subr_rman.c revision 59910
1/*
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: head/sys/kern/subr_rman.c 59910 2000-05-03 00:20:36Z paul $
30 */
31
32/*
33 * The kernel resource manager.  This code is responsible for keeping track
34 * of hardware resources which are apportioned out to various drivers.
35 * It does not actually assign those resources, and it is not expected
36 * that end-device drivers will call into this code directly.  Rather,
37 * the code which implements the buses that those devices are attached to,
38 * and the code which manages CPU resources, will call this code, and the
39 * end-device drivers will make upcalls to that code to actually perform
40 * the allocation.
41 *
42 * There are two sorts of resources managed by this code.  The first is
43 * the more familiar array (RMAN_ARRAY) type; resources in this class
44 * consist of a sequence of individually-allocatable objects which have
45 * been numbered in some well-defined order.  Most of the resources
46 * are of this type, as it is the most familiar.  The second type is
47 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
48 * resources in which each instance is indistinguishable from every
49 * other instance).  The principal anticipated application of gauges
50 * is in the context of power consumption, where a bus may have a specific
51 * power budget which all attached devices share.  RMAN_GAUGE is not
52 * implemented yet.
53 *
54 * For array resources, we make one simplifying assumption: two clients
55 * sharing the same resource must use the same range of indices.  That
56 * is to say, sharing of overlapping-but-not-identical regions is not
57 * permitted.
58 */
59
60#include <sys/param.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/lock.h>
64#include <sys/malloc.h>
65#include <sys/bus.h>		/* XXX debugging */
66#include <machine/bus.h>
67#include <sys/rman.h>
68
69#ifdef RMAN_DEBUG
70#define DPRINTF(params) printf##params
71#else
72#define DPRINTF(params)
73#endif
74
75static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
76
77struct	rman_head rman_head;
78#ifndef NULL_SIMPLELOCKS
79static	struct simplelock rman_lock; /* mutex to protect rman_head */
80#endif
81static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
82				       struct resource **whohas);
83static	int int_rman_deactivate_resource(struct resource *r);
84static	int int_rman_release_resource(struct rman *rm, struct resource *r);
85
86#define	CIRCLEQ_TERMCOND(var, head)	(var == (void *)&(head))
87
88int
89rman_init(struct rman *rm)
90{
91	static int once;
92
93	if (once == 0) {
94		once = 1;
95		TAILQ_INIT(&rman_head);
96		simple_lock_init(&rman_lock);
97	}
98
99	if (rm->rm_type == RMAN_UNINIT)
100		panic("rman_init");
101	if (rm->rm_type == RMAN_GAUGE)
102		panic("implement RMAN_GAUGE");
103
104	CIRCLEQ_INIT(&rm->rm_list);
105	rm->rm_slock = malloc(sizeof *rm->rm_slock, M_RMAN, M_NOWAIT);
106	if (rm->rm_slock == 0)
107		return ENOMEM;
108	simple_lock_init(rm->rm_slock);
109
110	simple_lock(&rman_lock);
111	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
112	simple_unlock(&rman_lock);
113	return 0;
114}
115
116/*
117 * NB: this interface is not robust against programming errors which
118 * add multiple copies of the same region.
119 */
120int
121rman_manage_region(struct rman *rm, u_long start, u_long end)
122{
123	struct resource *r, *s;
124
125	r = malloc(sizeof *r, M_RMAN, M_NOWAIT);
126	if (r == 0)
127		return ENOMEM;
128	bzero(r, sizeof *r);
129	r->r_sharehead = 0;
130	r->r_start = start;
131	r->r_end = end;
132	r->r_flags = 0;
133	r->r_dev = 0;
134	r->r_rm = rm;
135
136	simple_lock(rm->rm_slock);
137	for (s = CIRCLEQ_FIRST(&rm->rm_list);
138	     !CIRCLEQ_TERMCOND(s, rm->rm_list) && s->r_end < r->r_start;
139	     s = CIRCLEQ_NEXT(s, r_link))
140		;
141
142	if (CIRCLEQ_TERMCOND(s, rm->rm_list)) {
143		CIRCLEQ_INSERT_TAIL(&rm->rm_list, r, r_link);
144	} else {
145		CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, r, r_link);
146	}
147
148	simple_unlock(rm->rm_slock);
149	return 0;
150}
151
152int
153rman_fini(struct rman *rm)
154{
155	struct resource *r;
156
157	simple_lock(rm->rm_slock);
158	CIRCLEQ_FOREACH(r, &rm->rm_list, r_link) {
159		if (r->r_flags & RF_ALLOCATED) {
160			simple_unlock(rm->rm_slock);
161			return EBUSY;
162		}
163	}
164
165	/*
166	 * There really should only be one of these if we are in this
167	 * state and the code is working properly, but it can't hurt.
