1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * The kernel resource manager.  This code is responsible for keeping track
32 * of hardware resources which are apportioned out to various drivers.
33 * It does not actually assign those resources, and it is not expected
34 * that end-device drivers will call into this code directly.  Rather,
35 * the code which implements the buses that those devices are attached to,
36 * and the code which manages CPU resources, will call this code, and the
37 * end-device drivers will make upcalls to that code to actually perform
38 * the allocation.
39 *
40 * There are two sorts of resources managed by this code.  The first is
41 * the more familiar array (RMAN_ARRAY) type; resources in this class
42 * consist of a sequence of individually-allocatable objects which have
43 * been numbered in some well-defined order.  Most of the resources
44 * are of this type, as it is the most familiar.  The second type is
45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46 * resources in which each instance is indistinguishable from every
47 * other instance).  The principal anticipated application of gauges
48 * is in the context of power consumption, where a bus may have a specific
49 * power budget which all attached devices share.  RMAN_GAUGE is not
50 * implemented yet.
51 *
52 * For array resources, we make one simplifying assumption: two clients
53 * sharing the same resource must use the same range of indices.  That
54 * is to say, sharing of overlapping-but-not-identical regions is not
55 * permitted.
56 */
57
58#include "opt_ddb.h"
59
60#include <sys/cdefs.h>
61__FBSDID("$FreeBSD$");
62
63#include <sys/param.h>
64#include <sys/systm.h>
65#include <sys/kernel.h>
66#include <sys/limits.h>
67#include <sys/lock.h>
68#include <sys/malloc.h>
69#include <sys/mutex.h>
70#include <sys/bus.h>		/* XXX debugging */
71#include <machine/bus.h>
72#include <sys/rman.h>
73#include <sys/sysctl.h>
74
75#ifdef DDB
76#include <ddb/ddb.h>
77#endif
78
79/*
80 * We use a linked list rather than a bitmap because we need to be able to
81 * represent potentially huge objects (like all of a processor's physical
82 * address space).  That is also why the indices are defined to have type
83 * `unsigned long' -- that being the largest integral type in ISO C (1990).
84 * The 1999 version of C allows `long long'; we may need to switch to that
85 * at some point in the future, particularly if we want to support 36-bit
86 * addresses on IA32 hardware.
87 */
88struct resource_i {
89	struct resource		r_r;
90	TAILQ_ENTRY(resource_i)	r_link;
91	LIST_ENTRY(resource_i)	r_sharelink;
92	LIST_HEAD(, resource_i)	*r_sharehead;
93	rman_res_t	r_start;	/* index of the first entry in this resource */
94	rman_res_t	r_end;		/* index of the last entry (inclusive) */
95	u_int	r_flags;
96	void	*r_virtual;	/* virtual address of this resource */
97	device_t r_dev;	/* device which has allocated this resource */
98	struct rman *r_rm;	/* resource manager from whence this came */
99	int	r_rid;		/* optional rid for this resource. */
100};
101
102static int rman_debug = 0;
103SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RWTUN,
104    &rman_debug, 0, "rman debug");
105
106#define DPRINTF(params) if (rman_debug) printf params
107
108static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
109
110struct rman_head rman_head;
111static struct mtx rman_mtx; /* mutex to protect rman_head */
112static int int_rman_release_resource(struct rman *rm, struct resource_i *r);
113
114static __inline struct resource_i *
115int_alloc_resource(int malloc_flag)
116{
117	struct resource_i *r;
118
119	r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
120	if (r != NULL) {
121		r->r_r.__r_i = r;
122	}
123	return (r);
124}
125
126int
127rman_init(struct rman *rm)
128{
129	static int once = 0;
130
131	if (once == 0) {
132		once = 1;
133		TAILQ_INIT(&rman_head);
134		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
135	}
136
137	if (rm->rm_start == 0 && rm->rm_end == 0)
138		rm->rm_end = ~0;
139	if (rm->rm_type == RMAN_UNINIT)
140		panic("rman_init");
141	if (rm->rm_type == RMAN_GAUGE)
142		panic("implement RMAN_GAUGE");
143
144	TAILQ_INIT(&rm->rm_list);
145	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
146	if (rm->rm_mtx == NULL)
147		return ENOMEM;
148	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
149
150	mtx_lock(&rman_mtx);
151	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
152	mtx_unlock(&rman_mtx);
