subr_rman.c revision 68764
1/*
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: head/sys/kern/subr_rman.c 68764 2000-11-15 20:07:16Z mckusick $
30 */
31
32/*
33 * The kernel resource manager.  This code is responsible for keeping track
34 * of hardware resources which are apportioned out to various drivers.
35 * It does not actually assign those resources, and it is not expected
36 * that end-device drivers will call into this code directly.  Rather,
37 * the code which implements the buses that those devices are attached to,
38 * and the code which manages CPU resources, will call this code, and the
39 * end-device drivers will make upcalls to that code to actually perform
40 * the allocation.
41 *
42 * There are two sorts of resources managed by this code.  The first is
43 * the more familiar array (RMAN_ARRAY) type; resources in this class
44 * consist of a sequence of individually-allocatable objects which have
45 * been numbered in some well-defined order.  Most of the resources
46 * are of this type, as it is the most familiar.  The second type is
47 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
48 * resources in which each instance is indistinguishable from every
49 * other instance).  The principal anticipated application of gauges
50 * is in the context of power consumption, where a bus may have a specific
51 * power budget which all attached devices share.  RMAN_GAUGE is not
52 * implemented yet.
53 *
54 * For array resources, we make one simplifying assumption: two clients
55 * sharing the same resource must use the same range of indices.  That
56 * is to say, sharing of overlapping-but-not-identical regions is not
57 * permitted.
58 */
59
60#include <sys/param.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/lock.h>
64#include <sys/malloc.h>
65#include <sys/bus.h>		/* XXX debugging */
66#include <machine/bus.h>
67#include <sys/rman.h>
68
69#ifdef RMAN_DEBUG
70#define DPRINTF(params) printf##params
71#else
72#define DPRINTF(params)
73#endif
74
75static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
76
77struct	rman_head rman_head;
78#ifndef NULL_SIMPLELOCKS
79static	struct simplelock rman_lock; /* mutex to protect rman_head */
80#endif
81static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
82				       struct resource **whohas);
83static	int int_rman_deactivate_resource(struct resource *r);
84static	int int_rman_release_resource(struct rman *rm, struct resource *r);
85
86int
87rman_init(struct rman *rm)
88{
89	static int once;
90
91	if (once == 0) {
92		once = 1;
93		TAILQ_INIT(&rman_head);
94		simple_lock_init(&rman_lock);
95	}
96
97	if (rm->rm_type == RMAN_UNINIT)
98		panic("rman_init");
99	if (rm->rm_type == RMAN_GAUGE)
100		panic("implement RMAN_GAUGE");
101
102	TAILQ_INIT(&rm->rm_list);
103	rm->rm_slock = malloc(sizeof *rm->rm_slock, M_RMAN, M_NOWAIT);
104	if (rm->rm_slock == 0)
105		return ENOMEM;
106	simple_lock_init(rm->rm_slock);
107
108	simple_lock(&rman_lock);
109	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
110	simple_unlock(&rman_lock);
111	return 0;
112}
113
114/*
115 * NB: this interface is not robust against programming errors which
116 * add multiple copies of the same region.
117 */
118int
119rman_manage_region(struct rman *rm, u_long start, u_long end)
120{
121	struct resource *r, *s;
122
123	r = malloc(sizeof *r, M_RMAN, M_NOWAIT);
124	if (r == 0)
125		return ENOMEM;
126	bzero(r, sizeof *r);
127	r->r_sharehead = 0;
128	r->r_start = start;
129	r->r_end = end;
130	r->r_flags = 0;
131	r->r_dev = 0;
132	r->r_rm = rm;
133
134	simple_lock(rm->rm_slock);
135	for (s = TAILQ_FIRST(&rm->rm_list);
136	     s && s->r_end < r->r_start;
137	     s = TAILQ_NEXT(s, r_link))
138		;
139
140	if (s == NULL) {
141		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
142	} else {
143		TAILQ_INSERT_BEFORE(s, r, r_link);
144	}
145
146	simple_unlock(rm->rm_slock);
147	return 0;
148}
149
150int
151rman_fini(struct rman *rm)
152{
153	struct resource *r;
154
155	simple_lock(rm->rm_slock);
156	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
157		if (r->r_flags & RF_ALLOCATED) {
158			simple_unlock(rm->rm_slock);
159			return EBUSY;
160		}
161	}
162
163	/*
164	 * There really should only be one of these if we are in this
165	 * state and the code is working properly, but it can't hurt.