168	 */
169	while (!CIRCLEQ_EMPTY(&rm->rm_list)) {
170		r = CIRCLEQ_FIRST(&rm->rm_list);
171		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
172		free(r, M_RMAN);
173	}
174	simple_unlock(rm->rm_slock);
175	simple_lock(&rman_lock);
176	TAILQ_REMOVE(&rman_head, rm, rm_link);
177	simple_unlock(&rman_lock);
178	free(rm->rm_slock, M_RMAN);
179
180	return 0;
181}
182
183struct resource *
184rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
185		      u_int flags, struct device *dev)
186{
187	u_int	want_activate;
188	struct	resource *r, *s, *rv;
189	u_long	rstart, rend;
190
191	rv = 0;
192
193	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
194	       "%#lx, flags %u, device %s%d\n", rm->rm_descr, start, end,
195	       count, flags, device_get_name(dev), device_get_unit(dev)));
196	want_activate = (flags & RF_ACTIVE);
197	flags &= ~RF_ACTIVE;
198
199	simple_lock(rm->rm_slock);
200
201	for (r = CIRCLEQ_FIRST(&rm->rm_list);
202	     !CIRCLEQ_TERMCOND(r, rm->rm_list) && r->r_end < start;
203	     r = CIRCLEQ_NEXT(r, r_link))
204		;
205
206	if (CIRCLEQ_TERMCOND(r, rm->rm_list)) {
207		DPRINTF(("could not find a region\n"));
208		goto out;
209	}
210
211	/*
212	 * First try to find an acceptable totally-unshared region.
213	 */
214	for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
215	     s = CIRCLEQ_NEXT(s, r_link)) {
216		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
217		if (s->r_start > end) {
218			DPRINTF(("s->r_start (%#lx) > end (%#lx)\n", s->r_start, end));
219			break;
220		}
221		if (s->r_flags & RF_ALLOCATED) {
222			DPRINTF(("region is allocated\n"));
223			continue;
224		}
225		rstart = max(s->r_start, start);
226		rend = min(s->r_end, max(start + count, end));
227		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
228		       rstart, rend, (rend - rstart + 1), count));
229
230		if ((rend - rstart + 1) >= count) {
231			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
232			       rend, rstart, (rend - rstart + 1)));
233			if ((s->r_end - s->r_start + 1) == count) {
234				DPRINTF(("candidate region is entire chunk\n"));
235				rv = s;
236				rv->r_flags |= RF_ALLOCATED | flags;
237				rv->r_dev = dev;
238				goto out;
239			}
240
241			/*
242			 * If s->r_start < rstart and
243			 *    s->r_end > rstart + count - 1, then
244			 * we need to split the region into three pieces
245			 * (the middle one will get returned to the user).
246			 * Otherwise, we are allocating at either the
247			 * beginning or the end of s, so we only need to
248			 * split it in two.  The first case requires
249			 * two new allocations; the second requires but one.
250			 */
251			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT);
252			if (rv == 0)
253				goto out;
254			bzero(rv, sizeof *rv);
255			rv->r_start = rstart;
256			rv->r_end = rstart + count - 1;
257			rv->r_flags = flags | RF_ALLOCATED;
258			rv->r_dev = dev;
259			rv->r_sharehead = 0;
260			rv->r_rm = rm;
261
262			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
263				DPRINTF(("splitting region in three parts: "
264				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
265				       s->r_start, rv->r_start - 1,
266				       rv->r_start, rv->r_end,
267				       rv->r_end + 1, s->r_end));
268				/*
269				 * We are allocating in the middle.
270				 */
271				r = malloc(sizeof *r, M_RMAN, M_NOWAIT);
272				if (r == 0) {
273					free(rv, M_RMAN);
274					rv = 0;
275					goto out;
276				}
277				bzero(r, sizeof *r);
278				r->r_start = rv->r_end + 1;
279				r->r_end = s->r_end;
280				r->r_flags = s->r_flags;
281				r->r_dev = 0;
282				r->r_sharehead = 0;
283				r->r_rm = rm;
284				s->r_end = rv->r_start - 1;
285				CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
286						     r_link);
287				CIRCLEQ_INSERT_AFTER(&rm->rm_list, rv, r,
288						     r_link);
289			} else if (s->r_start == rv->r_start) {
290				DPRINTF(("allocating from the beginning\n"));
291				/*
292				 * We are allocating at the beginning.
293				 */
294				s->r_start = rv->r_end + 1;
295				CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, rv,
296						      r_link);
297			} else {
298				DPRINTF(("allocating at the end\n"));
299				/*
300				 * We are allocating at the end.
