subr_rman.c revision 151037
1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * The kernel resource manager.  This code is responsible for keeping track
32 * of hardware resources which are apportioned out to various drivers.
33 * It does not actually assign those resources, and it is not expected
34 * that end-device drivers will call into this code directly.  Rather,
35 * the code which implements the buses that those devices are attached to,
36 * and the code which manages CPU resources, will call this code, and the
37 * end-device drivers will make upcalls to that code to actually perform
38 * the allocation.
39 *
40 * There are two sorts of resources managed by this code.  The first is
41 * the more familiar array (RMAN_ARRAY) type; resources in this class
42 * consist of a sequence of individually-allocatable objects which have
43 * been numbered in some well-defined order.  Most of the resources
44 * are of this type, as it is the most familiar.  The second type is
45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46 * resources in which each instance is indistinguishable from every
47 * other instance).  The principal anticipated application of gauges
48 * is in the context of power consumption, where a bus may have a specific
49 * power budget which all attached devices share.  RMAN_GAUGE is not
50 * implemented yet.
51 *
52 * For array resources, we make one simplifying assumption: two clients
53 * sharing the same resource must use the same range of indices.  That
54 * is to say, sharing of overlapping-but-not-identical regions is not
55 * permitted.
56 */
57
58#include <sys/cdefs.h>
59__FBSDID("$FreeBSD: head/sys/kern/subr_rman.c 151037 2005-10-06 21:49:31Z phk $");
60
61#include <sys/param.h>
62#include <sys/systm.h>
63#include <sys/kernel.h>
64#include <sys/lock.h>
65#include <sys/malloc.h>
66#include <sys/mutex.h>
67#include <sys/bus.h>		/* XXX debugging */
68#include <machine/bus.h>
69#include <sys/rman.h>
70#include <sys/sysctl.h>
71
72/*
73 * We use a linked list rather than a bitmap because we need to be able to
74 * represent potentially huge objects (like all of a processor's physical
75 * address space).  That is also why the indices are defined to have type
76 * `unsigned long' -- that being the largest integral type in ISO C (1990).
77 * The 1999 version of C allows `long long'; we may need to switch to that
78 * at some point in the future, particularly if we want to support 36-bit
79 * addresses on IA32 hardware.
80 */
81struct resource_i {
82	struct resource		r_r;
83	TAILQ_ENTRY(resource_i)	r_link;
84	LIST_ENTRY(resource_i)	r_sharelink;
85	LIST_HEAD(, resource_i)	*r_sharehead;
86	u_long	r_start;	/* index of the first entry in this resource */
87	u_long	r_end;		/* index of the last entry (inclusive) */
88	u_int	r_flags;
89	void	*r_virtual;	/* virtual address of this resource */
90	struct	device *r_dev;	/* device which has allocated this resource */
91	struct	rman *r_rm;	/* resource manager from whence this came */
92	void    *r_spare1;	/* Spare pointer 1 */
93	void    *r_spare2;	/* Spare pointer 2 */
94	int	r_rid;		/* optional rid for this resource. */
95};
96
97int     rman_debug = 0;
98TUNABLE_INT("debug.rman_debug", &rman_debug);
99SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
100    &rman_debug, 0, "rman debug");
101
102#define DPRINTF(params) if (rman_debug) printf params
103
104static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
105
106struct	rman_head rman_head;
107static	struct mtx rman_mtx; /* mutex to protect rman_head */
108static	int int_rman_activate_resource(struct rman *rm, struct resource_i *r,
109				       struct resource_i **whohas);
110static	int int_rman_deactivate_resource(struct resource_i *r);
111static	int int_rman_release_resource(struct rman *rm, struct resource_i *r);
112
113static __inline struct resource_i *
114int_alloc_resource(int malloc_flag)
115{
116	struct resource_i *r;
117
118	r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
119	if (r != NULL) {
120		r->r_r.__r_i = r;
121	}
122	return (r);
123}
124
125/*
126 * XXX: puc.c is a big hack.
127 * XXX: it should be rewritten to act like a bridge and offer
128 * XXX: its own resource manager.
