subr_rman.c revision 102572
1/*
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: head/sys/kern/subr_rman.c 102572 2002-08-29 12:39:21Z iwasaki $
30 */
31
32/*
33 * The kernel resource manager.  This code is responsible for keeping track
34 * of hardware resources which are apportioned out to various drivers.
35 * It does not actually assign those resources, and it is not expected
36 * that end-device drivers will call into this code directly.  Rather,
37 * the code which implements the buses that those devices are attached to,
38 * and the code which manages CPU resources, will call this code, and the
39 * end-device drivers will make upcalls to that code to actually perform
40 * the allocation.
41 *
42 * There are two sorts of resources managed by this code.  The first is
43 * the more familiar array (RMAN_ARRAY) type; resources in this class
44 * consist of a sequence of individually-allocatable objects which have
45 * been numbered in some well-defined order.  Most of the resources
46 * are of this type, as it is the most familiar.  The second type is
47 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
48 * resources in which each instance is indistinguishable from every
49 * other instance).  The principal anticipated application of gauges
50 * is in the context of power consumption, where a bus may have a specific
51 * power budget which all attached devices share.  RMAN_GAUGE is not
52 * implemented yet.
53 *
54 * For array resources, we make one simplifying assumption: two clients
55 * sharing the same resource must use the same range of indices.  That
56 * is to say, sharing of overlapping-but-not-identical regions is not
57 * permitted.
58 */
59
60#include <sys/param.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/lock.h>
64#include <sys/malloc.h>
65#include <sys/mutex.h>
66#include <sys/bus.h>		/* XXX debugging */
67#include <machine/bus.h>
68#include <sys/rman.h>
69
70#ifdef RMAN_DEBUG
71#define DPRINTF(params) printf##params
72#else
73#define DPRINTF(params)
74#endif
75
76static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
77
78struct	rman_head rman_head;
79static	struct mtx rman_mtx; /* mutex to protect rman_head */
80static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
81				       struct resource **whohas);
82static	int int_rman_deactivate_resource(struct resource *r);
83static	int int_rman_release_resource(struct rman *rm, struct resource *r);
84
85int
86rman_init(struct rman *rm)
87{
88	static int once;
89
90	if (once == 0) {
91		once = 1;
92		TAILQ_INIT(&rman_head);
93		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
94	}
95
96	if (rm->rm_type == RMAN_UNINIT)
97		panic("rman_init");
98	if (rm->rm_type == RMAN_GAUGE)
99		panic("implement RMAN_GAUGE");
100
101	TAILQ_INIT(&rm->rm_list);
102	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
103	if (rm->rm_mtx == 0)
104		return ENOMEM;
105	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
106
107	mtx_lock(&rman_mtx);
108	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
109	mtx_unlock(&rman_mtx);
110	return 0;
111}
112
113/*
114 * NB: this interface is not robust against programming errors which
115 * add multiple copies of the same region.
116 */
117int
118rman_manage_region(struct rman *rm, u_long start, u_long end)
119{
120	struct resource *r, *s;
121
122	r = malloc(sizeof *r, M_RMAN, M_NOWAIT | M_ZERO);
123	if (r == 0)
124		return ENOMEM;
125	r->r_start = start;
126	r->r_end = end;
127	r->r_rm = rm;
128
129	mtx_lock(rm->rm_mtx);
130	for (s = TAILQ_FIRST(&rm->rm_list);
131	     s && s->r_end < r->r_start;
132	     s = TAILQ_NEXT(s, r_link))
133		;
134
135	if (s == NULL) {
136		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
137	} else {
138		TAILQ_INSERT_BEFORE(s, r, r_link);
139	}
140
141	mtx_unlock(rm->rm_mtx);
142	return 0;
143}
144
145int
146rman_fini(struct rman *rm)
147{
148	struct resource *r;
149
150	mtx_lock(rm->rm_mtx);
151	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
152		if (r->r_flags & RF_ALLOCATED) {
153			mtx_unlock(rm->rm_mtx);
154			return EBUSY;
155		}
156	}
157
158	/*
159	 * There really should only be one of these if we are in this
160	 * state and the code is working properly, but it can't hurt.
