subr_turnstile.c revision 112367
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 * $FreeBSD: head/sys/kern/subr_turnstile.c 112367 2003-03-18 08:45:25Z phk $
31 */
32
33/*
34 * Machine independent bits of mutex implementation.
35 */
36
37#include "opt_adaptive_mutexes.h"
38#include "opt_ddb.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/kernel.h>
44#include <sys/ktr.h>
45#include <sys/lock.h>
46#include <sys/malloc.h>
47#include <sys/mutex.h>
48#include <sys/proc.h>
49#include <sys/resourcevar.h>
50#include <sys/sched.h>
51#include <sys/sbuf.h>
52#include <sys/sysctl.h>
53#include <sys/vmmeter.h>
54
55#include <machine/atomic.h>
56#include <machine/bus.h>
57#include <machine/clock.h>
58#include <machine/cpu.h>
59
60#include <ddb/ddb.h>
61
62#include <vm/vm.h>
63#include <vm/vm_extern.h>
64
65/*
66 * Internal utility macros.
67 */
68#define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
69
70#define mtx_owner(m)	(mtx_unowned((m)) ? NULL \
71	: (struct thread *)((m)->mtx_lock & MTX_FLAGMASK))
72
73/* XXXKSE This test will change. */
74#define	thread_running(td)						\
75	((td)->td_kse != NULL && (td)->td_kse->ke_oncpu != NOCPU)
76
77/*
78 * Lock classes for sleep and spin mutexes.
79 */
80struct lock_class lock_class_mtx_sleep = {
81	"sleep mutex",
82	LC_SLEEPLOCK | LC_RECURSABLE
83};
84struct lock_class lock_class_mtx_spin = {
85	"spin mutex",
86	LC_SPINLOCK | LC_RECURSABLE
87};
88
89/*
90 * System-wide mutexes
91 */
92struct mtx sched_lock;
93struct mtx Giant;
94
95/*
96 * Prototypes for non-exported routines.
97 */
98static void	propagate_priority(struct thread *);
99
100static void
101propagate_priority(struct thread *td)
102{
103	int pri = td->td_priority;
104	struct mtx *m = td->td_blocked;
105
106	mtx_assert(&sched_lock, MA_OWNED);
107	for (;;) {
108		struct thread *td1;
109
110		td = mtx_owner(m);
111
112		if (td == NULL) {
113			/*
114			 * This really isn't quite right. Really
115			 * ought to bump priority of thread that
116			 * next acquires the mutex.
117			 */
118			MPASS(m->mtx_lock == MTX_CONTESTED);
119			return;
120		}
121
122		MPASS(td->td_proc != NULL);
123		MPASS(td->td_proc->p_magic == P_MAGIC);
124		KASSERT(!TD_IS_SLEEPING(td), ("sleeping thread owns a mutex"));
125		if (td->td_priority <= pri) /* lower is higher priority */
126			return;
127
128
129		/*
130		 * If lock holder is actually running, just bump priority.
131		 */
132		if (TD_IS_RUNNING(td)) {
133			td->td_priority = pri;
134			return;
135		}
136
137#ifndef SMP
138		/*
139		 * For UP, we check to see if td is curthread (this shouldn't
140		 * ever happen however as it would mean we are in a deadlock.)
141		 */
142		KASSERT(td != curthread, ("Deadlock detected"));
143#endif
144
145		/*
146		 * If on run queue move to new run queue, and quit.
147		 * XXXKSE this gets a lot more complicated under threads
148		 * but try anyhow.
149		 */
150		if (TD_ON_RUNQ(td)) {
151			MPASS(td->td_blocked == NULL);
152			sched_prio(td, pri);
153			return;
154		}
155		/*
156		 * Adjust for any other cases.
157		 */
158		td->td_priority = pri;
159
160		/*
161		 * If we aren't blocked on a mutex, we should be.
162		 */
163		KASSERT(TD_ON_LOCK(td), (
164		    "process %d(%s):%d holds %s but isn't blocked on a mutex\n",
165		    td->td_proc->p_pid, td->td_proc->p_comm, td->td_state,
166		    m->mtx_object.lo_name));
167
168		/*
169		 * Pick up the mutex that td is blocked on.