129 * XXX: until somebody has time, help it out with these two functions
130 */
131
132struct resource *
133rman_secret_puc_alloc_resource(int malloc_flag)
134{
135	struct resource_i *r;
136
137	r = int_alloc_resource(malloc_flag);
138	if (r)
139		return (&r->r_r);
140	return (NULL);
141}
142
143void
144rman_secret_puc_free_resource(struct resource *r)
145{
146
147	free(r->__r_i, M_RMAN);
148}
149
150int
151rman_init(struct rman *rm)
152{
153	static int once;
154
155	if (once == 0) {
156		once = 1;
157		TAILQ_INIT(&rman_head);
158		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
159	}
160
161	if (rm->rm_type == RMAN_UNINIT)
162		panic("rman_init");
163	if (rm->rm_type == RMAN_GAUGE)
164		panic("implement RMAN_GAUGE");
165
166	TAILQ_INIT(&rm->rm_list);
167	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
168	if (rm->rm_mtx == 0)
169		return ENOMEM;
170	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
171
172	mtx_lock(&rman_mtx);
173	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
174	mtx_unlock(&rman_mtx);
175	return 0;
176}
177
178/*
179 * NB: this interface is not robust against programming errors which
180 * add multiple copies of the same region.
181 */
182int
183rman_manage_region(struct rman *rm, u_long start, u_long end)
184{
185	struct resource_i *r, *s;
186
187	DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
188	    rm->rm_descr, start, end));
189	r = int_alloc_resource(M_NOWAIT);
190	if (r == 0)
191		return ENOMEM;
192	r->r_start = start;
193	r->r_end = end;
194	r->r_rm = rm;
195
196	mtx_lock(rm->rm_mtx);
197	for (s = TAILQ_FIRST(&rm->rm_list);
198	     s && s->r_end < r->r_start;
199	     s = TAILQ_NEXT(s, r_link))
200		;
201
202	if (s == NULL) {
203		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
204	} else {
205		TAILQ_INSERT_BEFORE(s, r, r_link);
206	}
207
208	mtx_unlock(rm->rm_mtx);
209	return 0;
210}
211
212int
213rman_fini(struct rman *rm)
214{
215	struct resource_i *r;
216
217	mtx_lock(rm->rm_mtx);
218	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
219		if (r->r_flags & RF_ALLOCATED) {
220			mtx_unlock(rm->rm_mtx);
221			return EBUSY;
222		}
223	}
224
225	/*
226	 * There really should only be one of these if we are in this
227	 * state and the code is working properly, but it can't hurt.
228	 */
229	while (!TAILQ_EMPTY(&rm->rm_list)) {
230		r = TAILQ_FIRST(&rm->rm_list);
231		TAILQ_REMOVE(&rm->rm_list, r, r_link);
232		free(r, M_RMAN);
233	}
234	mtx_unlock(rm->rm_mtx);
235	mtx_lock(&rman_mtx);
236	TAILQ_REMOVE(&rman_head, rm, rm_link);
237	mtx_unlock(&rman_mtx);
238	mtx_destroy(rm->rm_mtx);
239	free(rm->rm_mtx, M_RMAN);
240
241	return 0;
242}
243
244struct resource *
245rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
246		      u_long count, u_long bound,  u_int flags,
247		      struct device *dev)
248{
249	u_int	want_activate;
250	struct	resource_i *r, *s, *rv;
251	u_long	rstart, rend, amask, bmask;
252
253	rv = 0;
254
255	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
256	       "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, count,
257	       flags, dev == NULL ? "<null>" : device_get_nameunit(dev)));
258	want_activate = (flags & RF_ACTIVE);
259	flags &= ~RF_ACTIVE;
260
261	mtx_lock(rm->rm_mtx);
262
263	for (r = TAILQ_FIRST(&rm->rm_list);
264	     r && r->r_end < start;
265	     r = TAILQ_NEXT(r, r_link))
266		;
267
268	if (r == NULL) {
269		DPRINTF(("could not find a region\n"));
270		goto out;
271	}
272
273	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
274	/* If bound is 0, bmask will also be 0 */
275	bmask = ~(bound - 1);
276	/*
277	 * First try to find an acceptable totally-unshared region.
278	 */
279	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
280		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
281		if (s->r_start + count - 1 > end) {
282			DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n",
283			    s->r_start, end));
284			break;
285		}
286		if (s->r_flags & RF_ALLOCATED) {
287			DPRINTF(("region is allocated\n"));
288			continue;
289		}
290		rstart = ulmax(s->r_start, start);
291		/*
292		 * Try to find a region by adjusting to boundary and alignment
293		 * until both conditions are satisfied. This is not an optimal
294		 * algorithm, but in most cases it isn't really bad, either.