153	return 0;
154}
155
156int
157rman_manage_region(struct rman *rm, rman_res_t start, rman_res_t end)
158{
159	struct resource_i *r, *s, *t;
160	int rv = 0;
161
162	DPRINTF(("rman_manage_region: <%s> request: start %#jx, end %#jx\n",
163	    rm->rm_descr, start, end));
164	if (start < rm->rm_start || end > rm->rm_end)
165		return EINVAL;
166	r = int_alloc_resource(M_NOWAIT);
167	if (r == NULL)
168		return ENOMEM;
169	r->r_start = start;
170	r->r_end = end;
171	r->r_rm = rm;
172
173	mtx_lock(rm->rm_mtx);
174
175	/* Skip entries before us. */
176	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
177		if (s->r_end == ~0)
178			break;
179		if (s->r_end + 1 >= r->r_start)
180			break;
181	}
182
183	/* If we ran off the end of the list, insert at the tail. */
184	if (s == NULL) {
185		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
186	} else {
187		/* Check for any overlap with the current region. */
188		if (r->r_start <= s->r_end && r->r_end >= s->r_start) {
189			rv = EBUSY;
190			goto out;
191		}
192
193		/* Check for any overlap with the next region. */
194		t = TAILQ_NEXT(s, r_link);
195		if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) {
196			rv = EBUSY;
197			goto out;
198		}
199
200		/*
201		 * See if this region can be merged with the next region.  If
202		 * not, clear the pointer.
203		 */
204		if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
205			t = NULL;
206
207		/* See if we can merge with the current region. */
208		if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
209			/* Can we merge all 3 regions? */
210			if (t != NULL) {
211				s->r_end = t->r_end;
212				TAILQ_REMOVE(&rm->rm_list, t, r_link);
213				free(r, M_RMAN);
214				free(t, M_RMAN);
215			} else {
216				s->r_end = r->r_end;
217				free(r, M_RMAN);
218			}
219		} else if (t != NULL) {
220			/* Can we merge with just the next region? */
221			t->r_start = r->r_start;
222			free(r, M_RMAN);
223		} else if (s->r_end < r->r_start) {
224			TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link);
225		} else {
226			TAILQ_INSERT_BEFORE(s, r, r_link);
227		}
228	}
229out:
230	mtx_unlock(rm->rm_mtx);
231	return rv;
232}
233
234int
235rman_init_from_resource(struct rman *rm, struct resource *r)
236{
237	int rv;
238
239	if ((rv = rman_init(rm)) != 0)
240		return (rv);
241	return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
242}
243
244int
245rman_fini(struct rman *rm)
246{
247	struct resource_i *r;
248
249	mtx_lock(rm->rm_mtx);
250	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
251		if (r->r_flags & RF_ALLOCATED) {
252			mtx_unlock(rm->rm_mtx);
253			return EBUSY;
254		}
255	}
256
257	/*
258	 * There really should only be one of these if we are in this
259	 * state and the code is working properly, but it can't hurt.
260	 */
261	while (!TAILQ_EMPTY(&rm->rm_list)) {
262		r = TAILQ_FIRST(&rm->rm_list);
263		TAILQ_REMOVE(&rm->rm_list, r, r_link);
264		free(r, M_RMAN);
265	}
266	mtx_unlock(rm->rm_mtx);
267	mtx_lock(&rman_mtx);
268	TAILQ_REMOVE(&rman_head, rm, rm_link);
269	mtx_unlock(&rman_mtx);
270	mtx_destroy(rm->rm_mtx);
271	free(rm->rm_mtx, M_RMAN);
272
273	return 0;
274}
275
276int
277rman_first_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
278{
279	struct resource_i *r;
280
281	mtx_lock(rm->rm_mtx);
282	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
283		if (!(r->r_flags & RF_ALLOCATED)) {
284			*start = r->r_start;
285			*end = r->r_end;
286			mtx_unlock(rm->rm_mtx);
287			return (0);
288		}
289	}
290	mtx_unlock(rm->rm_mtx);
291	return (ENOENT);
292}
293
294int
295rman_last_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
296{
297	struct resource_i *r;
298
299	mtx_lock(rm->rm_mtx);
300	TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) {
301		if (!(r->r_flags & RF_ALLOCATED)) {
302			*start = r->r_start;
303			*end = r->r_end;
304			mtx_unlock(rm->rm_mtx);
305			return (0);
306		}
307	}
308	mtx_unlock(rm->rm_mtx);
309	return (ENOENT);
310}
311
312/* Shrink or extend one or both ends of an allocated resource. */
313int
314rman_adjust_resource(struct resource *rr, rman_res_t start, rman_res_t end)
315{
316	struct resource_i *r, *s, *t, *new;
317	struct rman *rm;
318
319	/* Not supported for shared resources. */
320	r = rr->__r_i;
321	if (r->r_flags & RF_SHAREABLE)
322		return (EINVAL);
323
324	/*
325	 * This does not support wholesale moving of a resource.  At
326	 * least part of the desired new range must overlap with the
327	 * existing resource.
