct turnstile *ts, int queue)
759{
760	struct turnstile_chain *tc;
761	struct thread *td;
762	int empty;
763
764	MPASS(ts != NULL);
765	mtx_assert(&ts->ts_lock, MA_OWNED);
766	MPASS(curthread->td_proc->p_magic == P_MAGIC);
767	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
768	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
769
770	/*
771	 * Pick the highest priority thread blocked on this lock and
772	 * move it to the pending list.
773	 */
774	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
775	MPASS(td->td_proc->p_magic == P_MAGIC);
776	mtx_lock_spin(&td_contested_lock);
777	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
778	mtx_unlock_spin(&td_contested_lock);
779	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
780
781	/*
782	 * If the turnstile is now empty, remove it from its chain and
783	 * give it to the about-to-be-woken thread.  Otherwise take a
784	 * turnstile from the free list and give it to the thread.
785	 */
786	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
787	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
788	if (empty) {
789		tc = TC_LOOKUP(ts->ts_lockobj);
790		mtx_assert(&tc->tc_lock, MA_OWNED);
791		MPASS(LIST_EMPTY(&ts->ts_free));
792#ifdef TURNSTILE_PROFILING
793		tc->tc_depth--;
794#endif
795	} else
796		ts = LIST_FIRST(&ts->ts_free);
797	MPASS(ts != NULL);
798	LIST_REMOVE(ts, ts_hash);
799	td->td_turnstile = ts;
800
801	return (empty);
802}
803
804/*
805 * Put all blocked threads on the pending list.  This must be called with
806 * the turnstile chain locked.
807 */
808void
809turnstile_broadcast(struct turnstile *ts, int queue)
810{
811	struct turnstile_chain *tc;
812	struct turnstile *ts1;
813	struct thread *td;
814
815	MPASS(ts != NULL);
816	mtx_assert(&ts->ts_lock, MA_OWNED);
817	MPASS(curthread->td_proc->p_magic == P_MAGIC);
818	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
819	/*
820	 * We must have the chain locked so that we can remove the empty
821	 * turnstile from the hash queue.
822	 */
823	tc = TC_LOOKUP(ts->ts_lockobj);
824	mtx_assert(&tc->tc_lock, MA_OWNED);
825	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
826
827	/*
828	 * Transfer the blocked list to the pending list.
829	 */
830	mtx_lock_spin(&td_contested_lock);
831	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
832	mtx_unlock_spin(&td_contested_lock);
833
834	/*
835	 * Give a turnstile to each thread.  The last thread gets
836	 * this turnstile if the turnstile is empty.
837	 */
838	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
839		if (LIST_EMPTY(&ts->ts_free)) {
840			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
841			ts1 = ts;
842#ifdef TURNSTILE_PROFILING
843			tc->tc_depth--;
844#endif
845		} else
846			ts1 = LIST_FIRST(&ts->ts_free);
847		MPASS(ts1 != NULL);
848		LIST_REMOVE(ts1, ts_hash);
849		td->td_turnstile = ts1;
850	}
851}
852
853/*
854 * Wakeup all threads on the pending list and adjust the priority of the
855 * current thread appropriately.  This must be called with the turnstile
856 * chain locked.
857 */
858void
859turnstile_unpend(struct turnstile *ts, int owner_type)
860{
861	TAILQ_HEAD( ,thread) pending_threads;
862	struct turnstile *nts;
863	struct thread *td;
864	u_char cp, pri;
865
866	MPASS(ts != NULL);
867	mtx_assert(&ts->ts_lock, MA_OWNED);
868	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
869	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
870
871	/*
872	 * Move the list of pending threads out of the turnstile and
873	 * into a local variable.
874	 */
875	TAILQ_INIT(&pending_threads);
876	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
877#ifdef INVARIANTS
878	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
879	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
880		ts->ts_lockobj = NULL;
881#endif
882	/*
883	 * Adjust the priority of curthread based on other contested
884	 * locks it owns.  Don't lower the priority below the base
885	 * priority however.