295		 */
296		do {
297			rstart = (rstart + amask) & ~amask;
298			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
299				rstart += bound - (rstart & ~bmask);
300		} while ((rstart & amask) != 0 && rstart < end &&
301		    rstart < s->r_end);
302		rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
303		if (rstart > rend) {
304			DPRINTF(("adjusted start exceeds end\n"));
305			continue;
306		}
307		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
308		       rstart, rend, (rend - rstart + 1), count));
309
310		if ((rend - rstart + 1) >= count) {
311			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
312			       rstart, rend, (rend - rstart + 1)));
313			if ((s->r_end - s->r_start + 1) == count) {
314				DPRINTF(("candidate region is entire chunk\n"));
315				rv = s;
316				rv->r_flags |= RF_ALLOCATED | flags;
317				rv->r_dev = dev;
318				goto out;
319			}
320
321			/*
322			 * If s->r_start < rstart and
323			 *    s->r_end > rstart + count - 1, then
324			 * we need to split the region into three pieces
325			 * (the middle one will get returned to the user).
326			 * Otherwise, we are allocating at either the
327			 * beginning or the end of s, so we only need to
328			 * split it in two.  The first case requires
329			 * two new allocations; the second requires but one.
330			 */
331			rv = int_alloc_resource(M_NOWAIT);
332			if (rv == 0)
333				goto out;
334			rv->r_start = rstart;
335			rv->r_end = rstart + count - 1;
336			rv->r_flags = flags | RF_ALLOCATED;
337			rv->r_dev = dev;
338			rv->r_rm = rm;
339
340			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
341				DPRINTF(("splitting region in three parts: "
342				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
343				       s->r_start, rv->r_start - 1,
344				       rv->r_start, rv->r_end,
345				       rv->r_end + 1, s->r_end));
346				/*
347				 * We are allocating in the middle.
348				 */
349				r = int_alloc_resource(M_NOWAIT);
350				if (r == 0) {
351					free(rv, M_RMAN);
352					rv = 0;
353					goto out;
354				}
355				r->r_start = rv->r_end + 1;
356				r->r_end = s->r_end;
357				r->r_flags = s->r_flags;
358				r->r_rm = rm;
359				s->r_end = rv->r_start - 1;
360				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
361						     r_link);
362				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
363						     r_link);
364			} else if (s->r_start == rv->r_start) {
365				DPRINTF(("allocating from the beginning\n"));
366				/*
367				 * We are allocating at the beginning.
368				 */
369				s->r_start = rv->r_end + 1;
370				TAILQ_INSERT_BEFORE(s, rv, r_link);
371			} else {
372				DPRINTF(("allocating at the end\n"));
373				/*
374				 * We are allocating at the end.
375				 */
376				s->r_end = rv->r_start - 1;
377				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
378						     r_link);
379			}
380			goto out;
381		}
382	}
383
384	/*
385	 * Now find an acceptable shared region, if the client's requirements
386	 * allow sharing.  By our implementation restriction, a candidate
387	 * region must match exactly by both size and sharing type in order
388	 * to be considered compatible with the client's request.  (The
389	 * former restriction could probably be lifted without too much
390	 * additional work, but this does not seem warranted.)
391	 */
392	DPRINTF(("no unshared regions found\n"));
393	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
394		goto out;
395
396	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
397		if (s->r_start > end)
398			break;
399		if ((s->r_flags & flags) != flags)
400			continue;
401		rstart = ulmax(s->r_start, start);
402		rend = ulmin(s->r_end, ulmax(start + count - 1, end));
403		if (s->r_start >= start && s->r_end <= end
404		    && (s->r_end - s->r_start + 1) == count &&
405		    (s->r_start & amask) == 0 &&
406		    ((s->r_start ^ s->r_end) & bmask) == 0) {
407			rv = int_alloc_resource(M_NOWAIT);
408			if (rv == 0)
409				goto out;
410			rv->r_start = s->r_start;
411			rv->r_end = s->r_end;
412			rv->r_flags = s->r_flags &
413				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
414			rv->r_dev = dev;
415			rv->r_rm = rm;
416			if (s->r_sharehead == 0) {
417				s->r_sharehead = malloc(sizeof *s->r_sharehead,
418						M_RMAN, M_NOWAIT | M_ZERO);
419				if (s->r_sharehead == 0) {
420					free(rv, M_RMAN);
421					rv = 0;
422					goto out;
423				}
424				LIST_INIT(s->r_sharehead);
425				LIST_INSERT_HEAD(s->r_sharehead, s,
426						 r_sharelink);
427				s->r_flags |= RF_FIRSTSHARE;
428			}
429			rv->r_sharehead = s->r_sharehead;
430			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
431			goto out;
432		}
433	}
434
435	/*
436	 * We couldn't find anything.
