subr_rman.c revision 222750
1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * The kernel resource manager.  This code is responsible for keeping track
32 * of hardware resources which are apportioned out to various drivers.
33 * It does not actually assign those resources, and it is not expected
34 * that end-device drivers will call into this code directly.  Rather,
35 * the code which implements the buses that those devices are attached to,
36 * and the code which manages CPU resources, will call this code, and the
37 * end-device drivers will make upcalls to that code to actually perform
38 * the allocation.
39 *
40 * There are two sorts of resources managed by this code.  The first is
41 * the more familiar array (RMAN_ARRAY) type; resources in this class
42 * consist of a sequence of individually-allocatable objects which have
43 * been numbered in some well-defined order.  Most of the resources
44 * are of this type, as it is the most familiar.  The second type is
45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46 * resources in which each instance is indistinguishable from every
47 * other instance).  The principal anticipated application of gauges
48 * is in the context of power consumption, where a bus may have a specific
49 * power budget which all attached devices share.  RMAN_GAUGE is not
50 * implemented yet.
51 *
52 * For array resources, we make one simplifying assumption: two clients
53 * sharing the same resource must use the same range of indices.  That
54 * is to say, sharing of overlapping-but-not-identical regions is not
55 * permitted.
56 */
57
58#include "opt_ddb.h"
59
60#include <sys/cdefs.h>
61__FBSDID("$FreeBSD: head/sys/kern/subr_rman.c 222750 2011-06-06 13:12:56Z jhb $");
62
63#include <sys/param.h>
64#include <sys/systm.h>
65#include <sys/kernel.h>
66#include <sys/limits.h>
67#include <sys/lock.h>
68#include <sys/malloc.h>
69#include <sys/mutex.h>
70#include <sys/bus.h>		/* XXX debugging */
71#include <machine/bus.h>
72#include <sys/rman.h>
73#include <sys/sysctl.h>
74
75#ifdef DDB
76#include <ddb/ddb.h>
77#endif
78
79/*
80 * We use a linked list rather than a bitmap because we need to be able to
81 * represent potentially huge objects (like all of a processor's physical
82 * address space).  That is also why the indices are defined to have type
83 * `unsigned long' -- that being the largest integral type in ISO C (1990).
84 * The 1999 version of C allows `long long'; we may need to switch to that
85 * at some point in the future, particularly if we want to support 36-bit
86 * addresses on IA32 hardware.
87 */
88struct resource_i {
89	struct resource		r_r;
90	TAILQ_ENTRY(resource_i)	r_link;
91	LIST_ENTRY(resource_i)	r_sharelink;
92	LIST_HEAD(, resource_i)	*r_sharehead;
93	u_long	r_start;	/* index of the first entry in this resource */
94	u_long	r_end;		/* index of the last entry (inclusive) */
95	u_int	r_flags;
96	void	*r_virtual;	/* virtual address of this resource */
97	struct	device *r_dev;	/* device which has allocated this resource */
98	struct	rman *r_rm;	/* resource manager from whence this came */
99	int	r_rid;		/* optional rid for this resource. */
100};
101
102static int     rman_debug = 0;
103TUNABLE_INT("debug.rman_debug", &rman_debug);
104SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
105    &rman_debug, 0, "rman debug");
106
107#define DPRINTF(params) if (rman_debug) printf params
108
109static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
110
111struct	rman_head rman_head;
112static	struct mtx rman_mtx; /* mutex to protect rman_head */
113static	int int_rman_activate_resource(struct rman *rm, struct resource_i *r,
114				       struct resource_i **whohas);
115static	int int_rman_deactivate_resource(struct resource_i *r);
116static	int int_rman_release_resource(struct rman *rm, struct resource_i *r);
117
118static __inline struct resource_i *
119int_alloc_resource(int malloc_flag)
120{
121	struct resource_i *r;
122
123	r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
124	if (r != NULL) {
125		r->r_r.__r_i = r;
126	}
127	return (r);
128}
129
130int
131rman_init(struct rman *rm)
132{
133	static int once = 0;
134
135	if (once == 0) {
136		once = 1;
137		TAILQ_INIT(&rman_head);
138		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
139	}
140
141	if (rm->rm_start == 0 && rm->rm_end == 0)
142		rm->rm_end = ~0ul;
143	if (rm->rm_type == RMAN_UNINIT)
144		panic("rman_init");
145	if (rm->rm_type == RMAN_GAUGE)
146		panic("implement RMAN_GAUGE");
147
148	TAILQ_INIT(&rm->rm_list);
149	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
150	if (rm->rm_mtx == NULL)
