subr_turnstile.c revision 178272
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 */
31
32/*
33 * Implementation of turnstiles used to hold queue of threads blocked on
34 * non-sleepable locks.  Sleepable locks use condition variables to
35 * implement their queues.  Turnstiles differ from a sleep queue in that
36 * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
37 * when one thread is enqueued onto a turnstile, it can lend its priority
38 * to the owning thread.
39 *
40 * We wish to avoid bloating locks with an embedded turnstile and we do not
41 * want to use back-pointers in the locks for the same reason.  Thus, we
42 * use a similar approach to that of Solaris 7 as described in Solaris
43 * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
44 * in a hash table based on the address of the lock.  Each entry in the
45 * hash table is a linked-lists of turnstiles and is called a turnstile
46 * chain.  Each chain contains a spin mutex that protects all of the
47 * turnstiles in the chain.
48 *
49 * Each time a thread is created, a turnstile is allocated from a UMA zone
50 * and attached to that thread.  When a thread blocks on a lock, if it is the
51 * first thread to block, it lends its turnstile to the lock.  If the lock
52 * already has a turnstile, then it gives its turnstile to the lock's
53 * turnstile's free list.  When a thread is woken up, it takes a turnstile from
54 * the free list if there are any other waiters.  If it is the only thread
55 * blocked on the lock, then it reclaims the turnstile associated with the lock
56 * and removes it from the hash table.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/kern/subr_turnstile.c 178272 2008-04-17 04:20:10Z jeff $");
61
62#include "opt_ddb.h"
63#include "opt_turnstile_profiling.h"
64#include "opt_sched.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/kernel.h>
69#include <sys/ktr.h>
70#include <sys/lock.h>
71#include <sys/mutex.h>
72#include <sys/proc.h>
73#include <sys/queue.h>
74#include <sys/sched.h>
75#include <sys/sysctl.h>
76#include <sys/turnstile.h>
77
78#include <vm/uma.h>
79
80#ifdef DDB
81#include <sys/kdb.h>
82#include <ddb/ddb.h>
83#include <sys/lockmgr.h>
84#include <sys/sx.h>
85#endif
86
87/*
88 * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
89 * number chosen because the sleep queue's use the same value for the
90 * shift.  Basically, we ignore the lower 8 bits of the address.
91 * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
92 */
93#define	TC_TABLESIZE	128			/* Must be power of 2. */
94#define	TC_MASK		(TC_TABLESIZE - 1)
95#define	TC_SHIFT	8
96#define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
97#define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
98
99/*
100 * There are three different lists of turnstiles as follows.  The list
101 * connected by ts_link entries is a per-thread list of all the turnstiles
102 * attached to locks that we own.  This is used to fixup our priority when
103 * a lock is released.  The other two lists use the ts_hash entries.  The
104 * first of these two is the turnstile chain list that a turnstile is on
105 * when it is attached to a lock.  The second list to use ts_hash is the
106 * free list hung off of a turnstile that is attached to a lock.
107 *
108 * Each turnstile contains three lists of threads.  The two ts_blocked lists
109 * are linked list of threads blocked on the turnstile's lock.  One list is
110 * for exclusive waiters, and the other is for shared waiters.  The
111 * ts_pending list is a linked list of threads previously awakened by
112 * turnstile_signal() or turnstile_wait() that are waiting to be put on
113 * the run queue.
114 *
115 * Locking key:
116 *  c - turnstile chain lock
117 *  q - td_contested lock
118 */
119struct turnstile {
120	struct mtx ts_lock;			/* Spin lock for self. */
121	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
122	struct threadqueue ts_pending;		/* (c) Pending threads. */
123	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
124	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
125	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
126	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
127	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
128};
129
130struct turnstile_chain {
131	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
132	struct mtx tc_lock;			/* Spin lock for this chain. */
133#ifdef TURNSTILE_PROFILING
134	u_int	tc_depth;			/* Length of tc_queues. */
135	u_int	tc_max_depth;			/* Max length of tc_queues. */
136#endif
137};
138
139#ifdef TURNSTILE_PROFILING
140u_int turnstile_max_depth;
141SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0, "turnstile profiling");
142SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
143    "turnstile chain stats");
144SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
145    &turnstile_max_depth, 0, "maxmimum depth achieved of a single chain");
146#endif
147static struct mtx td_contested_lock;
148static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
149static uma_zone_t turnstile_zone;
150
151/*
152 * Prototypes for non-exported routines.
153 */
154static void	init_turnstile0(void *dummy);
155#ifdef TURNSTILE_PROFILING
156static void	init_turnstile_profiling(void *arg);
157#endif
158static void	propagate_priority(struct thread *td);
159static int	turnstile_adjust_thread(struct turnstile *ts,
160		    struct thread *td);
161static struct thread *turnstile_first_waiter(struct turnstile *ts);
162static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
163#ifdef INVARIANTS
164static void	turnstile_dtor(void *mem, int size, void *arg);
165#endif
166static int	turnstile_init(void *mem, int size, int flags);
167static void	turnstile_fini(void *mem, int size);
168
169/*
170 * Walks the chain of turnstiles and their owners to propagate the priority
171 * of the thread being blocked to all the threads holding locks that have to
172 * release their locks before this thread can run again.
