subr_rman.c revision 268780
1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * The kernel resource manager.  This code is responsible for keeping track
32 * of hardware resources which are apportioned out to various drivers.
33 * It does not actually assign those resources, and it is not expected
34 * that end-device drivers will call into this code directly.  Rather,
35 * the code which implements the buses that those devices are attached to,
36 * and the code which manages CPU resources, will call this code, and the
37 * end-device drivers will make upcalls to that code to actually perform
38 * the allocation.
39 *
40 * There are two sorts of resources managed by this code.  The first is
41 * the more familiar array (RMAN_ARRAY) type; resources in this class
42 * consist of a sequence of individually-allocatable objects which have
43 * been numbered in some well-defined order.  Most of the resources
44 * are of this type, as it is the most familiar.  The second type is
45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46 * resources in which each instance is indistinguishable from every
47 * other instance).  The principal anticipated application of gauges
48 * is in the context of power consumption, where a bus may have a specific
49 * power budget which all attached devices share.  RMAN_GAUGE is not
50 * implemented yet.
51 *
52 * For array resources, we make one simplifying assumption: two clients
53 * sharing the same resource must use the same range of indices.  That
54 * is to say, sharing of overlapping-but-not-identical regions is not
55 * permitted.
56 */
57
58#include "opt_ddb.h"
59
60#include <sys/cdefs.h>
61__FBSDID("$FreeBSD: head/sys/kern/subr_rman.c 268780 2014-07-16 22:18:19Z truckman $");
62
63#include <sys/param.h>
64#include <sys/systm.h>
65#include <sys/kernel.h>
66#include <sys/limits.h>
67#include <sys/lock.h>
68#include <sys/malloc.h>
69#include <sys/mutex.h>
70#include <sys/bus.h>		/* XXX debugging */
71#include <machine/bus.h>
72#include <sys/rman.h>
73#include <sys/sysctl.h>
74
75#ifdef DDB
76#include <ddb/ddb.h>
77#endif
78
79/*
80 * We use a linked list rather than a bitmap because we need to be able to
81 * represent potentially huge objects (like all of a processor's physical
82 * address space).  That is also why the indices are defined to have type
83 * `unsigned long' -- that being the largest integral type in ISO C (1990).
84 * The 1999 version of C allows `long long'; we may need to switch to that
85 * at some point in the future, particularly if we want to support 36-bit
86 * addresses on IA32 hardware.
87 */
88struct resource_i {
89	struct resource		r_r;
90	TAILQ_ENTRY(resource_i)	r_link;
91	LIST_ENTRY(resource_i)	r_sharelink;
92	LIST_HEAD(, resource_i)	*r_sharehead;
93	u_long	r_start;	/* index of the first entry in this resource */
94	u_long	r_end;		/* index of the last entry (inclusive) */
95	u_int	r_flags;
96	void	*r_virtual;	/* virtual address of this resource */
97	struct device *r_dev;	/* device which has allocated this resource */
98	struct rman *r_rm;	/* resource manager from whence this came */
99	int	r_rid;		/* optional rid for this resource. */
100};
101
102static int rman_debug = 0;
103SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RWTUN,
104    &rman_debug, 0, "rman debug");
105
106#define DPRINTF(params) if (rman_debug) printf params
107
108static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
109
110struct rman_head rman_head;
111static struct mtx rman_mtx; /* mutex to protect rman_head */
112static int int_rman_release_resource(struct rman *rm, struct resource_i *r);
113
114static __inline struct resource_i *
115int_alloc_resource(int malloc_flag)
