subr_rman.c revision 164881
1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * The kernel resource manager.  This code is responsible for keeping track
32 * of hardware resources which are apportioned out to various drivers.
33 * It does not actually assign those resources, and it is not expected
34 * that end-device drivers will call into this code directly.  Rather,
35 * the code which implements the buses that those devices are attached to,
36 * and the code which manages CPU resources, will call this code, and the
37 * end-device drivers will make upcalls to that code to actually perform
38 * the allocation.
39 *
40 * There are two sorts of resources managed by this code.  The first is
41 * the more familiar array (RMAN_ARRAY) type; resources in this class
42 * consist of a sequence of individually-allocatable objects which have
43 * been numbered in some well-defined order.  Most of the resources
44 * are of this type, as it is the most familiar.  The second type is
45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46 * resources in which each instance is indistinguishable from every
47 * other instance).  The principal anticipated application of gauges
48 * is in the context of power consumption, where a bus may have a specific
49 * power budget which all attached devices share.  RMAN_GAUGE is not
50 * implemented yet.
51 *
52 * For array resources, we make one simplifying assumption: two clients
53 * sharing the same resource must use the same range of indices.  That
54 * is to say, sharing of overlapping-but-not-identical regions is not
55 * permitted.
56 */
57
58#include <sys/cdefs.h>
59__FBSDID("$FreeBSD: head/sys/kern/subr_rman.c 164881 2006-12-04 16:45:23Z jhb $");
60
61#include <sys/param.h>
62#include <sys/systm.h>
63#include <sys/kernel.h>
64#include <sys/limits.h>
65#include <sys/lock.h>
66#include <sys/malloc.h>
67#include <sys/mutex.h>
68#include <sys/bus.h>		/* XXX debugging */
69#include <machine/bus.h>
70#include <sys/rman.h>
71#include <sys/sysctl.h>
72
73/*
74 * We use a linked list rather than a bitmap because we need to be able to
75 * represent potentially huge objects (like all of a processor's physical
76 * address space).  That is also why the indices are defined to have type
77 * `unsigned long' -- that being the largest integral type in ISO C (1990).
78 * The 1999 version of C allows `long long'; we may need to switch to that
79 * at some point in the future, particularly if we want to support 36-bit
80 * addresses on IA32 hardware.
81 */
82struct resource_i {
83	struct resource		r_r;
84	TAILQ_ENTRY(resource_i)	r_link;
85	LIST_ENTRY(resource_i)	r_sharelink;
86	LIST_HEAD(, resource_i)	*r_sharehead;
87	u_long	r_start;	/* index of the first entry in this resource */
88	u_long	r_end;		/* index of the last entry (inclusive) */
89	u_int	r_flags;
90	void	*r_virtual;	/* virtual address of this resource */
91	struct	device *r_dev;	/* device which has allocated this resource */
92	struct	rman *r_rm;	/* resource manager from whence this came */
93	int	r_rid;		/* optional rid for this resource. */
94};
95
96int     rman_debug = 0;
97TUNABLE_INT("debug.rman_debug", &rman_debug);
98SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
99    &rman_debug, 0, "rman debug");
100
101#define DPRINTF(params) if (rman_debug) printf params
102
103static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
104
105struct	rman_head rman_head;
106static	struct mtx rman_mtx; /* mutex to protect rman_head */
107static	int int_rman_activate_resource(struct rman *rm, struct resource_i *r,
108				       struct resource_i **whohas);
109static	int int_rman_deactivate_resource(struct resource_i *r);
110static	int int_rman_release_resource(struct rman *rm, struct resource_i *r);
111
112static __inline struct resource_i *
113int_alloc_resource(int malloc_flag)
114{
115	struct resource_i *r;
116
117	r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
118	if (r != NULL) {
119		r->r_r.__r_i = r;
120	}
121	return (r);
122}
123
124int
125rman_init(struct rman *rm)
126{
127	static int once = 0;
128
129	if (once == 0) {
130		once = 1;
131		TAILQ_INIT(&rman_head);
132		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
133	}
134
135	if (rm->rm_type == RMAN_UNINIT)
136		panic("rman_init");
137	if (rm->rm_type == RMAN_GAUGE)
138		panic("implement RMAN_GAUGE");
139
140	TAILQ_INIT(&rm->rm_list);
141	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
142	if (rm->rm_mtx == NULL)
143		return ENOMEM;
144	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
145
146	mtx_lock(&rman_mtx);
147	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
148	mtx_unlock(&rman_mtx);
149	return 0;
150}
151
152/*
153 * NB: this interface is not robust against programming errors which
154 * add multiple copies of the same region.
