subr_rman.c revision 159536
1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * The kernel resource manager.  This code is responsible for keeping track
32 * of hardware resources which are apportioned out to various drivers.
33 * It does not actually assign those resources, and it is not expected
34 * that end-device drivers will call into this code directly.  Rather,
35 * the code which implements the buses that those devices are attached to,
36 * and the code which manages CPU resources, will call this code, and the
37 * end-device drivers will make upcalls to that code to actually perform
38 * the allocation.
39 *
40 * There are two sorts of resources managed by this code.  The first is
41 * the more familiar array (RMAN_ARRAY) type; resources in this class
42 * consist of a sequence of individually-allocatable objects which have
43 * been numbered in some well-defined order.  Most of the resources
44 * are of this type, as it is the most familiar.  The second type is
45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46 * resources in which each instance is indistinguishable from every
47 * other instance).  The principal anticipated application of gauges
48 * is in the context of power consumption, where a bus may have a specific
49 * power budget which all attached devices share.  RMAN_GAUGE is not
50 * implemented yet.
51 *
52 * For array resources, we make one simplifying assumption: two clients
53 * sharing the same resource must use the same range of indices.  That
54 * is to say, sharing of overlapping-but-not-identical regions is not
55 * permitted.
56 */
57
58#include <sys/cdefs.h>
59__FBSDID("$FreeBSD: head/sys/kern/subr_rman.c 159536 2006-06-12 04:06:21Z imp $");
60
61#include <sys/param.h>
62#include <sys/systm.h>
63#include <sys/kernel.h>
64#include <sys/lock.h>
65#include <sys/malloc.h>
66#include <sys/mutex.h>
67#include <sys/bus.h>		/* XXX debugging */
68#include <machine/bus.h>
69#include <sys/rman.h>
70#include <sys/sysctl.h>
71
72/*
73 * We use a linked list rather than a bitmap because we need to be able to
74 * represent potentially huge objects (like all of a processor's physical
75 * address space).  That is also why the indices are defined to have type
76 * `unsigned long' -- that being the largest integral type in ISO C (1990).
77 * The 1999 version of C allows `long long'; we may need to switch to that
78 * at some point in the future, particularly if we want to support 36-bit
79 * addresses on IA32 hardware.
80 */
81struct resource_i {
82	struct resource		r_r;
83	TAILQ_ENTRY(resource_i)	r_link;
84	LIST_ENTRY(resource_i)	r_sharelink;
85	LIST_HEAD(, resource_i)	*r_sharehead;
86	u_long	r_start;	/* index of the first entry in this resource */
87	u_long	r_end;		/* index of the last entry (inclusive) */
88	u_int	r_flags;
89	void	*r_virtual;	/* virtual address of this resource */
90	struct	device *r_dev;	/* device which has allocated this resource */
91	struct	rman *r_rm;	/* resource manager from whence this came */
92	int	r_rid;		/* optional rid for this resource. */
93};
94
95int     rman_debug = 0;
96TUNABLE_INT("debug.rman_debug", &rman_debug);
97SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
98    &rman_debug, 0, "rman debug");
99
100#define DPRINTF(params) if (rman_debug) printf params
101
102static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
103
104struct	rman_head rman_head;
105static	struct mtx rman_mtx; /* mutex to protect rman_head */
106static	int int_rman_activate_resource(struct rman *rm, struct resource_i *r,
107				       struct resource_i **whohas);
108static	int int_rman_deactivate_resource(struct resource_i *r);
109static	int int_rman_release_resource(struct rman *rm, struct resource_i *r);
110
111static __inline struct resource_i *
112int_alloc_resource(int malloc_flag)
113{
114	struct resource_i *r;
115
116	r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
117	if (r != NULL) {
118		r->r_r.__r_i = r;
119	}
120	return (r);
121}
122
123int
124rman_init(struct rman *rm)
125{
126	static int once = 0;
127
128	if (once == 0) {
129		once = 1;
130		TAILQ_INIT(&rman_head);
131		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
132	}
133
134	if (rm->rm_type == RMAN_UNINIT)
135		panic("rman_init");
136	if (rm->rm_type == RMAN_GAUGE)
137		panic("implement RMAN_GAUGE");
138
139	TAILQ_INIT(&rm->rm_list);
140	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
141	if (rm->rm_mtx == NULL)
142		return ENOMEM;
143	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
144
145	mtx_lock(&rman_mtx);
146	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
147	mtx_unlock(&rman_mtx);
148	return 0;
149}
150
151/*
152 * NB: this interface is not robust against programming errors which
153 * add multiple copies of the same region.