151		return ENOMEM;
152	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
153
154	mtx_lock(&rman_mtx);
155	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
156	mtx_unlock(&rman_mtx);
157	return 0;
158}
159
160int
161rman_manage_region(struct rman *rm, u_long start, u_long end)
162{
163	struct resource_i *r, *s, *t;
164
165	DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
166	    rm->rm_descr, start, end));
167	if (start < rm->rm_start || end > rm->rm_end)
168		return EINVAL;
169	r = int_alloc_resource(M_NOWAIT);
170	if (r == NULL)
171		return ENOMEM;
172	r->r_start = start;
173	r->r_end = end;
174	r->r_rm = rm;
175
176	mtx_lock(rm->rm_mtx);
177
178	/* Skip entries before us. */
179	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
180		if (s->r_end == ULONG_MAX)
181			break;
182		if (s->r_end + 1 >= r->r_start)
183			break;
184	}
185
186	/* If we ran off the end of the list, insert at the tail. */
187	if (s == NULL) {
188		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
189	} else {
190		/* Check for any overlap with the current region. */
191		if (r->r_start <= s->r_end && r->r_end >= s->r_start)
192			return EBUSY;
193
194		/* Check for any overlap with the next region. */
195		t = TAILQ_NEXT(s, r_link);
196		if (t && r->r_start <= t->r_end && r->r_end >= t->r_start)
197			return EBUSY;
198
199		/*
200		 * See if this region can be merged with the next region.  If
201		 * not, clear the pointer.
202		 */
203		if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
204			t = NULL;
205
206		/* See if we can merge with the current region. */
207		if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
208			/* Can we merge all 3 regions? */
209			if (t != NULL) {
210				s->r_end = t->r_end;
211				TAILQ_REMOVE(&rm->rm_list, t, r_link);
212				free(r, M_RMAN);
213				free(t, M_RMAN);
214			} else {
215				s->r_end = r->r_end;
216				free(r, M_RMAN);
217			}
218		} else if (t != NULL) {
219			/* Can we merge with just the next region? */
220			t->r_start = r->r_start;
221			free(r, M_RMAN);
222		} else if (s->r_end < r->r_start) {
223			TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link);
224		} else {
225			TAILQ_INSERT_BEFORE(s, r, r_link);
226		}
227	}
228
229	mtx_unlock(rm->rm_mtx);
230	return 0;
231}
232
233int
234rman_init_from_resource(struct rman *rm, struct resource *r)
235{
236	int rv;
237
238	if ((rv = rman_init(rm)) != 0)
239		return (rv);
240	return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
241}
242
243int
244rman_fini(struct rman *rm)
245{
246	struct resource_i *r;
247
248	mtx_lock(rm->rm_mtx);
249	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
250		if (r->r_flags & RF_ALLOCATED) {
251			mtx_unlock(rm->rm_mtx);
252			return EBUSY;
253		}
254	}
255
256	/*
257	 * There really should only be one of these if we are in this
258	 * state and the code is working properly, but it can't hurt.
259	 */
260	while (!TAILQ_EMPTY(&rm->rm_list)) {
261		r = TAILQ_FIRST(&rm->rm_list);
262		TAILQ_REMOVE(&rm->rm_list, r, r_link);
263		free(r, M_RMAN);
264	}
265	mtx_unlock(rm->rm_mtx);
266	mtx_lock(&rman_mtx);
267	TAILQ_REMOVE(&rman_head, rm, rm_link);
268	mtx_unlock(&rman_mtx);
269	mtx_destroy(rm->rm_mtx);
270	free(rm->rm_mtx, M_RMAN);
271
272	return 0;
273}
274
275int
276rman_first_free_region(struct rman *rm, u_long *start, u_long *end)
277{
278	struct resource_i *r;
279
280	mtx_lock(rm->rm_mtx);
281	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
282		if (!(r->r_flags & RF_ALLOCATED)) {
283			*start = r->r_start;
284			*end = r->r_end;
285			mtx_unlock(rm->rm_mtx);
286			return (0);
287		}
288	}
289	mtx_unlock(rm->rm_mtx);
290	return (ENOENT);
291}
292
293int
294rman_last_free_region(struct rman *rm, u_long *start, u_long *end)
295{
296	struct resource_i *r;
297
298	mtx_lock(rm->rm_mtx);
299	TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) {
300		if (!(r->r_flags & RF_ALLOCATED)) {
301			*start = r->r_start;
302			*end = r->r_end;
303			mtx_unlock(rm->rm_mtx);
304			return (0);
305		}
306	}
307	mtx_unlock(rm->rm_mtx);
308	return (ENOENT);
309}
310
311/* Shrink or extend one or both ends of an allocated resource. */
312int
313rman_adjust_resource(struct resource *rr, u_long start, u_long end)
314{
315	struct	resource_i *r, *s, *t, *new;
316	struct	rman *rm;
317
318	/* Not supported for shared resources. */
319	r = rr->__r_i;
320	if (r->r_flags & (RF_TIMESHARE | RF_SHAREABLE))
321		return (EINVAL);
322
323	/*
324	 * This does not support wholesale moving of a resource.  At
325	 * least part of the desired new range must overlap with the
326	 * existing resource.