173 */
174static void
175propagate_priority(struct thread *td)
176{
177	struct turnstile *ts;
178	int pri;
179
180	THREAD_LOCK_ASSERT(td, MA_OWNED);
181	pri = td->td_priority;
182	ts = td->td_blocked;
183	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
184	/*
185	 * Grab a recursive lock on this turnstile chain so it stays locked
186	 * for the whole operation.  The caller expects us to return with
187	 * the original lock held.  We only ever lock down the chain so
188	 * the lock order is constant.
189	 */
190	mtx_lock_spin(&ts->ts_lock);
191	for (;;) {
192		td = ts->ts_owner;
193
194		if (td == NULL) {
195			/*
196			 * This might be a read lock with no owner.  There's
197			 * not much we can do, so just bail.
198			 */
199			mtx_unlock_spin(&ts->ts_lock);
200			return;
201		}
202
203		thread_lock_flags(td, MTX_DUPOK);
204		mtx_unlock_spin(&ts->ts_lock);
205		MPASS(td->td_proc != NULL);
206		MPASS(td->td_proc->p_magic == P_MAGIC);
207
208		/*
209		 * If the thread is asleep, then we are probably about
210		 * to deadlock.  To make debugging this easier, just
211		 * panic and tell the user which thread misbehaved so
212		 * they can hopefully get a stack trace from the truly
213		 * misbehaving thread.
214		 */
215		if (TD_IS_SLEEPING(td)) {
216			printf(
217		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
218			    td->td_tid, td->td_proc->p_pid);
219#ifdef DDB
220			db_trace_thread(td, -1);
221#endif
222			panic("sleeping thread");
223		}
224
225		/*
226		 * If this thread already has higher priority than the
227		 * thread that is being blocked, we are finished.
228		 */
229		if (td->td_priority <= pri) {
230			thread_unlock(td);
231			return;
232		}
233
234		/*
235		 * Bump this thread's priority.
236		 */
237		sched_lend_prio(td, pri);
238
239		/*
240		 * If lock holder is actually running or on the run queue
241		 * then we are done.
242		 */
243		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
244			MPASS(td->td_blocked == NULL);
245			thread_unlock(td);
246			return;
247		}
248
249#ifndef SMP
250		/*
251		 * For UP, we check to see if td is curthread (this shouldn't
252		 * ever happen however as it would mean we are in a deadlock.)
253		 */
254		KASSERT(td != curthread, ("Deadlock detected"));
255#endif
256
257		/*
258		 * If we aren't blocked on a lock, we should be.
259		 */
260		KASSERT(TD_ON_LOCK(td), (
261		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
262		    td->td_tid, td->td_name, td->td_state,
263		    ts->ts_lockobj->lo_name));
264
265		/*
266		 * Pick up the lock that td is blocked on.
267		 */
268		ts = td->td_blocked;
269		MPASS(ts != NULL);
270		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
271		/* Resort td on the list if needed. */
272		if (!turnstile_adjust_thread(ts, td)) {
273			mtx_unlock_spin(&ts->ts_lock);
274			return;
275		}
276		/* The thread lock is released as ts lock above. */
277	}
278}
279
280/*
281 * Adjust the thread's position on a turnstile after its priority has been
282 * changed.
283 */
284static int
285turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
286{
287	struct thread *td1, *td2;
288	int queue;
289
290	THREAD_LOCK_ASSERT(td, MA_OWNED);
291	MPASS(TD_ON_LOCK(td));
292
293	/*
294	 * This thread may not be blocked on this turnstile anymore
295	 * but instead might already be woken up on another CPU
296	 * that is waiting on the thread lock in turnstile_unpend() to
297	 * finish waking this thread up.  We can detect this case
298	 * by checking to see if this thread has been given a
299	 * turnstile by either turnstile_signal() or
300	 * turnstile_broadcast().  In this case, treat the thread as
301	 * if it was already running.
302	 */
303	if (td->td_turnstile != NULL)
304		return (0);
305
306	/*
307	 * Check if the thread needs to be moved on the blocked chain.
308	 * It needs to be moved if either its priority is lower than
309	 * the previous thread or higher than the next thread.
310	 */
311	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
312	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
313	td2 = TAILQ_NEXT(td, td_lockq);
314	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
315	    (td2 != NULL && td->td_priority > td2->td_priority)) {
316
317		/*
318		 * Remove thread from blocked chain and determine where
319		 * it should be moved to.