328	 */
329	if (end < r->r_start || r->r_end < start)
330		return (EINVAL);
331
332	/*
333	 * Find the two resource regions immediately adjacent to the
334	 * allocated resource.
335	 */
336	rm = r->r_rm;
337	mtx_lock(rm->rm_mtx);
338#ifdef INVARIANTS
339	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
340		if (s == r)
341			break;
342	}
343	if (s == NULL)
344		panic("resource not in list");
345#endif
346	s = TAILQ_PREV(r, resource_head, r_link);
347	t = TAILQ_NEXT(r, r_link);
348	KASSERT(s == NULL || s->r_end + 1 == r->r_start,
349	    ("prev resource mismatch"));
350	KASSERT(t == NULL || r->r_end + 1 == t->r_start,
351	    ("next resource mismatch"));
352
353	/*
354	 * See if the changes are permitted.  Shrinking is always allowed,
355	 * but growing requires sufficient room in the adjacent region.
356	 */
357	if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) ||
358	    s->r_start > start)) {
359		mtx_unlock(rm->rm_mtx);
360		return (EBUSY);
361	}
362	if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) ||
363	    t->r_end < end)) {
364		mtx_unlock(rm->rm_mtx);
365		return (EBUSY);
366	}
367
368	/*
369	 * While holding the lock, grow either end of the resource as
370	 * needed and shrink either end if the shrinking does not require
371	 * allocating a new resource.  We can safely drop the lock and then
372	 * insert a new range to handle the shrinking case afterwards.
373	 */
374	if (start < r->r_start ||
375	    (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) {
376		KASSERT(s->r_flags == 0, ("prev is busy"));
377		r->r_start = start;
378		if (s->r_start == start) {
379			TAILQ_REMOVE(&rm->rm_list, s, r_link);
380			free(s, M_RMAN);
381		} else
382			s->r_end = start - 1;
383	}
384	if (end > r->r_end ||
385	    (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) {
386		KASSERT(t->r_flags == 0, ("next is busy"));
387		r->r_end = end;
388		if (t->r_end == end) {
389			TAILQ_REMOVE(&rm->rm_list, t, r_link);
390			free(t, M_RMAN);
391		} else
392			t->r_start = end + 1;
393	}
394	mtx_unlock(rm->rm_mtx);
395
396	/*
397	 * Handle the shrinking cases that require allocating a new
398	 * resource to hold the newly-free region.  We have to recheck
399	 * if we still need this new region after acquiring the lock.
