subr_rman.c revision 107296
1/*
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: head/sys/kern/subr_rman.c 107296 2002-11-27 03:55:22Z imp $
30 */
31
32/*
33 * The kernel resource manager.  This code is responsible for keeping track
34 * of hardware resources which are apportioned out to various drivers.
35 * It does not actually assign those resources, and it is not expected
36 * that end-device drivers will call into this code directly.  Rather,
37 * the code which implements the buses that those devices are attached to,
38 * and the code which manages CPU resources, will call this code, and the
39 * end-device drivers will make upcalls to that code to actually perform
40 * the allocation.
41 *
42 * There are two sorts of resources managed by this code.  The first is
43 * the more familiar array (RMAN_ARRAY) type; resources in this class
44 * consist of a sequence of individually-allocatable objects which have
45 * been numbered in some well-defined order.  Most of the resources
46 * are of this type, as it is the most familiar.  The second type is
47 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
48 * resources in which each instance is indistinguishable from every
49 * other instance).  The principal anticipated application of gauges
50 * is in the context of power consumption, where a bus may have a specific
51 * power budget which all attached devices share.  RMAN_GAUGE is not
52 * implemented yet.
53 *
54 * For array resources, we make one simplifying assumption: two clients
55 * sharing the same resource must use the same range of indices.  That
56 * is to say, sharing of overlapping-but-not-identical regions is not
57 * permitted.
58 */
59
60#include <sys/param.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/lock.h>
64#include <sys/malloc.h>
65#include <sys/mutex.h>
66#include <sys/bus.h>		/* XXX debugging */
67#include <machine/bus.h>
68#include <sys/rman.h>
69#include <sys/sysctl.h>
70
71int     rman_debug = 0;
72TUNABLE_INT("debug.rman_debug", &rman_debug);
73SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
74    &rman_debug, 0, "rman debug");
75
76#define DPRINTF(params) if (rman_debug) printf params
77
78static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
79
80struct	rman_head rman_head;
81static	struct mtx rman_mtx; /* mutex to protect rman_head */
82static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
83				       struct resource **whohas);
84static	int int_rman_deactivate_resource(struct resource *r);
85static	int int_rman_release_resource(struct rman *rm, struct resource *r);
86
87int
88rman_init(struct rman *rm)
89{
90	static int once;
91
92	if (once == 0) {
93		once = 1;
94		TAILQ_INIT(&rman_head);
95		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
96	}
97
98	if (rm->rm_type == RMAN_UNINIT)
99		panic("rman_init");
100	if (rm->rm_type == RMAN_GAUGE)
101		panic("implement RMAN_GAUGE");
102
103	TAILQ_INIT(&rm->rm_list);
104	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
105	if (rm->rm_mtx == 0)
106		return ENOMEM;
107	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
108
109	mtx_lock(&rman_mtx);
110	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
111	mtx_unlock(&rman_mtx);
112	return 0;
113}
114
115/*
116 * NB: this interface is not robust against programming errors which
117 * add multiple copies of the same region.
118 */
119int
120rman_manage_region(struct rman *rm, u_long start, u_long end)
121{
122	struct resource *r, *s;
123
124	r = malloc(sizeof *r, M_RMAN, M_NOWAIT | M_ZERO);
125	if (r == 0)
126		return ENOMEM;
127	r->r_start = start;
128	r->r_end = end;
129	r->r_rm = rm;
130
131	mtx_lock(rm->rm_mtx);
132	for (s = TAILQ_FIRST(&rm->rm_list);
133	     s && s->r_end < r->r_start;
134	     s = TAILQ_NEXT(s, r_link))
135		;
136
137	if (s == NULL) {
138		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
139	} else {
140		TAILQ_INSERT_BEFORE(s, r, r_link);
141	}
142
143	mtx_unlock(rm->rm_mtx);
144	return 0;
145}
146
147int
148rman_fini(struct rman *rm)
149{
150	struct resource *r;
151
152	mtx_lock(rm->rm_mtx);
153	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
154		if (r->r_flags & RF_ALLOCATED) {
155			mtx_unlock(rm->rm_mtx);
156			return EBUSY;
157		}
158	}
159
160	/*
161	 * There really should only be one of these if we are in this
162	 * state and the code is working properly, but it can't hurt.