155 */
156int
157rman_manage_region(struct rman *rm, u_long start, u_long end)
158{
159	struct resource_i *r, *s, *t;
160
161	DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
162	    rm->rm_descr, start, end));
163	r = int_alloc_resource(M_NOWAIT);
164	if (r == NULL)
165		return ENOMEM;
166	r->r_start = start;
167	r->r_end = end;
168	r->r_rm = rm;
169
170	mtx_lock(rm->rm_mtx);
171
172	/* Skip entries before us. */
173	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
174		if (s->r_end == ULONG_MAX)
175			break;
176		if (s->r_end + 1 >= r->r_start)
177			break;
178	}
179
180	/* If we ran off the end of the list, insert at the tail. */
181	if (s == NULL) {
182		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
183	} else {
184		/* Check for any overlap with the current region. */
185		if (r->r_start <= s->r_end && r->r_end >= s->r_start)
186			return EBUSY;
187
188		/* Check for any overlap with the next region. */
189		t = TAILQ_NEXT(s, r_link);
190		if (t && r->r_start <= t->r_end && r->r_end >= t->r_start)
191			return EBUSY;
192
193		/*
194		 * See if this region can be merged with the next region.  If
195		 * not, clear the pointer.
196		 */
197		if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
198			t = NULL;
199
200		/* See if we can merge with the current region. */
201		if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
202			/* Can we merge all 3 regions? */
203			if (t != NULL) {
204				s->r_end = t->r_end;
205				TAILQ_REMOVE(&rm->rm_list, t, r_link);
206				free(r, M_RMAN);
207				free(t, M_RMAN);
208			} else {
209				s->r_end = r->r_end;
210				free(r, M_RMAN);
211			}
212		} else {
213			/* Can we merge with just the next region? */
214			if (t != NULL) {
215				t->r_start = r->r_start;
216				free(r, M_RMAN);
217			} else
218				TAILQ_INSERT_BEFORE(s, r, r_link);
219		}
220	}
221
222	mtx_unlock(rm->rm_mtx);
223	return 0;
224}
225
226int
227rman_init_from_resource(struct rman *rm, struct resource *r)
228{
229	int rv;
230
231	if ((rv = rman_init(rm)) != 0)
232		return (rv);
233	return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
234}
235
236int
237rman_fini(struct rman *rm)
238{
239	struct resource_i *r;
240
241	mtx_lock(rm->rm_mtx);
242	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
243		if (r->r_flags & RF_ALLOCATED) {
244			mtx_unlock(rm->rm_mtx);
245			return EBUSY;
246		}
247	}
248
249	/*
250	 * There really should only be one of these if we are in this
251	 * state and the code is working properly, but it can't hurt.