170		 */
171		m = td->td_blocked;
172		MPASS(m != NULL);
173
174		/*
175		 * Check if the thread needs to be moved up on
176		 * the blocked chain
177		 */
178		if (td == TAILQ_FIRST(&m->mtx_blocked)) {
179			continue;
180		}
181
182		td1 = TAILQ_PREV(td, threadqueue, td_lockq);
183		if (td1->td_priority <= pri) {
184			continue;
185		}
186
187		/*
188		 * Remove thread from blocked chain and determine where
189		 * it should be moved up to.  Since we know that td1 has
190		 * a lower priority than td, we know that at least one
191		 * thread in the chain has a lower priority and that
192		 * td1 will thus not be NULL after the loop.
193		 */
194		TAILQ_REMOVE(&m->mtx_blocked, td, td_lockq);
195		TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq) {
196			MPASS(td1->td_proc->p_magic == P_MAGIC);
197			if (td1->td_priority > pri)
198				break;
199		}
200
201		MPASS(td1 != NULL);
202		TAILQ_INSERT_BEFORE(td1, td, td_lockq);
203		CTR4(KTR_LOCK,
204		    "propagate_priority: p %p moved before %p on [%p] %s",
205		    td, td1, m, m->mtx_object.lo_name);
206	}
207}
208
209#ifdef MUTEX_PROFILING
210SYSCTL_NODE(_debug, OID_AUTO, mutex, CTLFLAG_RD, NULL, "mutex debugging");
211SYSCTL_NODE(_debug_mutex, OID_AUTO, prof, CTLFLAG_RD, NULL, "mutex profiling");
212static int mutex_prof_enable = 0;
213SYSCTL_INT(_debug_mutex_prof, OID_AUTO, enable, CTLFLAG_RW,
214    &mutex_prof_enable, 0, "Enable tracing of mutex holdtime");
215
216struct mutex_prof {
217	const char	*name;
218	const char	*file;
219	int		line;
220	uintmax_t	cnt_max;
221	uintmax_t	cnt_tot;
222	uintmax_t	cnt_cur;
223	struct mutex_prof *next;
224};
225
226/*
227 * mprof_buf is a static pool of profiling records to avoid possible
228 * reentrance of the memory allocation functions.
229 *
230 * Note: NUM_MPROF_BUFFERS must be smaller than MPROF_HASH_SIZE.
231 */
232#define	NUM_MPROF_BUFFERS	1000
233static struct mutex_prof mprof_buf[NUM_MPROF_BUFFERS];
234static int first_free_mprof_buf;
235#define	MPROF_HASH_SIZE		1009
236static struct mutex_prof *mprof_hash[MPROF_HASH_SIZE];
237/* SWAG: sbuf size = avg stat. line size * number of locks */
238#define MPROF_SBUF_SIZE		256 * 400
239
240static int mutex_prof_acquisitions;
241SYSCTL_INT(_debug_mutex_prof, OID_AUTO, acquisitions, CTLFLAG_RD,
242    &mutex_prof_acquisitions, 0, "Number of mutex acquistions recorded");
243static int mutex_prof_records;
244SYSCTL_INT(_debug_mutex_prof, OID_AUTO, records, CTLFLAG_RD,
245    &mutex_prof_records, 0, "Number of profiling records");
246static int mutex_prof_maxrecords = NUM_MPROF_BUFFERS;
247SYSCTL_INT(_debug_mutex_prof, OID_AUTO, maxrecords, CTLFLAG_RD,
248    &mutex_prof_maxrecords, 0, "Maximum number of profiling records");
249static int mutex_prof_rejected;
250SYSCTL_INT(_debug_mutex_prof, OID_AUTO, rejected, CTLFLAG_RD,
251    &mutex_prof_rejected, 0, "Number of rejected profiling records");
252static int mutex_prof_hashsize = MPROF_HASH_SIZE;
253SYSCTL_INT(_debug_mutex_prof, OID_AUTO, hashsize, CTLFLAG_RD,
254    &mutex_prof_hashsize, 0, "Hash size");
255static int mutex_prof_collisions = 0;
256SYSCTL_INT(_debug_mutex_prof, OID_AUTO, collisions, CTLFLAG_RD,
257    &mutex_prof_collisions, 0, "Number of hash collisions");
258
259/*
260 * mprof_mtx protects the profiling buffers and the hash.