327	 */
328	if (end < r->r_start || r->r_end < start)
329		return (EINVAL);
330
331	/*
332	 * Find the two resource regions immediately adjacent to the
333	 * allocated resource.
334	 */
335	rm = r->r_rm;
336	mtx_lock(rm->rm_mtx);
337#ifdef INVARIANTS
338	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
339		if (s == r)
340			break;
341	}
342	if (s == NULL)
343		panic("resource not in list");
344#endif
345	s = TAILQ_PREV(r, resource_head, r_link);
346	t = TAILQ_NEXT(r, r_link);
347	KASSERT(s == NULL || s->r_end + 1 == r->r_start,
348	    ("prev resource mismatch"));
349	KASSERT(t == NULL || r->r_end + 1 == t->r_start,
350	    ("next resource mismatch"));
351
352	/*
353	 * See if the changes are permitted.  Shrinking is always allowed,
354	 * but growing requires sufficient room in the adjacent region.
355	 */
356	if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) ||
357	    s->r_start > start)) {
358		mtx_unlock(rm->rm_mtx);
359		return (EBUSY);
360	}
361	if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) ||
362	    t->r_end < end)) {
363		mtx_unlock(rm->rm_mtx);
364		return (EBUSY);
365	}
366
367	/*
368	 * While holding the lock, grow either end of the resource as
369	 * needed and shrink either end if the shrinking does not require
370	 * allocating a new resource.  We can safely drop the lock and then
371	 * insert a new range to handle the shrinking case afterwards.
372	 */
373	if (start < r->r_start ||
374	    (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) {
375		KASSERT(s->r_flags == 0, ("prev is busy"));
376		r->r_start = start;
377		if (s->r_start == start) {
378			TAILQ_REMOVE(&rm->rm_list, s, r_link);
379			free(s, M_RMAN);
380		} else
381			s->r_end = start - 1;
382	}
383	if (end > r->r_end ||
384	    (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) {
385		KASSERT(t->r_flags == 0, ("next is busy"));
386		r->r_end = end;
387		if (t->r_end == end) {
388			TAILQ_REMOVE(&rm->rm_list, t, r_link);
389			free(t, M_RMAN);
390		} else
391			t->r_start = end + 1;
392	}
393	mtx_unlock(rm->rm_mtx);
394
395	/*
396	 * Handle the shrinking cases that require allocating a new
397	 * resource to hold the newly-free region.  We have to recheck
398	 * if we still need this new region after acquiring the lock.
