subr_rman.c revision 143665
1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * The kernel resource manager.  This code is responsible for keeping track
32 * of hardware resources which are apportioned out to various drivers.
33 * It does not actually assign those resources, and it is not expected
34 * that end-device drivers will call into this code directly.  Rather,
35 * the code which implements the buses that those devices are attached to,
36 * and the code which manages CPU resources, will call this code, and the
37 * end-device drivers will make upcalls to that code to actually perform
38 * the allocation.
39 *
40 * There are two sorts of resources managed by this code.  The first is
41 * the more familiar array (RMAN_ARRAY) type; resources in this class
42 * consist of a sequence of individually-allocatable objects which have
43 * been numbered in some well-defined order.  Most of the resources
44 * are of this type, as it is the most familiar.  The second type is
45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46 * resources in which each instance is indistinguishable from every
47 * other instance).  The principal anticipated application of gauges
48 * is in the context of power consumption, where a bus may have a specific
49 * power budget which all attached devices share.  RMAN_GAUGE is not
50 * implemented yet.
51 *
52 * For array resources, we make one simplifying assumption: two clients
53 * sharing the same resource must use the same range of indices.  That
54 * is to say, sharing of overlapping-but-not-identical regions is not
55 * permitted.
56 */
57
58#include <sys/cdefs.h>
59__FBSDID("$FreeBSD: head/sys/kern/subr_rman.c 143665 2005-03-15 20:28:51Z imp $");
60
61#define __RMAN_RESOURCE_VISIBLE
62#include <sys/param.h>
63#include <sys/systm.h>
64#include <sys/kernel.h>
65#include <sys/lock.h>
66#include <sys/malloc.h>
67#include <sys/mutex.h>
68#include <sys/bus.h>		/* XXX debugging */
69#include <machine/bus.h>
70#include <sys/rman.h>
71#include <sys/sysctl.h>
72
73int     rman_debug = 0;
74TUNABLE_INT("debug.rman_debug", &rman_debug);
75SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
76    &rman_debug, 0, "rman debug");
77
78#define DPRINTF(params) if (rman_debug) printf params
79
80static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
81
82struct	rman_head rman_head;
83static	struct mtx rman_mtx; /* mutex to protect rman_head */
84static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
85				       struct resource **whohas);
86static	int int_rman_deactivate_resource(struct resource *r);
87static	int int_rman_release_resource(struct rman *rm, struct resource *r);
88
89int
90rman_init(struct rman *rm)
91{
92	static int once;
93
94	if (once == 0) {
95		once = 1;
96		TAILQ_INIT(&rman_head);
97		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
98	}
99
100	if (rm->rm_type == RMAN_UNINIT)
101		panic("rman_init");
102	if (rm->rm_type == RMAN_GAUGE)
103		panic("implement RMAN_GAUGE");
104
105	TAILQ_INIT(&rm->rm_list);
106	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
107	if (rm->rm_mtx == 0)
108		return ENOMEM;
109	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
110
111	mtx_lock(&rman_mtx);
112	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
113	mtx_unlock(&rman_mtx);
114	return 0;
115}
116
117/*
118 * NB: this interface is not robust against programming errors which
119 * add multiple copies of the same region.
120 */
121int
122rman_manage_region(struct rman *rm, u_long start, u_long end)
123{
124	struct resource *r, *s;
125
126	DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
127	    rm->rm_descr, start, end));
128	r = malloc(sizeof *r, M_RMAN, M_NOWAIT | M_ZERO);
129	if (r == 0)
130		return ENOMEM;
131	r->r_start = start;
132	r->r_end = end;
133	r->r_rm = rm;
134
135	mtx_lock(rm->rm_mtx);
136	for (s = TAILQ_FIRST(&rm->rm_list);
137	     s && s->r_end < r->r_start;
138	     s = TAILQ_NEXT(s, r_link))
139		;
140
141	if (s == NULL) {
142		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
143	} else {
144		TAILQ_INSERT_BEFORE(s, r, r_link);
145	}
146
147	mtx_unlock(rm->rm_mtx);
148	return 0;
149}
150
151int
152rman_fini(struct rman *rm)
153{
154	struct resource *r;
155
156	mtx_lock(rm->rm_mtx);
157	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
158		if (r->r_flags & RF_ALLOCATED) {
159			mtx_unlock(rm->rm_mtx);
160			return EBUSY;
161		}
162	}
163
164	/*
165	 * There really should only be one of these if we are in this
166	 * state and the code is working properly, but it can't hurt.