166	 */
167	while (!TAILQ_EMPTY(&rm->rm_list)) {
168		r = TAILQ_FIRST(&rm->rm_list);
169		TAILQ_REMOVE(&rm->rm_list, r, r_link);
170		free(r, M_RMAN);
171	}
172	simple_unlock(rm->rm_slock);
173	simple_lock(&rman_lock);
174	TAILQ_REMOVE(&rman_head, rm, rm_link);
175	simple_unlock(&rman_lock);
176	free(rm->rm_slock, M_RMAN);
177
178	return 0;
179}
180
181struct resource *
182rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
183		      u_int flags, struct device *dev)
184{
185	u_int	want_activate;
186	struct	resource *r, *s, *rv;
187	u_long	rstart, rend;
188
189	rv = 0;
190
191	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
192	       "%#lx, flags %u, device %s%d\n", rm->rm_descr, start, end,
193	       count, flags, device_get_name(dev), device_get_unit(dev)));
194	want_activate = (flags & RF_ACTIVE);
195	flags &= ~RF_ACTIVE;
196
197	simple_lock(rm->rm_slock);
198
199	for (r = TAILQ_FIRST(&rm->rm_list);
200	     r && r->r_end < start;
201	     r = TAILQ_NEXT(r, r_link))
202		;
203
204	if (r == NULL) {
205		DPRINTF(("could not find a region\n"));
206		goto out;
207	}
208
209	/*
210	 * First try to find an acceptable totally-unshared region.
211	 */
212	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
213		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
214		if (s->r_start > end) {
215			DPRINTF(("s->r_start (%#lx) > end (%#lx)\n", s->r_start, end));
216			break;
217		}
218		if (s->r_flags & RF_ALLOCATED) {
219			DPRINTF(("region is allocated\n"));
220			continue;
221		}
222		rstart = max(s->r_start, start);
223		rstart = (rstart + ((1ul << RF_ALIGNMENT(flags))) - 1) &
224		    ~((1ul << RF_ALIGNMENT(flags)) - 1);
225		rend = min(s->r_end, max(rstart + count, end));
226		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
227		       rstart, rend, (rend - rstart + 1), count));
228
229		if ((rend - rstart + 1) >= count) {
230			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
231			       rend, rstart, (rend - rstart + 1)));
232			if ((s->r_end - s->r_start + 1) == count) {
233				DPRINTF(("candidate region is entire chunk\n"));
234				rv = s;
235				rv->r_flags |= RF_ALLOCATED | flags;
236				rv->r_dev = dev;
237				goto out;
238			}
239
240			/*
241			 * If s->r_start < rstart and
242			 *    s->r_end > rstart + count - 1, then
243			 * we need to split the region into three pieces
244			 * (the middle one will get returned to the user).
245			 * Otherwise, we are allocating at either the
246			 * beginning or the end of s, so we only need to
247			 * split it in two.  The first case requires
248			 * two new allocations; the second requires but one.
249			 */
250			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT);
251			if (rv == 0)
252				goto out;
253			bzero(rv, sizeof *rv);
254			rv->r_start = rstart;
255			rv->r_end = rstart + count - 1;
256			rv->r_flags = flags | RF_ALLOCATED;
257			rv->r_dev = dev;
258			rv->r_sharehead = 0;
259			rv->r_rm = rm;
260
261			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
262				DPRINTF(("splitting region in three parts: "
263				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
264				       s->r_start, rv->r_start - 1,
265				       rv->r_start, rv->r_end,
266				       rv->r_end + 1, s->r_end));
267				/*
268				 * We are allocating in the middle.
269				 */
270				r = malloc(sizeof *r, M_RMAN, M_NOWAIT);
271				if (r == 0) {
272					free(rv, M_RMAN);
273					rv = 0;
274					goto out;
275				}
276				bzero(r, sizeof *r);
277				r->r_start = rv->r_end + 1;
278				r->r_end = s->r_end;
279				r->r_flags = s->r_flags;
280				r->r_dev = 0;
281				r->r_sharehead = 0;
282				r->r_rm = rm;
283				s->r_end = rv->r_start - 1;
284				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
285						     r_link);
286				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
287						     r_link);
288			} else if (s->r_start == rv->r_start) {
289				DPRINTF(("allocating from the beginning\n"));
290				/*
291				 * We are allocating at the beginning.
292				 */
293				s->r_start = rv->r_end + 1;
294				TAILQ_INSERT_BEFORE(s, rv, r_link);
295			} else {
296				DPRINTF(("allocating at the end\n"));
297				/*
298				 * We are allocating at the end.