399	 */
400	if (start > r->r_start) {
401		new = int_alloc_resource(M_WAITOK);
402		new->r_start = r->r_start;
403		new->r_end = start - 1;
404		new->r_rm = rm;
405		mtx_lock(rm->rm_mtx);
406		r->r_start = start;
407		s = TAILQ_PREV(r, resource_head, r_link);
408		if (s != NULL && !(s->r_flags & RF_ALLOCATED)) {
409			s->r_end = start - 1;
410			free(new, M_RMAN);
411		} else
412			TAILQ_INSERT_BEFORE(r, new, r_link);
413		mtx_unlock(rm->rm_mtx);
414	}
415	if (end < r->r_end) {
416		new = int_alloc_resource(M_WAITOK);
417		new->r_start = end + 1;
418		new->r_end = r->r_end;
419		new->r_rm = rm;
420		mtx_lock(rm->rm_mtx);
421		r->r_end = end;
422		t = TAILQ_NEXT(r, r_link);
423		if (t != NULL && !(t->r_flags & RF_ALLOCATED)) {
424			t->r_start = end + 1;
425			free(new, M_RMAN);
426		} else
427			TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link);
428		mtx_unlock(rm->rm_mtx);
429	}
430	return (0);
431}
432
433struct resource *
434rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
435		      u_long count, u_long bound,  u_int flags,
436		      struct device *dev)
437{
438	u_int	want_activate;
439	struct	resource_i *r, *s, *rv;
440	u_long	rstart, rend, amask, bmask;
441
442	rv = NULL;
443
444	DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], "
445	       "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end,
446	       count, flags,
447	       dev == NULL ? "<null>" : device_get_nameunit(dev)));
448	want_activate = (flags & RF_ACTIVE);
449	flags &= ~RF_ACTIVE;
450
451	mtx_lock(rm->rm_mtx);
452
453	for (r = TAILQ_FIRST(&rm->rm_list);
454	     r && r->r_end < start;
455	     r = TAILQ_NEXT(r, r_link))
456		;
457
458	if (r == NULL) {
459		DPRINTF(("could not find a region\n"));
460		goto out;
461	}
462
463	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
464	/* If bound is 0, bmask will also be 0 */
465	bmask = ~(bound - 1);
466	/*
467	 * First try to find an acceptable totally-unshared region.
468	 */
469	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
470		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
471		if (s->r_start + count - 1 > end) {
472			DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n",
473			    s->r_start, end));
474			break;
475		}
476		if (s->r_flags & RF_ALLOCATED) {
477			DPRINTF(("region is allocated\n"));
478			continue;
479		}
480		rstart = ulmax(s->r_start, start);
481		/*
482		 * Try to find a region by adjusting to boundary and alignment
483		 * until both conditions are satisfied. This is not an optimal
484		 * algorithm, but in most cases it isn't really bad, either.
485		 */
486		do {
487			rstart = (rstart + amask) & ~amask;
488			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
489				rstart += bound - (rstart & ~bmask);
490		} while ((rstart & amask) != 0 && rstart < end &&
491		    rstart < s->r_end);
492		rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
493		if (rstart > rend) {
494			DPRINTF(("adjusted start exceeds end\n"));
495			continue;
496		}
497		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
498		       rstart, rend, (rend - rstart + 1), count));
499
500		if ((rend - rstart + 1) >= count) {
501			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
502			       rstart, rend, (rend - rstart + 1)));
503			if ((s->r_end - s->r_start + 1) == count) {
504				DPRINTF(("candidate region is entire chunk\n"));
505				rv = s;
506				rv->r_flags |= RF_ALLOCATED | flags;
507				rv->r_dev = dev;
508				goto out;
509			}
510
511			/*
512			 * If s->r_start < rstart and
513			 *    s->r_end > rstart + count - 1, then
514			 * we need to split the region into three pieces
515			 * (the middle one will get returned to the user).
516			 * Otherwise, we are allocating at either the
517			 * beginning or the end of s, so we only need to
518			 * split it in two.  The first case requires
519			 * two new allocations; the second requires but one.
520			 */
521			rv = int_alloc_resource(M_NOWAIT);
522			if (rv == NULL)
523				goto out;
524			rv->r_start = rstart;
525			rv->r_end = rstart + count - 1;
526			rv->r_flags = flags | RF_ALLOCATED;
527			rv->r_dev = dev;
528			rv->r_rm = rm;
529
530			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
531				DPRINTF(("splitting region in three parts: "
532				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
533				       s->r_start, rv->r_start - 1,
534				       rv->r_start, rv->r_end,
535				       rv->r_end + 1, s->r_end));
536				/*
537				 * We are allocating in the middle.
538				 */
539				r = int_alloc_resource(M_NOWAIT);
540				if (r == NULL) {
541					free(rv, M_RMAN);
542					rv = NULL;
543					goto out;
544				}
545				r->r_start = rv->r_end + 1;
546				r->r_end = s->r_end;
547				r->r_flags = s->r_flags;
548				r->r_rm = rm;
549				s->r_end = rv->r_start - 1;
550				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
551						     r_link);
552				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
553						     r_link);
554			} else if (s->r_start == rv->r_start) {
555				DPRINTF(("allocating from the beginning\n"));
556				/*
557				 * We are allocating at the beginning.