320		 */
321		queue = td->td_tsqueue;
322		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
323		mtx_lock_spin(&td_contested_lock);
324		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
325		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
326			MPASS(td1->td_proc->p_magic == P_MAGIC);
327			if (td1->td_priority > td->td_priority)
328				break;
329		}
330
331		if (td1 == NULL)
332			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
333		else
334			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
335		mtx_unlock_spin(&td_contested_lock);
336		if (td1 == NULL)
337			CTR3(KTR_LOCK,
338		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
339			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
340		else
341			CTR4(KTR_LOCK,
342		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
343			    td->td_tid, td1->td_tid, ts->ts_lockobj,
344			    ts->ts_lockobj->lo_name);
345	}
346	return (1);
347}
348
349/*
350 * Early initialization of turnstiles.  This is not done via a SYSINIT()
351 * since this needs to be initialized very early when mutexes are first
352 * initialized.
353 */
354void
355init_turnstiles(void)
356{
357	int i;
358
359	for (i = 0; i < TC_TABLESIZE; i++) {
360		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
361		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
362		    NULL, MTX_SPIN);
363	}
364	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
365	LIST_INIT(&thread0.td_contested);
366	thread0.td_turnstile = NULL;
367}
368
369#ifdef TURNSTILE_PROFILING
370static void
371init_turnstile_profiling(void *arg)
372{
373	struct sysctl_oid *chain_oid;
374	char chain_name[10];
375	int i;
376
377	for (i = 0; i < TC_TABLESIZE; i++) {
378		snprintf(chain_name, sizeof(chain_name), "%d", i);
379		chain_oid = SYSCTL_ADD_NODE(NULL,
380		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
381		    chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
382		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
383		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
384		    NULL);
385		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
386		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
387		    0, NULL);
388	}
389}
390SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
391    init_turnstile_profiling, NULL);
392#endif
393
394static void
395init_turnstile0(void *dummy)
396{
397
398	turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
399#ifdef INVARIANTS
400	    NULL, turnstile_dtor, turnstile_init, turnstile_fini,
401	    UMA_ALIGN_CACHE, 0);
402#else
403	    NULL, NULL, turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, 0);
404#endif
405	thread0.td_turnstile = turnstile_alloc();
406}
407SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
408
409/*
410 * Update a thread on the turnstile list after it's priority has been changed.
411 * The old priority is passed in as an argument.
412 */
413void
414turnstile_adjust(struct thread *td, u_char oldpri)
415{
416	struct turnstile *ts;
417
418	MPASS(TD_ON_LOCK(td));
419
420	/*
421	 * Pick up the lock that td is blocked on.
422	 */
423	ts = td->td_blocked;
424	MPASS(ts != NULL);
425	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
426	mtx_assert(&ts->ts_lock, MA_OWNED);
427
428	/* Resort the turnstile on the list. */
429	if (!turnstile_adjust_thread(ts, td))
430		return;
431	/*
432	 * If our priority was lowered and we are at the head of the
433	 * turnstile, then propagate our new priority up the chain.
434	 * Note that we currently don't try to revoke lent priorities
435	 * when our priority goes up.
436	 */
437	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
438	    td->td_tsqueue == TS_SHARED_QUEUE);
439	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
440	    td->td_priority < oldpri) {
441		propagate_priority(td);
442	}
443}
444
445/*
446 * Set the owner of the lock this turnstile is attached to.
447 */
448static void
449turnstile_setowner(struct turnstile *ts, struct thread *owner)
450{
451
452	mtx_assert(&td_contested_lock, MA_OWNED);
453	MPASS(ts->ts_owner == NULL);
454
455	/* A shared lock might not have an owner. */
456	if (owner == NULL)
457		return;
458
459	MPASS(owner->td_proc->p_magic == P_MAGIC);
460	ts->ts_owner = owner;
461	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
462}
463
464#ifdef INVARIANTS
465/*
466 * UMA zone item deallocator.
467 */
468static void
469turnstile_dtor(void *mem, int size, void *arg)
470{
471	struct turnstile *ts;
472
473	ts = mem;
474	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
475	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
476	MPASS(TAILQ_EMPTY(&ts->ts_pending));
477}
478#endif
479
480/*
481 * UMA zone item initializer.
482 */
483static int
484turnstile_init(void *mem, int size, int flags)
485{
486	struct turnstile *ts;
487
488	bzero(mem, size);
489	ts = mem;
490	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
491	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
492	TAILQ_INIT(&ts->ts_pending);
493	LIST_INIT(&ts->ts_free);
494	mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN | MTX_RECURSE);
495	return (0);
496}
497
498static void
499turnstile_fini(void *mem, int size)
500{
501	struct turnstile *ts;
502
503	ts = mem;
504	mtx_destroy(&ts->ts_lock);
505}
506
507/*
508 * Get a turnstile for a new thread.
