subr_rman.c revision 41304
1/*
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$Id: subr_rman.c,v 1.1 1998/10/29 01:48:36 wollman Exp $
30 */
31
32/*
33 * The kernel resource manager.  This code is responsible for keeping track
34 * of hardware resources which are apportioned out to various drivers.
35 * It does not actually assign those resources, and it is not expected
36 * that end-device drivers will call into this code directly.  Rather,
37 * the code which implements the buses that those devices are attached to,
38 * and the code which manages CPU resources, will call this code, and the
39 * end-device drivers will make upcalls to that code to actually perform
40 * the allocation.
41 *
42 * There are two sorts of resources managed by this code.  The first is
43 * the more familiar array (RMAN_ARRAY) type; resources in this class
44 * consist of a sequence of individually-allocatable objects which have
45 * been numbered in some well-defined order.  Most of the resources
46 * are of this type, as it is the most familiar.  The second type is
47 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
48 * resources in which each instance is indistinguishable from every
49 * other instance).  The principal anticipated application of gauges
50 * is in the context of power consumption, where a bus may have a specific
51 * power budget which all attached devices share.  RMAN_GAUGE is not
52 * implemented yet.
53 *
54 * For array resources, we make one simplifying assumption: two clients
55 * sharing the same resource must use the same range of indices.  That
56 * is to say, sharing of overlapping-but-not-identical regions is not
57 * permitted.
58 */
59
60#include <sys/param.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/lock.h>
64#include <sys/malloc.h>
65#include <sys/rman.h>
66#include <sys/bus.h>		/* XXX debugging */
67
68MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
69
70struct	rman_head rman_head;
71static	struct simplelock rman_lock; /* mutex to protect rman_head */
72static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
73				       struct resource **whohas);
74static	int int_rman_release_resource(struct rman *rm, struct resource *r);
75
76#define	CIRCLEQ_TERMCOND(var, head)	(var == (void *)&(head))
77
78int
79rman_init(struct rman *rm)
80{
81	static int once;
82	struct resource *r;
83
84	if (once == 0) {
85		once = 1;
86		TAILQ_INIT(&rman_head);
87		simple_lock_init(&rman_lock);
88	}
89
90	if (rm->rm_type == RMAN_UNINIT)
91		panic("rman_init");
92	if (rm->rm_type == RMAN_GAUGE)
93		panic("implement RMAN_GAUGE");
94
95	CIRCLEQ_INIT(&rm->rm_list);
96	rm->rm_slock = malloc(sizeof *rm->rm_slock, M_RMAN, M_NOWAIT);
97	if (rm->rm_slock == 0)
98		return ENOMEM;
99	simple_lock_init(rm->rm_slock);
100
101	simple_lock(&rman_lock);
102	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
103	simple_unlock(&rman_lock);
104	return 0;
105}
106
107/*
108 * NB: this interface is not robust against programming errors which
109 * add multiple copies of the same region.
110 */
111int
112rman_manage_region(struct rman *rm, u_long start, u_long end)
113{
114	struct resource *r, *s;
115
116	r = malloc(sizeof *r, M_RMAN, M_NOWAIT);
117	if (r == 0)
118		return ENOMEM;
119	r->r_sharehead = 0;
120	r->r_start = start;
121	r->r_end = end;
122	r->r_flags = 0;
123	r->r_dev = 0;
124	r->r_rm = rm;
125
126	simple_lock(rm->rm_slock);
127	for (s = rm->rm_list.cqh_first;
128	     !CIRCLEQ_TERMCOND(s, rm->rm_list) && s->r_end < r->r_start;
129	     s = s->r_link.cqe_next)
130		;
131
132	if (CIRCLEQ_TERMCOND(s, rm->rm_list)) {
133		CIRCLEQ_INSERT_TAIL(&rm->rm_list, r, r_link);
134	} else {
135		CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, r, r_link);
136	}
137
138	simple_unlock(rm->rm_slock);
139	return 0;
140}
141
142int
143rman_fini(struct rman *rm)
144{
145	struct resource *r;
146
147	simple_lock(rm->rm_slock);
148	for (r = rm->rm_list.cqh_first;	!CIRCLEQ_TERMCOND(r, rm->rm_list);
149	     r = r->r_link.cqe_next) {
150		if (r->r_flags & RF_ALLOCATED)
151			return EBUSY;
152	}
153
154	/*
155	 * There really should only be one of these if we are in this
156	 * state and the code is working properly, but it can't hurt.