301				 */
302				s->r_end = rv->r_start - 1;
303				CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
304						     r_link);
305			}
306			goto out;
307		}
308	}
309
310	/*
311	 * Now find an acceptable shared region, if the client's requirements
312	 * allow sharing.  By our implementation restriction, a candidate
313	 * region must match exactly by both size and sharing type in order
314	 * to be considered compatible with the client's request.  (The
315	 * former restriction could probably be lifted without too much
316	 * additional work, but this does not seem warranted.)
317	 */
318	DPRINTF(("no unshared regions found\n"));
319	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
320		goto out;
321
322	for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
323	     s = CIRCLEQ_NEXT(s, r_link)) {
324		if (s->r_start > end)
325			break;
326		if ((s->r_flags & flags) != flags)
327			continue;
328		rstart = max(s->r_start, start);
329		rend = min(s->r_end, max(start + count, end));
330		if (s->r_start >= start && s->r_end <= end
331		    && (s->r_end - s->r_start + 1) == count) {
332			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT);
333			if (rv == 0)
334				goto out;
335			bzero(rv, sizeof *rv);
336			rv->r_start = s->r_start;
337			rv->r_end = s->r_end;
338			rv->r_flags = s->r_flags &
339				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
340			rv->r_dev = dev;
341			rv->r_rm = rm;
342			if (s->r_sharehead == 0) {
343				s->r_sharehead = malloc(sizeof *s->r_sharehead,
344							M_RMAN, M_NOWAIT);
345				if (s->r_sharehead == 0) {
346					free(rv, M_RMAN);
347					rv = 0;
348					goto out;
349				}
350				bzero(s->r_sharehead, sizeof *s->r_sharehead);
351				LIST_INIT(s->r_sharehead);
352				LIST_INSERT_HEAD(s->r_sharehead, s,
353						 r_sharelink);
354				s->r_flags |= RF_FIRSTSHARE;
355			}
356			rv->r_sharehead = s->r_sharehead;
357			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
358			goto out;
359		}
360	}
361
362	/*
363	 * We couldn't find anything.
364	 */
365out:
366	/*
367	 * If the user specified RF_ACTIVE in the initial flags,
368	 * which is reflected in `want_activate', we attempt to atomically
369	 * activate the resource.  If this fails, we release the resource
370	 * and indicate overall failure.  (This behavior probably doesn't
371	 * make sense for RF_TIMESHARE-type resources.)
372	 */
373	if (rv && want_activate) {
374		struct resource *whohas;
375		if (int_rman_activate_resource(rm, rv, &whohas)) {
376			int_rman_release_resource(rm, rv);
377			rv = 0;
378		}
379	}
380
381	simple_unlock(rm->rm_slock);
382	return (rv);
383}
384
385static int
386int_rman_activate_resource(struct rman *rm, struct resource *r,
387			   struct resource **whohas)
388{
389	struct resource *s;
390	int ok;
391
392	/*
393	 * If we are not timesharing, then there is nothing much to do.
394	 * If we already have the resource, then there is nothing at all to do.
395	 * If we are not on a sharing list with anybody else, then there is
396	 * little to do.
397	 */
398	if ((r->r_flags & RF_TIMESHARE) == 0
399	    || (r->r_flags & RF_ACTIVE) != 0
400	    || r->r_sharehead == 0) {
401		r->r_flags |= RF_ACTIVE;
402		return 0;
403	}
404
405	ok = 1;
406	for (s = LIST_FIRST(r->r_sharehead); s && ok;
407	     s = LIST_NEXT(s, r_sharelink)) {
408		if ((s->r_flags & RF_ACTIVE) != 0) {
409			ok = 0;
410			*whohas = s;
411		}
412	}
413	if (ok) {
414		r->r_flags |= RF_ACTIVE;
415		return 0;
416	}
417	return EBUSY;
418}
419
420int
421rman_activate_resource(struct resource *r)
422{
423	int rv;
424	struct resource *whohas;
425	struct rman *rm;
426
427	rm = r->r_rm;
428	simple_lock(rm->rm_slock);
429	rv = int_rman_activate_resource(rm, r, &whohas);
430	simple_unlock(rm->rm_slock);
431	return rv;
432}
433
434int
435rman_await_resource(struct resource *r, int pri, int timo)
436{
437	int	rv, s;
438	struct	resource *whohas;
439	struct	rman *rm;
440
441	rm = r->r_rm;
442	for (;;) {
443		simple_lock(rm->rm_slock);
444		rv = int_rman_activate_resource(rm, r, &whohas);
445		if (rv != EBUSY)
446			return (rv);	/* returns with simplelock */
447
448		if (r->r_sharehead == 0)
449			panic("rman_await_resource");
450		/*
451		 * splhigh hopefully will prevent a race between
452		 * simple_unlock and tsleep where a process
453		 * could conceivably get in and release the resource
454		 * before we have a chance to sleep on it.