509 */
510struct turnstile *
511turnstile_alloc(void)
512{
513
514	return (uma_zalloc(turnstile_zone, M_WAITOK));
515}
516
517/*
518 * Free a turnstile when a thread is destroyed.
519 */
520void
521turnstile_free(struct turnstile *ts)
522{
523
524	uma_zfree(turnstile_zone, ts);
525}
526
527/*
528 * Lock the turnstile chain associated with the specified lock.
529 */
530void
531turnstile_chain_lock(struct lock_object *lock)
532{
533	struct turnstile_chain *tc;
534
535	tc = TC_LOOKUP(lock);
536	mtx_lock_spin(&tc->tc_lock);
537}
538
539struct turnstile *
540turnstile_trywait(struct lock_object *lock)
541{
542	struct turnstile_chain *tc;
543	struct turnstile *ts;
544
545	tc = TC_LOOKUP(lock);
546	mtx_lock_spin(&tc->tc_lock);
547	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
548		if (ts->ts_lockobj == lock) {
549			mtx_lock_spin(&ts->ts_lock);
550			return (ts);
551		}
552
553	ts = curthread->td_turnstile;
554	MPASS(ts != NULL);
555	mtx_lock_spin(&ts->ts_lock);
556	KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
557	ts->ts_lockobj = lock;
558
559	return (ts);
560}
561
562void
563turnstile_cancel(struct turnstile *ts)
564{
565	struct turnstile_chain *tc;
566	struct lock_object *lock;
567
568	mtx_assert(&ts->ts_lock, MA_OWNED);
569
570	mtx_unlock_spin(&ts->ts_lock);
571	lock = ts->ts_lockobj;
572	if (ts == curthread->td_turnstile)
573		ts->ts_lockobj = NULL;
574	tc = TC_LOOKUP(lock);
575	mtx_unlock_spin(&tc->tc_lock);
576}
577
578/*
579 * Look up the turnstile for a lock in the hash table locking the associated
580 * turnstile chain along the way.  If no turnstile is found in the hash
581 * table, NULL is returned.
582 */
583struct turnstile *
584turnstile_lookup(struct lock_object *lock)
585{
586	struct turnstile_chain *tc;
587	struct turnstile *ts;
588
589	tc = TC_LOOKUP(lock);
590	mtx_assert(&tc->tc_lock, MA_OWNED);
591	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
592		if (ts->ts_lockobj == lock) {
593			mtx_lock_spin(&ts->ts_lock);
594			return (ts);
595		}
596	return (NULL);
597}
598
599/*
600 * Unlock the turnstile chain associated with a given lock.
601 */
602void
603turnstile_chain_unlock(struct lock_object *lock)
604{
605	struct turnstile_chain *tc;
606
607	tc = TC_LOOKUP(lock);
608	mtx_unlock_spin(&tc->tc_lock);
609}
610
611/*
612 * Return a pointer to the thread waiting on this turnstile with the
613 * most important priority or NULL if the turnstile has no waiters.
614 */
615static struct thread *
616turnstile_first_waiter(struct turnstile *ts)
617{
618	struct thread *std, *xtd;
619
620	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
621	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
622	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
623		return (std);
624	return (xtd);
625}
626
627/*
628 * Take ownership of a turnstile and adjust the priority of the new
629 * owner appropriately.
630 */
631void
632turnstile_claim(struct turnstile *ts)
633{
634	struct thread *td, *owner;
635	struct turnstile_chain *tc;
636
637	mtx_assert(&ts->ts_lock, MA_OWNED);
638	MPASS(ts != curthread->td_turnstile);
639
640	owner = curthread;
641	mtx_lock_spin(&td_contested_lock);
642	turnstile_setowner(ts, owner);
643	mtx_unlock_spin(&td_contested_lock);
644
645	td = turnstile_first_waiter(ts);
646	MPASS(td != NULL);
647	MPASS(td->td_proc->p_magic == P_MAGIC);
648	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
649
650	/*
651	 * Update the priority of the new owner if needed.
652	 */
653	thread_lock(owner);
654	if (td->td_priority < owner->td_priority)
655		sched_lend_prio(owner, td->td_priority);
656	thread_unlock(owner);
657	tc = TC_LOOKUP(ts->ts_lockobj);
658	mtx_unlock_spin(&ts->ts_lock);
659	mtx_unlock_spin(&tc->tc_lock);
660}
661
662/*
663 * Block the current thread on the turnstile assicated with 'lock'.  This
664 * function will context switch and not return until this thread has been
665 * woken back up.  This function must be called with the appropriate
666 * turnstile chain locked and will return with it unlocked.