157	 */
158	for (r = rm->rm_list.cqh_first;	!CIRCLEQ_TERMCOND(r, rm->rm_list);
159	     r = rm->rm_list.cqh_first) {
160		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
161		free(r, M_RMAN);
162	}
163	simple_unlock(rm->rm_slock);
164	simple_lock(&rman_lock);
165	TAILQ_REMOVE(&rman_head, rm, rm_link);
166	simple_unlock(&rman_lock);
167	free(rm->rm_slock, M_RMAN);
168
169	return 0;
170}
171
172struct resource *
173rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
174		      u_int flags, struct device *dev)
175{
176	u_int	want_activate;
177	struct	resource *r, *s, *rv;
178	u_long	rstart, rend;
179
180	rv = 0;
181
182#ifdef RMAN_DEBUG
183	printf("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
184	       "%#lx, flags %u, device %s%d\n", rm->rm_descr, start, end,
185	       count, flags, device_get_name(dev), device_get_unit(dev));
186#endif /* RMAN_DEBUG */
187	want_activate = (flags & RF_ACTIVE);
188	flags &= ~RF_ACTIVE;
189
190	simple_lock(rm->rm_slock);
191
192	for (r = rm->rm_list.cqh_first;
193	     !CIRCLEQ_TERMCOND(r, rm->rm_list) && r->r_end < start;
194	     r = r->r_link.cqe_next)
195		;
196
197	if (CIRCLEQ_TERMCOND(r, rm->rm_list)) {
198#ifdef RMAN_DEBUG
199		printf("could not find a region\n");
200#endif RMAN_DEBUG
201		goto out;
202	}
203
204	/*
205	 * First try to find an acceptable totally-unshared region.
206	 */
207	for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
208	     s = s->r_link.cqe_next) {
209#ifdef RMAN_DEBUG
210		printf("considering [%#lx, %#lx]\n", s->r_start, s->r_end);
211#endif /* RMAN_DEBUG */
212		if (s->r_start > end) {
213#ifdef RMAN_DEBUG
214			printf("s->r_start (%#lx) > end (%#lx)\n", s->r_start, end);
215#endif /* RMAN_DEBUG */
216			break;
217		}
218		if (s->r_flags & RF_ALLOCATED) {
219#ifdef RMAN_DEBUG
220			printf("region is allocated\n");
221#endif /* RMAN_DEBUG */
222			continue;
223		}
224		rstart = max(s->r_start, start);
225		rend = min(s->r_end, max(start + count, end));
226#ifdef RMAN_DEBUG
227		printf("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
228		       rstart, rend, (rend - rstart + 1), count);
229#endif /* RMAN_DEBUG */
230
231		if ((rend - rstart + 1) >= count) {
232#ifdef RMAN_DEBUG
233			printf("candidate region: [%#lx, %#lx], size %#lx\n",
234			       rend, rstart, (rend - rstart + 1));
235#endif /* RMAN_DEBUG */
236			if ((s->r_end - s->r_start + 1) == count) {
237#ifdef RMAN_DEBUG
238				printf("candidate region is entire chunk\n");
239#endif /* RMAN_DEBUG */
240				rv = s;
241				rv->r_flags |= RF_ALLOCATED;
242				rv->r_dev = dev;
243				goto out;
244			}
245
246			/*
247			 * If s->r_start < rstart and
248			 *    s->r_end > rstart + count - 1, then
249			 * we need to split the region into three pieces
250			 * (the middle one will get returned to the user).
251			 * Otherwise, we are allocating at either the
252			 * beginning or the end of s, so we only need to
253			 * split it in two.  The first case requires
254			 * two new allocations; the second requires but one.
255			 */
256			rv = malloc(sizeof *r, M_RMAN, M_NOWAIT);
257			if (rv == 0)
258				goto out;
259			rv->r_start = rstart;
260			rv->r_end = rstart + count - 1;
261			rv->r_flags = flags | RF_ALLOCATED;
262			rv->r_dev = dev;
263			rv->r_sharehead = 0;
264
265			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
266#ifdef RMAN_DEBUG
267				printf("splitting region in three parts: "
268				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
269				       s->r_start, rv->r_start - 1,
270				       rv->r_start, rv->r_end,
271				       rv->r_end + 1, s->r_end);
272#endif /* RMAN_DEBUG */
273				/*
274				 * We are allocating in the middle.
275				 */
276				r = malloc(sizeof *r, M_RMAN, M_NOWAIT);
277				if (r == 0) {
278					free(rv, M_RMAN);
279					rv = 0;
280					goto out;
281				}
282				r->r_start = rv->r_end + 1;
283				r->r_end = s->r_end;
284				r->r_flags = s->r_flags;
285				r->r_dev = 0;
286				r->r_sharehead = 0;
287				s->r_end = rv->r_start - 1;
288				CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
289						     r_link);
290				CIRCLEQ_INSERT_AFTER(&rm->rm_list, rv, r,
291						     r_link);
292			} else if (s->r_start == rv->r_start) {
293#ifdef RMAN_DEBUG
294				printf("allocating from the beginning\n");
295#endif /* RMAN_DEBUG */
296				/*
297				 * We are allocating at the beginning.