261 */
262static struct mtx mprof_mtx;
263MTX_SYSINIT(mprof, &mprof_mtx, "mutex profiling lock", MTX_SPIN | MTX_QUIET);
264
265static u_int64_t
266nanoseconds(void)
267{
268	struct timespec tv;
269
270	nanotime(&tv);
271	return (tv.tv_sec * (u_int64_t)1000000000 + tv.tv_nsec);
272}
273
274static int
275dump_mutex_prof_stats(SYSCTL_HANDLER_ARGS)
276{
277	struct sbuf *sb;
278	int error, i;
279	static int multiplier = 1;
280
281	if (first_free_mprof_buf == 0)
282		return (SYSCTL_OUT(req, "No locking recorded",
283		    sizeof("No locking recorded")));
284
285retry_sbufops:
286	sb = sbuf_new(NULL, NULL, MPROF_SBUF_SIZE * multiplier, SBUF_FIXEDLEN);
287	sbuf_printf(sb, "%6s %12s %11s %5s %s\n",
288	    "max", "total", "count", "avg", "name");
289	/*
290	 * XXX this spinlock seems to be by far the largest perpetrator
291	 * of spinlock latency (1.6 msec on an Athlon1600 was recorded
292	 * even before I pessimized it further by moving the average
293	 * computation here).
294	 */
295	mtx_lock_spin(&mprof_mtx);
296	for (i = 0; i < first_free_mprof_buf; ++i) {
297		sbuf_printf(sb, "%6ju %12ju %11ju %5ju %s:%d (%s)\n",
298		    mprof_buf[i].cnt_max / 1000,
299		    mprof_buf[i].cnt_tot / 1000,
300		    mprof_buf[i].cnt_cur,
301		    mprof_buf[i].cnt_cur == 0 ? (uintmax_t)0 :
302			mprof_buf[i].cnt_tot / (mprof_buf[i].cnt_cur * 1000),
303		    mprof_buf[i].file, mprof_buf[i].line, mprof_buf[i].name);
304		if (sbuf_overflowed(sb)) {
305			mtx_unlock_spin(&mprof_mtx);
306			sbuf_delete(sb);
307			multiplier++;
308			goto retry_sbufops;
309		}
310	}
311	mtx_unlock_spin(&mprof_mtx);
312	sbuf_finish(sb);
313	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
314	sbuf_delete(sb);
315	return (error);
316}
317SYSCTL_PROC(_debug_mutex_prof, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
318    NULL, 0, dump_mutex_prof_stats, "A", "Mutex profiling statistics");
319#endif
320
321/*
322 * Function versions of the inlined __mtx_* macros.  These are used by
323 * modules and can also be called from assembly language if needed.
324 */
325void
326_mtx_lock_flags(struct mtx *m, int opts, const char *file, int line)
327{
328
329	MPASS(curthread != NULL);
330	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
331	    ("mtx_lock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
332	    file, line));
333	_get_sleep_lock(m, curthread, opts, file, line);
334	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
335	    line);
336	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
337#ifdef MUTEX_PROFILING
338	/* don't reset the timer when/if recursing */
339	if (m->mtx_acqtime == 0) {
340		m->mtx_filename = file;
341		m->mtx_lineno = line;
342		m->mtx_acqtime = mutex_prof_enable ? nanoseconds() : 0;
343		++mutex_prof_acquisitions;
344	}
345#endif
346}
347
348void
349_mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line)
350{
351
352	MPASS(curthread != NULL);
353	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
354	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
355	    file, line));
356	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
357	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
358	    line);
359	mtx_assert(m, MA_OWNED);
360#ifdef MUTEX_PROFILING
361	if (m->mtx_acqtime != 0) {
362		static const char *unknown = "(unknown)";
363		struct mutex_prof *mpp;
364		u_int64_t acqtime, now;
365		const char *p, *q;
366		volatile u_int hash;
367
368		now = nanoseconds();
369		acqtime = m->mtx_acqtime;
370		m->mtx_acqtime = 0;
371		if (now <= acqtime)
372			goto out;
373		for (p = m->mtx_filename;
374		    p != NULL && strncmp(p, "../", 3) == 0; p += 3)
375			/* nothing */ ;
376		if (p == NULL || *p == '\0')
377			p = unknown;
378		for (hash = m->mtx_lineno, q = p; *q != '\0'; ++q)
379			hash = (hash * 2 + *q) % MPROF_HASH_SIZE;
380		mtx_lock_spin(&mprof_mtx);
381		for (mpp = mprof_hash[hash]; mpp != NULL; mpp = mpp->next)
382			if (mpp->line == m->mtx_lineno &&
383			    strcmp(mpp->file, p) == 0)
384				break;
385		if (mpp == NULL) {
386			/* Just exit if we cannot get a trace buffer */
387			if (first_free_mprof_buf >= NUM_MPROF_BUFFERS) {
388				++mutex_prof_rejected;
389				goto unlock;
390			}
391			mpp = &mprof_buf[first_free_mprof_buf++];
392			mpp->name = mtx_name(m);
393			mpp->file = p;
394			mpp->line = m->mtx_lineno;
395			mpp->next = mprof_hash[hash];
396			if (mprof_hash[hash] != NULL)
397				++mutex_prof_collisions;
398			mprof_hash[hash] = mpp;
399			++mutex_prof_records;
400		}
401		/*
402		 * Record if the mutex has been held longer now than ever
403		 * before.
