subr_rman.c revision 72200
1/*
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: head/sys/kern/subr_rman.c 72200 2001-02-09 06:11:45Z bmilekic $
30 */
31
32/*
33 * The kernel resource manager.  This code is responsible for keeping track
34 * of hardware resources which are apportioned out to various drivers.
35 * It does not actually assign those resources, and it is not expected
36 * that end-device drivers will call into this code directly.  Rather,
37 * the code which implements the buses that those devices are attached to,
38 * and the code which manages CPU resources, will call this code, and the
39 * end-device drivers will make upcalls to that code to actually perform
40 * the allocation.
41 *
42 * There are two sorts of resources managed by this code.  The first is
43 * the more familiar array (RMAN_ARRAY) type; resources in this class
44 * consist of a sequence of individually-allocatable objects which have
45 * been numbered in some well-defined order.  Most of the resources
46 * are of this type, as it is the most familiar.  The second type is
47 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
48 * resources in which each instance is indistinguishable from every
49 * other instance).  The principal anticipated application of gauges
50 * is in the context of power consumption, where a bus may have a specific
51 * power budget which all attached devices share.  RMAN_GAUGE is not
52 * implemented yet.
53 *
54 * For array resources, we make one simplifying assumption: two clients
55 * sharing the same resource must use the same range of indices.  That
56 * is to say, sharing of overlapping-but-not-identical regions is not
57 * permitted.
58 */
59
60#include <sys/param.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/lock.h>
64#include <sys/malloc.h>
65#include <sys/mutex.h>
66#include <sys/bus.h>		/* XXX debugging */
67#include <machine/bus.h>
68#include <sys/rman.h>
69
70#ifdef RMAN_DEBUG
71#define DPRINTF(params) printf##params
72#else
73#define DPRINTF(params)
74#endif
75
76static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
77
78struct	rman_head rman_head;
79static	struct mtx rman_mtx; /* mutex to protect rman_head */
80static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
81				       struct resource **whohas);
82static	int int_rman_deactivate_resource(struct resource *r);
83static	int int_rman_release_resource(struct rman *rm, struct resource *r);
84
85int
86rman_init(struct rman *rm)
87{
88	static int once;
89
90	if (once == 0) {
91		once = 1;
92		TAILQ_INIT(&rman_head);
93		mtx_init(&rman_mtx, "rman head", MTX_DEF);
94	}
95
96	if (rm->rm_type == RMAN_UNINIT)
97		panic("rman_init");
98	if (rm->rm_type == RMAN_GAUGE)
99		panic("implement RMAN_GAUGE");
100
101	TAILQ_INIT(&rm->rm_list);
102	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT);
103	if (rm->rm_mtx == 0)
104		return ENOMEM;
105	mtx_init(rm->rm_mtx, "rman", MTX_DEF);
106
107	mtx_lock(&rman_mtx);
108	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
109	mtx_unlock(&rman_mtx);
110	return 0;
111}
112
113/*
114 * NB: this interface is not robust against programming errors which
115 * add multiple copies of the same region.
116 */
117int
118rman_manage_region(struct rman *rm, u_long start, u_long end)
119{
120	struct resource *r, *s;
121
122	r = malloc(sizeof *r, M_RMAN, M_NOWAIT | M_ZERO);
123	if (r == 0)
124		return ENOMEM;
125	r->r_sharehead = 0;
126	r->r_start = start;
127	r->r_end = end;
128	r->r_flags = 0;
129	r->r_dev = 0;
130	r->r_rm = rm;
131
132	mtx_lock(rm->rm_mtx);
133	for (s = TAILQ_FIRST(&rm->rm_list);
134	     s && s->r_end < r->r_start;
135	     s = TAILQ_NEXT(s, r_link))
136		;
137
138	if (s == NULL) {
139		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
140	} else {
141		TAILQ_INSERT_BEFORE(s, r, r_link);
142	}
143
144	mtx_unlock(rm->rm_mtx);
145	return 0;
146}
147
148int
149rman_fini(struct rman *rm)
150{
151	struct resource *r;
152
153	mtx_lock(rm->rm_mtx);
154	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
155		if (r->r_flags & RF_ALLOCATED) {
156			mtx_unlock(rm->rm_mtx);
157			return EBUSY;
158		}
159	}
160
161	/*
162	 * There really should only be one of these if we are in this
163	 * state and the code is working properly, but it can't hurt.