116{
117	struct resource_i *r;
118
119	r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
120	if (r != NULL) {
121		r->r_r.__r_i = r;
122	}
123	return (r);
124}
125
126int
127rman_init(struct rman *rm)
128{
129	static int once = 0;
130
131	if (once == 0) {
132		once = 1;
133		TAILQ_INIT(&rman_head);
134		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
135	}
136
137	if (rm->rm_start == 0 && rm->rm_end == 0)
138		rm->rm_end = ~0ul;
139	if (rm->rm_type == RMAN_UNINIT)
140		panic("rman_init");
141	if (rm->rm_type == RMAN_GAUGE)
142		panic("implement RMAN_GAUGE");
143
144	TAILQ_INIT(&rm->rm_list);
145	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
146	if (rm->rm_mtx == NULL)
147		return ENOMEM;
148	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
149
150	mtx_lock(&rman_mtx);
151	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
152	mtx_unlock(&rman_mtx);
153	return 0;
154}
155
156int
157rman_manage_region(struct rman *rm, u_long start, u_long end)
158{
159	struct resource_i *r, *s, *t;
160	int rv = 0;
161
162	DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
163	    rm->rm_descr, start, end));
164	if (start < rm->rm_start || end > rm->rm_end)
165		return EINVAL;
166	r = int_alloc_resource(M_NOWAIT);
167	if (r == NULL)
168		return ENOMEM;
169	r->r_start = start;
170	r->r_end = end;
171	r->r_rm = rm;
172
173	mtx_lock(rm->rm_mtx);
174
175	/* Skip entries before us. */
176	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
177		if (s->r_end == ULONG_MAX)
178			break;
179		if (s->r_end + 1 >= r->r_start)
180			break;
181	}
182
183	/* If we ran off the end of the list, insert at the tail. */
184	if (s == NULL) {
185		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
186	} else {
187		/* Check for any overlap with the current region. */
188		if (r->r_start <= s->r_end && r->r_end >= s->r_start) {
189			rv = EBUSY;
190			goto out;
191		}
192
193		/* Check for any overlap with the next region. */
194		t = TAILQ_NEXT(s, r_link);
195		if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) {
196			rv = EBUSY;
197			goto out;
198		}
199
200		/*
201		 * See if this region can be merged with the next region.  If
202		 * not, clear the pointer.
203		 */
204		if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
205			t = NULL;
206
207		/* See if we can merge with the current region. */
208		if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
209			/* Can we merge all 3 regions? */
210			if (t != NULL) {
211				s->r_end = t->r_end;
212				TAILQ_REMOVE(&rm->rm_list, t, r_link);
213				free(r, M_RMAN);
214				free(t, M_RMAN);
215			} else {
216				s->r_end = r->r_end;
217				free(r, M_RMAN);
218			}
219		} else if (t != NULL) {
220			/* Can we merge with just the next region? */
221			t->r_start = r->r_start;
222			free(r, M_RMAN);
223		} else if (s->r_end < r->r_start) {
224			TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link);
225		} else {
226			TAILQ_INSERT_BEFORE(s, r, r_link);
227		}
228	}
229out:
230	mtx_unlock(rm->rm_mtx);
231	return rv;
232}
233
234int
235rman_init_from_resource(struct rman *rm, struct resource *r)
236{
237	int rv;
238
239	if ((rv = rman_init(rm)) != 0)
240		return (rv);
241	return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
242}
243
244int
245rman_fini(struct rman *rm)
246{
247	struct resource_i *r;
248
249	mtx_lock(rm->rm_mtx);
250	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
251		if (r->r_flags & RF_ALLOCATED) {
252			mtx_unlock(rm->rm_mtx);
253			return EBUSY;
254		}
255	}
256
257	/*
258	 * There really should only be one of these if we are in this
259	 * state and the code is working properly, but it can't hurt.