163	 */
164	while (!TAILQ_EMPTY(&rm->rm_list)) {
165		r = TAILQ_FIRST(&rm->rm_list);
166		TAILQ_REMOVE(&rm->rm_list, r, r_link);
167		free(r, M_RMAN);
168	}
169	mtx_unlock(rm->rm_mtx);
170	mtx_lock(&rman_mtx);
171	TAILQ_REMOVE(&rman_head, rm, rm_link);
172	mtx_unlock(&rman_mtx);
173	mtx_destroy(rm->rm_mtx);
174	free(rm->rm_mtx, M_RMAN);
175
176	return 0;
177}
178
179struct resource *
180rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
181		      u_long count, u_long bound,  u_int flags,
182		      struct device *dev)
183{
184	u_int	want_activate;
185	struct	resource *r, *s, *rv;
186	u_long	rstart, rend, amask, bmask;
187
188	rv = 0;
189
190	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
191	       "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, count,
192	       flags, dev == NULL ? "<null>" : device_get_nameunit(dev)));
193	want_activate = (flags & RF_ACTIVE);
194	flags &= ~RF_ACTIVE;
195
196	mtx_lock(rm->rm_mtx);
197
198	for (r = TAILQ_FIRST(&rm->rm_list);
199	     r && r->r_end < start;
200	     r = TAILQ_NEXT(r, r_link))
201		;
202
203	if (r == NULL) {
204		DPRINTF(("could not find a region\n"));
205		goto out;
206	}
207
208	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
209	/* If bound is 0, bmask will also be 0 */
210	bmask = ~(bound - 1);
211	/*
212	 * First try to find an acceptable totally-unshared region.
213	 */
214	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
215		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
216		if (s->r_start > end) {
217			DPRINTF(("s->r_start (%#lx) > end (%#lx)\n", s->r_start, end));
218			break;
219		}
220		if (s->r_flags & RF_ALLOCATED) {
221			DPRINTF(("region is allocated\n"));
222			continue;
223		}
224		rstart = ulmax(s->r_start, start);
225		/*
226		 * Try to find a region by adjusting to boundary and alignment
227		 * until both conditions are satisfied. This is not an optimal
228		 * algorithm, but in most cases it isn't really bad, either.
229		 */
230		do {
231			rstart = (rstart + amask) & ~amask;
232			if (((rstart ^ (rstart + count)) & bmask) != 0)
233				rstart += bound - (rstart & ~bmask);
234		} while ((rstart & amask) != 0 && rstart < end &&
235		    rstart < s->r_end);
236		rend = ulmin(s->r_end, ulmax(rstart + count, end));
237		if (rstart > rend) {
238			DPRINTF(("adjusted start exceeds end\n"));
239			continue;
240		}
241		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
242		       rstart, rend, (rend - rstart + 1), count));
243
244		if ((rend - rstart + 1) >= count) {
245			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
246			       rend, rstart, (rend - rstart + 1)));
247			if ((s->r_end - s->r_start + 1) == count) {
248				DPRINTF(("candidate region is entire chunk\n"));
249				rv = s;
250				rv->r_flags |= RF_ALLOCATED | flags;
251				rv->r_dev = dev;
252				goto out;
253			}
254
255			/*
256			 * If s->r_start < rstart and
257			 *    s->r_end > rstart + count - 1, then
258			 * we need to split the region into three pieces
259			 * (the middle one will get returned to the user).
260			 * Otherwise, we are allocating at either the
261			 * beginning or the end of s, so we only need to
262			 * split it in two.  The first case requires
263			 * two new allocations; the second requires but one.