161	 */
162	while (!TAILQ_EMPTY(&rm->rm_list)) {
163		r = TAILQ_FIRST(&rm->rm_list);
164		TAILQ_REMOVE(&rm->rm_list, r, r_link);
165		free(r, M_RMAN);
166	}
167	mtx_unlock(rm->rm_mtx);
168	mtx_lock(&rman_mtx);
169	TAILQ_REMOVE(&rman_head, rm, rm_link);
170	mtx_unlock(&rman_mtx);
171	mtx_destroy(rm->rm_mtx);
172	free(rm->rm_mtx, M_RMAN);
173
174	return 0;
175}
176
177struct resource *
178rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
179		      u_long count, u_long bound,  u_int flags,
180		      struct device *dev)
181{
182	u_int	want_activate;
183	struct	resource *r, *s, *rv;
184	u_long	rstart, rend, amask, bmask;
185
186	rv = 0;
187
188	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
189	       "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, count,
190	       flags, dev == NULL ? "<null>" : device_get_nameunit(dev)));
191	want_activate = (flags & RF_ACTIVE);
192	flags &= ~RF_ACTIVE;
193
194	mtx_lock(rm->rm_mtx);
195
196	for (r = TAILQ_FIRST(&rm->rm_list);
197	     r && r->r_end < start;
198	     r = TAILQ_NEXT(r, r_link))
199		;
200
201	if (r == NULL) {
202		DPRINTF(("could not find a region\n"));
203		goto out;
204	}
205
206	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
207	/* If bound is 0, bmask will also be 0 */
208	bmask = ~(bound - 1);
209	/*
210	 * First try to find an acceptable totally-unshared region.
211	 */
212	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
213		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
214		if (s->r_start > end) {
215			DPRINTF(("s->r_start (%#lx) > end (%#lx)\n", s->r_start, end));
216			break;
217		}
218		if (s->r_flags & RF_ALLOCATED) {
219			DPRINTF(("region is allocated\n"));
220			continue;
221		}
222		rstart = ulmax(s->r_start, start);
223		/*
224		 * Try to find a region by adjusting to boundary and alignment
225		 * until both conditions are satisfied. This is not an optimal
226		 * algorithm, but in most cases it isn't really bad, either.
227		 */
228		do {
229			rstart = (rstart + amask) & ~amask;
230			if (((rstart ^ (rstart + count)) & bmask) != 0)
231				rstart += bound - (rstart & ~bmask);
232		} while ((rstart & amask) != 0 && rstart < end &&
233		    rstart < s->r_end);
234		rend = ulmin(s->r_end, ulmax(rstart + count, end));
235		if (rstart > rend) {
236			DPRINTF(("adjusted start exceeds end\n"));
237			continue;
238		}
239		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
240		       rstart, rend, (rend - rstart + 1), count));
241
242		if ((rend - rstart + 1) >= count) {
243			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
244			       rend, rstart, (rend - rstart + 1)));
245			if ((s->r_end - s->r_start + 1) == count) {
246				DPRINTF(("candidate region is entire chunk\n"));
247				rv = s;
248				rv->r_flags |= RF_ALLOCATED | flags;
249				rv->r_dev = dev;
250				goto out;
251			}
252
253			/*
254			 * If s->r_start < rstart and
255			 *    s->r_end > rstart + count - 1, then
256			 * we need to split the region into three pieces
257			 * (the middle one will get returned to the user).
258			 * Otherwise, we are allocating at either the
259			 * beginning or the end of s, so we only need to
260			 * split it in two.  The first case requires
261			 * two new allocations; the second requires but one.
262			 */
263			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
264			if (rv == 0)
265				goto out;
266			rv->r_start = rstart;
267			rv->r_end = rstart + count - 1;
268			rv->r_flags = flags | RF_ALLOCATED;
269			rv->r_dev = dev;
270			rv->r_rm = rm;
271
272			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
273				DPRINTF(("splitting region in three parts: "
274				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
275				       s->r_start, rv->r_start - 1,
276				       rv->r_start, rv->r_end,
277				       rv->r_end + 1, s->r_end));
278				/*
279				 * We are allocating in the middle.
280				 */
281				r = malloc(sizeof *r, M_RMAN, M_NOWAIT|M_ZERO);
282				if (r == 0) {
283					free(rv, M_RMAN);
284					rv = 0;
285					goto out;
286				}
287				r->r_start = rv->r_end + 1;
288				r->r_end = s->r_end;
289				r->r_flags = s->r_flags;
290				r->r_rm = rm;
291				s->r_end = rv->r_start - 1;
292				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
293						     r_link);
294				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
295						     r_link);
296			} else if (s->r_start == rv->r_start) {
297				DPRINTF(("allocating from the beginning\n"));
298				/*
299				 * We are allocating at the beginning.