260	 */
261	while (!TAILQ_EMPTY(&rm->rm_list)) {
262		r = TAILQ_FIRST(&rm->rm_list);
263		TAILQ_REMOVE(&rm->rm_list, r, r_link);
264		free(r, M_RMAN);
265	}
266	mtx_unlock(rm->rm_mtx);
267	mtx_lock(&rman_mtx);
268	TAILQ_REMOVE(&rman_head, rm, rm_link);
269	mtx_unlock(&rman_mtx);
270	mtx_destroy(rm->rm_mtx);
271	free(rm->rm_mtx, M_RMAN);
272
273	return 0;
274}
275
276int
277rman_first_free_region(struct rman *rm, u_long *start, u_long *end)
278{
279	struct resource_i *r;
280
281	mtx_lock(rm->rm_mtx);
282	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
283		if (!(r->r_flags & RF_ALLOCATED)) {
284			*start = r->r_start;
285			*end = r->r_end;
286			mtx_unlock(rm->rm_mtx);
287			return (0);
288		}
289	}
290	mtx_unlock(rm->rm_mtx);
291	return (ENOENT);
292}
293
294int
295rman_last_free_region(struct rman *rm, u_long *start, u_long *end)
296{
297	struct resource_i *r;
298
299	mtx_lock(rm->rm_mtx);
300	TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) {
301		if (!(r->r_flags & RF_ALLOCATED)) {
302			*start = r->r_start;
303			*end = r->r_end;
304			mtx_unlock(rm->rm_mtx);
305			return (0);
306		}
307	}
308	mtx_unlock(rm->rm_mtx);
309	return (ENOENT);
310}
311
312/* Shrink or extend one or both ends of an allocated resource. */
313int
314rman_adjust_resource(struct resource *rr, u_long start, u_long end)
315{
316	struct resource_i *r, *s, *t, *new;
317	struct rman *rm;
318
319	/* Not supported for shared resources. */
320	r = rr->__r_i;
321	if (r->r_flags & RF_SHAREABLE)
322		return (EINVAL);
323
324	/*
325	 * This does not support wholesale moving of a resource.  At
326	 * least part of the desired new range must overlap with the
327	 * existing resource.
328	 */
329	if (end < r->r_start || r->r_end < start)
330		return (EINVAL);
331
332	/*
333	 * Find the two resource regions immediately adjacent to the
334	 * allocated resource.
335	 */
336	rm = r->r_rm;
337	mtx_lock(rm->rm_mtx);
338#ifdef INVARIANTS
339	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
340		if (s == r)
341			break;
342	}
343	if (s == NULL)
344		panic("resource not in list");
345#endif
346	s = TAILQ_PREV(r, resource_head, r_link);
347	t = TAILQ_NEXT(r, r_link);
348	KASSERT(s == NULL || s->r_end + 1 == r->r_start,
349	    ("prev resource mismatch"));
350	KASSERT(t == NULL || r->r_end + 1 == t->r_start,
351	    ("next resource mismatch"));
352
353	/*
354	 * See if the changes are permitted.  Shrinking is always allowed,
355	 * but growing requires sufficient room in the adjacent region.
356	 */
357	if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) ||
358	    s->r_start > start)) {
359		mtx_unlock(rm->rm_mtx);
360		return (EBUSY);
361	}
362	if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) ||
363	    t->r_end < end)) {
364		mtx_unlock(rm->rm_mtx);
365		return (EBUSY);
366	}
367
368	/*
369	 * While holding the lock, grow either end of the resource as
370	 * needed and shrink either end if the shrinking does not require
371	 * allocating a new resource.  We can safely drop the lock and then
372	 * insert a new range to handle the shrinking case afterwards.
373	 */
374	if (start < r->r_start ||
375	    (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) {
376		KASSERT(s->r_flags == 0, ("prev is busy"));
377		r->r_start = start;
378		if (s->r_start == start) {
379			TAILQ_REMOVE(&rm->rm_list, s, r_link);
380			free(s, M_RMAN);
381		} else
382			s->r_end = start - 1;
383	}
384	if (end > r->r_end ||
385	    (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) {
386		KASSERT(t->r_flags == 0, ("next is busy"));
387		r->r_end = end;
388		if (t->r_end == end) {
389			TAILQ_REMOVE(&rm->rm_list, t, r_link);
390			free(t, M_RMAN);
391		} else
392			t->r_start = end + 1;
393	}
394	mtx_unlock(rm->rm_mtx);
395
396	/*
397	 * Handle the shrinking cases that require allocating a new
398	 * resource to hold the newly-free region.  We have to recheck
399	 * if we still need this new region after acquiring the lock.