558				 */
559				s->r_start = rv->r_end + 1;
560				TAILQ_INSERT_BEFORE(s, rv, r_link);
561			} else {
562				DPRINTF(("allocating at the end\n"));
563				/*
564				 * We are allocating at the end.
565				 */
566				s->r_end = rv->r_start - 1;
567				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
568						     r_link);
569			}
570			goto out;
571		}
572	}
573
574	/*
575	 * Now find an acceptable shared region, if the client's requirements
576	 * allow sharing.  By our implementation restriction, a candidate
577	 * region must match exactly by both size and sharing type in order
578	 * to be considered compatible with the client's request.  (The
579	 * former restriction could probably be lifted without too much
580	 * additional work, but this does not seem warranted.)
581	 */
582	DPRINTF(("no unshared regions found\n"));
583	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
584		goto out;
585
586	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
587		if (s->r_start > end)
588			break;
589		if ((s->r_flags & flags) != flags)
590			continue;
591		rstart = ulmax(s->r_start, start);
592		rend = ulmin(s->r_end, ulmax(start + count - 1, end));
593		if (s->r_start >= start && s->r_end <= end
594		    && (s->r_end - s->r_start + 1) == count &&
595		    (s->r_start & amask) == 0 &&
596		    ((s->r_start ^ s->r_end) & bmask) == 0) {
597			rv = int_alloc_resource(M_NOWAIT);
598			if (rv == NULL)
599				goto out;
600			rv->r_start = s->r_start;
601			rv->r_end = s->r_end;
602			rv->r_flags = s->r_flags &
603				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
604			rv->r_dev = dev;
605			rv->r_rm = rm;
606			if (s->r_sharehead == NULL) {
607				s->r_sharehead = malloc(sizeof *s->r_sharehead,
608						M_RMAN, M_NOWAIT | M_ZERO);
609				if (s->r_sharehead == NULL) {
610					free(rv, M_RMAN);
611					rv = NULL;
612					goto out;
613				}
614				LIST_INIT(s->r_sharehead);
615				LIST_INSERT_HEAD(s->r_sharehead, s,
616						 r_sharelink);
617				s->r_flags |= RF_FIRSTSHARE;
618			}
619			rv->r_sharehead = s->r_sharehead;
620			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
621			goto out;
622		}
623	}
624
625	/*
626	 * We couldn't find anything.
627	 */
628out:
629	/*
630	 * If the user specified RF_ACTIVE in the initial flags,
631	 * which is reflected in `want_activate', we attempt to atomically
632	 * activate the resource.  If this fails, we release the resource
633	 * and indicate overall failure.  (This behavior probably doesn't
634	 * make sense for RF_TIMESHARE-type resources.)
635	 */
636	if (rv && want_activate) {
637		struct resource_i *whohas;
638		if (int_rman_activate_resource(rm, rv, &whohas)) {
639			int_rman_release_resource(rm, rv);
640			rv = NULL;
641		}
642	}
643
644	mtx_unlock(rm->rm_mtx);
645	return (rv == NULL ? NULL : &rv->r_r);
646}
647
648struct resource *
649rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
650		      u_int flags, struct device *dev)
651{
652
653	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
654	    dev));
655}
656
657static int
658int_rman_activate_resource(struct rman *rm, struct resource_i *r,
659			   struct resource_i **whohas)
660{
661	struct resource_i *s;
662	int ok;
663
664	/*
665	 * If we are not timesharing, then there is nothing much to do.
666	 * If we already have the resource, then there is nothing at all to do.
667	 * If we are not on a sharing list with anybody else, then there is
668	 * little to do.