264			 */
265			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
266			if (rv == 0)
267				goto out;
268			rv->r_start = rstart;
269			rv->r_end = rstart + count - 1;
270			rv->r_flags = flags | RF_ALLOCATED;
271			rv->r_dev = dev;
272			rv->r_rm = rm;
273
274			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
275				DPRINTF(("splitting region in three parts: "
276				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
277				       s->r_start, rv->r_start - 1,
278				       rv->r_start, rv->r_end,
279				       rv->r_end + 1, s->r_end));
280				/*
281				 * We are allocating in the middle.
282				 */
283				r = malloc(sizeof *r, M_RMAN, M_NOWAIT|M_ZERO);
284				if (r == 0) {
285					free(rv, M_RMAN);
286					rv = 0;
287					goto out;
288				}
289				r->r_start = rv->r_end + 1;
290				r->r_end = s->r_end;
291				r->r_flags = s->r_flags;
292				r->r_rm = rm;
293				s->r_end = rv->r_start - 1;
294				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
295						     r_link);
296				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
297						     r_link);
298			} else if (s->r_start == rv->r_start) {
299				DPRINTF(("allocating from the beginning\n"));
300				/*
301				 * We are allocating at the beginning.
302				 */
303				s->r_start = rv->r_end + 1;
304				TAILQ_INSERT_BEFORE(s, rv, r_link);
305			} else {
306				DPRINTF(("allocating at the end\n"));
307				/*
308				 * We are allocating at the end.
309				 */
310				s->r_end = rv->r_start - 1;
311				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
312						     r_link);
313			}
314			goto out;
315		}
316	}
317
318	/*
319	 * Now find an acceptable shared region, if the client's requirements
320	 * allow sharing.  By our implementation restriction, a candidate
321	 * region must match exactly by both size and sharing type in order
322	 * to be considered compatible with the client's request.  (The
323	 * former restriction could probably be lifted without too much
324	 * additional work, but this does not seem warranted.)
325	 */
326	DPRINTF(("no unshared regions found\n"));
327	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
328		goto out;
329
330	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
331		if (s->r_start > end)
332			break;
333		if ((s->r_flags & flags) != flags)
334			continue;
335		rstart = ulmax(s->r_start, start);
336		rend = ulmin(s->r_end, ulmax(start + count, end));
337		if (s->r_start >= start && s->r_end <= end
338		    && (s->r_end - s->r_start + 1) == count &&
339		    (s->r_start & amask) == 0 &&
340		    ((s->r_start ^ s->r_end) & bmask) == 0) {
341			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
342			if (rv == 0)
343				goto out;
344			rv->r_start = s->r_start;
345			rv->r_end = s->r_end;
346			rv->r_flags = s->r_flags &
347				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
348			rv->r_dev = dev;
349			rv->r_rm = rm;
350			if (s->r_sharehead == 0) {
351				s->r_sharehead = malloc(sizeof *s->r_sharehead,
352						M_RMAN, M_NOWAIT | M_ZERO);
353				if (s->r_sharehead == 0) {
354					free(rv, M_RMAN);
355					rv = 0;
356					goto out;
357				}
358				LIST_INIT(s->r_sharehead);
359				LIST_INSERT_HEAD(s->r_sharehead, s,
360						 r_sharelink);
361				s->r_flags |= RF_FIRSTSHARE;
362			}
363			rv->r_sharehead = s->r_sharehead;
364			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
365			goto out;
366		}
367	}
368
369	/*
370	 * We couldn't find anything.
371	 */
372out:
373	/*
374	 * If the user specified RF_ACTIVE in the initial flags,
375	 * which is reflected in `want_activate', we attempt to atomically
376	 * activate the resource.  If this fails, we release the resource
377	 * and indicate overall failure.  (This behavior probably doesn't
378	 * make sense for RF_TIMESHARE-type resources.)