164	 */
165	while (!TAILQ_EMPTY(&rm->rm_list)) {
166		r = TAILQ_FIRST(&rm->rm_list);
167		TAILQ_REMOVE(&rm->rm_list, r, r_link);
168		free(r, M_RMAN);
169	}
170	mtx_unlock(rm->rm_mtx);
171	mtx_lock(&rman_mtx);
172	TAILQ_REMOVE(&rman_head, rm, rm_link);
173	mtx_unlock(&rman_mtx);
174	mtx_destroy(rm->rm_mtx);
175	free(rm->rm_mtx, M_RMAN);
176
177	return 0;
178}
179
180struct resource *
181rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
182		      u_int flags, struct device *dev)
183{
184	u_int	want_activate;
185	struct	resource *r, *s, *rv;
186	u_long	rstart, rend;
187
188	rv = 0;
189
190	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
191	       "%#lx, flags %u, device %s%d\n", rm->rm_descr, start, end,
192	       count, flags, device_get_name(dev), device_get_unit(dev)));
193	want_activate = (flags & RF_ACTIVE);
194	flags &= ~RF_ACTIVE;
195
196	mtx_lock(rm->rm_mtx);
197
198	for (r = TAILQ_FIRST(&rm->rm_list);
199	     r && r->r_end < start;
200	     r = TAILQ_NEXT(r, r_link))
201		;
202
203	if (r == NULL) {
204		DPRINTF(("could not find a region\n"));
205		goto out;
206	}
207
208	/*
209	 * First try to find an acceptable totally-unshared region.
210	 */
211	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
212		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
213		if (s->r_start > end) {
214			DPRINTF(("s->r_start (%#lx) > end (%#lx)\n", s->r_start, end));
215			break;
216		}
217		if (s->r_flags & RF_ALLOCATED) {
218			DPRINTF(("region is allocated\n"));
219			continue;
220		}
221		rstart = max(s->r_start, start);
222		rstart = (rstart + ((1ul << RF_ALIGNMENT(flags))) - 1) &
223		    ~((1ul << RF_ALIGNMENT(flags)) - 1);
224		rend = min(s->r_end, max(rstart + count, end));
225		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
226		       rstart, rend, (rend - rstart + 1), count));
227
228		if ((rend - rstart + 1) >= count) {
229			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
230			       rend, rstart, (rend - rstart + 1)));
231			if ((s->r_end - s->r_start + 1) == count) {
232				DPRINTF(("candidate region is entire chunk\n"));
233				rv = s;
234				rv->r_flags |= RF_ALLOCATED | flags;
235				rv->r_dev = dev;
236				goto out;
237			}
238
239			/*
240			 * If s->r_start < rstart and
241			 *    s->r_end > rstart + count - 1, then
242			 * we need to split the region into three pieces
243			 * (the middle one will get returned to the user).
244			 * Otherwise, we are allocating at either the
245			 * beginning or the end of s, so we only need to
246			 * split it in two.  The first case requires
247			 * two new allocations; the second requires but one.
248			 */
249			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
250			if (rv == 0)
251				goto out;
252			rv->r_start = rstart;
253			rv->r_end = rstart + count - 1;
254			rv->r_flags = flags | RF_ALLOCATED;
255			rv->r_dev = dev;
256			rv->r_sharehead = 0;
257			rv->r_rm = rm;
258
259			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
260				DPRINTF(("splitting region in three parts: "
261				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
262				       s->r_start, rv->r_start - 1,
263				       rv->r_start, rv->r_end,
264				       rv->r_end + 1, s->r_end));
265				/*
266				 * We are allocating in the middle.
267				 */
268				r = malloc(sizeof *r, M_RMAN, M_NOWAIT|M_ZERO);
269				if (r == 0) {
270					free(rv, M_RMAN);
271					rv = 0;
272					goto out;
273				}
274				r->r_start = rv->r_end + 1;
275				r->r_end = s->r_end;
276				r->r_flags = s->r_flags;
277				r->r_dev = 0;
278				r->r_sharehead = 0;
279				r->r_rm = rm;
280				s->r_end = rv->r_start - 1;
281				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
282						     r_link);
283				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
284						     r_link);
285			} else if (s->r_start == rv->r_start) {
286				DPRINTF(("allocating from the beginning\n"));
287				/*
288				 * We are allocating at the beginning.
289				 */
290				s->r_start = rv->r_end + 1;
291				TAILQ_INSERT_BEFORE(s, rv, r_link);
292			} else {
293				DPRINTF(("allocating at the end\n"));
294				/*
295				 * We are allocating at the end.