669	 */
670	if ((r->r_flags & RF_TIMESHARE) == 0
671	    || (r->r_flags & RF_ACTIVE) != 0
672	    || r->r_sharehead == NULL) {
673		r->r_flags |= RF_ACTIVE;
674		return 0;
675	}
676
677	ok = 1;
678	for (s = LIST_FIRST(r->r_sharehead); s && ok;
679	     s = LIST_NEXT(s, r_sharelink)) {
680		if ((s->r_flags & RF_ACTIVE) != 0) {
681			ok = 0;
682			*whohas = s;
683		}
684	}
685	if (ok) {
686		r->r_flags |= RF_ACTIVE;
687		return 0;
688	}
689	return EBUSY;
690}
691
692int
693rman_activate_resource(struct resource *re)
694{
695	int rv;
696	struct resource_i *r, *whohas;
697	struct rman *rm;
698
699	r = re->__r_i;
700	rm = r->r_rm;
701	mtx_lock(rm->rm_mtx);
702	rv = int_rman_activate_resource(rm, r, &whohas);
703	mtx_unlock(rm->rm_mtx);
704	return rv;
705}
706
707int
708rman_await_resource(struct resource *re, int pri, int timo)
709{
710	int	rv;
711	struct	resource_i *r, *whohas;
712	struct	rman *rm;
713
714	r = re->__r_i;
715	rm = r->r_rm;
716	mtx_lock(rm->rm_mtx);
717	for (;;) {
718		rv = int_rman_activate_resource(rm, r, &whohas);
719		if (rv != EBUSY)
720			return (rv);	/* returns with mutex held */
721
722		if (r->r_sharehead == NULL)
723			panic("rman_await_resource");
724		whohas->r_flags |= RF_WANTED;
725		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
726		if (rv) {
727			mtx_unlock(rm->rm_mtx);
728			return (rv);
729		}
730	}
731}
732
733static int
734int_rman_deactivate_resource(struct resource_i *r)
735{
736
737	r->r_flags &= ~RF_ACTIVE;
738	if (r->r_flags & RF_WANTED) {
739		r->r_flags &= ~RF_WANTED;
740		wakeup(r->r_sharehead);
741	}
742	return 0;
743}
744
745int
746rman_deactivate_resource(struct resource *r)
747{
748	struct	rman *rm;
749
750	rm = r->__r_i->r_rm;
751	mtx_lock(rm->rm_mtx);
752	int_rman_deactivate_resource(r->__r_i);
753	mtx_unlock(rm->rm_mtx);
754	return 0;
755}
756
757static int
758int_rman_release_resource(struct rman *rm, struct resource_i *r)
759{
760	struct	resource_i *s, *t;
761
762	if (r->r_flags & RF_ACTIVE)
763		int_rman_deactivate_resource(r);
764
765	/*
766	 * Check for a sharing list first.  If there is one, then we don't
767	 * have to think as hard.
768	 */
769	if (r->r_sharehead) {
770		/*
771		 * If a sharing list exists, then we know there are at
772		 * least two sharers.
773		 *
774		 * If we are in the main circleq, appoint someone else.
775		 */
776		LIST_REMOVE(r, r_sharelink);
777		s = LIST_FIRST(r->r_sharehead);
778		if (r->r_flags & RF_FIRSTSHARE) {
779			s->r_flags |= RF_FIRSTSHARE;
780			TAILQ_INSERT_BEFORE(r, s, r_link);
781			TAILQ_REMOVE(&rm->rm_list, r, r_link);
782		}
783
784		/*
785		 * Make sure that the sharing list goes away completely
786		 * if the resource is no longer being shared at all.
787		 */
788		if (LIST_NEXT(s, r_sharelink) == NULL) {
789			free(s->r_sharehead, M_RMAN);
790			s->r_sharehead = NULL;
791			s->r_flags &= ~RF_FIRSTSHARE;
792		}
793		goto out;
794	}
795
796	/*
797	 * Look at the adjacent resources in the list and see if our
798	 * segment can be merged with any of them.  If either of the
799	 * resources is allocated or is not exactly adjacent then they
800	 * cannot be merged with our segment.
801	 */
802	s = TAILQ_PREV(r, resource_head, r_link);
803	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
804	    s->r_end + 1 != r->r_start))
805		s = NULL;
806	t = TAILQ_NEXT(r, r_link);
807	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
808	    r->r_end + 1 != t->r_start))
809		t = NULL;
810
811	if (s != NULL && t != NULL) {
812		/*
813		 * Merge all three segments.
814		 */
815		s->r_end = t->r_end;
816		TAILQ_REMOVE(&rm->rm_list, r, r_link);
817		TAILQ_REMOVE(&rm->rm_list, t, r_link);
818		free(t, M_RMAN);
819	} else if (s != NULL) {
820		/*
821		 * Merge previous segment with ours.
822		 */
823		s->r_end = r->r_end;
824		TAILQ_REMOVE(&rm->rm_list, r, r_link);
825	} else if (t != NULL) {
826		/*
827		 * Merge next segment with ours.
