subr_rman.c revision 41591
1/*
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$Id: subr_rman.c,v 1.2 1998/11/23 09:33:35 bde Exp $
30 */
31
32/*
33 * The kernel resource manager.  This code is responsible for keeping track
34 * of hardware resources which are apportioned out to various drivers.
35 * It does not actually assign those resources, and it is not expected
36 * that end-device drivers will call into this code directly.  Rather,
37 * the code which implements the buses that those devices are attached to,
38 * and the code which manages CPU resources, will call this code, and the
39 * end-device drivers will make upcalls to that code to actually perform
40 * the allocation.
41 *
42 * There are two sorts of resources managed by this code.  The first is
43 * the more familiar array (RMAN_ARRAY) type; resources in this class
44 * consist of a sequence of individually-allocatable objects which have
45 * been numbered in some well-defined order.  Most of the resources
46 * are of this type, as it is the most familiar.  The second type is
47 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
48 * resources in which each instance is indistinguishable from every
49 * other instance).  The principal anticipated application of gauges
50 * is in the context of power consumption, where a bus may have a specific
51 * power budget which all attached devices share.  RMAN_GAUGE is not
52 * implemented yet.
53 *
54 * For array resources, we make one simplifying assumption: two clients
55 * sharing the same resource must use the same range of indices.  That
56 * is to say, sharing of overlapping-but-not-identical regions is not
57 * permitted.
58 */
59
60#include <sys/param.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/lock.h>
64#include <sys/malloc.h>
65#include <sys/rman.h>
66#include <sys/bus.h>		/* XXX debugging */
67
68MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
69
70struct	rman_head rman_head;
71static	struct simplelock rman_lock; /* mutex to protect rman_head */
72static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
73				       struct resource **whohas);
74static	int int_rman_release_resource(struct rman *rm, struct resource *r);
75
76#define	CIRCLEQ_TERMCOND(var, head)	(var == (void *)&(head))
77
78int
79rman_init(struct rman *rm)
80{
81	static int once;
82
83	if (once == 0) {
84		once = 1;
85		TAILQ_INIT(&rman_head);
86		simple_lock_init(&rman_lock);
87	}
88
89	if (rm->rm_type == RMAN_UNINIT)
90		panic("rman_init");
91	if (rm->rm_type == RMAN_GAUGE)
92		panic("implement RMAN_GAUGE");
93
94	CIRCLEQ_INIT(&rm->rm_list);
95	rm->rm_slock = malloc(sizeof *rm->rm_slock, M_RMAN, M_NOWAIT);
96	if (rm->rm_slock == 0)
97		return ENOMEM;
98	simple_lock_init(rm->rm_slock);
99
100	simple_lock(&rman_lock);
101	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
102	simple_unlock(&rman_lock);
103	return 0;
104}
105
106/*
107 * NB: this interface is not robust against programming errors which
108 * add multiple copies of the same region.
109 */
110int
111rman_manage_region(struct rman *rm, u_long start, u_long end)
112{
113	struct resource *r, *s;
114
115	r = malloc(sizeof *r, M_RMAN, M_NOWAIT);
116	if (r == 0)
117		return ENOMEM;
118	r->r_sharehead = 0;
119	r->r_start = start;
120	r->r_end = end;
121	r->r_flags = 0;
122	r->r_dev = 0;
123	r->r_rm = rm;
124
125	simple_lock(rm->rm_slock);
126	for (s = rm->rm_list.cqh_first;
127	     !CIRCLEQ_TERMCOND(s, rm->rm_list) && s->r_end < r->r_start;
128	     s = s->r_link.cqe_next)
129		;
130
131	if (CIRCLEQ_TERMCOND(s, rm->rm_list)) {
132		CIRCLEQ_INSERT_TAIL(&rm->rm_list, r, r_link);
133	} else {
134		CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, r, r_link);
135	}
136
137	simple_unlock(rm->rm_slock);
138	return 0;
139}
140
141int
142rman_fini(struct rman *rm)
143{
144	struct resource *r;
145
146	simple_lock(rm->rm_slock);
147	for (r = rm->rm_list.cqh_first;	!CIRCLEQ_TERMCOND(r, rm->rm_list);
148	     r = r->r_link.cqe_next) {
149		if (r->r_flags & RF_ALLOCATED)
150			return EBUSY;
151	}
152
153	/*
154	 * There really should only be one of these if we are in this
155	 * state and the code is working properly, but it can't hurt.
