subr_rman.c revision 67261
1/*
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: head/sys/kern/subr_rman.c 67261 2000-10-17 22:08:03Z imp $
30 */
31
32/*
33 * The kernel resource manager.  This code is responsible for keeping track
34 * of hardware resources which are apportioned out to various drivers.
35 * It does not actually assign those resources, and it is not expected
36 * that end-device drivers will call into this code directly.  Rather,
37 * the code which implements the buses that those devices are attached to,
38 * and the code which manages CPU resources, will call this code, and the
39 * end-device drivers will make upcalls to that code to actually perform
40 * the allocation.
41 *
42 * There are two sorts of resources managed by this code.  The first is
43 * the more familiar array (RMAN_ARRAY) type; resources in this class
44 * consist of a sequence of individually-allocatable objects which have
45 * been numbered in some well-defined order.  Most of the resources
46 * are of this type, as it is the most familiar.  The second type is
47 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
48 * resources in which each instance is indistinguishable from every
49 * other instance).  The principal anticipated application of gauges
50 * is in the context of power consumption, where a bus may have a specific
51 * power budget which all attached devices share.  RMAN_GAUGE is not
52 * implemented yet.
53 *
54 * For array resources, we make one simplifying assumption: two clients
55 * sharing the same resource must use the same range of indices.  That
56 * is to say, sharing of overlapping-but-not-identical regions is not
57 * permitted.
58 */
59
60#include <sys/param.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/lock.h>
64#include <sys/malloc.h>
65#include <sys/bus.h>		/* XXX debugging */
66#include <machine/bus.h>
67#include <sys/rman.h>
68
69#ifdef RMAN_DEBUG
70#define DPRINTF(params) printf##params
71#else
72#define DPRINTF(params)
73#endif
74
75static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
76
77struct	rman_head rman_head;
78#ifndef NULL_SIMPLELOCKS
79static	struct simplelock rman_lock; /* mutex to protect rman_head */
80#endif
81static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
82				       struct resource **whohas);
83static	int int_rman_deactivate_resource(struct resource *r);
84static	int int_rman_release_resource(struct rman *rm, struct resource *r);
85
86#define	CIRCLEQ_TERMCOND(var, head)	(var == (void *)&(head))
87
88int
89rman_init(struct rman *rm)
90{
91	static int once;
92
93	if (once == 0) {
94		once = 1;
95		TAILQ_INIT(&rman_head);
96		simple_lock_init(&rman_lock);
97	}
98
99	if (rm->rm_type == RMAN_UNINIT)
100		panic("rman_init");
101	if (rm->rm_type == RMAN_GAUGE)
102		panic("implement RMAN_GAUGE");
103
104	CIRCLEQ_INIT(&rm->rm_list);
105	rm->rm_slock = malloc(sizeof *rm->rm_slock, M_RMAN, M_NOWAIT);
106	if (rm->rm_slock == 0)
107		return ENOMEM;
108	simple_lock_init(rm->rm_slock);
109
110	simple_lock(&rman_lock);
111	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
112	simple_unlock(&rman_lock);
113	return 0;
114}
115
116/*
117 * NB: this interface is not robust against programming errors which
118 * add multiple copies of the same region.
119 */
120int
121rman_manage_region(struct rman *rm, u_long start, u_long end)
122{
123	struct resource *r, *s;
124
125	r = malloc(sizeof *r, M_RMAN, M_NOWAIT);
126	if (r == 0)
127		return ENOMEM;
128	bzero(r, sizeof *r);
129	r->r_sharehead = 0;
130	r->r_start = start;
131	r->r_end = end;
132	r->r_flags = 0;
133	r->r_dev = 0;
134	r->r_rm = rm;
135
136	simple_lock(rm->rm_slock);
137	for (s = CIRCLEQ_FIRST(&rm->rm_list);
138	     !CIRCLEQ_TERMCOND(s, rm->rm_list) && s->r_end < r->r_start;
139	     s = CIRCLEQ_NEXT(s, r_link))
140		;
141
142	if (CIRCLEQ_TERMCOND(s, rm->rm_list)) {
143		CIRCLEQ_INSERT_TAIL(&rm->rm_list, r, r_link);
144	} else {
145		CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, r, r_link);
146	}
147
148	simple_unlock(rm->rm_slock);
149	return 0;
150}
151
152int
153rman_fini(struct rman *rm)
154{
155	struct resource *r;
156
157	simple_lock(rm->rm_slock);
158	CIRCLEQ_FOREACH(r, &rm->rm_list, r_link) {
159		if (r->r_flags & RF_ALLOCATED) {
160			simple_unlock(rm->rm_slock);
161			return EBUSY;
162		}
163	}
164
165	/*
166	 * There really should only be one of these if we are in this
167	 * state and the code is working properly, but it can't hurt.