437	 */
438out:
439	/*
440	 * If the user specified RF_ACTIVE in the initial flags,
441	 * which is reflected in `want_activate', we attempt to atomically
442	 * activate the resource.  If this fails, we release the resource
443	 * and indicate overall failure.  (This behavior probably doesn't
444	 * make sense for RF_TIMESHARE-type resources.)
445	 */
446	if (rv && want_activate) {
447		struct resource_i *whohas;
448		if (int_rman_activate_resource(rm, rv, &whohas)) {
449			int_rman_release_resource(rm, rv);
450			rv = 0;
451		}
452	}
453
454	mtx_unlock(rm->rm_mtx);
455	return (&rv->r_r);
456}
457
458struct resource *
459rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
460		      u_int flags, struct device *dev)
461{
462
463	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
464	    dev));
465}
466
467static int
468int_rman_activate_resource(struct rman *rm, struct resource_i *r,
469			   struct resource_i **whohas)
470{
471	struct resource_i *s;
472	int ok;
473
474	/*
475	 * If we are not timesharing, then there is nothing much to do.
476	 * If we already have the resource, then there is nothing at all to do.
477	 * If we are not on a sharing list with anybody else, then there is
478	 * little to do.
479	 */
480	if ((r->r_flags & RF_TIMESHARE) == 0
481	    || (r->r_flags & RF_ACTIVE) != 0
482	    || r->r_sharehead == 0) {
483		r->r_flags |= RF_ACTIVE;
484		return 0;
485	}
486
487	ok = 1;
488	for (s = LIST_FIRST(r->r_sharehead); s && ok;
489	     s = LIST_NEXT(s, r_sharelink)) {
490		if ((s->r_flags & RF_ACTIVE) != 0) {
491			ok = 0;
492			*whohas = s;
493		}
494	}
495	if (ok) {
496		r->r_flags |= RF_ACTIVE;
497		return 0;
498	}
499	return EBUSY;
500}
501
502int
503rman_activate_resource(struct resource *re)
504{
505	int rv;
506	struct resource_i *r, *whohas;
507	struct rman *rm;
508
509	r = re->__r_i;
510	rm = r->r_rm;
511	mtx_lock(rm->rm_mtx);
512	rv = int_rman_activate_resource(rm, r, &whohas);
513	mtx_unlock(rm->rm_mtx);
514	return rv;
515}
516
517int
518rman_await_resource(struct resource *re, int pri, int timo)
519{
520	int	rv;
521	struct	resource_i *r, *whohas;
522	struct	rman *rm;
523
524	r = re->__r_i;
525	rm = r->r_rm;
526	mtx_lock(rm->rm_mtx);
527	for (;;) {
528		rv = int_rman_activate_resource(rm, r, &whohas);
529		if (rv != EBUSY)
530			return (rv);	/* returns with mutex held */
531
532		if (r->r_sharehead == 0)
533			panic("rman_await_resource");
534		whohas->r_flags |= RF_WANTED;
535		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
536		if (rv) {
537			mtx_unlock(rm->rm_mtx);
538			return (rv);
539		}
540	}
541}
542
543static int
544int_rman_deactivate_resource(struct resource_i *r)
545{
546
547	r->r_flags &= ~RF_ACTIVE;
548	if (r->r_flags & RF_WANTED) {
549		r->r_flags &= ~RF_WANTED;
550		wakeup(r->r_sharehead);
551	}
552	return 0;
553}
554
555int
556rman_deactivate_resource(struct resource *r)
557{
558	struct	rman *rm;
559
560	rm = r->__r_i->r_rm;
561	mtx_lock(rm->rm_mtx);
562	int_rman_deactivate_resource(r->__r_i);
563	mtx_unlock(rm->rm_mtx);
564	return 0;
565}
566
567static int
568int_rman_release_resource(struct rman *rm, struct resource_i *r)
569{
570	struct	resource_i *s, *t;
571
572	if (r->r_flags & RF_ACTIVE)
573		int_rman_deactivate_resource(r);
574
575	/*
576	 * Check for a sharing list first.  If there is one, then we don't
577	 * have to think as hard.