296				 */
297				s->r_end = rv->r_start - 1;
298				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
299						     r_link);
300			}
301			goto out;
302		}
303	}
304
305	/*
306	 * Now find an acceptable shared region, if the client's requirements
307	 * allow sharing.  By our implementation restriction, a candidate
308	 * region must match exactly by both size and sharing type in order
309	 * to be considered compatible with the client's request.  (The
310	 * former restriction could probably be lifted without too much
311	 * additional work, but this does not seem warranted.)
312	 */
313	DPRINTF(("no unshared regions found\n"));
314	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
315		goto out;
316
317	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
318		if (s->r_start > end)
319			break;
320		if ((s->r_flags & flags) != flags)
321			continue;
322		rstart = max(s->r_start, start);
323		rend = min(s->r_end, max(start + count, end));
324		if (s->r_start >= start && s->r_end <= end
325		    && (s->r_end - s->r_start + 1) == count) {
326			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
327			if (rv == 0)
328				goto out;
329			rv->r_start = s->r_start;
330			rv->r_end = s->r_end;
331			rv->r_flags = s->r_flags &
332				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
333			rv->r_dev = dev;
334			rv->r_rm = rm;
335			if (s->r_sharehead == 0) {
336				s->r_sharehead = malloc(sizeof *s->r_sharehead,
337						M_RMAN, M_NOWAIT | M_ZERO);
338				if (s->r_sharehead == 0) {
339					free(rv, M_RMAN);
340					rv = 0;
341					goto out;
342				}
343				LIST_INIT(s->r_sharehead);
344				LIST_INSERT_HEAD(s->r_sharehead, s,
345						 r_sharelink);
346				s->r_flags |= RF_FIRSTSHARE;
347			}
348			rv->r_sharehead = s->r_sharehead;
349			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
350			goto out;
351		}
352	}
353
354	/*
355	 * We couldn't find anything.
356	 */
357out:
358	/*
359	 * If the user specified RF_ACTIVE in the initial flags,
360	 * which is reflected in `want_activate', we attempt to atomically
361	 * activate the resource.  If this fails, we release the resource
362	 * and indicate overall failure.  (This behavior probably doesn't
363	 * make sense for RF_TIMESHARE-type resources.)
364	 */
365	if (rv && want_activate) {
366		struct resource *whohas;
367		if (int_rman_activate_resource(rm, rv, &whohas)) {
368			int_rman_release_resource(rm, rv);
369			rv = 0;
370		}
371	}
372
373	mtx_unlock(rm->rm_mtx);
374	return (rv);
375}
376
377static int
378int_rman_activate_resource(struct rman *rm, struct resource *r,
379			   struct resource **whohas)
380{
381	struct resource *s;
382	int ok;
383
384	/*
385	 * If we are not timesharing, then there is nothing much to do.
386	 * If we already have the resource, then there is nothing at all to do.
387	 * If we are not on a sharing list with anybody else, then there is
388	 * little to do.
389	 */
390	if ((r->r_flags & RF_TIMESHARE) == 0
391	    || (r->r_flags & RF_ACTIVE) != 0
392	    || r->r_sharehead == 0) {
393		r->r_flags |= RF_ACTIVE;
394		return 0;
395	}
396
397	ok = 1;
398	for (s = LIST_FIRST(r->r_sharehead); s && ok;
399	     s = LIST_NEXT(s, r_sharelink)) {
400		if ((s->r_flags & RF_ACTIVE) != 0) {
401			ok = 0;
402			*whohas = s;
403		}
404	}
405	if (ok) {
406		r->r_flags |= RF_ACTIVE;
407		return 0;
408	}
409	return EBUSY;
410}
411
412int
413rman_activate_resource(struct resource *r)
414{
415	int rv;
416	struct resource *whohas;
417	struct rman *rm;
418
419	rm = r->r_rm;
420	mtx_lock(rm->rm_mtx);
421	rv = int_rman_activate_resource(rm, r, &whohas);
422	mtx_unlock(rm->rm_mtx);
423	return rv;
424}
425
426int
427rman_await_resource(struct resource *r, int pri, int timo)
428{
429	int	rv, s;
430	struct	resource *whohas;
431	struct	rman *rm;
432
433	rm = r->r_rm;
434	for (;;) {
435		mtx_lock(rm->rm_mtx);
436		rv = int_rman_activate_resource(rm, r, &whohas);
437		if (rv != EBUSY)
438			return (rv);	/* returns with mutex held */
439
440		if (r->r_sharehead == 0)
441			panic("rman_await_resource");
442		/*
443		 * splhigh hopefully will prevent a race between
444		 * mtx_unlock and tsleep where a process
445		 * could conceivably get in and release the resource
446		 * before we have a chance to sleep on it.