154 */
155int
156rman_manage_region(struct rman *rm, u_long start, u_long end)
157{
158	struct resource_i *r, *s;
159
160	DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
161	    rm->rm_descr, start, end));
162	r = int_alloc_resource(M_NOWAIT);
163	if (r == NULL)
164		return ENOMEM;
165	r->r_start = start;
166	r->r_end = end;
167	r->r_rm = rm;
168
169	mtx_lock(rm->rm_mtx);
170	for (s = TAILQ_FIRST(&rm->rm_list);
171	     s && s->r_end < r->r_start;
172	     s = TAILQ_NEXT(s, r_link))
173		;
174
175	if (s == NULL) {
176		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
177	} else {
178		TAILQ_INSERT_BEFORE(s, r, r_link);
179	}
180
181	mtx_unlock(rm->rm_mtx);
182	return 0;
183}
184
185int
186rman_init_from_resource(struct rman *rm, struct resource *r)
187{
188	int rv;
189
190	if ((rv = rman_init(rm)) != 0)
191		return (rv);
192	return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
193}
194
195int
196rman_fini(struct rman *rm)
197{
198	struct resource_i *r;
199
200	mtx_lock(rm->rm_mtx);
201	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
202		if (r->r_flags & RF_ALLOCATED) {
203			mtx_unlock(rm->rm_mtx);
204			return EBUSY;
205		}
206	}
207
208	/*
209	 * There really should only be one of these if we are in this
210	 * state and the code is working properly, but it can't hurt.
211	 */
212	while (!TAILQ_EMPTY(&rm->rm_list)) {
213		r = TAILQ_FIRST(&rm->rm_list);
214		TAILQ_REMOVE(&rm->rm_list, r, r_link);
215		free(r, M_RMAN);
216	}
217	mtx_unlock(rm->rm_mtx);
218	mtx_lock(&rman_mtx);
219	TAILQ_REMOVE(&rman_head, rm, rm_link);
220	mtx_unlock(&rman_mtx);
221	mtx_destroy(rm->rm_mtx);
222	free(rm->rm_mtx, M_RMAN);
223
224	return 0;
225}
226
227struct resource *
228rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
229		      u_long count, u_long bound,  u_int flags,
230		      struct device *dev)
231{
232	u_int	want_activate;
233	struct	resource_i *r, *s, *rv;
234	u_long	rstart, rend, amask, bmask;
235
236	rv = NULL;
237
238	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
239	       "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, count,
240	       flags, dev == NULL ? "<null>" : device_get_nameunit(dev)));
241	want_activate = (flags & RF_ACTIVE);
242	flags &= ~RF_ACTIVE;
243
244	mtx_lock(rm->rm_mtx);
245
246	for (r = TAILQ_FIRST(&rm->rm_list);
247	     r && r->r_end < start;
248	     r = TAILQ_NEXT(r, r_link))
249		;
250
251	if (r == NULL) {
252		DPRINTF(("could not find a region\n"));
253		goto out;
254	}
255
256	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
257	/* If bound is 0, bmask will also be 0 */
258	bmask = ~(bound - 1);
259	/*
260	 * First try to find an acceptable totally-unshared region.
261	 */
262	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
263		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
264		if (s->r_start + count - 1 > end) {
265			DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n",
266			    s->r_start, end));
267			break;
268		}
269		if (s->r_flags & RF_ALLOCATED) {
270			DPRINTF(("region is allocated\n"));
271			continue;
272		}
273		rstart = ulmax(s->r_start, start);
274		/*
275		 * Try to find a region by adjusting to boundary and alignment
276		 * until both conditions are satisfied. This is not an optimal
277		 * algorithm, but in most cases it isn't really bad, either.