828		 */
829		t->r_start = r->r_start;
830		TAILQ_REMOVE(&rm->rm_list, r, r_link);
831	} else {
832		/*
833		 * At this point, we know there is nothing we
834		 * can potentially merge with, because on each
835		 * side, there is either nothing there or what is
836		 * there is still allocated.  In that case, we don't
837		 * want to remove r from the list; we simply want to
838		 * change it to an unallocated region and return
839		 * without freeing anything.
840		 */
841		r->r_flags &= ~RF_ALLOCATED;
842		r->r_dev = NULL;
843		return 0;
844	}
845
846out:
847	free(r, M_RMAN);
848	return 0;
849}
850
851int
852rman_release_resource(struct resource *re)
853{
854	int	rv;
855	struct	resource_i *r;
856	struct	rman *rm;
857
858	r = re->__r_i;
859	rm = r->r_rm;
860	mtx_lock(rm->rm_mtx);
861	rv = int_rman_release_resource(rm, r);
862	mtx_unlock(rm->rm_mtx);
863	return (rv);
864}
865
866uint32_t
867rman_make_alignment_flags(uint32_t size)
868{
869	int	i;
870
871	/*
872	 * Find the hightest bit set, and add one if more than one bit
873	 * set.  We're effectively computing the ceil(log2(size)) here.
874	 */
875	for (i = 31; i > 0; i--)
876		if ((1 << i) & size)
877			break;
878	if (~(1 << i) & size)
879		i++;
880
881	return(RF_ALIGNMENT_LOG2(i));
882}
883
884void
885rman_set_start(struct resource *r, u_long start)
886{
887	r->__r_i->r_start = start;
888}
889
890u_long
891rman_get_start(struct resource *r)
892{
893	return (r->__r_i->r_start);
894}
895
896void
897rman_set_end(struct resource *r, u_long end)
898{
899	r->__r_i->r_end = end;
900}
901
902u_long
903rman_get_end(struct resource *r)
904{
905	return (r->__r_i->r_end);
906}
907
908u_long
909rman_get_size(struct resource *r)
910{
911	return (r->__r_i->r_end - r->__r_i->r_start + 1);
912}
913
914u_int
915rman_get_flags(struct resource *r)
916{
917	return (r->__r_i->r_flags);
918}
919
920void
921rman_set_virtual(struct resource *r, void *v)
922{
923	r->__r_i->r_virtual = v;
924}
925
926void *
927rman_get_virtual(struct resource *r)
928{
929	return (r->__r_i->r_virtual);
930}
931
932void
933rman_set_bustag(struct resource *r, bus_space_tag_t t)
934{
935	r->r_bustag = t;
936}
937
938bus_space_tag_t
939rman_get_bustag(struct resource *r)
940{
941	return (r->r_bustag);
942}
943
944void
945rman_set_bushandle(struct resource *r, bus_space_handle_t h)
946{
947	r->r_bushandle = h;
948}
949
950bus_space_handle_t
951rman_get_bushandle(struct resource *r)
952{
953	return (r->r_bushandle);
954}
955
956void
957rman_set_rid(struct resource *r, int rid)
958{
959	r->__r_i->r_rid = rid;
960}
961
962int
963rman_get_rid(struct resource *r)
964{
965	return (r->__r_i->r_rid);
966}
967
968void
969rman_set_device(struct resource *r, struct device *dev)
970{
971	r->__r_i->r_dev = dev;
972}
973
974struct device *
975rman_get_device(struct resource *r)
976{
977	return (r->__r_i->r_dev);
978}
979
980int
981rman_is_region_manager(struct resource *r, struct rman *rm)
982{
983
984	return (r->__r_i->r_rm == rm);
985}
986
987/*
988 * Sysctl interface for scanning the resource lists.
989 *
990 * We take two input parameters; the index into the list of resource
991 * managers, and the resource offset into the list.
992 */
993static int
994sysctl_rman(SYSCTL_HANDLER_ARGS)
995{
996	int			*name = (int *)arg1;
997	u_int			namelen = arg2;
998	int			rman_idx, res_idx;
999	struct rman		*rm;
1000	struct resource_i	*res;
1001	struct resource_i	*sres;
1002	struct u_rman		urm;
1003	struct u_resource	ures;
1004	int			error;
1005
1006	if (namelen != 3)
1007		return (EINVAL);
1008
1009	if (bus_data_generation_check(name[0]))
1010		return (EINVAL);
1011	rman_idx = name[1];
1012	res_idx = name[2];
1013
1014	/*
1015	 * Find the indexed resource manager
1016	 */
1017	mtx_lock(&rman_mtx);
1018	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1019		if (rman_idx-- == 0)
1020			break;
1021	}
1022	mtx_unlock(&rman_mtx);
1023	if (rm == NULL)
1024		return (ENOENT);
1025
1026	/*
1027	 * If the resource index is -1, we want details on the
1028	 * resource manager.