168	 */
169	while (!CIRCLEQ_EMPTY(&rm->rm_list)) {
170		r = CIRCLEQ_FIRST(&rm->rm_list);
171		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
172		free(r, M_RMAN);
173	}
174	simple_unlock(rm->rm_slock);
175	simple_lock(&rman_lock);
176	TAILQ_REMOVE(&rman_head, rm, rm_link);
177	simple_unlock(&rman_lock);
178	free(rm->rm_slock, M_RMAN);
179
180	return 0;
181}
182
183struct resource *
184rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
185		      u_int flags, struct device *dev)
186{
187	u_int	want_activate;
188	struct	resource *r, *s, *rv;
189	u_long	rstart, rend;
190
191	rv = 0;
192
193	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
194	       "%#lx, flags %u, device %s%d\n", rm->rm_descr, start, end,
195	       count, flags, device_get_name(dev), device_get_unit(dev)));
196	want_activate = (flags & RF_ACTIVE);
197	flags &= ~RF_ACTIVE;
198
199	simple_lock(rm->rm_slock);
200
201	for (r = CIRCLEQ_FIRST(&rm->rm_list);
202	     !CIRCLEQ_TERMCOND(r, rm->rm_list) && r->r_end < start;
203	     r = CIRCLEQ_NEXT(r, r_link))
204		;
205
206	if (CIRCLEQ_TERMCOND(r, rm->rm_list)) {
207		DPRINTF(("could not find a region\n"));
208		goto out;
209	}
210
211	/*
212	 * First try to find an acceptable totally-unshared region.
213	 */
214	for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
215	     s = CIRCLEQ_NEXT(s, r_link)) {
216		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
217		if (s->r_start > end) {
218			DPRINTF(("s->r_start (%#lx) > end (%#lx)\n", s->r_start, end));
219			break;
220		}
221		if (s->r_flags & RF_ALLOCATED) {
222			DPRINTF(("region is allocated\n"));
223			continue;
224		}
225		rstart = max(s->r_start, start);
226		rstart = (rstart + ((1ul << RF_ALIGNMENT(flags))) - 1) &
227		    ~((1ul << RF_ALIGNMENT(flags)) - 1);
228		rend = min(s->r_end, max(rstart + count, end));
229		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
230		       rstart, rend, (rend - rstart + 1), count));
231
232		if ((rend - rstart + 1) >= count) {
233			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
234			       rend, rstart, (rend - rstart + 1)));
235			if ((s->r_end - s->r_start + 1) == count) {
236				DPRINTF(("candidate region is entire chunk\n"));
237				rv = s;
238				rv->r_flags |= RF_ALLOCATED | flags;
239				rv->r_dev = dev;
240				goto out;
241			}
242
243			/*
244			 * If s->r_start < rstart and
245			 *    s->r_end > rstart + count - 1, then
246			 * we need to split the region into three pieces
247			 * (the middle one will get returned to the user).
248			 * Otherwise, we are allocating at either the
249			 * beginning or the end of s, so we only need to
250			 * split it in two.  The first case requires
251			 * two new allocations; the second requires but one.
252			 */
253			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT);
254			if (rv == 0)
255				goto out;
256			bzero(rv, sizeof *rv);
257			rv->r_start = rstart;
258			rv->r_end = rstart + count - 1;
259			rv->r_flags = flags | RF_ALLOCATED;
260			rv->r_dev = dev;
261			rv->r_sharehead = 0;
262			rv->r_rm = rm;
263
264			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
265				DPRINTF(("splitting region in three parts: "
266				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
267				       s->r_start, rv->r_start - 1,
268				       rv->r_start, rv->r_end,
269				       rv->r_end + 1, s->r_end));
270				/*
271				 * We are allocating in the middle.
272				 */
273				r = malloc(sizeof *r, M_RMAN, M_NOWAIT);
274				if (r == 0) {
275					free(rv, M_RMAN);
276					rv = 0;
277					goto out;
278				}
279				bzero(r, sizeof *r);
280				r->r_start = rv->r_end + 1;
281				r->r_end = s->r_end;
282				r->r_flags = s->r_flags;
283				r->r_dev = 0;
284				r->r_sharehead = 0;
285				r->r_rm = rm;
286				s->r_end = rv->r_start - 1;
287				CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
288						     r_link);
289				CIRCLEQ_INSERT_AFTER(&rm->rm_list, rv, r,
290						     r_link);
291			} else if (s->r_start == rv->r_start) {
292				DPRINTF(("allocating from the beginning\n"));
293				/*
294				 * We are allocating at the beginning.
295				 */
296				s->r_start = rv->r_end + 1;
297				CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, rv,
298						      r_link);
299			} else {
300				DPRINTF(("allocating at the end\n"));
301				/*
302				 * We are allocating at the end.