404		 */
405		if (now - acqtime > mpp->cnt_max)
406			mpp->cnt_max = now - acqtime;
407		mpp->cnt_tot += now - acqtime;
408		mpp->cnt_cur++;
409unlock:
410		mtx_unlock_spin(&mprof_mtx);
411	}
412out:
413#endif
414	_rel_sleep_lock(m, curthread, opts, file, line);
415}
416
417void
418_mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line)
419{
420
421	MPASS(curthread != NULL);
422	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
423	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
424	    m->mtx_object.lo_name, file, line));
425#if defined(SMP) || LOCK_DEBUG > 0 || 1
426	_get_spin_lock(m, curthread, opts, file, line);
427#else
428	critical_enter();
429#endif
430	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
431	    line);
432	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
433}
434
435void
436_mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line)
437{
438
439	MPASS(curthread != NULL);
440	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
441	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
442	    m->mtx_object.lo_name, file, line));
443	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
444	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
445	    line);
446	mtx_assert(m, MA_OWNED);
447#if defined(SMP) || LOCK_DEBUG > 0 || 1
448	_rel_spin_lock(m);
449#else
450	critical_exit();
451#endif
452}
453
454/*
455 * The important part of mtx_trylock{,_flags}()
456 * Tries to acquire lock `m.' We do NOT handle recursion here.  If this
457 * function is called on a recursed mutex, it will return failure and
458 * will not recursively acquire the lock.  You are expected to know what
459 * you are doing.
460 */
461int
462_mtx_trylock(struct mtx *m, int opts, const char *file, int line)
463{
464	int rval;
465
466	MPASS(curthread != NULL);
467
468	rval = _obtain_lock(m, curthread);
469
470	LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line);
471	if (rval)
472		WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
473		    file, line);
474
475	return (rval);
476}
477
478/*
479 * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
480 *
481 * We call this if the lock is either contested (i.e. we need to go to
482 * sleep waiting for it), or if we need to recurse on it.
483 */
484void
485_mtx_lock_sleep(struct mtx *m, int opts, const char *file, int line)
486{
487	struct thread *td = curthread;
488	struct thread *td1;
489#if defined(SMP) && defined(ADAPTIVE_MUTEXES)
490	struct thread *owner;
491#endif
492	uintptr_t v;
493#ifdef KTR
494	int cont_logged = 0;
495#endif
496
497	if (mtx_owned(m)) {
498		m->mtx_recurse++;
499		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
500		if (LOCK_LOG_TEST(&m->mtx_object, opts))
501			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
502		return;
503	}
504
505	if (LOCK_LOG_TEST(&m->mtx_object, opts))
506		CTR4(KTR_LOCK,
507		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
508		    m->mtx_object.lo_name, (void *)m->mtx_lock, file, line);
509
510	while (!_obtain_lock(m, td)) {
511
512		mtx_lock_spin(&sched_lock);
513		v = m->mtx_lock;
514
515		/*
516		 * Check if the lock has been released while spinning for
517		 * the sched_lock.