252	 */
253	while (!TAILQ_EMPTY(&rm->rm_list)) {
254		r = TAILQ_FIRST(&rm->rm_list);
255		TAILQ_REMOVE(&rm->rm_list, r, r_link);
256		free(r, M_RMAN);
257	}
258	mtx_unlock(rm->rm_mtx);
259	mtx_lock(&rman_mtx);
260	TAILQ_REMOVE(&rman_head, rm, rm_link);
261	mtx_unlock(&rman_mtx);
262	mtx_destroy(rm->rm_mtx);
263	free(rm->rm_mtx, M_RMAN);
264
265	return 0;
266}
267
268struct resource *
269rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
270		      u_long count, u_long bound,  u_int flags,
271		      struct device *dev)
272{
273	u_int	want_activate;
274	struct	resource_i *r, *s, *rv;
275	u_long	rstart, rend, amask, bmask;
276
277	rv = NULL;
278
279	DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], "
280	       "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end,
281	       count, flags,
282	       dev == NULL ? "<null>" : device_get_nameunit(dev)));
283	want_activate = (flags & RF_ACTIVE);
284	flags &= ~RF_ACTIVE;
285
286	mtx_lock(rm->rm_mtx);
287
288	for (r = TAILQ_FIRST(&rm->rm_list);
289	     r && r->r_end < start;
290	     r = TAILQ_NEXT(r, r_link))
291		;
292
293	if (r == NULL) {
294		DPRINTF(("could not find a region\n"));
295		goto out;
296	}
297
298	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
299	/* If bound is 0, bmask will also be 0 */
300	bmask = ~(bound - 1);
301	/*
302	 * First try to find an acceptable totally-unshared region.
303	 */
304	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
305		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
306		if (s->r_start + count - 1 > end) {
307			DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n",
308			    s->r_start, end));
309			break;
310		}
311		if (s->r_flags & RF_ALLOCATED) {
312			DPRINTF(("region is allocated\n"));
313			continue;
314		}
315		rstart = ulmax(s->r_start, start);
316		/*
317		 * Try to find a region by adjusting to boundary and alignment
318		 * until both conditions are satisfied. This is not an optimal
319		 * algorithm, but in most cases it isn't really bad, either.
320		 */
321		do {
322			rstart = (rstart + amask) & ~amask;
323			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
324				rstart += bound - (rstart & ~bmask);
325		} while ((rstart & amask) != 0 && rstart < end &&
326		    rstart < s->r_end);
327		rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
328		if (rstart > rend) {
329			DPRINTF(("adjusted start exceeds end\n"));
330			continue;
331		}
332		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
333		       rstart, rend, (rend - rstart + 1), count));
334
335		if ((rend - rstart + 1) >= count) {
336			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
337			       rstart, rend, (rend - rstart + 1)));
338			if ((s->r_end - s->r_start + 1) == count) {
339				DPRINTF(("candidate region is entire chunk\n"));
340				rv = s;
341				rv->r_flags |= RF_ALLOCATED | flags;
342				rv->r_dev = dev;
343				goto out;
344			}
345
346			/*
347			 * If s->r_start < rstart and
348			 *    s->r_end > rstart + count - 1, then
349			 * we need to split the region into three pieces
350			 * (the middle one will get returned to the user).
351			 * Otherwise, we are allocating at either the
352			 * beginning or the end of s, so we only need to
353			 * split it in two.  The first case requires
354			 * two new allocations; the second requires but one.
355			 */
356			rv = int_alloc_resource(M_NOWAIT);
357			if (rv == NULL)
358				goto out;
359			rv->r_start = rstart;
360			rv->r_end = rstart + count - 1;
361			rv->r_flags = flags | RF_ALLOCATED;
362			rv->r_dev = dev;
363			rv->r_rm = rm;
364
365			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
366				DPRINTF(("splitting region in three parts: "
367				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
368				       s->r_start, rv->r_start - 1,
369				       rv->r_start, rv->r_end,
370				       rv->r_end + 1, s->r_end));
371				/*
372				 * We are allocating in the middle.
373				 */
374				r = int_alloc_resource(M_NOWAIT);
375				if (r == NULL) {
376					free(rv, M_RMAN);
377					rv = NULL;
378					goto out;
379				}
380				r->r_start = rv->r_end + 1;
381				r->r_end = s->r_end;
382				r->r_flags = s->r_flags;
383				r->r_rm = rm;
384				s->r_end = rv->r_start - 1;
385				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
386						     r_link);
387				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
388						     r_link);
389			} else if (s->r_start == rv->r_start) {
390				DPRINTF(("allocating from the beginning\n"));
391				/*
392				 * We are allocating at the beginning.