299				 */
300				s->r_end = rv->r_start - 1;
301				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
302						     r_link);
303			}
304			goto out;
305		}
306	}
307
308	/*
309	 * Now find an acceptable shared region, if the client's requirements
310	 * allow sharing.  By our implementation restriction, a candidate
311	 * region must match exactly by both size and sharing type in order
312	 * to be considered compatible with the client's request.  (The
313	 * former restriction could probably be lifted without too much
314	 * additional work, but this does not seem warranted.)
315	 */
316	DPRINTF(("no unshared regions found\n"));
317	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
318		goto out;
319
320	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
321		if (s->r_start > end)
322			break;
323		if ((s->r_flags & flags) != flags)
324			continue;
325		rstart = max(s->r_start, start);
326		rend = min(s->r_end, max(start + count, end));
327		if (s->r_start >= start && s->r_end <= end
328		    && (s->r_end - s->r_start + 1) == count) {
329			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT);
330			if (rv == 0)
331				goto out;
332			bzero(rv, sizeof *rv);
333			rv->r_start = s->r_start;
334			rv->r_end = s->r_end;
335			rv->r_flags = s->r_flags &
336				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
337			rv->r_dev = dev;
338			rv->r_rm = rm;
339			if (s->r_sharehead == 0) {
340				s->r_sharehead = malloc(sizeof *s->r_sharehead,
341							M_RMAN, M_NOWAIT);
342				if (s->r_sharehead == 0) {
343					free(rv, M_RMAN);
344					rv = 0;
345					goto out;
346				}
347				bzero(s->r_sharehead, sizeof *s->r_sharehead);
348				LIST_INIT(s->r_sharehead);
349				LIST_INSERT_HEAD(s->r_sharehead, s,
350						 r_sharelink);
351				s->r_flags |= RF_FIRSTSHARE;
352			}
353			rv->r_sharehead = s->r_sharehead;
354			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
355			goto out;
356		}
357	}
358
359	/*
360	 * We couldn't find anything.
361	 */
362out:
363	/*
364	 * If the user specified RF_ACTIVE in the initial flags,
365	 * which is reflected in `want_activate', we attempt to atomically
366	 * activate the resource.  If this fails, we release the resource
367	 * and indicate overall failure.  (This behavior probably doesn't
368	 * make sense for RF_TIMESHARE-type resources.)
369	 */
370	if (rv && want_activate) {
371		struct resource *whohas;
372		if (int_rman_activate_resource(rm, rv, &whohas)) {
373			int_rman_release_resource(rm, rv);
374			rv = 0;
375		}
376	}
377
378	simple_unlock(rm->rm_slock);
379	return (rv);
380}
381
382static int
383int_rman_activate_resource(struct rman *rm, struct resource *r,
384			   struct resource **whohas)
385{
386	struct resource *s;
387	int ok;
388
389	/*
390	 * If we are not timesharing, then there is nothing much to do.
391	 * If we already have the resource, then there is nothing at all to do.
392	 * If we are not on a sharing list with anybody else, then there is
393	 * little to do.
394	 */
395	if ((r->r_flags & RF_TIMESHARE) == 0
396	    || (r->r_flags & RF_ACTIVE) != 0
397	    || r->r_sharehead == 0) {
398		r->r_flags |= RF_ACTIVE;
399		return 0;
400	}
401
402	ok = 1;
403	for (s = LIST_FIRST(r->r_sharehead); s && ok;
404	     s = LIST_NEXT(s, r_sharelink)) {
405		if ((s->r_flags & RF_ACTIVE) != 0) {
406			ok = 0;
407			*whohas = s;
408		}
409	}
410	if (ok) {
411		r->r_flags |= RF_ACTIVE;
412		return 0;
413	}
414	return EBUSY;
415}
416
417int
418rman_activate_resource(struct resource *r)
419{
420	int rv;
421	struct resource *whohas;
422	struct rman *rm;
423
424	rm = r->r_rm;
425	simple_lock(rm->rm_slock);
426	rv = int_rman_activate_resource(rm, r, &whohas);
427	simple_unlock(rm->rm_slock);
428	return rv;
429}
430
431int
432rman_await_resource(struct resource *r, int pri, int timo)
433{
434	int	rv, s;
435	struct	resource *whohas;
436	struct	rman *rm;
437
438	rm = r->r_rm;
439	for (;;) {
440		simple_lock(rm->rm_slock);
441		rv = int_rman_activate_resource(rm, r, &whohas);
442		if (rv != EBUSY)
443			return (rv);	/* returns with simplelock */
444
445		if (r->r_sharehead == 0)
446			panic("rman_await_resource");
447		/*
448		 * splhigh hopefully will prevent a race between
449		 * simple_unlock and tsleep where a process
450		 * could conceivably get in and release the resource
451		 * before we have a chance to sleep on it.