518		 */
519		if (v == MTX_UNOWNED) {
520			mtx_unlock_spin(&sched_lock);
521#ifdef __i386__
522			ia32_pause();
523#endif
524			continue;
525		}
526
527		/*
528		 * The mutex was marked contested on release. This means that
529		 * there are threads blocked on it.
530		 */
531		if (v == MTX_CONTESTED) {
532			td1 = TAILQ_FIRST(&m->mtx_blocked);
533			MPASS(td1 != NULL);
534			m->mtx_lock = (uintptr_t)td | MTX_CONTESTED;
535
536			if (td1->td_priority < td->td_priority)
537				td->td_priority = td1->td_priority;
538			mtx_unlock_spin(&sched_lock);
539			return;
540		}
541
542		/*
543		 * If the mutex isn't already contested and a failure occurs
544		 * setting the contested bit, the mutex was either released
545		 * or the state of the MTX_RECURSED bit changed.
546		 */
547		if ((v & MTX_CONTESTED) == 0 &&
548		    !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
549			(void *)(v | MTX_CONTESTED))) {
550			mtx_unlock_spin(&sched_lock);
551#ifdef __i386__
552			ia32_pause();
553#endif
554			continue;
555		}
556
557#if defined(SMP) && defined(ADAPTIVE_MUTEXES)
558		/*
559		 * If the current owner of the lock is executing on another
560		 * CPU, spin instead of blocking.
561		 */
562		owner = (struct thread *)(v & MTX_FLAGMASK);
563		if (m != &Giant && thread_running(owner)) {
564			mtx_unlock_spin(&sched_lock);
565			while (mtx_owner(m) == owner && thread_running(owner)) {
566#ifdef __i386__
567				ia32_pause();
568#endif
569			}
570			continue;
571		}
572#endif	/* SMP && ADAPTIVE_MUTEXES */
573
574		/*
575		 * We definitely must sleep for this lock.
576		 */
577		mtx_assert(m, MA_NOTOWNED);
578
579#ifdef notyet
580		/*
581		 * If we're borrowing an interrupted thread's VM context, we
582		 * must clean up before going to sleep.
583		 */
584		if (td->td_ithd != NULL) {
585			struct ithd *it = td->td_ithd;
586
587			if (it->it_interrupted) {
588				if (LOCK_LOG_TEST(&m->mtx_object, opts))
589					CTR2(KTR_LOCK,
590				    "_mtx_lock_sleep: %p interrupted %p",
591					    it, it->it_interrupted);
592				intr_thd_fixup(it);
593			}
594		}
595#endif
596
597		/*
598		 * Put us on the list of threads blocked on this mutex.
599		 */
600		if (TAILQ_EMPTY(&m->mtx_blocked)) {
601			td1 = mtx_owner(m);
602			LIST_INSERT_HEAD(&td1->td_contested, m, mtx_contested);
603			TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
604		} else {
605			TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq)
606				if (td1->td_priority > td->td_priority)
607					break;
608			if (td1)
609				TAILQ_INSERT_BEFORE(td1, td, td_lockq);
610			else
611				TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
612		}
613#ifdef KTR
614		if (!cont_logged) {
615			CTR6(KTR_CONTENTION,
616			    "contention: %p at %s:%d wants %s, taken by %s:%d",
617			    td, file, line, m->mtx_object.lo_name,
618			    WITNESS_FILE(&m->mtx_object),
619			    WITNESS_LINE(&m->mtx_object));
620			cont_logged = 1;
621		}
622#endif
623
624		/*
625		 * Save who we're blocked on.
626		 */
627		td->td_blocked = m;
628		td->td_lockname = m->mtx_object.lo_name;
629		TD_SET_LOCK(td);
630		propagate_priority(td);
631
632		if (LOCK_LOG_TEST(&m->mtx_object, opts))
633			CTR3(KTR_LOCK,
634			    "_mtx_lock_sleep: p %p blocked on [%p] %s", td, m,
635			    m->mtx_object.lo_name);
636
637		td->td_proc->p_stats->p_ru.ru_nvcsw++;
638		mi_switch();
639
640		if (LOCK_LOG_TEST(&m->mtx_object, opts))
641			CTR3(KTR_LOCK,
642			  "_mtx_lock_sleep: p %p free from blocked on [%p] %s",
643			  td, m, m->mtx_object.lo_name);
644
645		mtx_unlock_spin(&sched_lock);
646	}
647
648#ifdef KTR
649	if (cont_logged) {
650		CTR4(KTR_CONTENTION,
651		    "contention end: %s acquired by %p at %s:%d",
652		    m->mtx_object.lo_name, td, file, line);
653	}
654#endif
655	return;
656}
657
658/*
659 * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
660 *
661 * This is only called if we need to actually spin for the lock. Recursion
662 * is handled inline.