278		 */
279		do {
280			rstart = (rstart + amask) & ~amask;
281			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
282				rstart += bound - (rstart & ~bmask);
283		} while ((rstart & amask) != 0 && rstart < end &&
284		    rstart < s->r_end);
285		rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
286		if (rstart > rend) {
287			DPRINTF(("adjusted start exceeds end\n"));
288			continue;
289		}
290		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
291		       rstart, rend, (rend - rstart + 1), count));
292
293		if ((rend - rstart + 1) >= count) {
294			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
295			       rstart, rend, (rend - rstart + 1)));
296			if ((s->r_end - s->r_start + 1) == count) {
297				DPRINTF(("candidate region is entire chunk\n"));
298				rv = s;
299				rv->r_flags |= RF_ALLOCATED | flags;
300				rv->r_dev = dev;
301				goto out;
302			}
303
304			/*
305			 * If s->r_start < rstart and
306			 *    s->r_end > rstart + count - 1, then
307			 * we need to split the region into three pieces
308			 * (the middle one will get returned to the user).
309			 * Otherwise, we are allocating at either the
310			 * beginning or the end of s, so we only need to
311			 * split it in two.  The first case requires
312			 * two new allocations; the second requires but one.
313			 */
314			rv = int_alloc_resource(M_NOWAIT);
315			if (rv == NULL)
316				goto out;
317			rv->r_start = rstart;
318			rv->r_end = rstart + count - 1;
319			rv->r_flags = flags | RF_ALLOCATED;
320			rv->r_dev = dev;
321			rv->r_rm = rm;
322
323			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
324				DPRINTF(("splitting region in three parts: "
325				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
326				       s->r_start, rv->r_start - 1,
327				       rv->r_start, rv->r_end,
328				       rv->r_end + 1, s->r_end));
329				/*
330				 * We are allocating in the middle.
331				 */
332				r = int_alloc_resource(M_NOWAIT);
333				if (r == NULL) {
334					free(rv, M_RMAN);
335					rv = NULL;
336					goto out;
337				}
338				r->r_start = rv->r_end + 1;
339				r->r_end = s->r_end;
340				r->r_flags = s->r_flags;
341				r->r_rm = rm;
342				s->r_end = rv->r_start - 1;
343				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
344						     r_link);
345				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
346						     r_link);
347			} else if (s->r_start == rv->r_start) {
348				DPRINTF(("allocating from the beginning\n"));
349				/*
350				 * We are allocating at the beginning.
351				 */
352				s->r_start = rv->r_end + 1;
353				TAILQ_INSERT_BEFORE(s, rv, r_link);
354			} else {
355				DPRINTF(("allocating at the end\n"));
356				/*
357				 * We are allocating at the end.
358				 */
359				s->r_end = rv->r_start - 1;
360				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
361						     r_link);
362			}
363			goto out;
364		}
365	}
366
367	/*
368	 * Now find an acceptable shared region, if the client's requirements
369	 * allow sharing.  By our implementation restriction, a candidate
370	 * region must match exactly by both size and sharing type in order
371	 * to be considered compatible with the client's request.  (The
372	 * former restriction could probably be lifted without too much
373	 * additional work, but this does not seem warranted.)
374	 */
375	DPRINTF(("no unshared regions found\n"));
376	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
377		goto out;
378
379	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
380		if (s->r_start > end)
381			break;
382		if ((s->r_flags & flags) != flags)
383			continue;
384		rstart = ulmax(s->r_start, start);
385		rend = ulmin(s->r_end, ulmax(start + count - 1, end));
386		if (s->r_start >= start && s->r_end <= end
387		    && (s->r_end - s->r_start + 1) == count &&
388		    (s->r_start & amask) == 0 &&
389		    ((s->r_start ^ s->r_end) & bmask) == 0) {
390			rv = int_alloc_resource(M_NOWAIT);
391			if (rv == NULL)
392				goto out;
393			rv->r_start = s->r_start;
394			rv->r_end = s->r_end;
395			rv->r_flags = s->r_flags &
396				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
397			rv->r_dev = dev;
398			rv->r_rm = rm;
399			if (s->r_sharehead == NULL) {
400				s->r_sharehead = malloc(sizeof *s->r_sharehead,
401						M_RMAN, M_NOWAIT | M_ZERO);
402				if (s->r_sharehead == NULL) {
403					free(rv, M_RMAN);
404					rv = NULL;
405					goto out;
406				}
407				LIST_INIT(s->r_sharehead);
408				LIST_INSERT_HEAD(s->r_sharehead, s,
409						 r_sharelink);
410				s->r_flags |= RF_FIRSTSHARE;
411			}
412			rv->r_sharehead = s->r_sharehead;
413			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
414			goto out;
415		}
416	}
417
418	/*
419	 * We couldn't find anything.