667 */
668void
669turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
670{
671	struct turnstile_chain *tc;
672	struct thread *td, *td1;
673	struct lock_object *lock;
674
675	td = curthread;
676	mtx_assert(&ts->ts_lock, MA_OWNED);
677	if (owner)
678		MPASS(owner->td_proc->p_magic == P_MAGIC);
679	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
680
681	/*
682	 * If the lock does not already have a turnstile, use this thread's
683	 * turnstile.  Otherwise insert the current thread into the
684	 * turnstile already in use by this lock.
685	 */
686	tc = TC_LOOKUP(ts->ts_lockobj);
687	if (ts == td->td_turnstile) {
688	mtx_assert(&tc->tc_lock, MA_OWNED);
689#ifdef TURNSTILE_PROFILING
690		tc->tc_depth++;
691		if (tc->tc_depth > tc->tc_max_depth) {
692			tc->tc_max_depth = tc->tc_depth;
693			if (tc->tc_max_depth > turnstile_max_depth)
694				turnstile_max_depth = tc->tc_max_depth;
695		}
696#endif
697		tc = TC_LOOKUP(ts->ts_lockobj);
698		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
699		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
700		    ("thread's turnstile has pending threads"));
701		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
702		    ("thread's turnstile has exclusive waiters"));
703		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
704		    ("thread's turnstile has shared waiters"));
705		KASSERT(LIST_EMPTY(&ts->ts_free),
706		    ("thread's turnstile has a non-empty free list"));
707		MPASS(ts->ts_lockobj != NULL);
708		mtx_lock_spin(&td_contested_lock);
709		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
710		turnstile_setowner(ts, owner);
711		mtx_unlock_spin(&td_contested_lock);
712	} else {
713		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
714			if (td1->td_priority > td->td_priority)
715				break;
716		mtx_lock_spin(&td_contested_lock);
717		if (td1 != NULL)
718			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
719		else
720			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
721		MPASS(owner == ts->ts_owner);
722		mtx_unlock_spin(&td_contested_lock);
723		MPASS(td->td_turnstile != NULL);
724		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
725	}
726	thread_lock(td);
727	thread_lock_set(td, &ts->ts_lock);
728	td->td_turnstile = NULL;
729
730	/* Save who we are blocked on and switch. */
731	lock = ts->ts_lockobj;
732	td->td_tsqueue = queue;
733	td->td_blocked = ts;
734	td->td_lockname = lock->lo_name;
735	TD_SET_LOCK(td);
736	mtx_unlock_spin(&tc->tc_lock);
737	propagate_priority(td);
738
739	if (LOCK_LOG_TEST(lock, 0))
740		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
741		    td->td_tid, lock, lock->lo_name);
742
743	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
744	mi_switch(SW_VOL | SWT_TURNSTILE, NULL);
745
746	if (LOCK_LOG_TEST(lock, 0))
747		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
748		    __func__, td->td_tid, lock, lock->lo_name);
749	thread_unlock(td);
750}
751
752/*
753 * Pick the highest priority thread on this turnstile and put it on the
754 * pending list.  This must be called with the turnstile chain locked.
755 */
756int
757turnstile_signal(struct turnstile *ts, int queue)
758{
759	struct turnstile_chain *tc;
760	struct thread *td;
761	int empty;
762
763	MPASS(ts != NULL);
764	mtx_assert(&ts->ts_lock, MA_OWNED);
765	MPASS(curthread->td_proc->p_magic == P_MAGIC);
766	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
767	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
768
769	/*
770	 * Pick the highest priority thread blocked on this lock and
771	 * move it to the pending list.
772	 */
773	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
774	MPASS(td->td_proc->p_magic == P_MAGIC);
775	mtx_lock_spin(&td_contested_lock);
776	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
777	mtx_unlock_spin(&td_contested_lock);
778	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
779
780	/*
781	 * If the turnstile is now empty, remove it from its chain and
782	 * give it to the about-to-be-woken thread.  Otherwise take a
783	 * turnstile from the free list and give it to the thread.
784	 */
785	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
786	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
787	if (empty) {
788		tc = TC_LOOKUP(ts->ts_lockobj);
789		mtx_assert(&tc->tc_lock, MA_OWNED);
790		MPASS(LIST_EMPTY(&ts->ts_free));
791#ifdef TURNSTILE_PROFILING
792		tc->tc_depth--;
793#endif
794	} else
795		ts = LIST_FIRST(&ts->ts_free);
796	MPASS(ts != NULL);
797	LIST_REMOVE(ts, ts_hash);
798	td->td_turnstile = ts;
799
800	return (empty);
801}
802
803/*
804 * Put all blocked threads on the pending list.  This must be called with
805 * the turnstile chain locked.
806 */
807void
808turnstile_broadcast(struct turnstile *ts, int queue)
809{
810	struct turnstile_chain *tc;
811	struct turnstile *ts1;
812	struct thread *td;
813
814	MPASS(ts != NULL);
815	mtx_assert(&ts->ts_lock, MA_OWNED);
816	MPASS(curthread->td_proc->p_magic == P_MAGIC);
817	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
818	/*
819	 * We must have the chain locked so that we can remove the empty
820	 * turnstile from the hash queue.