393				 */
394				s->r_start = rv->r_end + 1;
395				TAILQ_INSERT_BEFORE(s, rv, r_link);
396			} else {
397				DPRINTF(("allocating at the end\n"));
398				/*
399				 * We are allocating at the end.
400				 */
401				s->r_end = rv->r_start - 1;
402				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
403						     r_link);
404			}
405			goto out;
406		}
407	}
408
409	/*
410	 * Now find an acceptable shared region, if the client's requirements
411	 * allow sharing.  By our implementation restriction, a candidate
412	 * region must match exactly by both size and sharing type in order
413	 * to be considered compatible with the client's request.  (The
414	 * former restriction could probably be lifted without too much
415	 * additional work, but this does not seem warranted.)
416	 */
417	DPRINTF(("no unshared regions found\n"));
418	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
419		goto out;
420
421	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
422		if (s->r_start > end)
423			break;
424		if ((s->r_flags & flags) != flags)
425			continue;
426		rstart = ulmax(s->r_start, start);
427		rend = ulmin(s->r_end, ulmax(start + count - 1, end));
428		if (s->r_start >= start && s->r_end <= end
429		    && (s->r_end - s->r_start + 1) == count &&
430		    (s->r_start & amask) == 0 &&
431		    ((s->r_start ^ s->r_end) & bmask) == 0) {
432			rv = int_alloc_resource(M_NOWAIT);
433			if (rv == NULL)
434				goto out;
435			rv->r_start = s->r_start;
436			rv->r_end = s->r_end;
437			rv->r_flags = s->r_flags &
438				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
439			rv->r_dev = dev;
440			rv->r_rm = rm;
441			if (s->r_sharehead == NULL) {
442				s->r_sharehead = malloc(sizeof *s->r_sharehead,
443						M_RMAN, M_NOWAIT | M_ZERO);
444				if (s->r_sharehead == NULL) {
445					free(rv, M_RMAN);
446					rv = NULL;
447					goto out;
448				}
449				LIST_INIT(s->r_sharehead);
450				LIST_INSERT_HEAD(s->r_sharehead, s,
451						 r_sharelink);
452				s->r_flags |= RF_FIRSTSHARE;
453			}
454			rv->r_sharehead = s->r_sharehead;
455			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
456			goto out;
457		}
458	}
459
460	/*
461	 * We couldn't find anything.
462	 */
463out:
464	/*
465	 * If the user specified RF_ACTIVE in the initial flags,
466	 * which is reflected in `want_activate', we attempt to atomically
467	 * activate the resource.  If this fails, we release the resource
468	 * and indicate overall failure.  (This behavior probably doesn't
469	 * make sense for RF_TIMESHARE-type resources.)
470	 */
471	if (rv && want_activate) {
472		struct resource_i *whohas;
473		if (int_rman_activate_resource(rm, rv, &whohas)) {
474			int_rman_release_resource(rm, rv);
475			rv = NULL;
476		}
477	}
478
479	mtx_unlock(rm->rm_mtx);
480	return (rv == NULL ? NULL : &rv->r_r);
481}
482
483struct resource *
484rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
485		      u_int flags, struct device *dev)
486{
487
488	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
489	    dev));
490}
491
492static int
493int_rman_activate_resource(struct rman *rm, struct resource_i *r,
494			   struct resource_i **whohas)
495{
496	struct resource_i *s;
497	int ok;
498
499	/*
500	 * If we are not timesharing, then there is nothing much to do.
501	 * If we already have the resource, then there is nothing at all to do.
502	 * If we are not on a sharing list with anybody else, then there is
503	 * little to do.