420	 */
421out:
422	/*
423	 * If the user specified RF_ACTIVE in the initial flags,
424	 * which is reflected in `want_activate', we attempt to atomically
425	 * activate the resource.  If this fails, we release the resource
426	 * and indicate overall failure.  (This behavior probably doesn't
427	 * make sense for RF_TIMESHARE-type resources.)
428	 */
429	if (rv && want_activate) {
430		struct resource_i *whohas;
431		if (int_rman_activate_resource(rm, rv, &whohas)) {
432			int_rman_release_resource(rm, rv);
433			rv = NULL;
434		}
435	}
436
437	mtx_unlock(rm->rm_mtx);
438	return (rv == NULL ? NULL : &rv->r_r);
439}
440
441struct resource *
442rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
443		      u_int flags, struct device *dev)
444{
445
446	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
447	    dev));
448}
449
450static int
451int_rman_activate_resource(struct rman *rm, struct resource_i *r,
452			   struct resource_i **whohas)
453{
454	struct resource_i *s;
455	int ok;
456
457	/*
458	 * If we are not timesharing, then there is nothing much to do.
459	 * If we already have the resource, then there is nothing at all to do.
460	 * If we are not on a sharing list with anybody else, then there is
461	 * little to do.
462	 */
463	if ((r->r_flags & RF_TIMESHARE) == 0
464	    || (r->r_flags & RF_ACTIVE) != 0
465	    || r->r_sharehead == NULL) {
466		r->r_flags |= RF_ACTIVE;
467		return 0;
468	}
469
470	ok = 1;
471	for (s = LIST_FIRST(r->r_sharehead); s && ok;
472	     s = LIST_NEXT(s, r_sharelink)) {
473		if ((s->r_flags & RF_ACTIVE) != 0) {
474			ok = 0;
475			*whohas = s;
476		}
477	}
478	if (ok) {
479		r->r_flags |= RF_ACTIVE;
480		return 0;
481	}
482	return EBUSY;
483}
484
485int
486rman_activate_resource(struct resource *re)
487{
488	int rv;
489	struct resource_i *r, *whohas;
490	struct rman *rm;
491
492	r = re->__r_i;
493	rm = r->r_rm;
494	mtx_lock(rm->rm_mtx);
495	rv = int_rman_activate_resource(rm, r, &whohas);
496	mtx_unlock(rm->rm_mtx);
497	return rv;
498}
499
500int
501rman_await_resource(struct resource *re, int pri, int timo)
502{
503	int	rv;
504	struct	resource_i *r, *whohas;
505	struct	rman *rm;
506
507	r = re->__r_i;
508	rm = r->r_rm;
509	mtx_lock(rm->rm_mtx);
510	for (;;) {
511		rv = int_rman_activate_resource(rm, r, &whohas);
512		if (rv != EBUSY)
513			return (rv);	/* returns with mutex held */
514
515		if (r->r_sharehead == NULL)
516			panic("rman_await_resource");
517		whohas->r_flags |= RF_WANTED;
518		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
519		if (rv) {
520			mtx_unlock(rm->rm_mtx);
521			return (rv);
522		}
523	}
524}
525
526static int
527int_rman_deactivate_resource(struct resource_i *r)
528{
529
530	r->r_flags &= ~RF_ACTIVE;
531	if (r->r_flags & RF_WANTED) {
532		r->r_flags &= ~RF_WANTED;
533		wakeup(r->r_sharehead);
534	}
535	return 0;
536}
537
538int
539rman_deactivate_resource(struct resource *r)
540{
541	struct	rman *rm;
542
543	rm = r->__r_i->r_rm;
544	mtx_lock(rm->rm_mtx);
545	int_rman_deactivate_resource(r->__r_i);
546	mtx_unlock(rm->rm_mtx);
547	return 0;
548}
549
550static int
551int_rman_release_resource(struct rman *rm, struct resource_i *r)
552{
553	struct	resource_i *s, *t;
554
555	if (r->r_flags & RF_ACTIVE)
556		int_rman_deactivate_resource(r);
557
558	/*
559	 * Check for a sharing list first.  If there is one, then we don't
560	 * have to think as hard.
561	 */
562	if (r->r_sharehead) {
563		/*
564		 * If a sharing list exists, then we know there are at
565		 * least two sharers.