821	 */
822	tc = TC_LOOKUP(ts->ts_lockobj);
823	mtx_assert(&tc->tc_lock, MA_OWNED);
824	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
825
826	/*
827	 * Transfer the blocked list to the pending list.
828	 */
829	mtx_lock_spin(&td_contested_lock);
830	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
831	mtx_unlock_spin(&td_contested_lock);
832
833	/*
834	 * Give a turnstile to each thread.  The last thread gets
835	 * this turnstile if the turnstile is empty.
836	 */
837	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
838		if (LIST_EMPTY(&ts->ts_free)) {
839			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
840			ts1 = ts;
841#ifdef TURNSTILE_PROFILING
842			tc->tc_depth--;
843#endif
844		} else
845			ts1 = LIST_FIRST(&ts->ts_free);
846		MPASS(ts1 != NULL);
847		LIST_REMOVE(ts1, ts_hash);
848		td->td_turnstile = ts1;
849	}
850}
851
852/*
853 * Wakeup all threads on the pending list and adjust the priority of the
854 * current thread appropriately.  This must be called with the turnstile
855 * chain locked.
856 */
857void
858turnstile_unpend(struct turnstile *ts, int owner_type)
859{
860	TAILQ_HEAD( ,thread) pending_threads;
861	struct turnstile *nts;
862	struct thread *td;
863	u_char cp, pri;
864
865	MPASS(ts != NULL);
866	mtx_assert(&ts->ts_lock, MA_OWNED);
867	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
868	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
869
870	/*
871	 * Move the list of pending threads out of the turnstile and
872	 * into a local variable.
873	 */
874	TAILQ_INIT(&pending_threads);
875	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
876#ifdef INVARIANTS
877	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
878	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
879		ts->ts_lockobj = NULL;
880#endif
881	/*
882	 * Adjust the priority of curthread based on other contested
883	 * locks it owns.  Don't lower the priority below the base
884	 * priority however.
885	 */
886	td = curthread;
887	pri = PRI_MAX;
888	thread_lock(td);
889	mtx_lock_spin(&td_contested_lock);
890	/*
891	 * Remove the turnstile from this thread's list of contested locks
892	 * since this thread doesn't own it anymore.  New threads will
893	 * not be blocking on the turnstile until it is claimed by a new
894	 * owner.  There might not be a current owner if this is a shared
895	 * lock.
896	 */
897	if (ts->ts_owner != NULL) {
898		ts->ts_owner = NULL;
899		LIST_REMOVE(ts, ts_link);
900	}
901	LIST_FOREACH(nts, &td->td_contested, ts_link) {
902		cp = turnstile_first_waiter(nts)->td_priority;
903		if (cp < pri)
904			pri = cp;
905	}
906	mtx_unlock_spin(&td_contested_lock);
907	sched_unlend_prio(td, pri);
908	thread_unlock(td);
909	/*
910	 * Wake up all the pending threads.  If a thread is not blocked
911	 * on a lock, then it is currently executing on another CPU in
912	 * turnstile_wait() or sitting on a run queue waiting to resume
913	 * in turnstile_wait().  Set a flag to force it to try to acquire
914	 * the lock again instead of blocking.
915	 */
916	while (!TAILQ_EMPTY(&pending_threads)) {
917		td = TAILQ_FIRST(&pending_threads);
918		TAILQ_REMOVE(&pending_threads, td, td_lockq);
919		thread_lock(td);
920		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
921		MPASS(td->td_proc->p_magic == P_MAGIC);
922		MPASS(TD_ON_LOCK(td));
923		TD_CLR_LOCK(td);
924		MPASS(TD_CAN_RUN(td));
925		td->td_blocked = NULL;
926		td->td_lockname = NULL;
927#ifdef INVARIANTS
928		td->td_tsqueue = 0xff;
929#endif
930		sched_add(td, SRQ_BORING);
931		thread_unlock(td);
932	}
933	mtx_unlock_spin(&ts->ts_lock);
934}
935
936/*
937 * Give up ownership of a turnstile.  This must be called with the
938 * turnstile chain locked.
939 */
940void
941turnstile_disown(struct turnstile *ts)
942{
943	struct thread *td;
944	u_char cp, pri;
945
946	MPASS(ts != NULL);
947	mtx_assert(&ts->ts_lock, MA_OWNED);
948	MPASS(ts->ts_owner == curthread);
949	MPASS(TAILQ_EMPTY(&ts->ts_pending));
950	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
951	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
952
953	/*
954	 * Remove the turnstile from this thread's list of contested locks
955	 * since this thread doesn't own it anymore.  New threads will
956	 * not be blocking on the turnstile until it is claimed by a new
957	 * owner.