167	 */
168	while (!TAILQ_EMPTY(&rm->rm_list)) {
169		r = TAILQ_FIRST(&rm->rm_list);
170		TAILQ_REMOVE(&rm->rm_list, r, r_link);
171		free(r, M_RMAN);
172	}
173	mtx_unlock(rm->rm_mtx);
174	mtx_lock(&rman_mtx);
175	TAILQ_REMOVE(&rman_head, rm, rm_link);
176	mtx_unlock(&rman_mtx);
177	mtx_destroy(rm->rm_mtx);
178	free(rm->rm_mtx, M_RMAN);
179
180	return 0;
181}
182
183struct resource *
184rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
185		      u_long count, u_long bound,  u_int flags,
186		      struct device *dev)
187{
188	u_int	want_activate;
189	struct	resource *r, *s, *rv;
190	u_long	rstart, rend, amask, bmask;
191
192	rv = 0;
193
194	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
195	       "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, count,
196	       flags, dev == NULL ? "<null>" : device_get_nameunit(dev)));
197	want_activate = (flags & RF_ACTIVE);
198	flags &= ~RF_ACTIVE;
199
200	mtx_lock(rm->rm_mtx);
201
202	for (r = TAILQ_FIRST(&rm->rm_list);
203	     r && r->r_end < start;
204	     r = TAILQ_NEXT(r, r_link))
205		;
206
207	if (r == NULL) {
208		DPRINTF(("could not find a region\n"));
209		goto out;
210	}
211
212	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
213	/* If bound is 0, bmask will also be 0 */
214	bmask = ~(bound - 1);
215	/*
216	 * First try to find an acceptable totally-unshared region.
217	 */
218	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
219		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
220		if (s->r_start + count - 1 > end) {
221			DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n",
222			    s->r_start, end));
223			break;
224		}
225		if (s->r_flags & RF_ALLOCATED) {
226			DPRINTF(("region is allocated\n"));
227			continue;
228		}
229		rstart = ulmax(s->r_start, start);
230		/*
231		 * Try to find a region by adjusting to boundary and alignment
232		 * until both conditions are satisfied. This is not an optimal
233		 * algorithm, but in most cases it isn't really bad, either.
234		 */
235		do {
236			rstart = (rstart + amask) & ~amask;
237			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
238				rstart += bound - (rstart & ~bmask);
239		} while ((rstart & amask) != 0 && rstart < end &&
240		    rstart < s->r_end);
241		rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
242		if (rstart > rend) {
243			DPRINTF(("adjusted start exceeds end\n"));
244			continue;
245		}
246		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
247		       rstart, rend, (rend - rstart + 1), count));
248
249		if ((rend - rstart + 1) >= count) {
250			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
251			       rstart, rend, (rend - rstart + 1)));
252			if ((s->r_end - s->r_start + 1) == count) {
253				DPRINTF(("candidate region is entire chunk\n"));
254				rv = s;
255				rv->r_flags |= RF_ALLOCATED | flags;
256				rv->r_dev = dev;
257				goto out;
258			}
259
260			/*
261			 * If s->r_start < rstart and
262			 *    s->r_end > rstart + count - 1, then
263			 * we need to split the region into three pieces
264			 * (the middle one will get returned to the user).
265			 * Otherwise, we are allocating at either the
266			 * beginning or the end of s, so we only need to
267			 * split it in two.  The first case requires
268			 * two new allocations; the second requires but one.
269			 */
270			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
271			if (rv == 0)
272				goto out;
273			rv->r_start = rstart;
274			rv->r_end = rstart + count - 1;
275			rv->r_flags = flags | RF_ALLOCATED;
276			rv->r_dev = dev;
277			rv->r_rm = rm;
278
279			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
280				DPRINTF(("splitting region in three parts: "
281				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
282				       s->r_start, rv->r_start - 1,
283				       rv->r_start, rv->r_end,
284				       rv->r_end + 1, s->r_end));
285				/*
286				 * We are allocating in the middle.