303				 */
304				s->r_end = rv->r_start - 1;
305				CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
306						     r_link);
307			}
308			goto out;
309		}
310	}
311
312	/*
313	 * Now find an acceptable shared region, if the client's requirements
314	 * allow sharing.  By our implementation restriction, a candidate
315	 * region must match exactly by both size and sharing type in order
316	 * to be considered compatible with the client's request.  (The
317	 * former restriction could probably be lifted without too much
318	 * additional work, but this does not seem warranted.)
319	 */
320	DPRINTF(("no unshared regions found\n"));
321	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
322		goto out;
323
324	for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
325	     s = CIRCLEQ_NEXT(s, r_link)) {
326		if (s->r_start > end)
327			break;
328		if ((s->r_flags & flags) != flags)
329			continue;
330		rstart = max(s->r_start, start);
331		rend = min(s->r_end, max(start + count, end));
332		if (s->r_start >= start && s->r_end <= end
333		    && (s->r_end - s->r_start + 1) == count) {
334			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT);
335			if (rv == 0)
336				goto out;
337			bzero(rv, sizeof *rv);
338			rv->r_start = s->r_start;
339			rv->r_end = s->r_end;
340			rv->r_flags = s->r_flags &
341				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
342			rv->r_dev = dev;
343			rv->r_rm = rm;
344			if (s->r_sharehead == 0) {
345				s->r_sharehead = malloc(sizeof *s->r_sharehead,
346							M_RMAN, M_NOWAIT);
347				if (s->r_sharehead == 0) {
348					free(rv, M_RMAN);
349					rv = 0;
350					goto out;
351				}
352				bzero(s->r_sharehead, sizeof *s->r_sharehead);
353				LIST_INIT(s->r_sharehead);
354				LIST_INSERT_HEAD(s->r_sharehead, s,
355						 r_sharelink);
356				s->r_flags |= RF_FIRSTSHARE;
357			}
358			rv->r_sharehead = s->r_sharehead;
359			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
360			goto out;
361		}
362	}
363
364	/*
365	 * We couldn't find anything.
366	 */
367out:
368	/*
369	 * If the user specified RF_ACTIVE in the initial flags,
370	 * which is reflected in `want_activate', we attempt to atomically
371	 * activate the resource.  If this fails, we release the resource
372	 * and indicate overall failure.  (This behavior probably doesn't
373	 * make sense for RF_TIMESHARE-type resources.)
374	 */
375	if (rv && want_activate) {
376		struct resource *whohas;
377		if (int_rman_activate_resource(rm, rv, &whohas)) {
378			int_rman_release_resource(rm, rv);
379			rv = 0;
380		}
381	}
382
383	simple_unlock(rm->rm_slock);
384	return (rv);
385}
386
387static int
388int_rman_activate_resource(struct rman *rm, struct resource *r,
389			   struct resource **whohas)
390{
391	struct resource *s;
392	int ok;
393
394	/*
395	 * If we are not timesharing, then there is nothing much to do.
396	 * If we already have the resource, then there is nothing at all to do.
397	 * If we are not on a sharing list with anybody else, then there is
398	 * little to do.
399	 */
400	if ((r->r_flags & RF_TIMESHARE) == 0
401	    || (r->r_flags & RF_ACTIVE) != 0
402	    || r->r_sharehead == 0) {
403		r->r_flags |= RF_ACTIVE;
404		return 0;
405	}
406
407	ok = 1;
408	for (s = LIST_FIRST(r->r_sharehead); s && ok;
409	     s = LIST_NEXT(s, r_sharelink)) {
410		if ((s->r_flags & RF_ACTIVE) != 0) {
411			ok = 0;
412			*whohas = s;
413		}
414	}
415	if (ok) {
416		r->r_flags |= RF_ACTIVE;
417		return 0;
418	}
419	return EBUSY;
420}
421
422int
423rman_activate_resource(struct resource *r)
424{
425	int rv;
426	struct resource *whohas;
427	struct rman *rm;
428
429	rm = r->r_rm;
430	simple_lock(rm->rm_slock);
431	rv = int_rman_activate_resource(rm, r, &whohas);
432	simple_unlock(rm->rm_slock);
433	return rv;
434}
435
436int
437rman_await_resource(struct resource *r, int pri, int timo)
438{
439	int	rv, s;
440	struct	resource *whohas;
441	struct	rman *rm;
442
443	rm = r->r_rm;
444	for (;;) {
445		simple_lock(rm->rm_slock);
446		rv = int_rman_activate_resource(rm, r, &whohas);
447		if (rv != EBUSY)
448			return (rv);	/* returns with simplelock */
449
450		if (r->r_sharehead == 0)
451			panic("rman_await_resource");
452		/*
453		 * splhigh hopefully will prevent a race between
454		 * simple_unlock and tsleep where a process
455		 * could conceivably get in and release the resource
456		 * before we have a chance to sleep on it.