400	 */
401	if (start > r->r_start) {
402		new = int_alloc_resource(M_WAITOK);
403		new->r_start = r->r_start;
404		new->r_end = start - 1;
405		new->r_rm = rm;
406		mtx_lock(rm->rm_mtx);
407		r->r_start = start;
408		s = TAILQ_PREV(r, resource_head, r_link);
409		if (s != NULL && !(s->r_flags & RF_ALLOCATED)) {
410			s->r_end = start - 1;
411			free(new, M_RMAN);
412		} else
413			TAILQ_INSERT_BEFORE(r, new, r_link);
414		mtx_unlock(rm->rm_mtx);
415	}
416	if (end < r->r_end) {
417		new = int_alloc_resource(M_WAITOK);
418		new->r_start = end + 1;
419		new->r_end = r->r_end;
420		new->r_rm = rm;
421		mtx_lock(rm->rm_mtx);
422		r->r_end = end;
423		t = TAILQ_NEXT(r, r_link);
424		if (t != NULL && !(t->r_flags & RF_ALLOCATED)) {
425			t->r_start = end + 1;
426			free(new, M_RMAN);
427		} else
428			TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link);
429		mtx_unlock(rm->rm_mtx);
430	}
431	return (0);
432}
433
434#define	SHARE_TYPE(f)	(f & (RF_SHAREABLE | RF_PREFETCHABLE))
435
436struct resource *
437rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
438			    u_long count, u_long bound, u_int flags,
439			    struct device *dev)
440{
441	u_int new_rflags;
442	struct resource_i *r, *s, *rv;
443	u_long rstart, rend, amask, bmask;
444
445	rv = NULL;
446
447	DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], "
448	       "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end,
449	       count, flags,
450	       dev == NULL ? "<null>" : device_get_nameunit(dev)));
451	KASSERT((flags & RF_FIRSTSHARE) == 0,
452	    ("invalid flags %#x", flags));
453	new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED;
454
455	mtx_lock(rm->rm_mtx);
456
457	for (r = TAILQ_FIRST(&rm->rm_list);
458	     r && r->r_end < start + count - 1;
459	     r = TAILQ_NEXT(r, r_link))
460		;
461
462	if (r == NULL) {
463		DPRINTF(("could not find a region\n"));
464		goto out;
465	}
466
467	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
468	KASSERT(start <= ULONG_MAX - amask,
469	    ("start (%#lx) + amask (%#lx) would wrap around", start, amask));
470
471	/* If bound is 0, bmask will also be 0 */
472	bmask = ~(bound - 1);
473	/*
474	 * First try to find an acceptable totally-unshared region.
475	 */
476	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
477		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
478		/*
479		 * The resource list is sorted, so there is no point in
480		 * searching further once r_start is too large.
481		 */
482		if (s->r_start > end - (count - 1)) {
483			DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n",
484			    s->r_start, end));
485			break;
486		}
487		if (s->r_start > ULONG_MAX - amask) {
488			DPRINTF(("s->r_start (%#lx) + amask (%#lx) too large\n",
489			    s->r_start, amask));
490			break;
491		}
492		if (s->r_flags & RF_ALLOCATED) {
493			DPRINTF(("region is allocated\n"));
494			continue;
495		}
496		rstart = ulmax(s->r_start, start);
497		/*
498		 * Try to find a region by adjusting to boundary and alignment
499		 * until both conditions are satisfied. This is not an optimal
500		 * algorithm, but in most cases it isn't really bad, either.
501		 */
502		do {
503			rstart = (rstart + amask) & ~amask;
504			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
505				rstart += bound - (rstart & ~bmask);
506		} while ((rstart & amask) != 0 && rstart < end &&
507		    rstart < s->r_end);
508		rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
509		if (rstart > rend) {
510			DPRINTF(("adjusted start exceeds end\n"));
511			continue;
512		}
513		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
514		       rstart, rend, (rend - rstart + 1), count));
515
516		if ((rend - rstart + 1) >= count) {
517			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
518			       rstart, rend, (rend - rstart + 1)));
519			if ((s->r_end - s->r_start + 1) == count) {
520				DPRINTF(("candidate region is entire chunk\n"));
521				rv = s;
522				rv->r_flags = new_rflags;
523				rv->r_dev = dev;
524				goto out;
525			}
526
527			/*
528			 * If s->r_start < rstart and
529			 *    s->r_end > rstart + count - 1, then
530			 * we need to split the region into three pieces
531			 * (the middle one will get returned to the user).