504	 */
505	if ((r->r_flags & RF_TIMESHARE) == 0
506	    || (r->r_flags & RF_ACTIVE) != 0
507	    || r->r_sharehead == NULL) {
508		r->r_flags |= RF_ACTIVE;
509		return 0;
510	}
511
512	ok = 1;
513	for (s = LIST_FIRST(r->r_sharehead); s && ok;
514	     s = LIST_NEXT(s, r_sharelink)) {
515		if ((s->r_flags & RF_ACTIVE) != 0) {
516			ok = 0;
517			*whohas = s;
518		}
519	}
520	if (ok) {
521		r->r_flags |= RF_ACTIVE;
522		return 0;
523	}
524	return EBUSY;
525}
526
527int
528rman_activate_resource(struct resource *re)
529{
530	int rv;
531	struct resource_i *r, *whohas;
532	struct rman *rm;
533
534	r = re->__r_i;
535	rm = r->r_rm;
536	mtx_lock(rm->rm_mtx);
537	rv = int_rman_activate_resource(rm, r, &whohas);
538	mtx_unlock(rm->rm_mtx);
539	return rv;
540}
541
542int
543rman_await_resource(struct resource *re, int pri, int timo)
544{
545	int	rv;
546	struct	resource_i *r, *whohas;
547	struct	rman *rm;
548
549	r = re->__r_i;
550	rm = r->r_rm;
551	mtx_lock(rm->rm_mtx);
552	for (;;) {
553		rv = int_rman_activate_resource(rm, r, &whohas);
554		if (rv != EBUSY)
555			return (rv);	/* returns with mutex held */
556
557		if (r->r_sharehead == NULL)
558			panic("rman_await_resource");
559		whohas->r_flags |= RF_WANTED;
560		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
561		if (rv) {
562			mtx_unlock(rm->rm_mtx);
563			return (rv);
564		}
565	}
566}
567
568static int
569int_rman_deactivate_resource(struct resource_i *r)
570{
571
572	r->r_flags &= ~RF_ACTIVE;
573	if (r->r_flags & RF_WANTED) {
574		r->r_flags &= ~RF_WANTED;
575		wakeup(r->r_sharehead);
576	}
577	return 0;
578}
579
580int
581rman_deactivate_resource(struct resource *r)
582{
583	struct	rman *rm;
584
585	rm = r->__r_i->r_rm;
586	mtx_lock(rm->rm_mtx);
587	int_rman_deactivate_resource(r->__r_i);
588	mtx_unlock(rm->rm_mtx);
589	return 0;
590}
591
592static int
593int_rman_release_resource(struct rman *rm, struct resource_i *r)
594{
595	struct	resource_i *s, *t;
596
597	if (r->r_flags & RF_ACTIVE)
598		int_rman_deactivate_resource(r);
599
600	/*
601	 * Check for a sharing list first.  If there is one, then we don't
602	 * have to think as hard.
603	 */
604	if (r->r_sharehead) {
605		/*
606		 * If a sharing list exists, then we know there are at
607		 * least two sharers.
608		 *
609		 * If we are in the main circleq, appoint someone else.
610		 */
611		LIST_REMOVE(r, r_sharelink);
612		s = LIST_FIRST(r->r_sharehead);
613		if (r->r_flags & RF_FIRSTSHARE) {
614			s->r_flags |= RF_FIRSTSHARE;
615			TAILQ_INSERT_BEFORE(r, s, r_link);
616			TAILQ_REMOVE(&rm->rm_list, r, r_link);
617		}
618
619		/*
620		 * Make sure that the sharing list goes away completely
621		 * if the resource is no longer being shared at all.
622		 */
623		if (LIST_NEXT(s, r_sharelink) == NULL) {
624			free(s->r_sharehead, M_RMAN);
625			s->r_sharehead = NULL;
626			s->r_flags &= ~RF_FIRSTSHARE;
627		}
628		goto out;
629	}
630
631	/*
632	 * Look at the adjacent resources in the list and see if our
633	 * segment can be merged with any of them.  If either of the
634	 * resources is allocated or is not exactly adjacent then they
635	 * cannot be merged with our segment.