379	 */
380	if (rv && want_activate) {
381		struct resource *whohas;
382		if (int_rman_activate_resource(rm, rv, &whohas)) {
383			int_rman_release_resource(rm, rv);
384			rv = 0;
385		}
386	}
387
388	mtx_unlock(rm->rm_mtx);
389	return (rv);
390}
391
392struct resource *
393rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
394		      u_int flags, struct device *dev)
395{
396
397	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
398	    dev));
399}
400
401static int
402int_rman_activate_resource(struct rman *rm, struct resource *r,
403			   struct resource **whohas)
404{
405	struct resource *s;
406	int ok;
407
408	/*
409	 * If we are not timesharing, then there is nothing much to do.
410	 * If we already have the resource, then there is nothing at all to do.
411	 * If we are not on a sharing list with anybody else, then there is
412	 * little to do.
413	 */
414	if ((r->r_flags & RF_TIMESHARE) == 0
415	    || (r->r_flags & RF_ACTIVE) != 0
416	    || r->r_sharehead == 0) {
417		r->r_flags |= RF_ACTIVE;
418		return 0;
419	}
420
421	ok = 1;
422	for (s = LIST_FIRST(r->r_sharehead); s && ok;
423	     s = LIST_NEXT(s, r_sharelink)) {
424		if ((s->r_flags & RF_ACTIVE) != 0) {
425			ok = 0;
426			*whohas = s;
427		}
428	}
429	if (ok) {
430		r->r_flags |= RF_ACTIVE;
431		return 0;
432	}
433	return EBUSY;
434}
435
436int
437rman_activate_resource(struct resource *r)
438{
439	int rv;
440	struct resource *whohas;
441	struct rman *rm;
442
443	rm = r->r_rm;
444	mtx_lock(rm->rm_mtx);
445	rv = int_rman_activate_resource(rm, r, &whohas);
446	mtx_unlock(rm->rm_mtx);
447	return rv;
448}
449
450int
451rman_await_resource(struct resource *r, int pri, int timo)
452{
453	int	rv;
454	struct	resource *whohas;
455	struct	rman *rm;
456
457	rm = r->r_rm;
458	mtx_lock(rm->rm_mtx);
459	for (;;) {
460		rv = int_rman_activate_resource(rm, r, &whohas);
461		if (rv != EBUSY)
462			return (rv);	/* returns with mutex held */
463
464		if (r->r_sharehead == 0)
465			panic("rman_await_resource");
466		whohas->r_flags |= RF_WANTED;
467		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
468		if (rv) {
469			mtx_unlock(rm->rm_mtx);
470			return (rv);
471		}
472	}
473}
474
475static int
476int_rman_deactivate_resource(struct resource *r)
477{
478	struct	rman *rm;
479
480	rm = r->r_rm;
481	r->r_flags &= ~RF_ACTIVE;
482	if (r->r_flags & RF_WANTED) {
483		r->r_flags &= ~RF_WANTED;
484		wakeup(r->r_sharehead);
485	}
486	return 0;
487}
488
489int
490rman_deactivate_resource(struct resource *r)
491{
492	struct	rman *rm;
493
494	rm = r->r_rm;
495	mtx_lock(rm->rm_mtx);
496	int_rman_deactivate_resource(r);
497	mtx_unlock(rm->rm_mtx);
498	return 0;
499}
500
501static int
502int_rman_release_resource(struct rman *rm, struct resource *r)
503{
504	struct	resource *s, *t;
505
506	if (r->r_flags & RF_ACTIVE)
507		int_rman_deactivate_resource(r);
508
509	/*
510	 * Check for a sharing list first.  If there is one, then we don't
511	 * have to think as hard.
512	 */
513	if (r->r_sharehead) {
514		/*
515		 * If a sharing list exists, then we know there are at
516		 * least two sharers.
517		 *
518		 * If we are in the main circleq, appoint someone else.
519		 */
520		LIST_REMOVE(r, r_sharelink);
521		s = LIST_FIRST(r->r_sharehead);
522		if (r->r_flags & RF_FIRSTSHARE) {
523			s->r_flags |= RF_FIRSTSHARE;
524			TAILQ_INSERT_BEFORE(r, s, r_link);
525			TAILQ_REMOVE(&rm->rm_list, r, r_link);
526		}
527
528		/*
529		 * Make sure that the sharing list goes away completely
530		 * if the resource is no longer being shared at all.