300				 */
301				s->r_start = rv->r_end + 1;
302				TAILQ_INSERT_BEFORE(s, rv, r_link);
303			} else {
304				DPRINTF(("allocating at the end\n"));
305				/*
306				 * We are allocating at the end.
307				 */
308				s->r_end = rv->r_start - 1;
309				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
310						     r_link);
311			}
312			goto out;
313		}
314	}
315
316	/*
317	 * Now find an acceptable shared region, if the client's requirements
318	 * allow sharing.  By our implementation restriction, a candidate
319	 * region must match exactly by both size and sharing type in order
320	 * to be considered compatible with the client's request.  (The
321	 * former restriction could probably be lifted without too much
322	 * additional work, but this does not seem warranted.)
323	 */
324	DPRINTF(("no unshared regions found\n"));
325	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
326		goto out;
327
328	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
329		if (s->r_start > end)
330			break;
331		if ((s->r_flags & flags) != flags)
332			continue;
333		rstart = ulmax(s->r_start, start);
334		rend = ulmin(s->r_end, ulmax(start + count, end));
335		if (s->r_start >= start && s->r_end <= end
336		    && (s->r_end - s->r_start + 1) == count &&
337		    (s->r_start & amask) == 0 &&
338		    ((s->r_start ^ s->r_end) & bmask) == 0) {
339			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
340			if (rv == 0)
341				goto out;
342			rv->r_start = s->r_start;
343			rv->r_end = s->r_end;
344			rv->r_flags = s->r_flags &
345				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
346			rv->r_dev = dev;
347			rv->r_rm = rm;
348			if (s->r_sharehead == 0) {
349				s->r_sharehead = malloc(sizeof *s->r_sharehead,
350						M_RMAN, M_NOWAIT | M_ZERO);
351				if (s->r_sharehead == 0) {
352					free(rv, M_RMAN);
353					rv = 0;
354					goto out;
355				}
356				LIST_INIT(s->r_sharehead);
357				LIST_INSERT_HEAD(s->r_sharehead, s,
358						 r_sharelink);
359				s->r_flags |= RF_FIRSTSHARE;
360			}
361			rv->r_sharehead = s->r_sharehead;
362			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
363			goto out;
364		}
365	}
366
367	/*
368	 * We couldn't find anything.
369	 */
370out:
371	/*
372	 * If the user specified RF_ACTIVE in the initial flags,
373	 * which is reflected in `want_activate', we attempt to atomically
374	 * activate the resource.  If this fails, we release the resource
375	 * and indicate overall failure.  (This behavior probably doesn't
376	 * make sense for RF_TIMESHARE-type resources.)
377	 */
378	if (rv && want_activate) {
379		struct resource *whohas;
380		if (int_rman_activate_resource(rm, rv, &whohas)) {
381			int_rman_release_resource(rm, rv);
382			rv = 0;
383		}
384	}
385
386	mtx_unlock(rm->rm_mtx);
387	return (rv);
388}
389
390struct resource *
391rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
392		      u_int flags, struct device *dev)
393{
394
395	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
396	    dev));
397}
398
399static int
400int_rman_activate_resource(struct rman *rm, struct resource *r,
401			   struct resource **whohas)
402{
403	struct resource *s;
404	int ok;
405
406	/*
407	 * If we are not timesharing, then there is nothing much to do.
408	 * If we already have the resource, then there is nothing at all to do.
409	 * If we are not on a sharing list with anybody else, then there is
410	 * little to do.