886	 */
887	td = curthread;
888	pri = PRI_MAX;
889	thread_lock(td);
890	mtx_lock_spin(&td_contested_lock);
891	/*
892	 * Remove the turnstile from this thread's list of contested locks
893	 * since this thread doesn't own it anymore.  New threads will
894	 * not be blocking on the turnstile until it is claimed by a new
895	 * owner.  There might not be a current owner if this is a shared
896	 * lock.
897	 */
898	if (ts->ts_owner != NULL) {
899		ts->ts_owner = NULL;
900		LIST_REMOVE(ts, ts_link);
901	}
902	LIST_FOREACH(nts, &td->td_contested, ts_link) {
903		cp = turnstile_first_waiter(nts)->td_priority;
904		if (cp < pri)
905			pri = cp;
906	}
907	mtx_unlock_spin(&td_contested_lock);
908	sched_unlend_prio(td, pri);
909	thread_unlock(td);
910	/*
911	 * Wake up all the pending threads.  If a thread is not blocked
912	 * on a lock, then it is currently executing on another CPU in
913	 * turnstile_wait() or sitting on a run queue waiting to resume
914	 * in turnstile_wait().  Set a flag to force it to try to acquire
915	 * the lock again instead of blocking.
916	 */
917	while (!TAILQ_EMPTY(&pending_threads)) {
918		td = TAILQ_FIRST(&pending_threads);
919		TAILQ_REMOVE(&pending_threads, td, td_lockq);
920		thread_lock(td);
921		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
922		MPASS(td->td_proc->p_magic == P_MAGIC);
923		MPASS(TD_ON_LOCK(td));
924		TD_CLR_LOCK(td);
925		MPASS(TD_CAN_RUN(td));
926		td->td_blocked = NULL;
927		td->td_lockname = NULL;
928		td->td_blktick = 0;
929#ifdef INVARIANTS
930		td->td_tsqueue = 0xff;
931#endif
932		sched_add(td, SRQ_BORING);
933		thread_unlock(td);
934	}
935	mtx_unlock_spin(&ts->ts_lock);
936}
937
938/*
939 * Give up ownership of a turnstile.  This must be called with the
940 * turnstile chain locked.
941 */
942void
943turnstile_disown(struct turnstile *ts)
944{
945	struct thread *td;
946	u_char cp, pri;
947
948	MPASS(ts != NULL);
949	mtx_assert(&ts->ts_lock, MA_OWNED);
950	MPASS(ts->ts_owner == curthread);
951	MPASS(TAILQ_EMPTY(&ts->ts_pending));
952	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
953	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
954
955	/*
956	 * Remove the turnstile from this thread's list of contested locks
957	 * since this thread doesn't own it anymore.  New threads will
958	 * not be blocking on the turnstile until it is claimed by a new
959	 * owner.
960	 */
961	mtx_lock_spin(&td_contested_lock);
962	ts->ts_owner = NULL;
963	LIST_REMOVE(ts, ts_link);
964	mtx_unlock_spin(&td_contested_lock);
965
966	/*
967	 * Adjust the priority of curthread based on other contested
968	 * locks it owns.  Don't lower the priority below the base
969	 * priority however.
970	 */
971	td = curthread;
972	pri = PRI_MAX;
973	thread_lock(td);
974	mtx_unlock_spin(&ts->ts_lock);
975	mtx_lock_spin(&td_contested_lock);
976	LIST_FOREACH(ts, &td->td_contested, ts_link) {
977		cp = turnstile_first_waiter(ts)->td_priority;
978		if (cp < pri)
979			pri = cp;
980	}
981	mtx_unlock_spin(&td_contested_lock);
982	sched_unlend_prio(td, pri);
983	thread_unlock(td);
984}
985
986/*
987 * Return the first thread in a turnstile.
988 */
989struct thread *
990turnstile_head(struct turnstile *ts, int queue)
991{
992#ifdef INVARIANTS
993
994	MPASS(ts != NULL);
995	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
996	mtx_assert(&ts->ts_lock, MA_OWNED);
997#endif
998	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
999}
1000
1001/*
1002 * Returns true if a sub-queue of a turnstile is empty.