298				 */
299				s->r_start = rv->r_end + 1;
300				CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, rv,
301						      r_link);
302			} else {
303#ifdef RMAN_DEBUG
304				printf("allocating at the end\n");
305#endif /* RMAN_DEBUG */
306				/*
307				 * We are allocating at the end.
308				 */
309				s->r_end = rv->r_start - 1;
310				CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
311						     r_link);
312			}
313			goto out;
314		}
315	}
316
317	/*
318	 * Now find an acceptable shared region, if the client's requirements
319	 * allow sharing.  By our implementation restriction, a candidate
320	 * region must match exactly by both size and sharing type in order
321	 * to be considered compatible with the client's request.  (The
322	 * former restriction could probably be lifted without too much
323	 * additional work, but this does not seem warranted.)
324	 */
325#ifdef RMAN_DEBUG
326	printf("no unshared regions found\n");
327#endif /* RMAN_DEBUG */
328	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
329		goto out;
330
331	for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
332	     s = s->r_link.cqe_next) {
333		if (s->r_start > end)
334			break;
335		if ((s->r_flags & flags) != flags)
336			continue;
337		rstart = max(s->r_start, start);
338		rend = min(s->r_end, max(start + count, end));
339		if (s->r_start >= start && s->r_end <= end
340		    && (s->r_end - s->r_start + 1) == count) {
341			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT);
342			if (rv == 0)
343				goto out;
344			rv->r_start = s->r_start;
345			rv->r_end = s->r_end;
346			rv->r_flags = s->r_flags &
347				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
348			rv->r_dev = dev;
349			rv->r_rm = rm;
350			if (s->r_sharehead == 0) {
351				s->r_sharehead = malloc(sizeof *s->r_sharehead,
352							M_RMAN, M_NOWAIT);
353				if (s->r_sharehead == 0) {
354					free(rv, M_RMAN);
355					rv = 0;
356					goto out;
357				}
358				LIST_INIT(s->r_sharehead);
359				LIST_INSERT_HEAD(s->r_sharehead, s,
360						 r_sharelink);
361				s->r_flags = RF_FIRSTSHARE;
362			}
363			rv->r_sharehead = s->r_sharehead;
364			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
365			goto out;
366		}
367	}
368
369	/*
370	 * We couldn't find anything.
371	 */
372out:
373	/*
374	 * If the user specified RF_ACTIVE in the initial flags,
375	 * which is reflected in `want_activate', we attempt to atomically
376	 * activate the resource.  If this fails, we release the resource
377	 * and indicate overall failure.  (This behavior probably doesn't
378	 * make sense for RF_TIMESHARE-type resources.)
379	 */
380	if (rv && want_activate) {
381		struct resource *whohas;
382		if (int_rman_activate_resource(rm, rv, &whohas)) {
383			int_rman_release_resource(rm, rv);
384			rv = 0;
385		}
386	}
387
388	simple_unlock(rm->rm_slock);
389	return (rv);
390}
391
392static int
393int_rman_activate_resource(struct rman *rm, struct resource *r,
394			   struct resource **whohas)
395{
396	struct resource *s;
397	int ok;
398
399	/*
400	 * If we are not timesharing, then there is nothing much to do.
401	 * If we already have the resource, then there is nothing at all to do.
402	 * If we are not on a sharing list with anybody else, then there is
403	 * little to do.
404	 */
405	if ((r->r_flags & RF_TIMESHARE) == 0
406	    || (r->r_flags & RF_ACTIVE) != 0
407	    || r->r_sharehead == 0) {
408		r->r_flags |= RF_ACTIVE;
409		return 0;
410	}
411
412	ok = 1;
413	for (s = r->r_sharehead->lh_first; s && ok;
414	     s = s->r_sharelink.le_next) {
415		if ((s->r_flags & RF_ACTIVE) != 0) {
416			ok = 0;
417			*whohas = s;
418		}
419	}
420	if (ok) {
421		r->r_flags |= RF_ACTIVE;
422		return 0;
423	}
424	return EBUSY;
425}
426
427int
428rman_activate_resource(struct resource *r)
429{
430	int rv;
431	struct resource *whohas;
432	struct rman *rm;
433
434	rm = r->r_rm;
435	simple_lock(rm->rm_slock);
436	rv = int_rman_activate_resource(rm, r, &whohas);
437	simple_unlock(rm->rm_slock);
438	return rv;
439}
440
441int
442rman_await_resource(struct resource *r, int pri, int timo)
443{
444	int	rv, s;
445	struct	resource *whohas;
446	struct	rman *rm;
447
448	rm = r->r_rm;
449	for (;;) {
450		simple_lock(rm->rm_slock);
451		rv = int_rman_activate_resource(rm, r, &whohas);
452		if (rv != EBUSY)
453			return (rv);
454
455		if (r->r_sharehead == 0)
456			panic("rman_await_resource");
457		/*
458		 * splhigh hopefully will prevent a race between
459		 * simple_unlock and tsleep where a process
460		 * could conceivably get in and release the resource
461		 * before we have a chance to sleep on it.