447		 */
448		s = splhigh();
449		whohas->r_flags |= RF_WANTED;
450		mtx_unlock(rm->rm_mtx);
451		rv = tsleep(r->r_sharehead, pri, "rmwait", timo);
452		if (rv) {
453			splx(s);
454			return rv;
455		}
456		mtx_lock(rm->rm_mtx);
457		splx(s);
458	}
459}
460
461static int
462int_rman_deactivate_resource(struct resource *r)
463{
464	struct	rman *rm;
465
466	rm = r->r_rm;
467	r->r_flags &= ~RF_ACTIVE;
468	if (r->r_flags & RF_WANTED) {
469		r->r_flags &= ~RF_WANTED;
470		wakeup(r->r_sharehead);
471	}
472	return 0;
473}
474
475int
476rman_deactivate_resource(struct resource *r)
477{
478	struct	rman *rm;
479
480	rm = r->r_rm;
481	mtx_lock(rm->rm_mtx);
482	int_rman_deactivate_resource(r);
483	mtx_unlock(rm->rm_mtx);
484	return 0;
485}
486
487static int
488int_rman_release_resource(struct rman *rm, struct resource *r)
489{
490	struct	resource *s, *t;
491
492	if (r->r_flags & RF_ACTIVE)
493		int_rman_deactivate_resource(r);
494
495	/*
496	 * Check for a sharing list first.  If there is one, then we don't
497	 * have to think as hard.
498	 */
499	if (r->r_sharehead) {
500		/*
501		 * If a sharing list exists, then we know there are at
502		 * least two sharers.
503		 *
504		 * If we are in the main circleq, appoint someone else.
505		 */
506		LIST_REMOVE(r, r_sharelink);
507		s = LIST_FIRST(r->r_sharehead);
508		if (r->r_flags & RF_FIRSTSHARE) {
509			s->r_flags |= RF_FIRSTSHARE;
510			TAILQ_INSERT_BEFORE(r, s, r_link);
511			TAILQ_REMOVE(&rm->rm_list, r, r_link);
512		}
513
514		/*
515		 * Make sure that the sharing list goes away completely
516		 * if the resource is no longer being shared at all.
517		 */
518		if (LIST_NEXT(s, r_sharelink) == 0) {
519			free(s->r_sharehead, M_RMAN);
520			s->r_sharehead = 0;
521			s->r_flags &= ~RF_FIRSTSHARE;
522		}
523		goto out;
524	}
525
526	/*
527	 * Look at the adjacent resources in the list and see if our
528	 * segment can be merged with any of them.
529	 */
530	s = TAILQ_PREV(r, resource_head, r_link);
531	t = TAILQ_NEXT(r, r_link);
532
533	if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0
534	    && t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
535		/*
536		 * Merge all three segments.
537		 */
538		s->r_end = t->r_end;
539		TAILQ_REMOVE(&rm->rm_list, r, r_link);
540		TAILQ_REMOVE(&rm->rm_list, t, r_link);
541		free(t, M_RMAN);
542	} else if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0) {
543		/*
544		 * Merge previous segment with ours.
545		 */
546		s->r_end = r->r_end;
547		TAILQ_REMOVE(&rm->rm_list, r, r_link);
548	} else if (t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
549		/*
550		 * Merge next segment with ours.
551		 */
552		t->r_start = r->r_start;
553		TAILQ_REMOVE(&rm->rm_list, r, r_link);
554	} else {
555		/*
556		 * At this point, we know there is nothing we
557		 * can potentially merge with, because on each
558		 * side, there is either nothing there or what is
559		 * there is still allocated.  In that case, we don't
560		 * want to remove r from the list; we simply want to
561		 * change it to an unallocated region and return
562		 * without freeing anything.
563		 */
564		r->r_flags &= ~RF_ALLOCATED;
565		return 0;
566	}
567
568out:
569	free(r, M_RMAN);
570	return 0;
571}
572
573int
574rman_release_resource(struct resource *r)
575{
576	int	rv;
577	struct	rman *rm = r->r_rm;
578
579	mtx_lock(rm->rm_mtx);
580	rv = int_rman_release_resource(rm, r);
581	mtx_unlock(rm->rm_mtx);
582	return (rv);
583}
584
585uint32_t
586rman_make_alignment_flags(uint32_t size)
587{
588	int	i;
589
590	/*
591	 * Find the hightest bit set, and add one if more than one bit
592	 * set.  We're effectively computing the ceil(log2(size)) here.
593	 */
594	for (i = 32; i > 0; i--)
595		if ((1 << i) & size)
596			break;
597	if (~(1 << i) & size)
598		i++;
599
600	return(RF_ALIGNMENT_LOG2(i));
601}
602