958	 */
959	mtx_lock_spin(&td_contested_lock);
960	ts->ts_owner = NULL;
961	LIST_REMOVE(ts, ts_link);
962	mtx_unlock_spin(&td_contested_lock);
963
964	/*
965	 * Adjust the priority of curthread based on other contested
966	 * locks it owns.  Don't lower the priority below the base
967	 * priority however.
968	 */
969	td = curthread;
970	pri = PRI_MAX;
971	thread_lock(td);
972	mtx_unlock_spin(&ts->ts_lock);
973	mtx_lock_spin(&td_contested_lock);
974	LIST_FOREACH(ts, &td->td_contested, ts_link) {
975		cp = turnstile_first_waiter(ts)->td_priority;
976		if (cp < pri)
977			pri = cp;
978	}
979	mtx_unlock_spin(&td_contested_lock);
980	sched_unlend_prio(td, pri);
981	thread_unlock(td);
982}
983
984/*
985 * Return the first thread in a turnstile.
986 */
987struct thread *
988turnstile_head(struct turnstile *ts, int queue)
989{
990#ifdef INVARIANTS
991
992	MPASS(ts != NULL);
993	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
994	mtx_assert(&ts->ts_lock, MA_OWNED);
995#endif
996	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
997}
998
999/*
1000 * Returns true if a sub-queue of a turnstile is empty.
1001 */
1002int
1003turnstile_empty(struct turnstile *ts, int queue)
1004{
1005#ifdef INVARIANTS
1006
1007	MPASS(ts != NULL);
1008	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1009	mtx_assert(&ts->ts_lock, MA_OWNED);
1010#endif
1011	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
1012}
1013
1014#ifdef DDB
1015static void
1016print_thread(struct thread *td, const char *prefix)
1017{
1018
1019	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
1020	    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1021	    td->td_name);
1022}
1023
1024static void
1025print_queue(struct threadqueue *queue, const char *header, const char *prefix)
1026{
1027	struct thread *td;
1028
1029	db_printf("%s:\n", header);
1030	if (TAILQ_EMPTY(queue)) {
1031		db_printf("%sempty\n", prefix);
1032		return;
1033	}
1034	TAILQ_FOREACH(td, queue, td_lockq) {
1035		print_thread(td, prefix);
1036	}
1037}
1038
1039DB_SHOW_COMMAND(turnstile, db_show_turnstile)
1040{
1041	struct turnstile_chain *tc;
1042	struct turnstile *ts;
1043	struct lock_object *lock;
1044	int i;
1045
1046	if (!have_addr)
1047		return;
1048
1049	/*
1050	 * First, see if there is an active turnstile for the lock indicated
1051	 * by the address.
1052	 */
1053	lock = (struct lock_object *)addr;
1054	tc = TC_LOOKUP(lock);
1055	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1056		if (ts->ts_lockobj == lock)
1057			goto found;
1058
1059	/*
1060	 * Second, see if there is an active turnstile at the address
1061	 * indicated.
1062	 */
1063	for (i = 0; i < TC_TABLESIZE; i++)
1064		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1065			if (ts == (struct turnstile *)addr)
1066				goto found;
1067		}
1068
1069	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1070	return;
1071found:
1072	lock = ts->ts_lockobj;
1073	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1074	    lock->lo_name);
1075	if (ts->ts_owner)
1076		print_thread(ts->ts_owner, "Lock Owner: ");
1077	else
1078		db_printf("Lock Owner: none\n");
1079	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1080	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1081	    "\t");
1082	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1083
1084}
1085
1086/*
1087 * Show all the threads a particular thread is waiting on based on
1088 * non-sleepable and non-spin locks.
1089 */
1090static void
1091print_lockchain(struct thread *td, const char *prefix)
1092{
1093	struct lock_object *lock;
1094	struct lock_class *class;
1095	struct turnstile *ts;
1096
1097	/*
1098	 * Follow the chain.  We keep walking as long as the thread is
1099	 * blocked on a turnstile that has an owner.