532			 * Otherwise, we are allocating at either the
533			 * beginning or the end of s, so we only need to
534			 * split it in two.  The first case requires
535			 * two new allocations; the second requires but one.
536			 */
537			rv = int_alloc_resource(M_NOWAIT);
538			if (rv == NULL)
539				goto out;
540			rv->r_start = rstart;
541			rv->r_end = rstart + count - 1;
542			rv->r_flags = new_rflags;
543			rv->r_dev = dev;
544			rv->r_rm = rm;
545
546			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
547				DPRINTF(("splitting region in three parts: "
548				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
549				       s->r_start, rv->r_start - 1,
550				       rv->r_start, rv->r_end,
551				       rv->r_end + 1, s->r_end));
552				/*
553				 * We are allocating in the middle.
554				 */
555				r = int_alloc_resource(M_NOWAIT);
556				if (r == NULL) {
557					free(rv, M_RMAN);
558					rv = NULL;
559					goto out;
560				}
561				r->r_start = rv->r_end + 1;
562				r->r_end = s->r_end;
563				r->r_flags = s->r_flags;
564				r->r_rm = rm;
565				s->r_end = rv->r_start - 1;
566				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
567						     r_link);
568				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
569						     r_link);
570			} else if (s->r_start == rv->r_start) {
571				DPRINTF(("allocating from the beginning\n"));
572				/*
573				 * We are allocating at the beginning.
574				 */
575				s->r_start = rv->r_end + 1;
576				TAILQ_INSERT_BEFORE(s, rv, r_link);
577			} else {
578				DPRINTF(("allocating at the end\n"));
579				/*
580				 * We are allocating at the end.
581				 */
582				s->r_end = rv->r_start - 1;
583				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
584						     r_link);
585			}
586			goto out;
587		}
588	}
589
590	/*
591	 * Now find an acceptable shared region, if the client's requirements
592	 * allow sharing.  By our implementation restriction, a candidate
593	 * region must match exactly by both size and sharing type in order
594	 * to be considered compatible with the client's request.  (The
595	 * former restriction could probably be lifted without too much
596	 * additional work, but this does not seem warranted.)
597	 */
598	DPRINTF(("no unshared regions found\n"));
599	if ((flags & RF_SHAREABLE) == 0)
600		goto out;
601
602	for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) {
603		if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) &&
604		    s->r_start >= start &&
605		    (s->r_end - s->r_start + 1) == count &&
606		    (s->r_start & amask) == 0 &&
607		    ((s->r_start ^ s->r_end) & bmask) == 0) {
608			rv = int_alloc_resource(M_NOWAIT);
609			if (rv == NULL)
610				goto out;
611			rv->r_start = s->r_start;
612			rv->r_end = s->r_end;
613			rv->r_flags = new_rflags;
614			rv->r_dev = dev;
615			rv->r_rm = rm;
616			if (s->r_sharehead == NULL) {
617				s->r_sharehead = malloc(sizeof *s->r_sharehead,
618						M_RMAN, M_NOWAIT | M_ZERO);
619				if (s->r_sharehead == NULL) {
620					free(rv, M_RMAN);
621					rv = NULL;
622					goto out;
623				}
624				LIST_INIT(s->r_sharehead);
625				LIST_INSERT_HEAD(s->r_sharehead, s,
626						 r_sharelink);
627				s->r_flags |= RF_FIRSTSHARE;
628			}
629			rv->r_sharehead = s->r_sharehead;
630			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
631			goto out;
632		}
633	}
634	/*
635	 * We couldn't find anything.