636	 */
637	s = TAILQ_PREV(r, resource_head, r_link);
638	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
639	    s->r_end + 1 != r->r_start))
640		s = NULL;
641	t = TAILQ_NEXT(r, r_link);
642	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
643	    r->r_end + 1 != t->r_start))
644		t = NULL;
645
646	if (s != NULL && t != NULL) {
647		/*
648		 * Merge all three segments.
649		 */
650		s->r_end = t->r_end;
651		TAILQ_REMOVE(&rm->rm_list, r, r_link);
652		TAILQ_REMOVE(&rm->rm_list, t, r_link);
653		free(t, M_RMAN);
654	} else if (s != NULL) {
655		/*
656		 * Merge previous segment with ours.
657		 */
658		s->r_end = r->r_end;
659		TAILQ_REMOVE(&rm->rm_list, r, r_link);
660	} else if (t != NULL) {
661		/*
662		 * Merge next segment with ours.
663		 */
664		t->r_start = r->r_start;
665		TAILQ_REMOVE(&rm->rm_list, r, r_link);
666	} else {
667		/*
668		 * At this point, we know there is nothing we
669		 * can potentially merge with, because on each
670		 * side, there is either nothing there or what is
671		 * there is still allocated.  In that case, we don't
672		 * want to remove r from the list; we simply want to
673		 * change it to an unallocated region and return
674		 * without freeing anything.
675		 */
676		r->r_flags &= ~RF_ALLOCATED;
677		return 0;
678	}
679
680out:
681	free(r, M_RMAN);
682	return 0;
683}
684
685int
686rman_release_resource(struct resource *re)
687{
688	int	rv;
689	struct	resource_i *r;
690	struct	rman *rm;
691
692	r = re->__r_i;
693	rm = r->r_rm;
694	mtx_lock(rm->rm_mtx);
695	rv = int_rman_release_resource(rm, r);
696	mtx_unlock(rm->rm_mtx);
697	return (rv);
698}
699
700uint32_t
701rman_make_alignment_flags(uint32_t size)
702{
703	int	i;
704
705	/*
706	 * Find the hightest bit set, and add one if more than one bit
707	 * set.  We're effectively computing the ceil(log2(size)) here.
708	 */
709	for (i = 31; i > 0; i--)
710		if ((1 << i) & size)
711			break;
712	if (~(1 << i) & size)
713		i++;
714
715	return(RF_ALIGNMENT_LOG2(i));
716}
717
718u_long
719rman_get_start(struct resource *r)
720{
721	return (r->__r_i->r_start);
722}
723
724u_long
725rman_get_end(struct resource *r)
726{
727	return (r->__r_i->r_end);
728}
729
730u_long
731rman_get_size(struct resource *r)
732{
733	return (r->__r_i->r_end - r->__r_i->r_start + 1);
734}
735
736u_int
737rman_get_flags(struct resource *r)
738{
739	return (r->__r_i->r_flags);
740}
741
742void
743rman_set_virtual(struct resource *r, void *v)
744{
745	r->__r_i->r_virtual = v;
746}
747
748void *
749rman_get_virtual(struct resource *r)
750{
751	return (r->__r_i->r_virtual);
752}
753
754void
755rman_set_bustag(struct resource *r, bus_space_tag_t t)
756{
757	r->r_bustag = t;
758}
759
760bus_space_tag_t
761rman_get_bustag(struct resource *r)
762{
763	return (r->r_bustag);
764}
765
766void
767rman_set_bushandle(struct resource *r, bus_space_handle_t h)
768{
769	r->r_bushandle = h;
770}
771
772bus_space_handle_t
773rman_get_bushandle(struct resource *r)
774{
775	return (r->r_bushandle);
776}
777
778void
779rman_set_rid(struct resource *r, int rid)
780{
781	r->__r_i->r_rid = rid;
782}
783
784void
785rman_set_start(struct resource *r, u_long start)
786{
787	r->__r_i->r_start = start;
788}
789
790void
791rman_set_end(struct resource *r, u_long end)
792{
793	r->__r_i->r_end = end;
794}
795
796int
797rman_get_rid(struct resource *r)
798{
799	return (r->__r_i->r_rid);
800}
801
802struct device *
803rman_get_device(struct resource *r)
804{
805	return (r->__r_i->r_dev);
806}
807
808void
809rman_set_device(struct resource *r, struct device *dev)
810{
811	r->__r_i->r_dev = dev;
812}
813
814int
815rman_is_region_manager(struct resource *r, struct rman *rm)
816{
817
818	return (r->__r_i->r_rm == rm);
819}
820
821/*
822 * Sysctl interface for scanning the resource lists.