663 */
664void
665_mtx_lock_spin(struct mtx *m, int opts, const char *file, int line)
666{
667	int i = 0;
668
669	if (LOCK_LOG_TEST(&m->mtx_object, opts))
670		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
671
672	for (;;) {
673		if (_obtain_lock(m, curthread))
674			break;
675
676		/* Give interrupts a chance while we spin. */
677		critical_exit();
678		while (m->mtx_lock != MTX_UNOWNED) {
679			if (i++ < 10000000) {
680#ifdef __i386__
681				ia32_pause();
682#endif
683				continue;
684			}
685			if (i < 60000000)
686				DELAY(1);
687#ifdef DDB
688			else if (!db_active)
689#else
690			else
691#endif
692				panic("spin lock %s held by %p for > 5 seconds",
693				    m->mtx_object.lo_name, (void *)m->mtx_lock);
694#ifdef __i386__
695			ia32_pause();
696#endif
697		}
698		critical_enter();
699	}
700
701	if (LOCK_LOG_TEST(&m->mtx_object, opts))
702		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
703
704	return;
705}
706
707/*
708 * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
709 *
710 * We are only called here if the lock is recursed or contested (i.e. we
711 * need to wake up a blocked thread).
712 */
713void
714_mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
715{
716	struct thread *td, *td1;
717	struct mtx *m1;
718	int pri;
719
720	td = curthread;
721
722	if (mtx_recursed(m)) {
723		if (--(m->mtx_recurse) == 0)
724			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
725		if (LOCK_LOG_TEST(&m->mtx_object, opts))
726			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
727		return;
728	}
729
730	mtx_lock_spin(&sched_lock);
731	if (LOCK_LOG_TEST(&m->mtx_object, opts))
732		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
733
734	td1 = TAILQ_FIRST(&m->mtx_blocked);
735#if defined(SMP) && defined(ADAPTIVE_MUTEXES)
736	if (td1 == NULL) {
737		_release_lock_quick(m);
738		if (LOCK_LOG_TEST(&m->mtx_object, opts))
739			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p no sleepers", m);
740		mtx_unlock_spin(&sched_lock);
741		return;
742	}
743#endif
744	MPASS(td->td_proc->p_magic == P_MAGIC);
745	MPASS(td1->td_proc->p_magic == P_MAGIC);
746
747	TAILQ_REMOVE(&m->mtx_blocked, td1, td_lockq);
748
749	if (TAILQ_EMPTY(&m->mtx_blocked)) {
750		LIST_REMOVE(m, mtx_contested);
751		_release_lock_quick(m);
752		if (LOCK_LOG_TEST(&m->mtx_object, opts))
753			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
754	} else
755		atomic_store_rel_ptr(&m->mtx_lock, (void *)MTX_CONTESTED);
756
757	pri = PRI_MAX;
758	LIST_FOREACH(m1, &td->td_contested, mtx_contested) {
759		int cp = TAILQ_FIRST(&m1->mtx_blocked)->td_priority;
760		if (cp < pri)
761			pri = cp;
762	}
763
764	if (pri > td->td_base_pri)
765		pri = td->td_base_pri;
766	td->td_priority = pri;
767
768	if (LOCK_LOG_TEST(&m->mtx_object, opts))
769		CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p contested setrunqueue %p",
770		    m, td1);
771
772	td1->td_blocked = NULL;
773	TD_CLR_LOCK(td1);
774	if (!TD_CAN_RUN(td1)) {
775		mtx_unlock_spin(&sched_lock);
776		return;
777	}
778	setrunqueue(td1);
779
780	if (td->td_critnest == 1 && td1->td_priority < pri) {
781#ifdef notyet
782		if (td->td_ithd != NULL) {
783			struct ithd *it = td->td_ithd;
784
785			if (it->it_interrupted) {
786				if (LOCK_LOG_TEST(&m->mtx_object, opts))
787					CTR2(KTR_LOCK,
788				    "_mtx_unlock_sleep: %p interrupted %p",
789					    it, it->it_interrupted);
790				intr_thd_fixup(it);
791			}
792		}
793#endif
794		if (LOCK_LOG_TEST(&m->mtx_object, opts))
795			CTR2(KTR_LOCK,
796			    "_mtx_unlock_sleep: %p switching out lock=%p", m,
797			    (void *)m->mtx_lock);
798
799		td->td_proc->p_stats->p_ru.ru_nivcsw++;
800		mi_switch();
801		if (LOCK_LOG_TEST(&m->mtx_object, opts))
802			CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
803			    m, (void *)m->mtx_lock);
804	}
805
806	mtx_unlock_spin(&sched_lock);
807
808	return;
809}
810
811/*
812 * All the unlocking of MTX_SPIN locks is done inline.