1003 */
1004int
1005turnstile_empty(struct turnstile *ts, int queue)
1006{
1007#ifdef INVARIANTS
1008
1009	MPASS(ts != NULL);
1010	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1011	mtx_assert(&ts->ts_lock, MA_OWNED);
1012#endif
1013	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
1014}
1015
1016#ifdef DDB
1017static void
1018print_thread(struct thread *td, const char *prefix)
1019{
1020
1021	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
1022	    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1023	    td->td_name);
1024}
1025
1026static void
1027print_queue(struct threadqueue *queue, const char *header, const char *prefix)
1028{
1029	struct thread *td;
1030
1031	db_printf("%s:\n", header);
1032	if (TAILQ_EMPTY(queue)) {
1033		db_printf("%sempty\n", prefix);
1034		return;
1035	}
1036	TAILQ_FOREACH(td, queue, td_lockq) {
1037		print_thread(td, prefix);
1038	}
1039}
1040
1041DB_SHOW_COMMAND(turnstile, db_show_turnstile)
1042{
1043	struct turnstile_chain *tc;
1044	struct turnstile *ts;
1045	struct lock_object *lock;
1046	int i;
1047
1048	if (!have_addr)
1049		return;
1050
1051	/*
1052	 * First, see if there is an active turnstile for the lock indicated
1053	 * by the address.
1054	 */
1055	lock = (struct lock_object *)addr;
1056	tc = TC_LOOKUP(lock);
1057	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1058		if (ts->ts_lockobj == lock)
1059			goto found;
1060
1061	/*
1062	 * Second, see if there is an active turnstile at the address
1063	 * indicated.
1064	 */
1065	for (i = 0; i < TC_TABLESIZE; i++)
1066		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1067			if (ts == (struct turnstile *)addr)
1068				goto found;
1069		}
1070
1071	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1072	return;
1073found:
1074	lock = ts->ts_lockobj;
1075	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1076	    lock->lo_name);
1077	if (ts->ts_owner)
1078		print_thread(ts->ts_owner, "Lock Owner: ");
1079	else
1080		db_printf("Lock Owner: none\n");
1081	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1082	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1083	    "\t");
1084	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1085
1086}
1087
1088/*
1089 * Show all the threads a particular thread is waiting on based on
1090 * non-sleepable and non-spin locks.
1091 */
1092static void
1093print_lockchain(struct thread *td, const char *prefix)
1094{
1095	struct lock_object *lock;
1096	struct lock_class *class;
1097	struct turnstile *ts;
1098
1099	/*
1100	 * Follow the chain.  We keep walking as long as the thread is
1101	 * blocked on a turnstile that has an owner.
1102	 */
1103	while (!db_pager_quit) {
1104		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1105		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1106		    td->td_name);
1107		switch (td->td_state) {
1108		case TDS_INACTIVE:
1109			db_printf("is inactive\n");
1110			return;
1111		case TDS_CAN_RUN:
1112			db_printf("can run\n");
1113			return;
1114		case TDS_RUNQ:
1115			db_printf("is on a run queue\n");
1116			return;
1117		case TDS_RUNNING:
1118			db_printf("running on CPU %d\n", td->td_oncpu);
1119			return;
1120		case TDS_INHIBITED:
1121			if (TD_ON_LOCK(td)) {
1122				ts = td->td_blocked;
1123				lock = ts->ts_lockobj;
1124				class = LOCK_CLASS(lock);
1125				db_printf("blocked on lock %p (%s) \"%s\"\n",
1126				    lock, class->lc_name, lock->lo_name);
1127				if (ts->ts_owner == NULL)
1128					return;
1129				td = ts->ts_owner;
1130				break;
1131			}
1132			db_printf("inhibited\n");
1133			return;
1134		default:
1135			db_printf("??? (%#x)\n", td->td_state);
1136			return;
1137		}
1138	}
1139}
1140
1141DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1142{
1143	struct thread *td;
1144
1145	/* Figure out which thread to start with. */
1146	if (have_addr)
1147		td = db_lookup_thread(addr, TRUE);
1148	else
1149		td = kdb_thread;
1150
1151	print_lockchain(td, "");
1152}
1153
1154DB_SHOW_ALL_COMMAND(chains, db_show_allchains)
1155{
1156	struct thread *td;
1157	struct proc *p;
1158	int i;
1159
1160	i = 1;
1161	FOREACH_PROC_IN_SYSTEM(p) {
1162		FOREACH_THREAD_IN_PROC(p, td) {
1163			if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) {
1164				db_printf("chain %d:\n", i++);
1165				print_lockchain(td, " ");
1166			}
1167			if (db_pager_quit)
1168				return;
1169		}
1170	}
1171}
1172DB_SHOW_ALIAS(allchains, db_show_allchains)
1173
1174/*
1175 * Show all the threads a particular thread is waiting on based on
1176 * sleepable locks.