566		 *
567		 * If we are in the main circleq, appoint someone else.
568		 */
569		LIST_REMOVE(r, r_sharelink);
570		s = LIST_FIRST(r->r_sharehead);
571		if (r->r_flags & RF_FIRSTSHARE) {
572			s->r_flags |= RF_FIRSTSHARE;
573			TAILQ_INSERT_BEFORE(r, s, r_link);
574			TAILQ_REMOVE(&rm->rm_list, r, r_link);
575		}
576
577		/*
578		 * Make sure that the sharing list goes away completely
579		 * if the resource is no longer being shared at all.
580		 */
581		if (LIST_NEXT(s, r_sharelink) == NULL) {
582			free(s->r_sharehead, M_RMAN);
583			s->r_sharehead = NULL;
584			s->r_flags &= ~RF_FIRSTSHARE;
585		}
586		goto out;
587	}
588
589	/*
590	 * Look at the adjacent resources in the list and see if our
591	 * segment can be merged with any of them.  If either of the
592	 * resources is allocated or is not exactly adjacent then they
593	 * cannot be merged with our segment.
594	 */
595	s = TAILQ_PREV(r, resource_head, r_link);
596	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
597	    s->r_end + 1 != r->r_start))
598		s = NULL;
599	t = TAILQ_NEXT(r, r_link);
600	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
601	    r->r_end + 1 != t->r_start))
602		t = NULL;
603
604	if (s != NULL && t != NULL) {
605		/*
606		 * Merge all three segments.
607		 */
608		s->r_end = t->r_end;
609		TAILQ_REMOVE(&rm->rm_list, r, r_link);
610		TAILQ_REMOVE(&rm->rm_list, t, r_link);
611		free(t, M_RMAN);
612	} else if (s != NULL) {
613		/*
614		 * Merge previous segment with ours.
615		 */
616		s->r_end = r->r_end;
617		TAILQ_REMOVE(&rm->rm_list, r, r_link);
618	} else if (t != NULL) {
619		/*
620		 * Merge next segment with ours.
621		 */
622		t->r_start = r->r_start;
623		TAILQ_REMOVE(&rm->rm_list, r, r_link);
624	} else {
625		/*
626		 * At this point, we know there is nothing we
627		 * can potentially merge with, because on each
628		 * side, there is either nothing there or what is
629		 * there is still allocated.  In that case, we don't
630		 * want to remove r from the list; we simply want to
631		 * change it to an unallocated region and return
632		 * without freeing anything.
633		 */
634		r->r_flags &= ~RF_ALLOCATED;
635		return 0;
636	}
637
638out:
639	free(r, M_RMAN);
640	return 0;
641}
642
643int
644rman_release_resource(struct resource *re)
645{
646	int	rv;
647	struct	resource_i *r;
648	struct	rman *rm;
649
650	r = re->__r_i;
651	rm = r->r_rm;
652	mtx_lock(rm->rm_mtx);
653	rv = int_rman_release_resource(rm, r);
654	mtx_unlock(rm->rm_mtx);
655	return (rv);
656}
657
658uint32_t
659rman_make_alignment_flags(uint32_t size)
660{
661	int	i;
662
663	/*
664	 * Find the hightest bit set, and add one if more than one bit
665	 * set.  We're effectively computing the ceil(log2(size)) here.