823 *
824 * We take two input parameters; the index into the list of resource
825 * managers, and the resource offset into the list.
826 */
827static int
828sysctl_rman(SYSCTL_HANDLER_ARGS)
829{
830	int			*name = (int *)arg1;
831	u_int			namelen = arg2;
832	int			rman_idx, res_idx;
833	struct rman		*rm;
834	struct resource_i	*res;
835	struct u_rman		urm;
836	struct u_resource	ures;
837	int			error;
838
839	if (namelen != 3)
840		return (EINVAL);
841
842	if (bus_data_generation_check(name[0]))
843		return (EINVAL);
844	rman_idx = name[1];
845	res_idx = name[2];
846
847	/*
848	 * Find the indexed resource manager
849	 */
850	mtx_lock(&rman_mtx);
851	TAILQ_FOREACH(rm, &rman_head, rm_link) {
852		if (rman_idx-- == 0)
853			break;
854	}
855	mtx_unlock(&rman_mtx);
856	if (rm == NULL)
857		return (ENOENT);
858
859	/*
860	 * If the resource index is -1, we want details on the
861	 * resource manager.
862	 */
863	if (res_idx == -1) {
864		bzero(&urm, sizeof(urm));
865		urm.rm_handle = (uintptr_t)rm;
866		strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
867		urm.rm_start = rm->rm_start;
868		urm.rm_size = rm->rm_end - rm->rm_start + 1;
869		urm.rm_type = rm->rm_type;
870
871		error = SYSCTL_OUT(req, &urm, sizeof(urm));
872		return (error);
873	}
874
875	/*
876	 * Find the indexed resource and return it.
877	 */
878	mtx_lock(rm->rm_mtx);
879	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
880		if (res_idx-- == 0) {
881			bzero(&ures, sizeof(ures));
882			ures.r_handle = (uintptr_t)res;
883			ures.r_parent = (uintptr_t)res->r_rm;
884			ures.r_device = (uintptr_t)res->r_dev;
885			if (res->r_dev != NULL) {
886				if (device_get_name(res->r_dev) != NULL) {
887					snprintf(ures.r_devname, RM_TEXTLEN,
888					    "%s%d",
889					    device_get_name(res->r_dev),
890					    device_get_unit(res->r_dev));
891				} else {
892					strlcpy(ures.r_devname, "nomatch",
893					    RM_TEXTLEN);
894				}
895			} else {
896				ures.r_devname[0] = '\0';
897			}
898			ures.r_start = res->r_start;
899			ures.r_size = res->r_end - res->r_start + 1;
900			ures.r_flags = res->r_flags;
901
902			mtx_unlock(rm->rm_mtx);
903			error = SYSCTL_OUT(req, &ures, sizeof(ures));
904			return (error);
905		}
906	}
907	mtx_unlock(rm->rm_mtx);
908	return (ENOENT);
909}
910
911SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
912    "kernel resource manager");
913