400	 */
401	if (start > r->r_start) {
402		new = int_alloc_resource(M_WAITOK);
403		new->r_start = r->r_start;
404		new->r_end = start - 1;
405		new->r_rm = rm;
406		mtx_lock(rm->rm_mtx);
407		r->r_start = start;
408		s = TAILQ_PREV(r, resource_head, r_link);
409		if (s != NULL && !(s->r_flags & RF_ALLOCATED)) {
410			s->r_end = start - 1;
411			free(new, M_RMAN);
412		} else
413			TAILQ_INSERT_BEFORE(r, new, r_link);
414		mtx_unlock(rm->rm_mtx);
415	}
416	if (end < r->r_end) {
417		new = int_alloc_resource(M_WAITOK);
418		new->r_start = end + 1;
419		new->r_end = r->r_end;
420		new->r_rm = rm;
421		mtx_lock(rm->rm_mtx);
422		r->r_end = end;
423		t = TAILQ_NEXT(r, r_link);
424		if (t != NULL && !(t->r_flags & RF_ALLOCATED)) {
425			t->r_start = end + 1;
426			free(new, M_RMAN);
427		} else
428			TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link);
429		mtx_unlock(rm->rm_mtx);
430	}
431	return (0);
432}
433
434#define	SHARE_TYPE(f)	(f & (RF_SHAREABLE | RF_PREFETCHABLE))
435
436struct resource *
437rman_reserve_resource_bound(struct rman *rm, rman_res_t start, rman_res_t end,
438			    rman_res_t count, rman_res_t bound, u_int flags,
439			    device_t dev)
440{
441	u_int new_rflags;
442	struct resource_i *r, *s, *rv;
443	rman_res_t rstart, rend, amask, bmask;
444
445	rv = NULL;
446
447	DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#jx, %#jx], "
448	       "length %#jx, flags %x, device %s\n", rm->rm_descr, start, end,
449	       count, flags,
450	       dev == NULL ? "<null>" : device_get_nameunit(dev)));
451	KASSERT((flags & RF_FIRSTSHARE) == 0,
452	    ("invalid flags %#x", flags));
453	new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED;
454
455	mtx_lock(rm->rm_mtx);
456
457	r = TAILQ_FIRST(&rm->rm_list);
458	if (r == NULL) {
459	    DPRINTF(("NULL list head\n"));
460	} else {
461	    DPRINTF(("rman_reserve_resource_bound: trying %#jx <%#jx,%#jx>\n",
462		    r->r_end, start, count-1));
463	}
464	for (r = TAILQ_FIRST(&rm->rm_list);
465	     r && r->r_end < start + count - 1;
466	     r = TAILQ_NEXT(r, r_link)) {
467		;
468		DPRINTF(("rman_reserve_resource_bound: tried %#jx <%#jx,%#jx>\n",
469			r->r_end, start, count-1));
470	}
471
472	if (r == NULL) {
473		DPRINTF(("could not find a region\n"));
474		goto out;
475	}
476
477	amask = (1ull << RF_ALIGNMENT(flags)) - 1;
478	KASSERT(start <= RM_MAX_END - amask,
479	    ("start (%#jx) + amask (%#jx) would wrap around", start, amask));
480
481	/* If bound is 0, bmask will also be 0 */
482	bmask = ~(bound - 1);
483	/*
484	 * First try to find an acceptable totally-unshared region.
485	 */
486	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
487		DPRINTF(("considering [%#jx, %#jx]\n", s->r_start, s->r_end));
488		/*
489		 * The resource list is sorted, so there is no point in
490		 * searching further once r_start is too large.
491		 */
492		if (s->r_start > end - (count - 1)) {
493			DPRINTF(("s->r_start (%#jx) + count - 1> end (%#jx)\n",
494			    s->r_start, end));
495			break;
496		}
497		if (s->r_start > RM_MAX_END - amask) {
498			DPRINTF(("s->r_start (%#jx) + amask (%#jx) too large\n",
499			    s->r_start, amask));
500			break;
501		}
502		if (s->r_flags & RF_ALLOCATED) {
503			DPRINTF(("region is allocated\n"));
504			continue;
505		}
506		rstart = ummax(s->r_start, start);
507		/*
508		 * Try to find a region by adjusting to boundary and alignment
509		 * until both conditions are satisfied. This is not an optimal
510		 * algorithm, but in most cases it isn't really bad, either.
511		 */
512		do {
513			rstart = (rstart + amask) & ~amask;
514			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
515				rstart += bound - (rstart & ~bmask);
516		} while ((rstart & amask) != 0 && rstart < end &&
517		    rstart < s->r_end);
518		rend = ummin(s->r_end, ummax(rstart + count - 1, end));
519		if (rstart > rend) {
520			DPRINTF(("adjusted start exceeds end\n"));
521			continue;
522		}
523		DPRINTF(("truncated region: [%#jx, %#jx]; size %#jx (requested %#jx)\n",
524		       rstart, rend, (rend - rstart + 1), count));
525
526		if ((rend - rstart + 1) >= count) {
527			DPRINTF(("candidate region: [%#jx, %#jx], size %#jx\n",
528			       rstart, rend, (rend - rstart + 1)));
529			if ((s->r_end - s->r_start + 1) == count) {
530				DPRINTF(("candidate region is entire chunk\n"));
531				rv = s;
532				rv->r_flags = new_rflags;
533				rv->r_dev = dev;
534				goto out;
535			}
536
537			/*
538			 * If s->r_start < rstart and
539			 *    s->r_end > rstart + count - 1, then
540			 * we need to split the region into three pieces
541			 * (the middle one will get returned to the user).