287				 */
288				r = malloc(sizeof *r, M_RMAN, M_NOWAIT|M_ZERO);
289				if (r == 0) {
290					free(rv, M_RMAN);
291					rv = 0;
292					goto out;
293				}
294				r->r_start = rv->r_end + 1;
295				r->r_end = s->r_end;
296				r->r_flags = s->r_flags;
297				r->r_rm = rm;
298				s->r_end = rv->r_start - 1;
299				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
300						     r_link);
301				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
302						     r_link);
303			} else if (s->r_start == rv->r_start) {
304				DPRINTF(("allocating from the beginning\n"));
305				/*
306				 * We are allocating at the beginning.
307				 */
308				s->r_start = rv->r_end + 1;
309				TAILQ_INSERT_BEFORE(s, rv, r_link);
310			} else {
311				DPRINTF(("allocating at the end\n"));
312				/*
313				 * We are allocating at the end.
314				 */
315				s->r_end = rv->r_start - 1;
316				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
317						     r_link);
318			}
319			goto out;
320		}
321	}
322
323	/*
324	 * Now find an acceptable shared region, if the client's requirements
325	 * allow sharing.  By our implementation restriction, a candidate
326	 * region must match exactly by both size and sharing type in order
327	 * to be considered compatible with the client's request.  (The
328	 * former restriction could probably be lifted without too much
329	 * additional work, but this does not seem warranted.)
330	 */
331	DPRINTF(("no unshared regions found\n"));
332	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
333		goto out;
334
335	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
336		if (s->r_start > end)
337			break;
338		if ((s->r_flags & flags) != flags)
339			continue;
340		rstart = ulmax(s->r_start, start);
341		rend = ulmin(s->r_end, ulmax(start + count - 1, end));
342		if (s->r_start >= start && s->r_end <= end
343		    && (s->r_end - s->r_start + 1) == count &&
344		    (s->r_start & amask) == 0 &&
345		    ((s->r_start ^ s->r_end) & bmask) == 0) {
346			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
347			if (rv == 0)
348				goto out;
349			rv->r_start = s->r_start;
350			rv->r_end = s->r_end;
351			rv->r_flags = s->r_flags &
352				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
353			rv->r_dev = dev;
354			rv->r_rm = rm;
355			if (s->r_sharehead == 0) {
356				s->r_sharehead = malloc(sizeof *s->r_sharehead,
357						M_RMAN, M_NOWAIT | M_ZERO);
358				if (s->r_sharehead == 0) {
359					free(rv, M_RMAN);
360					rv = 0;
361					goto out;
362				}
363				LIST_INIT(s->r_sharehead);
364				LIST_INSERT_HEAD(s->r_sharehead, s,
365						 r_sharelink);
366				s->r_flags |= RF_FIRSTSHARE;
367			}
368			rv->r_sharehead = s->r_sharehead;
369			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
370			goto out;
371		}
372	}
373
374	/*
375	 * We couldn't find anything.
376	 */
377out:
378	/*
379	 * If the user specified RF_ACTIVE in the initial flags,
380	 * which is reflected in `want_activate', we attempt to atomically
381	 * activate the resource.  If this fails, we release the resource
382	 * and indicate overall failure.  (This behavior probably doesn't
383	 * make sense for RF_TIMESHARE-type resources.)
384	 */
385	if (rv && want_activate) {
386		struct resource *whohas;
387		if (int_rman_activate_resource(rm, rv, &whohas)) {
388			int_rman_release_resource(rm, rv);
389			rv = 0;
390		}
391	}
392
393	mtx_unlock(rm->rm_mtx);
394	return (rv);
395}
396
397struct resource *
398rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
399		      u_int flags, struct device *dev)
400{
401
402	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
403	    dev));
404}
405
406static int
407int_rman_activate_resource(struct rman *rm, struct resource *r,
408			   struct resource **whohas)
409{
410	struct resource *s;
411	int ok;
412
413	/*
414	 * If we are not timesharing, then there is nothing much to do.