156	 */
157	for (r = rm->rm_list.cqh_first;	!CIRCLEQ_TERMCOND(r, rm->rm_list);
158	     r = rm->rm_list.cqh_first) {
159		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
160		free(r, M_RMAN);
161	}
162	simple_unlock(rm->rm_slock);
163	simple_lock(&rman_lock);
164	TAILQ_REMOVE(&rman_head, rm, rm_link);
165	simple_unlock(&rman_lock);
166	free(rm->rm_slock, M_RMAN);
167
168	return 0;
169}
170
171struct resource *
172rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
173		      u_int flags, struct device *dev)
174{
175	u_int	want_activate;
176	struct	resource *r, *s, *rv;
177	u_long	rstart, rend;
178
179	rv = 0;
180
181#ifdef RMAN_DEBUG
182	printf("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
183	       "%#lx, flags %u, device %s%d\n", rm->rm_descr, start, end,
184	       count, flags, device_get_name(dev), device_get_unit(dev));
185#endif /* RMAN_DEBUG */
186	want_activate = (flags & RF_ACTIVE);
187	flags &= ~RF_ACTIVE;
188
189	simple_lock(rm->rm_slock);
190
191	for (r = rm->rm_list.cqh_first;
192	     !CIRCLEQ_TERMCOND(r, rm->rm_list) && r->r_end < start;
193	     r = r->r_link.cqe_next)
194		;
195
196	if (CIRCLEQ_TERMCOND(r, rm->rm_list)) {
197#ifdef RMAN_DEBUG
198		printf("could not find a region\n");
199#endif RMAN_DEBUG
200		goto out;
201	}
202
203	/*
204	 * First try to find an acceptable totally-unshared region.
205	 */
206	for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
207	     s = s->r_link.cqe_next) {
208#ifdef RMAN_DEBUG
209		printf("considering [%#lx, %#lx]\n", s->r_start, s->r_end);
210#endif /* RMAN_DEBUG */
211		if (s->r_start > end) {
212#ifdef RMAN_DEBUG
213			printf("s->r_start (%#lx) > end (%#lx)\n", s->r_start, end);
214#endif /* RMAN_DEBUG */
215			break;
216		}
217		if (s->r_flags & RF_ALLOCATED) {
218#ifdef RMAN_DEBUG
219			printf("region is allocated\n");
220#endif /* RMAN_DEBUG */
221			continue;
222		}
223		rstart = max(s->r_start, start);
224		rend = min(s->r_end, max(start + count, end));
225#ifdef RMAN_DEBUG
226		printf("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
227		       rstart, rend, (rend - rstart + 1), count);
228#endif /* RMAN_DEBUG */
229
230		if ((rend - rstart + 1) >= count) {
231#ifdef RMAN_DEBUG
232			printf("candidate region: [%#lx, %#lx], size %#lx\n",
233			       rend, rstart, (rend - rstart + 1));
234#endif /* RMAN_DEBUG */
235			if ((s->r_end - s->r_start + 1) == count) {
236#ifdef RMAN_DEBUG
237				printf("candidate region is entire chunk\n");
238#endif /* RMAN_DEBUG */
239				rv = s;
240				rv->r_flags |= RF_ALLOCATED;
241				rv->r_dev = dev;
242				goto out;
243			}
244
245			/*
246			 * If s->r_start < rstart and
247			 *    s->r_end > rstart + count - 1, then
248			 * we need to split the region into three pieces
249			 * (the middle one will get returned to the user).
250			 * Otherwise, we are allocating at either the
251			 * beginning or the end of s, so we only need to
252			 * split it in two.  The first case requires
253			 * two new allocations; the second requires but one.
254			 */
255			rv = malloc(sizeof *r, M_RMAN, M_NOWAIT);
256			if (rv == 0)
257				goto out;
258			rv->r_start = rstart;
259			rv->r_end = rstart + count - 1;
260			rv->r_flags = flags | RF_ALLOCATED;
261			rv->r_dev = dev;
262			rv->r_sharehead = 0;
263
264			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
265#ifdef RMAN_DEBUG
266				printf("splitting region in three parts: "
267				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
268				       s->r_start, rv->r_start - 1,
269				       rv->r_start, rv->r_end,
270				       rv->r_end + 1, s->r_end);
271#endif /* RMAN_DEBUG */
272				/*
273				 * We are allocating in the middle.
274				 */
275				r = malloc(sizeof *r, M_RMAN, M_NOWAIT);
276				if (r == 0) {
277					free(rv, M_RMAN);
278					rv = 0;
279					goto out;
280				}
281				r->r_start = rv->r_end + 1;
282				r->r_end = s->r_end;
283				r->r_flags = s->r_flags;
284				r->r_dev = 0;
285				r->r_sharehead = 0;
286				s->r_end = rv->r_start - 1;
287				CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
288						     r_link);
289				CIRCLEQ_INSERT_AFTER(&rm->rm_list, rv, r,
290						     r_link);
291			} else if (s->r_start == rv->r_start) {
292#ifdef RMAN_DEBUG
293				printf("allocating from the beginning\n");
294#endif /* RMAN_DEBUG */
295				/*
296				 * We are allocating at the beginning.