542			 * Otherwise, we are allocating at either the
543			 * beginning or the end of s, so we only need to
544			 * split it in two.  The first case requires
545			 * two new allocations; the second requires but one.
546			 */
547			rv = int_alloc_resource(M_NOWAIT);
548			if (rv == NULL)
549				goto out;
550			rv->r_start = rstart;
551			rv->r_end = rstart + count - 1;
552			rv->r_flags = new_rflags;
553			rv->r_dev = dev;
554			rv->r_rm = rm;
555
556			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
557				DPRINTF(("splitting region in three parts: "
558				       "[%#jx, %#jx]; [%#jx, %#jx]; [%#jx, %#jx]\n",
559				       s->r_start, rv->r_start - 1,
560				       rv->r_start, rv->r_end,
561				       rv->r_end + 1, s->r_end));
562				/*
563				 * We are allocating in the middle.
564				 */
565				r = int_alloc_resource(M_NOWAIT);
566				if (r == NULL) {
567					free(rv, M_RMAN);
568					rv = NULL;
569					goto out;
570				}
571				r->r_start = rv->r_end + 1;
572				r->r_end = s->r_end;
573				r->r_flags = s->r_flags;
574				r->r_rm = rm;
575				s->r_end = rv->r_start - 1;
576				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
577						     r_link);
578				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
579						     r_link);
580			} else if (s->r_start == rv->r_start) {
581				DPRINTF(("allocating from the beginning\n"));
582				/*
583				 * We are allocating at the beginning.
584				 */
585				s->r_start = rv->r_end + 1;
586				TAILQ_INSERT_BEFORE(s, rv, r_link);
587			} else {
588				DPRINTF(("allocating at the end\n"));
589				/*
590				 * We are allocating at the end.
591				 */
592				s->r_end = rv->r_start - 1;
593				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
594						     r_link);
595			}
596			goto out;
597		}
598	}
599
600	/*
601	 * Now find an acceptable shared region, if the client's requirements
602	 * allow sharing.  By our implementation restriction, a candidate
603	 * region must match exactly by both size and sharing type in order
604	 * to be considered compatible with the client's request.  (The
605	 * former restriction could probably be lifted without too much
606	 * additional work, but this does not seem warranted.)
607	 */
608	DPRINTF(("no unshared regions found\n"));
609	if ((flags & RF_SHAREABLE) == 0)
610		goto out;
611
612	for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) {
613		if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) &&
614		    s->r_start >= start &&
615		    (s->r_end - s->r_start + 1) == count &&
616		    (s->r_start & amask) == 0 &&
617		    ((s->r_start ^ s->r_end) & bmask) == 0) {
618			rv = int_alloc_resource(M_NOWAIT);
619			if (rv == NULL)
620				goto out;
621			rv->r_start = s->r_start;
622			rv->r_end = s->r_end;
623			rv->r_flags = new_rflags;
624			rv->r_dev = dev;
625			rv->r_rm = rm;
626			if (s->r_sharehead == NULL) {
627				s->r_sharehead = malloc(sizeof *s->r_sharehead,
628						M_RMAN, M_NOWAIT | M_ZERO);
629				if (s->r_sharehead == NULL) {
630					free(rv, M_RMAN);
631					rv = NULL;
632					goto out;
633				}
634				LIST_INIT(s->r_sharehead);
635				LIST_INSERT_HEAD(s->r_sharehead, s,
636						 r_sharelink);
637				s->r_flags |= RF_FIRSTSHARE;
638			}
639			rv->r_sharehead = s->r_sharehead;
640			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
641			goto out;
642		}
643	}
644	/*
645	 * We couldn't find anything.