1029	 */
1030	if (res_idx == -1) {
1031		bzero(&urm, sizeof(urm));
1032		urm.rm_handle = (uintptr_t)rm;
1033		if (rm->rm_descr != NULL)
1034			strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
1035		urm.rm_start = rm->rm_start;
1036		urm.rm_size = rm->rm_end - rm->rm_start + 1;
1037		urm.rm_type = rm->rm_type;
1038
1039		error = SYSCTL_OUT(req, &urm, sizeof(urm));
1040		return (error);
1041	}
1042
1043	/*
1044	 * Find the indexed resource and return it.
1045	 */
1046	mtx_lock(rm->rm_mtx);
1047	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
1048		if (res->r_sharehead != NULL) {
1049			LIST_FOREACH(sres, res->r_sharehead, r_sharelink)
1050				if (res_idx-- == 0) {
1051					res = sres;
1052					goto found;
1053				}
1054		}
1055		else if (res_idx-- == 0)
1056				goto found;
1057	}
1058	mtx_unlock(rm->rm_mtx);
1059	return (ENOENT);
1060
1061found:
1062	bzero(&ures, sizeof(ures));
1063	ures.r_handle = (uintptr_t)res;
1064	ures.r_parent = (uintptr_t)res->r_rm;
1065	ures.r_device = (uintptr_t)res->r_dev;
1066	if (res->r_dev != NULL) {
1067		if (device_get_name(res->r_dev) != NULL) {
1068			snprintf(ures.r_devname, RM_TEXTLEN,
1069			    "%s%d",
1070			    device_get_name(res->r_dev),
1071			    device_get_unit(res->r_dev));
1072		} else {
1073			strlcpy(ures.r_devname, "nomatch",
1074			    RM_TEXTLEN);
1075		}
1076	} else {
1077		ures.r_devname[0] = '\0';
1078	}
1079	ures.r_start = res->r_start;
1080	ures.r_size = res->r_end - res->r_start + 1;
1081	ures.r_flags = res->r_flags;
1082
1083	mtx_unlock(rm->rm_mtx);
1084	error = SYSCTL_OUT(req, &ures, sizeof(ures));
1085	return (error);
1086}
1087
1088SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
1089    "kernel resource manager");
1090
1091#ifdef DDB
1092static void
1093dump_rman_header(struct rman *rm)
1094{
1095
1096	if (db_pager_quit)
1097		return;
1098	db_printf("rman %p: %s (0x%lx-0x%lx full range)\n",
1099	    rm, rm->rm_descr, rm->rm_start, rm->rm_end);
1100}
1101
1102static void
1103dump_rman(struct rman *rm)
1104{
1105	struct resource_i *r;
1106	const char *devname;
1107
1108	if (db_pager_quit)
1109		return;
1110	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
1111		if (r->r_dev != NULL) {
1112			devname = device_get_nameunit(r->r_dev);
1113			if (devname == NULL)
1114				devname = "nomatch";
1115		} else
1116			devname = NULL;
1117		db_printf("    0x%lx-0x%lx ", r->r_start, r->r_end);
1118		if (devname != NULL)
1119			db_printf("(%s)\n", devname);
1120		else
1121			db_printf("----\n");
1122		if (db_pager_quit)
1123			return;
1124	}
1125}
1126
1127DB_SHOW_COMMAND(rman, db_show_rman)
1128{
1129
1130	if (have_addr) {
1131		dump_rman_header((struct rman *)addr);
1132		dump_rman((struct rman *)addr);
1133	}
1134}
1135
1136DB_SHOW_COMMAND(rmans, db_show_rmans)
1137{
1138	struct rman *rm;
1139
1140	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1141		dump_rman_header(rm);
1142	}
1143}
1144
1145DB_SHOW_ALL_COMMAND(rman, db_show_all_rman)
1146{
1147	struct rman *rm;
1148
1149	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1150		dump_rman_header(rm);
1151		dump_rman(rm);
1152	}
1153}
1154DB_SHOW_ALIAS(allrman, db_show_all_rman);
1155#endif
1156