636	 */
637
638out:
639	mtx_unlock(rm->rm_mtx);
640	return (rv == NULL ? NULL : &rv->r_r);
641}
642
643struct resource *
644rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
645		      u_int flags, struct device *dev)
646{
647
648	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
649	    dev));
650}
651
652int
653rman_activate_resource(struct resource *re)
654{
655	struct resource_i *r;
656	struct rman *rm;
657
658	r = re->__r_i;
659	rm = r->r_rm;
660	mtx_lock(rm->rm_mtx);
661	r->r_flags |= RF_ACTIVE;
662	mtx_unlock(rm->rm_mtx);
663	return 0;
664}
665
666int
667rman_deactivate_resource(struct resource *r)
668{
669	struct rman *rm;
670
671	rm = r->__r_i->r_rm;
672	mtx_lock(rm->rm_mtx);
673	r->__r_i->r_flags &= ~RF_ACTIVE;
674	mtx_unlock(rm->rm_mtx);
675	return 0;
676}
677
678static int
679int_rman_release_resource(struct rman *rm, struct resource_i *r)
680{
681	struct resource_i *s, *t;
682
683	if (r->r_flags & RF_ACTIVE)
684		r->r_flags &= ~RF_ACTIVE;
685
686	/*
687	 * Check for a sharing list first.  If there is one, then we don't
688	 * have to think as hard.
689	 */
690	if (r->r_sharehead) {
691		/*
692		 * If a sharing list exists, then we know there are at
693		 * least two sharers.
694		 *
695		 * If we are in the main circleq, appoint someone else.
696		 */
697		LIST_REMOVE(r, r_sharelink);
698		s = LIST_FIRST(r->r_sharehead);
699		if (r->r_flags & RF_FIRSTSHARE) {
700			s->r_flags |= RF_FIRSTSHARE;
701			TAILQ_INSERT_BEFORE(r, s, r_link);
702			TAILQ_REMOVE(&rm->rm_list, r, r_link);
703		}
704
705		/*
706		 * Make sure that the sharing list goes away completely
707		 * if the resource is no longer being shared at all.
708		 */
709		if (LIST_NEXT(s, r_sharelink) == NULL) {
710			free(s->r_sharehead, M_RMAN);
711			s->r_sharehead = NULL;
712			s->r_flags &= ~RF_FIRSTSHARE;
713		}
714		goto out;
715	}
716
717	/*
718	 * Look at the adjacent resources in the list and see if our
719	 * segment can be merged with any of them.  If either of the
720	 * resources is allocated or is not exactly adjacent then they
721	 * cannot be merged with our segment.
722	 */
723	s = TAILQ_PREV(r, resource_head, r_link);
724	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
725	    s->r_end + 1 != r->r_start))
726		s = NULL;
727	t = TAILQ_NEXT(r, r_link);
728	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
729	    r->r_end + 1 != t->r_start))
730		t = NULL;
731
732	if (s != NULL && t != NULL) {
733		/*
734		 * Merge all three segments.
735		 */
736		s->r_end = t->r_end;
737		TAILQ_REMOVE(&rm->rm_list, r, r_link);
738		TAILQ_REMOVE(&rm->rm_list, t, r_link);
739		free(t, M_RMAN);
740	} else if (s != NULL) {
741		/*
742		 * Merge previous segment with ours.
743		 */
744		s->r_end = r->r_end;
745		TAILQ_REMOVE(&rm->rm_list, r, r_link);
746	} else if (t != NULL) {
747		/*
748		 * Merge next segment with ours.
749		 */
750		t->r_start = r->r_start;
751		TAILQ_REMOVE(&rm->rm_list, r, r_link);
752	} else {
753		/*
754		 * At this point, we know there is nothing we
755		 * can potentially merge with, because on each
756		 * side, there is either nothing there or what is
757		 * there is still allocated.  In that case, we don't
758		 * want to remove r from the list; we simply want to
759		 * change it to an unallocated region and return
760		 * without freeing anything.