813 * See the _rel_spin_lock() macro for the details.
814 */
815
816/*
817 * The backing function for the INVARIANTS-enabled mtx_assert()
818 */
819#ifdef INVARIANT_SUPPORT
820void
821_mtx_assert(struct mtx *m, int what, const char *file, int line)
822{
823
824	if (panicstr != NULL)
825		return;
826	switch (what) {
827	case MA_OWNED:
828	case MA_OWNED | MA_RECURSED:
829	case MA_OWNED | MA_NOTRECURSED:
830		if (!mtx_owned(m))
831			panic("mutex %s not owned at %s:%d",
832			    m->mtx_object.lo_name, file, line);
833		if (mtx_recursed(m)) {
834			if ((what & MA_NOTRECURSED) != 0)
835				panic("mutex %s recursed at %s:%d",
836				    m->mtx_object.lo_name, file, line);
837		} else if ((what & MA_RECURSED) != 0) {
838			panic("mutex %s unrecursed at %s:%d",
839			    m->mtx_object.lo_name, file, line);
840		}
841		break;
842	case MA_NOTOWNED:
843		if (mtx_owned(m))
844			panic("mutex %s owned at %s:%d",
845			    m->mtx_object.lo_name, file, line);
846		break;
847	default:
848		panic("unknown mtx_assert at %s:%d", file, line);
849	}
850}
851#endif
852
853/*
854 * The MUTEX_DEBUG-enabled mtx_validate()
855 *
856 * Most of these checks have been moved off into the LO_INITIALIZED flag
857 * maintained by the witness code.
858 */
859#ifdef MUTEX_DEBUG
860
861void	mtx_validate(struct mtx *);
862
863void
864mtx_validate(struct mtx *m)
865{
866
867/*
868 * XXX: When kernacc() does not require Giant we can reenable this check
869 */
870#ifdef notyet
871/*
872 * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
873 * we can re-enable the kernacc() checks.
874 */
875#ifndef __alpha__
876	/*
877	 * Can't call kernacc() from early init386(), especially when
878	 * initializing Giant mutex, because some stuff in kernacc()
879	 * requires Giant itself.
880	 */
881	if (!cold)
882		if (!kernacc((caddr_t)m, sizeof(m),
883		    VM_PROT_READ | VM_PROT_WRITE))
884			panic("Can't read and write to mutex %p", m);
885#endif
886#endif
887}
888#endif
889
890/*
891 * General init routine used by the MTX_SYSINIT() macro.
892 */
893void
894mtx_sysinit(void *arg)
895{
896	struct mtx_args *margs = arg;
897
898	mtx_init(margs->ma_mtx, margs->ma_desc, NULL, margs->ma_opts);
899}
900
901/*
902 * Mutex initialization routine; initialize lock `m' of type contained in
903 * `opts' with options contained in `opts' and name `name.'  The optional
904 * lock type `type' is used as a general lock category name for use with
905 * witness.