1100	 */
1101	while (!db_pager_quit) {
1102		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1103		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1104		    td->td_name);
1105		switch (td->td_state) {
1106		case TDS_INACTIVE:
1107			db_printf("is inactive\n");
1108			return;
1109		case TDS_CAN_RUN:
1110			db_printf("can run\n");
1111			return;
1112		case TDS_RUNQ:
1113			db_printf("is on a run queue\n");
1114			return;
1115		case TDS_RUNNING:
1116			db_printf("running on CPU %d\n", td->td_oncpu);
1117			return;
1118		case TDS_INHIBITED:
1119			if (TD_ON_LOCK(td)) {
1120				ts = td->td_blocked;
1121				lock = ts->ts_lockobj;
1122				class = LOCK_CLASS(lock);
1123				db_printf("blocked on lock %p (%s) \"%s\"\n",
1124				    lock, class->lc_name, lock->lo_name);
1125				if (ts->ts_owner == NULL)
1126					return;
1127				td = ts->ts_owner;
1128				break;
1129			}
1130			db_printf("inhibited\n");
1131			return;
1132		default:
1133			db_printf("??? (%#x)\n", td->td_state);
1134			return;
1135		}
1136	}
1137}
1138
1139DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1140{
1141	struct thread *td;
1142
1143	/* Figure out which thread to start with. */
1144	if (have_addr)
1145		td = db_lookup_thread(addr, TRUE);
1146	else
1147		td = kdb_thread;
1148
1149	print_lockchain(td, "");
1150}
1151
1152DB_SHOW_COMMAND(allchains, db_show_allchains)
1153{
1154	struct thread *td;
1155	struct proc *p;
1156	int i;
1157
1158	i = 1;
1159	FOREACH_PROC_IN_SYSTEM(p) {
1160		FOREACH_THREAD_IN_PROC(p, td) {
1161			if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) {
1162				db_printf("chain %d:\n", i++);
1163				print_lockchain(td, " ");
1164			}
1165			if (db_pager_quit)
1166				return;
1167		}
1168	}
1169}
1170
1171/*
1172 * Show all the threads a particular thread is waiting on based on
1173 * sleepable locks.
1174 */
1175static void
1176print_sleepchain(struct thread *td, const char *prefix)
1177{
1178	struct thread *owner;
1179
1180	/*
1181	 * Follow the chain.  We keep walking as long as the thread is
1182	 * blocked on a sleep lock that has an owner.
1183	 */
1184	while (!db_pager_quit) {
1185		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1186		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1187		    td->td_name);
1188		switch (td->td_state) {
1189		case TDS_INACTIVE:
1190			db_printf("is inactive\n");
1191			return;
1192		case TDS_CAN_RUN:
1193			db_printf("can run\n");
1194			return;
1195		case TDS_RUNQ:
1196			db_printf("is on a run queue\n");
1197			return;
1198		case TDS_RUNNING:
1199			db_printf("running on CPU %d\n", td->td_oncpu);
1200			return;
1201		case TDS_INHIBITED:
1202			if (TD_ON_SLEEPQ(td)) {
1203				if (lockmgr_chain(td, &owner) ||
1204				    sx_chain(td, &owner)) {
1205					if (owner == NULL)
1206						return;
1207					td = owner;
1208					break;
1209				}
1210				db_printf("sleeping on %p \"%s\"\n",
1211				    td->td_wchan, td->td_wmesg);
1212				return;
1213			}
1214			db_printf("inhibited\n");
1215			return;
1216		default:
1217			db_printf("??? (%#x)\n", td->td_state);
1218			return;
1219		}
1220	}
1221}
1222
1223DB_SHOW_COMMAND(sleepchain, db_show_sleepchain)
1224{
1225	struct thread *td;
1226
1227	/* Figure out which thread to start with. */
1228	if (have_addr)
1229		td = db_lookup_thread(addr, TRUE);
1230	else
1231		td = kdb_thread;
1232
1233	print_sleepchain(td, "");
1234}
1235
1236static void	print_waiters(struct turnstile *ts, int indent);
1237
1238static void
1239print_waiter(struct thread *td, int indent)
1240{
1241	struct turnstile *ts;
1242	int i;
1243
1244	if (db_pager_quit)
1245		return;
1246	for (i = 0; i < indent; i++)
1247		db_printf(" ");
1248	print_thread(td, "thread ");
1249	LIST_FOREACH(ts, &td->td_contested, ts_link)
1250		print_waiters(ts, indent + 1);
1251}
1252
1253static void
1254print_waiters(struct turnstile *ts, int indent)
1255{
1256	struct lock_object *lock;
1257	struct lock_class *class;
1258	struct thread *td;
1259	int i;
1260
1261	if (db_pager_quit)
1262		return;
1263	lock = ts->ts_lockobj;
1264	class = LOCK_CLASS(lock);
1265	for (i = 0; i < indent; i++)
1266		db_printf(" ");
1267	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1268	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1269		print_waiter(td, indent + 1);
1270	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1271		print_waiter(td, indent + 1);
1272	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1273		print_waiter(td, indent + 1);
1274}
1275
1276DB_SHOW_COMMAND(locktree, db_show_locktree)
1277{
1278	struct lock_object *lock;
1279	struct lock_class *class;
1280	struct turnstile_chain *tc;
1281	struct turnstile *ts;
1282
1283	if (!have_addr)
1284		return;
1285	lock = (struct lock_object *)addr;
1286	tc = TC_LOOKUP(lock);
1287	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1288		if (ts->ts_lockobj == lock)
1289			break;
1290	if (ts == NULL) {
1291		class = LOCK_CLASS(lock);
1292		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1293		    lock->lo_name);
1294	} else
1295		print_waiters(ts, 0);
1296}
1297#endif
1298