761		 */
762		r->r_flags &= ~RF_ALLOCATED;
763		r->r_dev = NULL;
764		return 0;
765	}
766
767out:
768	free(r, M_RMAN);
769	return 0;
770}
771
772int
773rman_release_resource(struct resource *re)
774{
775	int rv;
776	struct resource_i *r;
777	struct rman *rm;
778
779	r = re->__r_i;
780	rm = r->r_rm;
781	mtx_lock(rm->rm_mtx);
782	rv = int_rman_release_resource(rm, r);
783	mtx_unlock(rm->rm_mtx);
784	return (rv);
785}
786
787uint32_t
788rman_make_alignment_flags(uint32_t size)
789{
790	int i;
791
792	/*
793	 * Find the hightest bit set, and add one if more than one bit
794	 * set.  We're effectively computing the ceil(log2(size)) here.
795	 */
796	for (i = 31; i > 0; i--)
797		if ((1 << i) & size)
798			break;
799	if (~(1 << i) & size)
800		i++;
801
802	return(RF_ALIGNMENT_LOG2(i));
803}
804
805void
806rman_set_start(struct resource *r, u_long start)
807{
808
809	r->__r_i->r_start = start;
810}
811
812u_long
813rman_get_start(struct resource *r)
814{
815
816	return (r->__r_i->r_start);
817}
818
819void
820rman_set_end(struct resource *r, u_long end)
821{
822
823	r->__r_i->r_end = end;
824}
825
826u_long
827rman_get_end(struct resource *r)
828{
829
830	return (r->__r_i->r_end);
831}
832
833u_long
834rman_get_size(struct resource *r)
835{
836
837	return (r->__r_i->r_end - r->__r_i->r_start + 1);
838}
839
840u_int
841rman_get_flags(struct resource *r)
842{
843
844	return (r->__r_i->r_flags);
845}
846
847void
848rman_set_virtual(struct resource *r, void *v)
849{
850
851	r->__r_i->r_virtual = v;
852}
853
854void *
855rman_get_virtual(struct resource *r)
856{
857
858	return (r->__r_i->r_virtual);
859}
860
861void
862rman_set_bustag(struct resource *r, bus_space_tag_t t)
863{
864
865	r->r_bustag = t;
866}
867
868bus_space_tag_t
869rman_get_bustag(struct resource *r)
870{
871
872	return (r->r_bustag);
873}
874
875void
876rman_set_bushandle(struct resource *r, bus_space_handle_t h)
877{
878
879	r->r_bushandle = h;
880}
881
882bus_space_handle_t
883rman_get_bushandle(struct resource *r)
884{
885
886	return (r->r_bushandle);
887}
888
889void
890rman_set_rid(struct resource *r, int rid)
891{
892
893	r->__r_i->r_rid = rid;
894}
895
896int
897rman_get_rid(struct resource *r)
898{
899
900	return (r->__r_i->r_rid);
901}
902
903void
904rman_set_device(struct resource *r, struct device *dev)
905{
906
907	r->__r_i->r_dev = dev;
908}
909
910struct device *
911rman_get_device(struct resource *r)
912{
913
914	return (r->__r_i->r_dev);
915}
916
917int
918rman_is_region_manager(struct resource *r, struct rman *rm)
919{
920
921	return (r->__r_i->r_rm == rm);
922}
923
924/*
925 * Sysctl interface for scanning the resource lists.
926 *
927 * We take two input parameters; the index into the list of resource
928 * managers, and the resource offset into the list.
929 */
930static int
931sysctl_rman(SYSCTL_HANDLER_ARGS)
932{
933	int			*name = (int *)arg1;
934	u_int			namelen = arg2;
935	int			rman_idx, res_idx;
936	struct rman		*rm;
937	struct resource_i	*res;
938	struct resource_i	*sres;
939	struct u_rman		urm;
940	struct u_resource	ures;
941	int			error;
942
943	if (namelen != 3)
944		return (EINVAL);
945
946	if (bus_data_generation_check(name[0]))
947		return (EINVAL);
948	rman_idx = name[1];
949	res_idx = name[2];
950
951	/*
952	 * Find the indexed resource manager
953	 */
954	mtx_lock(&rman_mtx);
955	TAILQ_FOREACH(rm, &rman_head, rm_link) {
956		if (rman_idx-- == 0)
957			break;
958	}
959	mtx_unlock(&rman_mtx);
960	if (rm == NULL)
961		return (ENOENT);
962
963	/*
964	 * If the resource index is -1, we want details on the
965	 * resource manager.