1177 */
1178static void
1179print_sleepchain(struct thread *td, const char *prefix)
1180{
1181	struct thread *owner;
1182
1183	/*
1184	 * Follow the chain.  We keep walking as long as the thread is
1185	 * blocked on a sleep lock that has an owner.
1186	 */
1187	while (!db_pager_quit) {
1188		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1189		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1190		    td->td_name);
1191		switch (td->td_state) {
1192		case TDS_INACTIVE:
1193			db_printf("is inactive\n");
1194			return;
1195		case TDS_CAN_RUN:
1196			db_printf("can run\n");
1197			return;
1198		case TDS_RUNQ:
1199			db_printf("is on a run queue\n");
1200			return;
1201		case TDS_RUNNING:
1202			db_printf("running on CPU %d\n", td->td_oncpu);
1203			return;
1204		case TDS_INHIBITED:
1205			if (TD_ON_SLEEPQ(td)) {
1206				if (lockmgr_chain(td, &owner) ||
1207				    sx_chain(td, &owner)) {
1208					if (owner == NULL)
1209						return;
1210					td = owner;
1211					break;
1212				}
1213				db_printf("sleeping on %p \"%s\"\n",
1214				    td->td_wchan, td->td_wmesg);
1215				return;
1216			}
1217			db_printf("inhibited\n");
1218			return;
1219		default:
1220			db_printf("??? (%#x)\n", td->td_state);
1221			return;
1222		}
1223	}
1224}
1225
1226DB_SHOW_COMMAND(sleepchain, db_show_sleepchain)
1227{
1228	struct thread *td;
1229
1230	/* Figure out which thread to start with. */
1231	if (have_addr)
1232		td = db_lookup_thread(addr, TRUE);
1233	else
1234		td = kdb_thread;
1235
1236	print_sleepchain(td, "");
1237}
1238
1239static void	print_waiters(struct turnstile *ts, int indent);
1240
1241static void
1242print_waiter(struct thread *td, int indent)
1243{
1244	struct turnstile *ts;
1245	int i;
1246
1247	if (db_pager_quit)
1248		return;
1249	for (i = 0; i < indent; i++)
1250		db_printf(" ");
1251	print_thread(td, "thread ");
1252	LIST_FOREACH(ts, &td->td_contested, ts_link)
1253		print_waiters(ts, indent + 1);
1254}
1255
1256static void
1257print_waiters(struct turnstile *ts, int indent)
1258{
1259	struct lock_object *lock;
1260	struct lock_class *class;
1261	struct thread *td;
1262	int i;
1263
1264	if (db_pager_quit)
1265		return;
1266	lock = ts->ts_lockobj;
1267	class = LOCK_CLASS(lock);
1268	for (i = 0; i < indent; i++)
1269		db_printf(" ");
1270	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1271	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1272		print_waiter(td, indent + 1);
1273	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1274		print_waiter(td, indent + 1);
1275	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1276		print_waiter(td, indent + 1);
1277}
1278
1279DB_SHOW_COMMAND(locktree, db_show_locktree)
1280{
1281	struct lock_object *lock;
1282	struct lock_class *class;
1283	struct turnstile_chain *tc;
1284	struct turnstile *ts;
1285
1286	if (!have_addr)
1287		return;
1288	lock = (struct lock_object *)addr;
1289	tc = TC_LOOKUP(lock);
1290	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1291		if (ts->ts_lockobj == lock)
1292			break;
1293	if (ts == NULL) {
1294		class = LOCK_CLASS(lock);
1295		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1296		    lock->lo_name);
1297	} else
1298		print_waiters(ts, 0);
1299}
1300#endif
1301