646	 */
647
648out:
649	mtx_unlock(rm->rm_mtx);
650	return (rv == NULL ? NULL : &rv->r_r);
651}
652
653struct resource *
654rman_reserve_resource(struct rman *rm, rman_res_t start, rman_res_t end,
655		      rman_res_t count, u_int flags, device_t dev)
656{
657
658	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
659	    dev));
660}
661
662int
663rman_activate_resource(struct resource *re)
664{
665	struct resource_i *r;
666	struct rman *rm;
667
668	r = re->__r_i;
669	rm = r->r_rm;
670	mtx_lock(rm->rm_mtx);
671	r->r_flags |= RF_ACTIVE;
672	mtx_unlock(rm->rm_mtx);
673	return 0;
674}
675
676int
677rman_deactivate_resource(struct resource *r)
678{
679	struct rman *rm;
680
681	rm = r->__r_i->r_rm;
682	mtx_lock(rm->rm_mtx);
683	r->__r_i->r_flags &= ~RF_ACTIVE;
684	mtx_unlock(rm->rm_mtx);
685	return 0;
686}
687
688static int
689int_rman_release_resource(struct rman *rm, struct resource_i *r)
690{
691	struct resource_i *s, *t;
692
693	if (r->r_flags & RF_ACTIVE)
694		r->r_flags &= ~RF_ACTIVE;
695
696	/*
697	 * Check for a sharing list first.  If there is one, then we don't
698	 * have to think as hard.
699	 */
700	if (r->r_sharehead) {
701		/*
702		 * If a sharing list exists, then we know there are at
703		 * least two sharers.
704		 *
705		 * If we are in the main circleq, appoint someone else.
706		 */
707		LIST_REMOVE(r, r_sharelink);
708		s = LIST_FIRST(r->r_sharehead);
709		if (r->r_flags & RF_FIRSTSHARE) {
710			s->r_flags |= RF_FIRSTSHARE;
711			TAILQ_INSERT_BEFORE(r, s, r_link);
712			TAILQ_REMOVE(&rm->rm_list, r, r_link);
713		}
714
715		/*
716		 * Make sure that the sharing list goes away completely
717		 * if the resource is no longer being shared at all.
718		 */
719		if (LIST_NEXT(s, r_sharelink) == NULL) {
720			free(s->r_sharehead, M_RMAN);
721			s->r_sharehead = NULL;
722			s->r_flags &= ~RF_FIRSTSHARE;
723		}
724		goto out;
725	}
726
727	/*
728	 * Look at the adjacent resources in the list and see if our
729	 * segment can be merged with any of them.  If either of the
730	 * resources is allocated or is not exactly adjacent then they
731	 * cannot be merged with our segment.
732	 */
733	s = TAILQ_PREV(r, resource_head, r_link);
734	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
735	    s->r_end + 1 != r->r_start))
736		s = NULL;
737	t = TAILQ_NEXT(r, r_link);
738	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
739	    r->r_end + 1 != t->r_start))
740		t = NULL;
741
742	if (s != NULL && t != NULL) {
743		/*
744		 * Merge all three segments.
745		 */
746		s->r_end = t->r_end;
747		TAILQ_REMOVE(&rm->rm_list, r, r_link);
748		TAILQ_REMOVE(&rm->rm_list, t, r_link);
749		free(t, M_RMAN);
750	} else if (s != NULL) {
751		/*
752		 * Merge previous segment with ours.
753		 */
754		s->r_end = r->r_end;
755		TAILQ_REMOVE(&rm->rm_list, r, r_link);
756	} else if (t != NULL) {
757		/*
758		 * Merge next segment with ours.
759		 */
760		t->r_start = r->r_start;
761		TAILQ_REMOVE(&rm->rm_list, r, r_link);
762	} else {
763		/*
764		 * At this point, we know there is nothing we
765		 * can potentially merge with, because on each
766		 * side, there is either nothing there or what is
767		 * there is still allocated.  In that case, we don't
768		 * want to remove r from the list; we simply want to
769		 * change it to an unallocated region and return
770		 * without freeing anything.
771		 */
772		r->r_flags &= ~RF_ALLOCATED;
773		r->r_dev = NULL;
774		return 0;
775	}
776
777out:
778	free(r, M_RMAN);
779	return 0;
780}
781
782int
783rman_release_resource(struct resource *re)
784{
785	int rv;
786	struct resource_i *r;
787	struct rman *rm;
788
789	r = re->__r_i;
790	rm = r->r_rm;
791	mtx_lock(rm->rm_mtx);
792	rv = int_rman_release_resource(rm, r);
793	mtx_unlock(rm->rm_mtx);
794	return (rv);
795}
796
797uint32_t
798rman_make_alignment_flags(uint32_t size)
799{
800	int i;
801
802	/*
803	 * Find the hightest bit set, and add one if more than one bit
804	 * set.  We're effectively computing the ceil(log2(size)) here.