966	 */
967	if (res_idx == -1) {
968		bzero(&urm, sizeof(urm));
969		urm.rm_handle = (uintptr_t)rm;
970		if (rm->rm_descr != NULL)
971			strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
972		urm.rm_start = rm->rm_start;
973		urm.rm_size = rm->rm_end - rm->rm_start + 1;
974		urm.rm_type = rm->rm_type;
975
976		error = SYSCTL_OUT(req, &urm, sizeof(urm));
977		return (error);
978	}
979
980	/*
981	 * Find the indexed resource and return it.
982	 */
983	mtx_lock(rm->rm_mtx);
984	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
985		if (res->r_sharehead != NULL) {
986			LIST_FOREACH(sres, res->r_sharehead, r_sharelink)
987				if (res_idx-- == 0) {
988					res = sres;
989					goto found;
990				}
991		}
992		else if (res_idx-- == 0)
993				goto found;
994	}
995	mtx_unlock(rm->rm_mtx);
996	return (ENOENT);
997
998found:
999	bzero(&ures, sizeof(ures));
1000	ures.r_handle = (uintptr_t)res;
1001	ures.r_parent = (uintptr_t)res->r_rm;
1002	ures.r_device = (uintptr_t)res->r_dev;
1003	if (res->r_dev != NULL) {
1004		if (device_get_name(res->r_dev) != NULL) {
1005			snprintf(ures.r_devname, RM_TEXTLEN,
1006			    "%s%d",
1007			    device_get_name(res->r_dev),
1008			    device_get_unit(res->r_dev));
1009		} else {
1010			strlcpy(ures.r_devname, "nomatch",
1011			    RM_TEXTLEN);
1012		}
1013	} else {
1014		ures.r_devname[0] = '\0';
1015	}
1016	ures.r_start = res->r_start;
1017	ures.r_size = res->r_end - res->r_start + 1;
1018	ures.r_flags = res->r_flags;
1019
1020	mtx_unlock(rm->rm_mtx);
1021	error = SYSCTL_OUT(req, &ures, sizeof(ures));
1022	return (error);
1023}
1024
1025static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
1026    "kernel resource manager");
1027
1028#ifdef DDB
1029static void
1030dump_rman_header(struct rman *rm)
1031{
1032
1033	if (db_pager_quit)
1034		return;
1035	db_printf("rman %p: %s (0x%lx-0x%lx full range)\n",
1036	    rm, rm->rm_descr, rm->rm_start, rm->rm_end);
1037}
1038
1039static void
1040dump_rman(struct rman *rm)
1041{
1042	struct resource_i *r;
1043	const char *devname;
1044
1045	if (db_pager_quit)
1046		return;
1047	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
1048		if (r->r_dev != NULL) {
1049			devname = device_get_nameunit(r->r_dev);
1050			if (devname == NULL)
1051				devname = "nomatch";
1052		} else
1053			devname = NULL;
1054		db_printf("    0x%lx-0x%lx ", r->r_start, r->r_end);
1055		if (devname != NULL)
1056			db_printf("(%s)\n", devname);
1057		else
1058			db_printf("----\n");
1059		if (db_pager_quit)
1060			return;
1061	}
1062}
1063
1064DB_SHOW_COMMAND(rman, db_show_rman)
1065{
1066
1067	if (have_addr) {
1068		dump_rman_header((struct rman *)addr);
1069		dump_rman((struct rman *)addr);
1070	}
1071}
1072
1073DB_SHOW_COMMAND(rmans, db_show_rmans)
1074{
1075	struct rman *rm;
1076
1077	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1078		dump_rman_header(rm);
1079	}
1080}
1081
1082DB_SHOW_ALL_COMMAND(rman, db_show_all_rman)
1083{
1084	struct rman *rm;
1085
1086	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1087		dump_rman_header(rm);
1088		dump_rman(rm);
1089	}
1090}
1091DB_SHOW_ALIAS(allrman, db_show_all_rman);
1092#endif
1093