462		 */
463		s = splhigh();
464		whohas->r_flags |= RF_WANTED;
465		simple_unlock(rm->rm_slock);
466		rv = tsleep(r->r_sharehead, pri, "rmwait", timo);
467		if (rv) {
468			splx(s);
469			return rv;
470		}
471		simple_lock(rm->rm_slock);
472		splx(s);
473	}
474}
475
476int
477rman_deactivate_resource(struct resource *r)
478{
479	struct	rman *rm;
480
481	rm = r->r_rm;
482	simple_lock(rm->rm_slock);
483	r->r_flags &= ~RF_ACTIVE;
484	if (r->r_flags & RF_WANTED) {
485		r->r_flags &= ~RF_WANTED;
486		wakeup(r->r_sharehead);
487	}
488	simple_unlock(rm->rm_slock);
489	return 0;
490}
491
492static int
493int_rman_release_resource(struct rman *rm, struct resource *r)
494{
495	struct	resource *s, *t;
496
497	if (r->r_flags & RF_ACTIVE)
498		return EBUSY;
499
500	/*
501	 * Check for a sharing list first.  If there is one, then we don't
502	 * have to think as hard.
503	 */
504	if (r->r_sharehead) {
505		/*
506		 * If a sharing list exists, then we know there are at
507		 * least two sharers.
508		 *
509		 * If we are in the main circleq, appoint someone else.
510		 */
511		LIST_REMOVE(r, r_sharelink);
512		s = r->r_sharehead->lh_first;
513		if (r->r_flags & RF_FIRSTSHARE) {
514			s->r_flags |= RF_FIRSTSHARE;
515			CIRCLEQ_INSERT_BEFORE(&rm->rm_list, r, s, r_link);
516			CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
517		}
518
519		/*
520		 * Make sure that the sharing list goes away completely
521		 * if the resource is no longer being shared at all.
522		 */
523		if (s->r_sharelink.le_next == 0) {
524			free(s->r_sharehead, M_RMAN);
525			s->r_sharehead = 0;
526			s->r_flags &= ~RF_FIRSTSHARE;
527		}
528		goto out;
529	}
530
531	/*
532	 * Look at the adjacent resources in the list and see if our
533	 * segment can be merged with any of them.
534	 */
535	s = r->r_link.cqe_prev;
536	t = r->r_link.cqe_next;
537
538	if (s != (void *)&rm->rm_list && (s->r_flags & RF_ALLOCATED) == 0
539	    && t != (void *)&rm->rm_list && (t->r_flags & RF_ALLOCATED) == 0) {
540		/*
541		 * Merge all three segments.
542		 */
543		s->r_end = t->r_end;
544		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
545		CIRCLEQ_REMOVE(&rm->rm_list, t, r_link);
546		free(t, M_RMAN);
547	} else if (s != (void *)&rm->rm_list
548		   && (s->r_flags & RF_ALLOCATED) == 0) {
549		/*
550		 * Merge previous segment with ours.
551		 */
552		s->r_end = r->r_end;
553		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
554	} else if (t != (void *)&rm->rm_list
555		   && (t->r_flags & RF_ALLOCATED) == 0) {
556		/*
557		 * Merge next segment with ours.
558		 */
559		t->r_start = r->r_start;
560		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
561	} else {
562		/*
563		 * At this point, we know there is nothing we
564		 * can potentially merge with, because on each
565		 * side, there is either nothing there or what is
566		 * there is still allocated.  In that case, we don't
567		 * want to remove r from the list; we simply want to
568		 * change it to an unallocated region and return
569		 * without freeing anything.
570		 */
571		r->r_flags &= ~RF_ALLOCATED;
572		return 0;
573	}
574
575out:
576	free(r, M_RMAN);
577	return 0;
578}
579
580int
581rman_release_resource(struct resource *r)
582{
583	int	rv;
584	struct	rman *rm = r->r_rm;
585
586	simple_lock(rm->rm_slock);
587	rv = int_rman_release_resource(rm, r);
588	simple_unlock(rm->rm_slock);
589	return (rv);
590}
591