455		 */
456		s = splhigh();
457		whohas->r_flags |= RF_WANTED;
458		simple_unlock(rm->rm_slock);
459		rv = tsleep(r->r_sharehead, pri, "rmwait", timo);
460		if (rv) {
461			splx(s);
462			return rv;
463		}
464		simple_lock(rm->rm_slock);
465		splx(s);
466	}
467}
468
469static int
470int_rman_deactivate_resource(struct resource *r)
471{
472	struct	rman *rm;
473
474	rm = r->r_rm;
475	r->r_flags &= ~RF_ACTIVE;
476	if (r->r_flags & RF_WANTED) {
477		r->r_flags &= ~RF_WANTED;
478		wakeup(r->r_sharehead);
479	}
480	return 0;
481}
482
483int
484rman_deactivate_resource(struct resource *r)
485{
486	struct	rman *rm;
487
488	rm = r->r_rm;
489	simple_lock(rm->rm_slock);
490	int_rman_deactivate_resource(r);
491	simple_unlock(rm->rm_slock);
492	return 0;
493}
494
495static int
496int_rman_release_resource(struct rman *rm, struct resource *r)
497{
498	struct	resource *s, *t;
499
500	if (r->r_flags & RF_ACTIVE)
501		int_rman_deactivate_resource(r);
502
503	/*
504	 * Check for a sharing list first.  If there is one, then we don't
505	 * have to think as hard.
506	 */
507	if (r->r_sharehead) {
508		/*
509		 * If a sharing list exists, then we know there are at
510		 * least two sharers.
511		 *
512		 * If we are in the main circleq, appoint someone else.
513		 */
514		LIST_REMOVE(r, r_sharelink);
515		s = LIST_FIRST(r->r_sharehead);
516		if (r->r_flags & RF_FIRSTSHARE) {
517			s->r_flags |= RF_FIRSTSHARE;
518			CIRCLEQ_INSERT_BEFORE(&rm->rm_list, r, s, r_link);
519			CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
520		}
521
522		/*
523		 * Make sure that the sharing list goes away completely
524		 * if the resource is no longer being shared at all.
525		 */
526		if (LIST_NEXT(s, r_sharelink) == 0) {
527			free(s->r_sharehead, M_RMAN);
528			s->r_sharehead = 0;
529			s->r_flags &= ~RF_FIRSTSHARE;
530		}
531		goto out;
532	}
533
534	/*
535	 * Look at the adjacent resources in the list and see if our
536	 * segment can be merged with any of them.
537	 */
538	s = CIRCLEQ_PREV(r, r_link);
539	t = CIRCLEQ_NEXT(r, r_link);
540
541	if (s != (void *)&rm->rm_list && (s->r_flags & RF_ALLOCATED) == 0
542	    && t != (void *)&rm->rm_list && (t->r_flags & RF_ALLOCATED) == 0) {
543		/*
544		 * Merge all three segments.
545		 */
546		s->r_end = t->r_end;
547		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
548		CIRCLEQ_REMOVE(&rm->rm_list, t, r_link);
549		free(t, M_RMAN);
550	} else if (s != (void *)&rm->rm_list
551		   && (s->r_flags & RF_ALLOCATED) == 0) {
552		/*
553		 * Merge previous segment with ours.
554		 */
555		s->r_end = r->r_end;
556		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
557	} else if (t != (void *)&rm->rm_list
558		   && (t->r_flags & RF_ALLOCATED) == 0) {
559		/*
560		 * Merge next segment with ours.
561		 */
562		t->r_start = r->r_start;
563		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
564	} else {
565		/*
566		 * At this point, we know there is nothing we
567		 * can potentially merge with, because on each
568		 * side, there is either nothing there or what is
569		 * there is still allocated.  In that case, we don't
570		 * want to remove r from the list; we simply want to
571		 * change it to an unallocated region and return
572		 * without freeing anything.
573		 */
574		r->r_flags &= ~RF_ALLOCATED;
575		return 0;
576	}
577
578out:
579	free(r, M_RMAN);
580	return 0;
581}
582
583int
584rman_release_resource(struct resource *r)
585{
586	int	rv;
587	struct	rman *rm = r->r_rm;
588
589	simple_lock(rm->rm_slock);
590	rv = int_rman_release_resource(rm, r);
591	simple_unlock(rm->rm_slock);
592	return (rv);
593}
594