297				 */
298				s->r_start = rv->r_end + 1;
299				CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, rv,
300						      r_link);
301			} else {
302#ifdef RMAN_DEBUG
303				printf("allocating at the end\n");
304#endif /* RMAN_DEBUG */
305				/*
306				 * We are allocating at the end.
307				 */
308				s->r_end = rv->r_start - 1;
309				CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
310						     r_link);
311			}
312			goto out;
313		}
314	}
315
316	/*
317	 * Now find an acceptable shared region, if the client's requirements
318	 * allow sharing.  By our implementation restriction, a candidate
319	 * region must match exactly by both size and sharing type in order
320	 * to be considered compatible with the client's request.  (The
321	 * former restriction could probably be lifted without too much
322	 * additional work, but this does not seem warranted.)
323	 */
324#ifdef RMAN_DEBUG
325	printf("no unshared regions found\n");
326#endif /* RMAN_DEBUG */
327	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
328		goto out;
329
330	for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
331	     s = s->r_link.cqe_next) {
332		if (s->r_start > end)
333			break;
334		if ((s->r_flags & flags) != flags)
335			continue;
336		rstart = max(s->r_start, start);
337		rend = min(s->r_end, max(start + count, end));
338		if (s->r_start >= start && s->r_end <= end
339		    && (s->r_end - s->r_start + 1) == count) {
340			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT);
341			if (rv == 0)
342				goto out;
343			rv->r_start = s->r_start;
344			rv->r_end = s->r_end;
345			rv->r_flags = s->r_flags &
346				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
347			rv->r_dev = dev;
348			rv->r_rm = rm;
349			if (s->r_sharehead == 0) {
350				s->r_sharehead = malloc(sizeof *s->r_sharehead,
351							M_RMAN, M_NOWAIT);
352				if (s->r_sharehead == 0) {
353					free(rv, M_RMAN);
354					rv = 0;
355					goto out;
356				}
357				LIST_INIT(s->r_sharehead);
358				LIST_INSERT_HEAD(s->r_sharehead, s,
359						 r_sharelink);
360				s->r_flags = RF_FIRSTSHARE;
361			}
362			rv->r_sharehead = s->r_sharehead;
363			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
364			goto out;
365		}
366	}
367
368	/*
369	 * We couldn't find anything.
370	 */
371out:
372	/*
373	 * If the user specified RF_ACTIVE in the initial flags,
374	 * which is reflected in `want_activate', we attempt to atomically
375	 * activate the resource.  If this fails, we release the resource
376	 * and indicate overall failure.  (This behavior probably doesn't
377	 * make sense for RF_TIMESHARE-type resources.)
378	 */
379	if (rv && want_activate) {
380		struct resource *whohas;
381		if (int_rman_activate_resource(rm, rv, &whohas)) {
382			int_rman_release_resource(rm, rv);
383			rv = 0;
384		}
385	}
386
387	simple_unlock(rm->rm_slock);
388	return (rv);
389}
390
391static int
392int_rman_activate_resource(struct rman *rm, struct resource *r,
393			   struct resource **whohas)
394{
395	struct resource *s;
396	int ok;
397
398	/*
399	 * If we are not timesharing, then there is nothing much to do.
400	 * If we already have the resource, then there is nothing at all to do.
401	 * If we are not on a sharing list with anybody else, then there is
402	 * little to do.
403	 */
404	if ((r->r_flags & RF_TIMESHARE) == 0
405	    || (r->r_flags & RF_ACTIVE) != 0
406	    || r->r_sharehead == 0) {
407		r->r_flags |= RF_ACTIVE;
408		return 0;
409	}
410
411	ok = 1;
412	for (s = r->r_sharehead->lh_first; s && ok;
413	     s = s->r_sharelink.le_next) {
414		if ((s->r_flags & RF_ACTIVE) != 0) {
415			ok = 0;
416			*whohas = s;
417		}
418	}
419	if (ok) {
420		r->r_flags |= RF_ACTIVE;
421		return 0;
422	}
423	return EBUSY;
424}
425
426int
427rman_activate_resource(struct resource *r)
428{
429	int rv;
430	struct resource *whohas;
431	struct rman *rm;
432
433	rm = r->r_rm;
434	simple_lock(rm->rm_slock);
435	rv = int_rman_activate_resource(rm, r, &whohas);
436	simple_unlock(rm->rm_slock);
437	return rv;
438}
439
440int
441rman_await_resource(struct resource *r, int pri, int timo)
442{
443	int	rv, s;
444	struct	resource *whohas;
445	struct	rman *rm;
446
447	rm = r->r_rm;
448	for (;;) {
449		simple_lock(rm->rm_slock);
450		rv = int_rman_activate_resource(rm, r, &whohas);
451		if (rv != EBUSY)
452			return (rv);
453
454		if (r->r_sharehead == 0)
455			panic("rman_await_resource");
456		/*
457		 * splhigh hopefully will prevent a race between
458		 * simple_unlock and tsleep where a process
459		 * could conceivably get in and release the resource
460		 * before we have a chance to sleep on it.