666	 */
667	for (i = 31; i > 0; i--)
668		if ((1 << i) & size)
669			break;
670	if (~(1 << i) & size)
671		i++;
672
673	return(RF_ALIGNMENT_LOG2(i));
674}
675
676u_long
677rman_get_start(struct resource *r)
678{
679	return (r->__r_i->r_start);
680}
681
682u_long
683rman_get_end(struct resource *r)
684{
685	return (r->__r_i->r_end);
686}
687
688u_long
689rman_get_size(struct resource *r)
690{
691	return (r->__r_i->r_end - r->__r_i->r_start + 1);
692}
693
694u_int
695rman_get_flags(struct resource *r)
696{
697	return (r->__r_i->r_flags);
698}
699
700void
701rman_set_virtual(struct resource *r, void *v)
702{
703	r->__r_i->r_virtual = v;
704}
705
706void *
707rman_get_virtual(struct resource *r)
708{
709	return (r->__r_i->r_virtual);
710}
711
712void
713rman_set_bustag(struct resource *r, bus_space_tag_t t)
714{
715	r->r_bustag = t;
716}
717
718bus_space_tag_t
719rman_get_bustag(struct resource *r)
720{
721	return (r->r_bustag);
722}
723
724void
725rman_set_bushandle(struct resource *r, bus_space_handle_t h)
726{
727	r->r_bushandle = h;
728}
729
730bus_space_handle_t
731rman_get_bushandle(struct resource *r)
732{
733	return (r->r_bushandle);
734}
735
736void
737rman_set_rid(struct resource *r, int rid)
738{
739	r->__r_i->r_rid = rid;
740}
741
742void
743rman_set_start(struct resource *r, u_long start)
744{
745	r->__r_i->r_start = start;
746}
747
748void
749rman_set_end(struct resource *r, u_long end)
750{
751	r->__r_i->r_end = end;
752}
753
754int
755rman_get_rid(struct resource *r)
756{
757	return (r->__r_i->r_rid);
758}
759
760struct device *
761rman_get_device(struct resource *r)
762{
763	return (r->__r_i->r_dev);
764}
765
766void
767rman_set_device(struct resource *r, struct device *dev)
768{
769	r->__r_i->r_dev = dev;
770}
771
772int
773rman_is_region_manager(struct resource *r, struct rman *rm)
774{
775
776	return (r->__r_i->r_rm == rm);
777}
778
779/*
780 * Sysctl interface for scanning the resource lists.
781 *
782 * We take two input parameters; the index into the list of resource
783 * managers, and the resource offset into the list.
784 */
785static int
786sysctl_rman(SYSCTL_HANDLER_ARGS)
787{
788	int			*name = (int *)arg1;
789	u_int			namelen = arg2;
790	int			rman_idx, res_idx;
791	struct rman		*rm;
792	struct resource_i	*res;
793	struct u_rman		urm;
794	struct u_resource	ures;
795	int			error;
796
797	if (namelen != 3)
798		return (EINVAL);
799
800	if (bus_data_generation_check(name[0]))
801		return (EINVAL);
802	rman_idx = name[1];
803	res_idx = name[2];
804
805	/*
806	 * Find the indexed resource manager
807	 */
808	mtx_lock(&rman_mtx);
809	TAILQ_FOREACH(rm, &rman_head, rm_link) {
810		if (rman_idx-- == 0)
811			break;
812	}
813	mtx_unlock(&rman_mtx);
814	if (rm == NULL)
815		return (ENOENT);
816
817	/*
818	 * If the resource index is -1, we want details on the
819	 * resource manager.
820	 */
821	if (res_idx == -1) {
822		bzero(&urm, sizeof(urm));
823		urm.rm_handle = (uintptr_t)rm;
824		strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
825		urm.rm_start = rm->rm_start;
826		urm.rm_size = rm->rm_end - rm->rm_start + 1;
827		urm.rm_type = rm->rm_type;
828
829		error = SYSCTL_OUT(req, &urm, sizeof(urm));
830		return (error);
831	}
832
833	/*
834	 * Find the indexed resource and return it.
835	 */
836	mtx_lock(rm->rm_mtx);
837	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
838		if (res_idx-- == 0) {
839			bzero(&ures, sizeof(ures));
840			ures.r_handle = (uintptr_t)res;
841			ures.r_parent = (uintptr_t)res->r_rm;
842			ures.r_device = (uintptr_t)res->r_dev;
843			if (res->r_dev != NULL) {
844				if (device_get_name(res->r_dev) != NULL) {
845					snprintf(ures.r_devname, RM_TEXTLEN,
846					    "%s%d",
847					    device_get_name(res->r_dev),
848					    device_get_unit(res->r_dev));
849				} else {
850					strlcpy(ures.r_devname, "nomatch",
851					    RM_TEXTLEN);
852				}
853			} else {
854				ures.r_devname[0] = '\0';
855			}
856			ures.r_start = res->r_start;
857			ures.r_size = res->r_end - res->r_start + 1;
858			ures.r_flags = res->r_flags;
859
860			mtx_unlock(rm->rm_mtx);
861			error = SYSCTL_OUT(req, &ures, sizeof(ures));
862			return (error);
863		}
864	}
865	mtx_unlock(rm->rm_mtx);
866	return (ENOENT);
867}
868
869SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
870    "kernel resource manager");
871