452		 */
453		s = splhigh();
454		whohas->r_flags |= RF_WANTED;
455		simple_unlock(rm->rm_slock);
456		rv = tsleep(r->r_sharehead, pri, "rmwait", timo);
457		if (rv) {
458			splx(s);
459			return rv;
460		}
461		simple_lock(rm->rm_slock);
462		splx(s);
463	}
464}
465
466static int
467int_rman_deactivate_resource(struct resource *r)
468{
469	struct	rman *rm;
470
471	rm = r->r_rm;
472	r->r_flags &= ~RF_ACTIVE;
473	if (r->r_flags & RF_WANTED) {
474		r->r_flags &= ~RF_WANTED;
475		wakeup(r->r_sharehead);
476	}
477	return 0;
478}
479
480int
481rman_deactivate_resource(struct resource *r)
482{
483	struct	rman *rm;
484
485	rm = r->r_rm;
486	simple_lock(rm->rm_slock);
487	int_rman_deactivate_resource(r);
488	simple_unlock(rm->rm_slock);
489	return 0;
490}
491
492static int
493int_rman_release_resource(struct rman *rm, struct resource *r)
494{
495	struct	resource *s, *t;
496
497	if (r->r_flags & RF_ACTIVE)
498		int_rman_deactivate_resource(r);
499
500	/*
501	 * Check for a sharing list first.  If there is one, then we don't
502	 * have to think as hard.
503	 */
504	if (r->r_sharehead) {
505		/*
506		 * If a sharing list exists, then we know there are at
507		 * least two sharers.
508		 *
509		 * If we are in the main circleq, appoint someone else.
510		 */
511		LIST_REMOVE(r, r_sharelink);
512		s = LIST_FIRST(r->r_sharehead);
513		if (r->r_flags & RF_FIRSTSHARE) {
514			s->r_flags |= RF_FIRSTSHARE;
515			TAILQ_INSERT_BEFORE(r, s, r_link);
516			TAILQ_REMOVE(&rm->rm_list, r, r_link);
517		}
518
519		/*
520		 * Make sure that the sharing list goes away completely
521		 * if the resource is no longer being shared at all.
522		 */
523		if (LIST_NEXT(s, r_sharelink) == 0) {
524			free(s->r_sharehead, M_RMAN);
525			s->r_sharehead = 0;
526			s->r_flags &= ~RF_FIRSTSHARE;
527		}
528		goto out;
529	}
530
531	/*
532	 * Look at the adjacent resources in the list and see if our
533	 * segment can be merged with any of them.
534	 */
535	s = TAILQ_PREV(r, resource_head, r_link);
536	t = TAILQ_NEXT(r, r_link);
537
538	if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0
539	    && t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
540		/*
541		 * Merge all three segments.
542		 */
543		s->r_end = t->r_end;
544		TAILQ_REMOVE(&rm->rm_list, r, r_link);
545		TAILQ_REMOVE(&rm->rm_list, t, r_link);
546		free(t, M_RMAN);
547	} else if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0) {
548		/*
549		 * Merge previous segment with ours.
550		 */
551		s->r_end = r->r_end;
552		TAILQ_REMOVE(&rm->rm_list, r, r_link);
553	} else if (t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
554		/*
555		 * Merge next segment with ours.
556		 */
557		t->r_start = r->r_start;
558		TAILQ_REMOVE(&rm->rm_list, r, r_link);
559	} else {
560		/*
561		 * At this point, we know there is nothing we
562		 * can potentially merge with, because on each
563		 * side, there is either nothing there or what is
564		 * there is still allocated.  In that case, we don't
565		 * want to remove r from the list; we simply want to
566		 * change it to an unallocated region and return
567		 * without freeing anything.
568		 */
569		r->r_flags &= ~RF_ALLOCATED;
570		return 0;
571	}
572
573out:
574	free(r, M_RMAN);
575	return 0;
576}
577
578int
579rman_release_resource(struct resource *r)
580{
581	int	rv;
582	struct	rman *rm = r->r_rm;
583
584	simple_lock(rm->rm_slock);
585	rv = int_rman_release_resource(rm, r);
586	simple_unlock(rm->rm_slock);
587	return (rv);
588}
589
590uint32_t
591rman_make_alignment_flags(uint32_t size)
592{
593	int	i;
594
595	/*
596	 * Find the hightest bit set, and add one if more than one bit
597	 * set.  We're effectively computing the ceil(log2(size)) here.
598	 */
599	for (i = 32; i > 0; i--)
600		if ((1 << i) & size)
601			break;
602	if (~(1 << i) & size)
603		i++;
604
605	return(RF_ALIGNMENT_LOG2(i));
606}
607