457		 */
458		s = splhigh();
459		whohas->r_flags |= RF_WANTED;
460		simple_unlock(rm->rm_slock);
461		rv = tsleep(r->r_sharehead, pri, "rmwait", timo);
462		if (rv) {
463			splx(s);
464			return rv;
465		}
466		simple_lock(rm->rm_slock);
467		splx(s);
468	}
469}
470
471static int
472int_rman_deactivate_resource(struct resource *r)
473{
474	struct	rman *rm;
475
476	rm = r->r_rm;
477	r->r_flags &= ~RF_ACTIVE;
478	if (r->r_flags & RF_WANTED) {
479		r->r_flags &= ~RF_WANTED;
480		wakeup(r->r_sharehead);
481	}
482	return 0;
483}
484
485int
486rman_deactivate_resource(struct resource *r)
487{
488	struct	rman *rm;
489
490	rm = r->r_rm;
491	simple_lock(rm->rm_slock);
492	int_rman_deactivate_resource(r);
493	simple_unlock(rm->rm_slock);
494	return 0;
495}
496
497static int
498int_rman_release_resource(struct rman *rm, struct resource *r)
499{
500	struct	resource *s, *t;
501
502	if (r->r_flags & RF_ACTIVE)
503		int_rman_deactivate_resource(r);
504
505	/*
506	 * Check for a sharing list first.  If there is one, then we don't
507	 * have to think as hard.
508	 */
509	if (r->r_sharehead) {
510		/*
511		 * If a sharing list exists, then we know there are at
512		 * least two sharers.
513		 *
514		 * If we are in the main circleq, appoint someone else.
515		 */
516		LIST_REMOVE(r, r_sharelink);
517		s = LIST_FIRST(r->r_sharehead);
518		if (r->r_flags & RF_FIRSTSHARE) {
519			s->r_flags |= RF_FIRSTSHARE;
520			CIRCLEQ_INSERT_BEFORE(&rm->rm_list, r, s, r_link);
521			CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
522		}
523
524		/*
525		 * Make sure that the sharing list goes away completely
526		 * if the resource is no longer being shared at all.
527		 */
528		if (LIST_NEXT(s, r_sharelink) == 0) {
529			free(s->r_sharehead, M_RMAN);
530			s->r_sharehead = 0;
531			s->r_flags &= ~RF_FIRSTSHARE;
532		}
533		goto out;
534	}
535
536	/*
537	 * Look at the adjacent resources in the list and see if our
538	 * segment can be merged with any of them.
539	 */
540	s = CIRCLEQ_PREV(r, r_link);
541	t = CIRCLEQ_NEXT(r, r_link);
542
543	if (s != (void *)&rm->rm_list && (s->r_flags & RF_ALLOCATED) == 0
544	    && t != (void *)&rm->rm_list && (t->r_flags & RF_ALLOCATED) == 0) {
545		/*
546		 * Merge all three segments.
547		 */
548		s->r_end = t->r_end;
549		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
550		CIRCLEQ_REMOVE(&rm->rm_list, t, r_link);
551		free(t, M_RMAN);
552	} else if (s != (void *)&rm->rm_list
553		   && (s->r_flags & RF_ALLOCATED) == 0) {
554		/*
555		 * Merge previous segment with ours.
556		 */
557		s->r_end = r->r_end;
558		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
559	} else if (t != (void *)&rm->rm_list
560		   && (t->r_flags & RF_ALLOCATED) == 0) {
561		/*
562		 * Merge next segment with ours.
563		 */
564		t->r_start = r->r_start;
565		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
566	} else {
567		/*
568		 * At this point, we know there is nothing we
569		 * can potentially merge with, because on each
570		 * side, there is either nothing there or what is
571		 * there is still allocated.  In that case, we don't
572		 * want to remove r from the list; we simply want to
573		 * change it to an unallocated region and return
574		 * without freeing anything.
575		 */
576		r->r_flags &= ~RF_ALLOCATED;
577		return 0;
578	}
579
580out:
581	free(r, M_RMAN);
582	return 0;
583}
584
585int
586rman_release_resource(struct resource *r)
587{
588	int	rv;
589	struct	rman *rm = r->r_rm;
590
591	simple_lock(rm->rm_slock);
592	rv = int_rman_release_resource(rm, r);
593	simple_unlock(rm->rm_slock);
594	return (rv);
595}
596
597uint32_t
598rman_make_alignment_flags(uint32_t size)
599{
600	int	i;
601	int	count;
602
603	for (i = 0, count = 0; i < 32 && size > 0x01; i++) {
604		count += size & 1;
605		size >>= 1;
606	}
607
608	if (count > 0)
609		i ++;
610
611	if (i > 31)
612		i = 0;
613
614	return(RF_ALIGNMENT_LOG2(i));
615 }
616