805	 */
806	for (i = 31; i > 0; i--)
807		if ((1 << i) & size)
808			break;
809	if (~(1 << i) & size)
810		i++;
811
812	return(RF_ALIGNMENT_LOG2(i));
813}
814
815void
816rman_set_start(struct resource *r, rman_res_t start)
817{
818
819	r->__r_i->r_start = start;
820}
821
822rman_res_t
823rman_get_start(struct resource *r)
824{
825
826	return (r->__r_i->r_start);
827}
828
829void
830rman_set_end(struct resource *r, rman_res_t end)
831{
832
833	r->__r_i->r_end = end;
834}
835
836rman_res_t
837rman_get_end(struct resource *r)
838{
839
840	return (r->__r_i->r_end);
841}
842
843rman_res_t
844rman_get_size(struct resource *r)
845{
846
847	return (r->__r_i->r_end - r->__r_i->r_start + 1);
848}
849
850u_int
851rman_get_flags(struct resource *r)
852{
853
854	return (r->__r_i->r_flags);
855}
856
857void
858rman_set_virtual(struct resource *r, void *v)
859{
860
861	r->__r_i->r_virtual = v;
862}
863
864void *
865rman_get_virtual(struct resource *r)
866{
867
868	return (r->__r_i->r_virtual);
869}
870
871void
872rman_set_bustag(struct resource *r, bus_space_tag_t t)
873{
874
875	r->r_bustag = t;
876}
877
878bus_space_tag_t
879rman_get_bustag(struct resource *r)
880{
881
882	return (r->r_bustag);
883}
884
885void
886rman_set_bushandle(struct resource *r, bus_space_handle_t h)
887{
888
889	r->r_bushandle = h;
890}
891
892bus_space_handle_t
893rman_get_bushandle(struct resource *r)
894{
895
896	return (r->r_bushandle);
897}
898
899void
900rman_set_mapping(struct resource *r, struct resource_map *map)
901{
902
903	KASSERT(rman_get_size(r) == map->r_size,
904	    ("rman_set_mapping: size mismatch"));
905	rman_set_bustag(r, map->r_bustag);
906	rman_set_bushandle(r, map->r_bushandle);
907	rman_set_virtual(r, map->r_vaddr);
908}
909
910void
911rman_get_mapping(struct resource *r, struct resource_map *map)
912{
913
914	map->r_bustag = rman_get_bustag(r);
915	map->r_bushandle = rman_get_bushandle(r);
916	map->r_size = rman_get_size(r);
917	map->r_vaddr = rman_get_virtual(r);
918}
919
920void
921rman_set_rid(struct resource *r, int rid)
922{
923
924	r->__r_i->r_rid = rid;
925}
926
927int
928rman_get_rid(struct resource *r)
929{
930
931	return (r->__r_i->r_rid);
932}
933
934void
935rman_set_device(struct resource *r, device_t dev)
936{
937
938	r->__r_i->r_dev = dev;
939}
940
941device_t
942rman_get_device(struct resource *r)
943{
944
945	return (r->__r_i->r_dev);
946}
947
948int
949rman_is_region_manager(struct resource *r, struct rman *rm)
950{
951
952	return (r->__r_i->r_rm == rm);
953}
954
955/*
956 * Sysctl interface for scanning the resource lists.
957 *
958 * We take two input parameters; the index into the list of resource
959 * managers, and the resource offset into the list.
960 */
961static int
962sysctl_rman(SYSCTL_HANDLER_ARGS)
963{
964	int			*name = (int *)arg1;
965	u_int			namelen = arg2;
966	int			rman_idx, res_idx;
967	struct rman		*rm;
968	struct resource_i	*res;
969	struct resource_i	*sres;
970	struct u_rman		urm;
971	struct u_resource	ures;
972	int			error;
973
974	if (namelen != 3)
975		return (EINVAL);
976
977	if (bus_data_generation_check(name[0]))
978		return (EINVAL);
979	rman_idx = name[1];
980	res_idx = name[2];
981
982	/*
983	 * Find the indexed resource manager
984	 */
985	mtx_lock(&rman_mtx);
986	TAILQ_FOREACH(rm, &rman_head, rm_link) {
987		if (rman_idx-- == 0)
988			break;
989	}
990	mtx_unlock(&rman_mtx);
991	if (rm == NULL)
992		return (ENOENT);
993
994	/*
995	 * If the resource index is -1, we want details on the
996	 * resource manager.