415	 * If we already have the resource, then there is nothing at all to do.
416	 * If we are not on a sharing list with anybody else, then there is
417	 * little to do.
418	 */
419	if ((r->r_flags & RF_TIMESHARE) == 0
420	    || (r->r_flags & RF_ACTIVE) != 0
421	    || r->r_sharehead == 0) {
422		r->r_flags |= RF_ACTIVE;
423		return 0;
424	}
425
426	ok = 1;
427	for (s = LIST_FIRST(r->r_sharehead); s && ok;
428	     s = LIST_NEXT(s, r_sharelink)) {
429		if ((s->r_flags & RF_ACTIVE) != 0) {
430			ok = 0;
431			*whohas = s;
432		}
433	}
434	if (ok) {
435		r->r_flags |= RF_ACTIVE;
436		return 0;
437	}
438	return EBUSY;
439}
440
441int
442rman_activate_resource(struct resource *r)
443{
444	int rv;
445	struct resource *whohas;
446	struct rman *rm;
447
448	rm = r->r_rm;
449	mtx_lock(rm->rm_mtx);
450	rv = int_rman_activate_resource(rm, r, &whohas);
451	mtx_unlock(rm->rm_mtx);
452	return rv;
453}
454
455int
456rman_await_resource(struct resource *r, int pri, int timo)
457{
458	int	rv;
459	struct	resource *whohas;
460	struct	rman *rm;
461
462	rm = r->r_rm;
463	mtx_lock(rm->rm_mtx);
464	for (;;) {
465		rv = int_rman_activate_resource(rm, r, &whohas);
466		if (rv != EBUSY)
467			return (rv);	/* returns with mutex held */
468
469		if (r->r_sharehead == 0)
470			panic("rman_await_resource");
471		whohas->r_flags |= RF_WANTED;
472		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
473		if (rv) {
474			mtx_unlock(rm->rm_mtx);
475			return (rv);
476		}
477	}
478}
479
480static int
481int_rman_deactivate_resource(struct resource *r)
482{
483
484	r->r_flags &= ~RF_ACTIVE;
485	if (r->r_flags & RF_WANTED) {
486		r->r_flags &= ~RF_WANTED;
487		wakeup(r->r_sharehead);
488	}
489	return 0;
490}
491
492int
493rman_deactivate_resource(struct resource *r)
494{
495	struct	rman *rm;
496
497	rm = r->r_rm;
498	mtx_lock(rm->rm_mtx);
499	int_rman_deactivate_resource(r);
500	mtx_unlock(rm->rm_mtx);
501	return 0;
502}
503
504static int
505int_rman_release_resource(struct rman *rm, struct resource *r)
506{
507	struct	resource *s, *t;
508
509	if (r->r_flags & RF_ACTIVE)
510		int_rman_deactivate_resource(r);
511
512	/*
513	 * Check for a sharing list first.  If there is one, then we don't
514	 * have to think as hard.
515	 */
516	if (r->r_sharehead) {
517		/*
518		 * If a sharing list exists, then we know there are at
519		 * least two sharers.
520		 *
521		 * If we are in the main circleq, appoint someone else.
522		 */
523		LIST_REMOVE(r, r_sharelink);
524		s = LIST_FIRST(r->r_sharehead);
525		if (r->r_flags & RF_FIRSTSHARE) {
526			s->r_flags |= RF_FIRSTSHARE;
527			TAILQ_INSERT_BEFORE(r, s, r_link);
528			TAILQ_REMOVE(&rm->rm_list, r, r_link);
529		}
530
531		/*
532		 * Make sure that the sharing list goes away completely
533		 * if the resource is no longer being shared at all.
534		 */
535		if (LIST_NEXT(s, r_sharelink) == 0) {
536			free(s->r_sharehead, M_RMAN);
537			s->r_sharehead = 0;
538			s->r_flags &= ~RF_FIRSTSHARE;
539		}
540		goto out;
541	}
542
543	/*
544	 * Look at the adjacent resources in the list and see if our
545	 * segment can be merged with any of them.  If either of the
546	 * resources is allocated or is not exactly adjacent then they
547	 * cannot be merged with our segment.