461		 */
462		s = splhigh();
463		whohas->r_flags |= RF_WANTED;
464		simple_unlock(rm->rm_slock);
465		rv = tsleep(r->r_sharehead, pri, "rmwait", timo);
466		if (rv) {
467			splx(s);
468			return rv;
469		}
470		simple_lock(rm->rm_slock);
471		splx(s);
472	}
473}
474
475int
476rman_deactivate_resource(struct resource *r)
477{
478	struct	rman *rm;
479
480	rm = r->r_rm;
481	simple_lock(rm->rm_slock);
482	r->r_flags &= ~RF_ACTIVE;
483	if (r->r_flags & RF_WANTED) {
484		r->r_flags &= ~RF_WANTED;
485		wakeup(r->r_sharehead);
486	}
487	simple_unlock(rm->rm_slock);
488	return 0;
489}
490
491static int
492int_rman_release_resource(struct rman *rm, struct resource *r)
493{
494	struct	resource *s, *t;
495
496	if (r->r_flags & RF_ACTIVE)
497		return EBUSY;
498
499	/*
500	 * Check for a sharing list first.  If there is one, then we don't
501	 * have to think as hard.
502	 */
503	if (r->r_sharehead) {
504		/*
505		 * If a sharing list exists, then we know there are at
506		 * least two sharers.
507		 *
508		 * If we are in the main circleq, appoint someone else.
509		 */
510		LIST_REMOVE(r, r_sharelink);
511		s = r->r_sharehead->lh_first;
512		if (r->r_flags & RF_FIRSTSHARE) {
513			s->r_flags |= RF_FIRSTSHARE;
514			CIRCLEQ_INSERT_BEFORE(&rm->rm_list, r, s, r_link);
515			CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
516		}
517
518		/*
519		 * Make sure that the sharing list goes away completely
520		 * if the resource is no longer being shared at all.
521		 */
522		if (s->r_sharelink.le_next == 0) {
523			free(s->r_sharehead, M_RMAN);
524			s->r_sharehead = 0;
525			s->r_flags &= ~RF_FIRSTSHARE;
526		}
527		goto out;
528	}
529
530	/*
531	 * Look at the adjacent resources in the list and see if our
532	 * segment can be merged with any of them.
533	 */
534	s = r->r_link.cqe_prev;
535	t = r->r_link.cqe_next;
536
537	if (s != (void *)&rm->rm_list && (s->r_flags & RF_ALLOCATED) == 0
538	    && t != (void *)&rm->rm_list && (t->r_flags & RF_ALLOCATED) == 0) {
539		/*
540		 * Merge all three segments.
541		 */
542		s->r_end = t->r_end;
543		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
544		CIRCLEQ_REMOVE(&rm->rm_list, t, r_link);
545		free(t, M_RMAN);
546	} else if (s != (void *)&rm->rm_list
547		   && (s->r_flags & RF_ALLOCATED) == 0) {
548		/*
549		 * Merge previous segment with ours.
550		 */
551		s->r_end = r->r_end;
552		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
553	} else if (t != (void *)&rm->rm_list
554		   && (t->r_flags & RF_ALLOCATED) == 0) {
555		/*
556		 * Merge next segment with ours.
557		 */
558		t->r_start = r->r_start;
559		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
560	} else {
561		/*
562		 * At this point, we know there is nothing we
563		 * can potentially merge with, because on each
564		 * side, there is either nothing there or what is
565		 * there is still allocated.  In that case, we don't
566		 * want to remove r from the list; we simply want to
567		 * change it to an unallocated region and return
568		 * without freeing anything.
569		 */
570		r->r_flags &= ~RF_ALLOCATED;
571		return 0;
572	}
573
574out:
575	free(r, M_RMAN);
576	return 0;
577}
578
579int
580rman_release_resource(struct resource *r)
581{
582	int	rv;
583	struct	rman *rm = r->r_rm;
584
585	simple_lock(rm->rm_slock);
586	rv = int_rman_release_resource(rm, r);
587	simple_unlock(rm->rm_slock);
588	return (rv);
589}
590