578	 */
579	if (r->r_sharehead) {
580		/*
581		 * If a sharing list exists, then we know there are at
582		 * least two sharers.
583		 *
584		 * If we are in the main circleq, appoint someone else.
585		 */
586		LIST_REMOVE(r, r_sharelink);
587		s = LIST_FIRST(r->r_sharehead);
588		if (r->r_flags & RF_FIRSTSHARE) {
589			s->r_flags |= RF_FIRSTSHARE;
590			TAILQ_INSERT_BEFORE(r, s, r_link);
591			TAILQ_REMOVE(&rm->rm_list, r, r_link);
592		}
593
594		/*
595		 * Make sure that the sharing list goes away completely
596		 * if the resource is no longer being shared at all.
597		 */
598		if (LIST_NEXT(s, r_sharelink) == 0) {
599			free(s->r_sharehead, M_RMAN);
600			s->r_sharehead = 0;
601			s->r_flags &= ~RF_FIRSTSHARE;
602		}
603		goto out;
604	}
605
606	/*
607	 * Look at the adjacent resources in the list and see if our
608	 * segment can be merged with any of them.  If either of the
609	 * resources is allocated or is not exactly adjacent then they
610	 * cannot be merged with our segment.
611	 */
612	s = TAILQ_PREV(r, resource_head, r_link);
613	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
614	    s->r_end + 1 != r->r_start))
615		s = NULL;
616	t = TAILQ_NEXT(r, r_link);
617	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
618	    r->r_end + 1 != t->r_start))
619		t = NULL;
620
621	if (s != NULL && t != NULL) {
622		/*
623		 * Merge all three segments.
624		 */
625		s->r_end = t->r_end;
626		TAILQ_REMOVE(&rm->rm_list, r, r_link);
627		TAILQ_REMOVE(&rm->rm_list, t, r_link);
628		free(t, M_RMAN);
629	} else if (s != NULL) {
630		/*
631		 * Merge previous segment with ours.
632		 */
633		s->r_end = r->r_end;
634		TAILQ_REMOVE(&rm->rm_list, r, r_link);
635	} else if (t != NULL) {
636		/*
637		 * Merge next segment with ours.
638		 */
639		t->r_start = r->r_start;
640		TAILQ_REMOVE(&rm->rm_list, r, r_link);
641	} else {
642		/*
643		 * At this point, we know there is nothing we
644		 * can potentially merge with, because on each
645		 * side, there is either nothing there or what is
646		 * there is still allocated.  In that case, we don't
647		 * want to remove r from the list; we simply want to
648		 * change it to an unallocated region and return
649		 * without freeing anything.
650		 */
651		r->r_flags &= ~RF_ALLOCATED;
652		return 0;
653	}
654
655out:
656	free(r, M_RMAN);
657	return 0;
658}
659
660int
661rman_release_resource(struct resource *re)
662{
663	int	rv;
664	struct	resource_i *r;
665	struct	rman *rm;
666
667	r = re->__r_i;
668	rm = r->r_rm;
669	mtx_lock(rm->rm_mtx);
670	rv = int_rman_release_resource(rm, r);
671	mtx_unlock(rm->rm_mtx);
672	return (rv);
673}
674
675uint32_t
676rman_make_alignment_flags(uint32_t size)
677{
678	int	i;
679
680	/*
681	 * Find the hightest bit set, and add one if more than one bit
682	 * set.  We're effectively computing the ceil(log2(size)) here.