548	 */
549	s = TAILQ_PREV(r, resource_head, r_link);
550	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
551	    s->r_end + 1 != r->r_start))
552		s = NULL;
553	t = TAILQ_NEXT(r, r_link);
554	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
555	    r->r_end + 1 != t->r_start))
556		t = NULL;
557
558	if (s != NULL && t != NULL) {
559		/*
560		 * Merge all three segments.
561		 */
562		s->r_end = t->r_end;
563		TAILQ_REMOVE(&rm->rm_list, r, r_link);
564		TAILQ_REMOVE(&rm->rm_list, t, r_link);
565		free(t, M_RMAN);
566	} else if (s != NULL) {
567		/*
568		 * Merge previous segment with ours.
569		 */
570		s->r_end = r->r_end;
571		TAILQ_REMOVE(&rm->rm_list, r, r_link);
572	} else if (t != NULL) {
573		/*
574		 * Merge next segment with ours.
575		 */
576		t->r_start = r->r_start;
577		TAILQ_REMOVE(&rm->rm_list, r, r_link);
578	} else {
579		/*
580		 * At this point, we know there is nothing we
581		 * can potentially merge with, because on each
582		 * side, there is either nothing there or what is
583		 * there is still allocated.  In that case, we don't
584		 * want to remove r from the list; we simply want to
585		 * change it to an unallocated region and return
586		 * without freeing anything.
587		 */
588		r->r_flags &= ~RF_ALLOCATED;
589		return 0;
590	}
591
592out:
593	free(r, M_RMAN);
594	return 0;
595}
596
597int
598rman_release_resource(struct resource *r)
599{
600	int	rv;
601	struct	rman *rm = r->r_rm;
602
603	mtx_lock(rm->rm_mtx);
604	rv = int_rman_release_resource(rm, r);
605	mtx_unlock(rm->rm_mtx);
606	return (rv);
607}
608
609uint32_t
610rman_make_alignment_flags(uint32_t size)
611{
612	int	i;
613
614	/*
615	 * Find the hightest bit set, and add one if more than one bit
616	 * set.  We're effectively computing the ceil(log2(size)) here.
617	 */
618	for (i = 31; i > 0; i--)
619		if ((1 << i) & size)
620			break;
621	if (~(1 << i) & size)
622		i++;
623
624	return(RF_ALIGNMENT_LOG2(i));
625}
626
627u_long
628rman_get_start(struct resource *r)
629{
630	return (r->r_start);
631}
632
633u_long
634rman_get_end(struct resource *r)
635{
636	return (r->r_end);
637}
638
639u_long
640rman_get_size(struct resource *r)
641{
642	return (r->r_end - r->r_start + 1);
643}
644
645u_int
646rman_get_flags(struct resource *r)
647{
648	return (r->r_flags);
649}
650
651void
652rman_set_virtual(struct resource *r, void *v)
653{
654	r->r_virtual = v;
655}
656
657void *
658rman_get_virtual(struct resource *r)
659{
660	return (r->r_virtual);
661}
662
663void
664rman_set_bustag(struct resource *r, bus_space_tag_t t)
665{
666	r->r_bustag = t;
667}
668
669bus_space_tag_t
670rman_get_bustag(struct resource *r)
671{
672	return (r->r_bustag);
673}
674
675void
676rman_set_bushandle(struct resource *r, bus_space_handle_t h)
677{
678	r->r_bushandle = h;
679}
680
681bus_space_handle_t
682rman_get_bushandle(struct resource *r)
683{
684	return (r->r_bushandle);
685}
686
687void
688rman_set_rid(struct resource *r, int rid)
689{
690	r->r_rid = rid;
691}
692
693void
694rman_set_start(struct resource *r, u_long start)
695{
696	r->r_start = start;
697}
698
699void
700rman_set_end(struct resource *r, u_long end)
701{
702	r->r_end = end;
703}
704
705int
706rman_get_rid(struct resource *r)
707{
708	return (r->r_rid);
709}
710
711struct device *
712rman_get_device(struct resource *r)
713{
714	return (r->r_dev);
715}
716