531		 */
532		if (LIST_NEXT(s, r_sharelink) == 0) {
533			free(s->r_sharehead, M_RMAN);
534			s->r_sharehead = 0;
535			s->r_flags &= ~RF_FIRSTSHARE;
536		}
537		goto out;
538	}
539
540	/*
541	 * Look at the adjacent resources in the list and see if our
542	 * segment can be merged with any of them.
543	 */
544	s = TAILQ_PREV(r, resource_head, r_link);
545	t = TAILQ_NEXT(r, r_link);
546
547	if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0
548	    && t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
549		/*
550		 * Merge all three segments.
551		 */
552		s->r_end = t->r_end;
553		TAILQ_REMOVE(&rm->rm_list, r, r_link);
554		TAILQ_REMOVE(&rm->rm_list, t, r_link);
555		free(t, M_RMAN);
556	} else if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0) {
557		/*
558		 * Merge previous segment with ours.
559		 */
560		s->r_end = r->r_end;
561		TAILQ_REMOVE(&rm->rm_list, r, r_link);
562	} else if (t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
563		/*
564		 * Merge next segment with ours.
565		 */
566		t->r_start = r->r_start;
567		TAILQ_REMOVE(&rm->rm_list, r, r_link);
568	} else {
569		/*
570		 * At this point, we know there is nothing we
571		 * can potentially merge with, because on each
572		 * side, there is either nothing there or what is
573		 * there is still allocated.  In that case, we don't
574		 * want to remove r from the list; we simply want to
575		 * change it to an unallocated region and return
576		 * without freeing anything.
577		 */
578		r->r_flags &= ~RF_ALLOCATED;
579		return 0;
580	}
581
582out:
583	free(r, M_RMAN);
584	return 0;
585}
586
587int
588rman_release_resource(struct resource *r)
589{
590	int	rv;
591	struct	rman *rm = r->r_rm;
592
593	mtx_lock(rm->rm_mtx);
594	rv = int_rman_release_resource(rm, r);
595	mtx_unlock(rm->rm_mtx);
596	return (rv);
597}
598
599uint32_t
600rman_make_alignment_flags(uint32_t size)
601{
602	int	i;
603
604	/*
605	 * Find the hightest bit set, and add one if more than one bit
606	 * set.  We're effectively computing the ceil(log2(size)) here.
607	 */
608	for (i = 31; i > 0; i--)
609		if ((1 << i) & size)
610			break;
611	if (~(1 << i) & size)
612		i++;
613
614	return(RF_ALIGNMENT_LOG2(i));
615}
616
617u_long
618rman_get_start(struct resource *r)
619{
620	return (r->r_start);
621}
622
623u_long
624rman_get_end(struct resource *r)
625{
626	return (r->r_end);
627}
628
629u_long
630rman_get_size(struct resource *r)
631{
632	return (r->r_end - r->r_start + 1);
633}
634
635u_int
636rman_get_flags(struct resource *r)
637{
638	return (r->r_flags);
639}
640
641void
642rman_set_virtual(struct resource *r, void *v)
643{
644	r->r_virtual = v;
645}
646
647void *
648rman_get_virtual(struct resource *r)
649{
650	return (r->r_virtual);
651}
652
653void
654rman_set_bustag(struct resource *r, bus_space_tag_t t)
655{
656	r->r_bustag = t;
657}
658
659bus_space_tag_t
660rman_get_bustag(struct resource *r)
661{
662	return (r->r_bustag);
663}
664
665void
666rman_set_bushandle(struct resource *r, bus_space_handle_t h)
667{
668	r->r_bushandle = h;
669}
670
671bus_space_handle_t
672rman_get_bushandle(struct resource *r)
673{
674	return (r->r_bushandle);
675}
676
677void
678rman_set_rid(struct resource *r, int rid)
679{
680	r->r_rid = rid;
681}
682
683int
684rman_get_rid(struct resource *r)
685{
686	return (r->r_rid);
687}
688