906 */
907void
908mtx_init(struct mtx *m, const char *name, const char *type, int opts)
909{
910	struct lock_object *lock;
911
912	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
913	    MTX_NOWITNESS | MTX_DUPOK)) == 0);
914
915#ifdef MUTEX_DEBUG
916	/* Diagnostic and error correction */
917	mtx_validate(m);
918#endif
919
920	lock = &m->mtx_object;
921	KASSERT((lock->lo_flags & LO_INITIALIZED) == 0,
922	    ("mutex %s %p already initialized", name, m));
923	bzero(m, sizeof(*m));
924	if (opts & MTX_SPIN)
925		lock->lo_class = &lock_class_mtx_spin;
926	else
927		lock->lo_class = &lock_class_mtx_sleep;
928	lock->lo_name = name;
929	lock->lo_type = type != NULL ? type : name;
930	if (opts & MTX_QUIET)
931		lock->lo_flags = LO_QUIET;
932	if (opts & MTX_RECURSE)
933		lock->lo_flags |= LO_RECURSABLE;
934	if ((opts & MTX_NOWITNESS) == 0)
935		lock->lo_flags |= LO_WITNESS;
936	if (opts & MTX_DUPOK)
937		lock->lo_flags |= LO_DUPOK;
938
939	m->mtx_lock = MTX_UNOWNED;
940	TAILQ_INIT(&m->mtx_blocked);
941
942	LOCK_LOG_INIT(lock, opts);
943
944	WITNESS_INIT(lock);
945}
946
947/*
948 * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
949 * passed in as a flag here because if the corresponding mtx_init() was
950 * called with MTX_QUIET set, then it will already be set in the mutex's
951 * flags.
952 */
953void
954mtx_destroy(struct mtx *m)
955{
956
957	LOCK_LOG_DESTROY(&m->mtx_object, 0);
958
959	if (!mtx_owned(m))
960		MPASS(mtx_unowned(m));
961	else {
962		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
963
964		/* Tell witness this isn't locked to make it happy. */
965		WITNESS_UNLOCK(&m->mtx_object, LOP_EXCLUSIVE, __FILE__,
966		    __LINE__);
967	}
968
969	WITNESS_DESTROY(&m->mtx_object);
970}
971
972/*
973 * Intialize the mutex code and system mutexes.  This is called from the MD
974 * startup code prior to mi_startup().  The per-CPU data space needs to be
975 * setup before this is called.
976 */
977void
978mutex_init(void)
979{
980
981	/* Setup thread0 so that mutexes work. */
982	LIST_INIT(&thread0.td_contested);
983
984	/*
985	 * Initialize mutexes.
986	 */
987	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
988	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
989	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
990	mtx_lock(&Giant);
991}
992
993/*
994 * Encapsulated Giant mutex routines.  These routines provide encapsulation
995 * control for the Giant mutex, allowing sysctls to be used to turn on and
996 * off Giant around certain subsystems.  The default value for the sysctls
997 * are set to what developers believe is stable and working in regards to
998 * the Giant pushdown.  Developers should not turn off Giant via these
999 * sysctls unless they know what they are doing.
1000 *
1001 * Callers of mtx_lock_giant() are expected to pass the return value to an
1002 * accompanying mtx_unlock_giant() later on.  If multiple subsystems are
1003 * effected by a Giant wrap, all related sysctl variables must be zero for
1004 * the subsystem call to operate without Giant (as determined by the caller).
1005 */
1006
1007SYSCTL_NODE(_kern, OID_AUTO, giant, CTLFLAG_RD, NULL, "Giant mutex manipulation");
1008
1009static int kern_giant_all = 0;
1010SYSCTL_INT(_kern_giant, OID_AUTO, all, CTLFLAG_RW, &kern_giant_all, 0, "");
1011
1012int kern_giant_proc = 1;	/* Giant around PROC locks */
1013int kern_giant_file = 1;	/* Giant around struct file & filedesc */
1014int kern_giant_ucred = 1;	/* Giant around ucred */
1015SYSCTL_INT(_kern_giant, OID_AUTO, proc, CTLFLAG_RW, &kern_giant_proc, 0, "");
1016SYSCTL_INT(_kern_giant, OID_AUTO, file, CTLFLAG_RW, &kern_giant_file, 0, "");
1017SYSCTL_INT(_kern_giant, OID_AUTO, ucred, CTLFLAG_RW, &kern_giant_ucred, 0, "");
1018
1019int
1020mtx_lock_giant(int sysctlvar)
1021{
1022	if (sysctlvar || kern_giant_all) {
1023		mtx_lock(&Giant);
1024		return(1);
1025	}
1026	return(0);
1027}
1028
1029void
1030mtx_unlock_giant(int s)
1031{
1032	if (s)
1033		mtx_unlock(&Giant);
1034}
1035