683	 */
684	for (i = 31; i > 0; i--)
685		if ((1 << i) & size)
686			break;
687	if (~(1 << i) & size)
688		i++;
689
690	return(RF_ALIGNMENT_LOG2(i));
691}
692
693u_long
694rman_get_start(struct resource *r)
695{
696	return (r->__r_i->r_start);
697}
698
699u_long
700rman_get_end(struct resource *r)
701{
702	return (r->__r_i->r_end);
703}
704
705u_long
706rman_get_size(struct resource *r)
707{
708	return (r->__r_i->r_end - r->__r_i->r_start + 1);
709}
710
711u_int
712rman_get_flags(struct resource *r)
713{
714	return (r->__r_i->r_flags);
715}
716
717void
718rman_set_virtual(struct resource *r, void *v)
719{
720	r->__r_i->r_virtual = v;
721}
722
723void *
724rman_get_virtual(struct resource *r)
725{
726	return (r->__r_i->r_virtual);
727}
728
729void
730rman_set_bustag(struct resource *r, bus_space_tag_t t)
731{
732	r->r_bustag = t;
733}
734
735bus_space_tag_t
736rman_get_bustag(struct resource *r)
737{
738	return (r->r_bustag);
739}
740
741void
742rman_set_bushandle(struct resource *r, bus_space_handle_t h)
743{
744	r->r_bushandle = h;
745}
746
747bus_space_handle_t
748rman_get_bushandle(struct resource *r)
749{
750	return (r->r_bushandle);
751}
752
753void
754rman_set_rid(struct resource *r, int rid)
755{
756	r->__r_i->r_rid = rid;
757}
758
759void
760rman_set_start(struct resource *r, u_long start)
761{
762	r->__r_i->r_start = start;
763}
764
765void
766rman_set_end(struct resource *r, u_long end)
767{
768	r->__r_i->r_end = end;
769}
770
771int
772rman_get_rid(struct resource *r)
773{
774	return (r->__r_i->r_rid);
775}
776
777struct device *
778rman_get_device(struct resource *r)
779{
780	return (r->__r_i->r_dev);
781}
782
783void
784rman_set_device(struct resource *r, struct device *dev)
785{
786	r->__r_i->r_dev = dev;
787}
788
789int
790rman_is_region_manager(struct resource *r, struct rman *rm)
791{
792
793	return (r->__r_i->r_rm == rm);
794}
795
796/*
797 * Sysctl interface for scanning the resource lists.
798 *
799 * We take two input parameters; the index into the list of resource
800 * managers, and the resource offset into the list.
801 */
802static int
803sysctl_rman(SYSCTL_HANDLER_ARGS)
804{
805	int			*name = (int *)arg1;
806	u_int			namelen = arg2;
807	int			rman_idx, res_idx;
808	struct rman		*rm;
809	struct resource_i	*res;
810	struct u_rman		urm;
811	struct u_resource	ures;
812	int			error;
813
814	if (namelen != 3)
815		return (EINVAL);
816
817	if (bus_data_generation_check(name[0]))
818		return (EINVAL);
819	rman_idx = name[1];
820	res_idx = name[2];
821
822	/*
823	 * Find the indexed resource manager
824	 */
825	TAILQ_FOREACH(rm, &rman_head, rm_link) {
826		if (rman_idx-- == 0)
827			break;
828	}
829	if (rm == NULL)
830		return (ENOENT);
831
832	/*
833	 * If the resource index is -1, we want details on the
834	 * resource manager.
835	 */
836	if (res_idx == -1) {
837		bzero(&urm, sizeof(urm));
838		urm.rm_handle = (uintptr_t)rm;
839		strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
840		urm.rm_start = rm->rm_start;
841		urm.rm_size = rm->rm_end - rm->rm_start + 1;
842		urm.rm_type = rm->rm_type;
843
844		error = SYSCTL_OUT(req, &urm, sizeof(urm));
845		return (error);
846	}
847
848	/*
849	 * Find the indexed resource and return it.
850	 */
851	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
852		if (res_idx-- == 0) {
853			bzero(&ures, sizeof(ures));
854			ures.r_handle = (uintptr_t)res;
855			ures.r_parent = (uintptr_t)res->r_rm;
856			ures.r_device = (uintptr_t)res->r_dev;
857			if (res->r_dev != NULL) {
858				if (device_get_name(res->r_dev) != NULL) {
859					snprintf(ures.r_devname, RM_TEXTLEN,
860					    "%s%d",
861					    device_get_name(res->r_dev),
862					    device_get_unit(res->r_dev));
863				} else {
864					strlcpy(ures.r_devname, "nomatch",
865					    RM_TEXTLEN);
866				}
867			} else {
868				ures.r_devname[0] = '\0';
869			}
870			ures.r_start = res->r_start;
871			ures.r_size = res->r_end - res->r_start + 1;
872			ures.r_flags = res->r_flags;
873
874			error = SYSCTL_OUT(req, &ures, sizeof(ures));
875			return (error);
876		}
877	}
878	return (ENOENT);
879}
880
881SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
882    "kernel resource manager");
883
884