997	 */
998	if (res_idx == -1) {
999		bzero(&urm, sizeof(urm));
1000		urm.rm_handle = (uintptr_t)rm;
1001		if (rm->rm_descr != NULL)
1002			strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
1003		urm.rm_start = rm->rm_start;
1004		urm.rm_size = rm->rm_end - rm->rm_start + 1;
1005		urm.rm_type = rm->rm_type;
1006
1007		error = SYSCTL_OUT(req, &urm, sizeof(urm));
1008		return (error);
1009	}
1010
1011	/*
1012	 * Find the indexed resource and return it.
1013	 */
1014	mtx_lock(rm->rm_mtx);
1015	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
1016		if (res->r_sharehead != NULL) {
1017			LIST_FOREACH(sres, res->r_sharehead, r_sharelink)
1018				if (res_idx-- == 0) {
1019					res = sres;
1020					goto found;
1021				}
1022		}
1023		else if (res_idx-- == 0)
1024				goto found;
1025	}
1026	mtx_unlock(rm->rm_mtx);
1027	return (ENOENT);
1028
1029found:
1030	bzero(&ures, sizeof(ures));
1031	ures.r_handle = (uintptr_t)res;
1032	ures.r_parent = (uintptr_t)res->r_rm;
1033	ures.r_device = (uintptr_t)res->r_dev;
1034	if (res->r_dev != NULL) {
1035		if (device_get_name(res->r_dev) != NULL) {
1036			snprintf(ures.r_devname, RM_TEXTLEN,
1037			    "%s%d",
1038			    device_get_name(res->r_dev),
1039			    device_get_unit(res->r_dev));
1040		} else {
1041			strlcpy(ures.r_devname, "nomatch",
1042			    RM_TEXTLEN);
1043		}
1044	} else {
1045		ures.r_devname[0] = '\0';
1046	}
1047	ures.r_start = res->r_start;
1048	ures.r_size = res->r_end - res->r_start + 1;
1049	ures.r_flags = res->r_flags;
1050
1051	mtx_unlock(rm->rm_mtx);
1052	error = SYSCTL_OUT(req, &ures, sizeof(ures));
1053	return (error);
1054}
1055
1056static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
1057    "kernel resource manager");
1058
1059#ifdef DDB
1060static void
1061dump_rman_header(struct rman *rm)
1062{
1063
1064	if (db_pager_quit)
1065		return;
1066	db_printf("rman %p: %s (0x%jx-0x%jx full range)\n",
1067	    rm, rm->rm_descr, (rman_res_t)rm->rm_start, (rman_res_t)rm->rm_end);
1068}
1069
1070static void
1071dump_rman(struct rman *rm)
1072{
1073	struct resource_i *r;
1074	const char *devname;
1075
1076	if (db_pager_quit)
1077		return;
1078	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
1079		if (r->r_dev != NULL) {
1080			devname = device_get_nameunit(r->r_dev);
1081			if (devname == NULL)
1082				devname = "nomatch";
1083		} else
1084			devname = NULL;
1085		db_printf("    0x%jx-0x%jx (RID=%d) ",
1086		    r->r_start, r->r_end, r->r_rid);
1087		if (devname != NULL)
1088			db_printf("(%s)\n", devname);
1089		else
1090			db_printf("----\n");
1091		if (db_pager_quit)
1092			return;
1093	}
1094}
1095
1096DB_SHOW_COMMAND(rman, db_show_rman)
1097{
1098
1099	if (have_addr) {
1100		dump_rman_header((struct rman *)addr);
1101		dump_rman((struct rman *)addr);
1102	}
1103}
1104
1105DB_SHOW_COMMAND(rmans, db_show_rmans)
1106{
1107	struct rman *rm;
1108
1109	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1110		dump_rman_header(rm);
1111	}
1112}
1113
1114DB_SHOW_ALL_COMMAND(rman, db_show_all_rman)
1115{
1116	struct rman *rm;
1117
1118	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1119		dump_rman_header(rm);
1120		dump_rman(rm);
1121	}
1122}
1123DB_SHOW_ALIAS(allrman, db_show_all_rman);
1124#endif
1125