411	 */
412	if ((r->r_flags & RF_TIMESHARE) == 0
413	    || (r->r_flags & RF_ACTIVE) != 0
414	    || r->r_sharehead == 0) {
415		r->r_flags |= RF_ACTIVE;
416		return 0;
417	}
418
419	ok = 1;
420	for (s = LIST_FIRST(r->r_sharehead); s && ok;
421	     s = LIST_NEXT(s, r_sharelink)) {
422		if ((s->r_flags & RF_ACTIVE) != 0) {
423			ok = 0;
424			*whohas = s;
425		}
426	}
427	if (ok) {
428		r->r_flags |= RF_ACTIVE;
429		return 0;
430	}
431	return EBUSY;
432}
433
434int
435rman_activate_resource(struct resource *r)
436{
437	int rv;
438	struct resource *whohas;
439	struct rman *rm;
440
441	rm = r->r_rm;
442	mtx_lock(rm->rm_mtx);
443	rv = int_rman_activate_resource(rm, r, &whohas);
444	mtx_unlock(rm->rm_mtx);
445	return rv;
446}
447
448int
449rman_await_resource(struct resource *r, int pri, int timo)
450{
451	int	rv;
452	struct	resource *whohas;
453	struct	rman *rm;
454
455	rm = r->r_rm;
456	mtx_lock(rm->rm_mtx);
457	for (;;) {
458		rv = int_rman_activate_resource(rm, r, &whohas);
459		if (rv != EBUSY)
460			return (rv);	/* returns with mutex held */
461
462		if (r->r_sharehead == 0)
463			panic("rman_await_resource");
464		whohas->r_flags |= RF_WANTED;
465		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
466		if (rv) {
467			mtx_unlock(rm->rm_mtx);
468			return (rv);
469		}
470	}
471}
472
473static int
474int_rman_deactivate_resource(struct resource *r)
475{
476	struct	rman *rm;
477
478	rm = r->r_rm;
479	r->r_flags &= ~RF_ACTIVE;
480	if (r->r_flags & RF_WANTED) {
481		r->r_flags &= ~RF_WANTED;
482		wakeup(r->r_sharehead);
483	}
484	return 0;
485}
486
487int
488rman_deactivate_resource(struct resource *r)
489{
490	struct	rman *rm;
491
492	rm = r->r_rm;
493	mtx_lock(rm->rm_mtx);
494	int_rman_deactivate_resource(r);
495	mtx_unlock(rm->rm_mtx);
496	return 0;
497}
498
499static int
500int_rman_release_resource(struct rman *rm, struct resource *r)
501{
502	struct	resource *s, *t;
503
504	if (r->r_flags & RF_ACTIVE)
505		int_rman_deactivate_resource(r);
506
507	/*
508	 * Check for a sharing list first.  If there is one, then we don't
509	 * have to think as hard.
510	 */
511	if (r->r_sharehead) {
512		/*
513		 * If a sharing list exists, then we know there are at
514		 * least two sharers.
515		 *
516		 * If we are in the main circleq, appoint someone else.
517		 */
518		LIST_REMOVE(r, r_sharelink);
519		s = LIST_FIRST(r->r_sharehead);
520		if (r->r_flags & RF_FIRSTSHARE) {
521			s->r_flags |= RF_FIRSTSHARE;
522			TAILQ_INSERT_BEFORE(r, s, r_link);
523			TAILQ_REMOVE(&rm->rm_list, r, r_link);
524		}
525
526		/*
527		 * Make sure that the sharing list goes away completely
528		 * if the resource is no longer being shared at all.
529		 */
530		if (LIST_NEXT(s, r_sharelink) == 0) {
531			free(s->r_sharehead, M_RMAN);
532			s->r_sharehead = 0;
533			s->r_flags &= ~RF_FIRSTSHARE;
534		}
535		goto out;
536	}
537
538	/*
539	 * Look at the adjacent resources in the list and see if our
540	 * segment can be merged with any of them.
541	 */
542	s = TAILQ_PREV(r, resource_head, r_link);
543	t = TAILQ_NEXT(r, r_link);
544
545	if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0
546	    && t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
547		/*
548		 * Merge all three segments.
549		 */
550		s->r_end = t->r_end;
551		TAILQ_REMOVE(&rm->rm_list, r, r_link);
552		TAILQ_REMOVE(&rm->rm_list, t, r_link);
553		free(t, M_RMAN);
554	} else if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0) {
555		/*
556		 * Merge previous segment with ours.
557		 */
558		s->r_end = r->r_end;
559		TAILQ_REMOVE(&rm->rm_list, r, r_link);
560	} else if (t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
561		/*
562		 * Merge next segment with ours.
563		 */
564		t->r_start = r->r_start;
565		TAILQ_REMOVE(&rm->rm_list, r, r_link);
566	} else {
567		/*
568		 * At this point, we know there is nothing we
569		 * can potentially merge with, because on each
570		 * side, there is either nothing there or what is
571		 * there is still allocated.  In that case, we don't
572		 * want to remove r from the list; we simply want to
573		 * change it to an unallocated region and return
574		 * without freeing anything.
575		 */
576		r->r_flags &= ~RF_ALLOCATED;
577		return 0;
578	}
579
580out:
581	free(r, M_RMAN);
582	return 0;
583}
584
585int
586rman_release_resource(struct resource *r)
587{
588	int	rv;
589	struct	rman *rm = r->r_rm;
590
591	mtx_lock(rm->rm_mtx);
592	rv = int_rman_release_resource(rm, r);
593	mtx_unlock(rm->rm_mtx);
594	return (rv);
595}
596
597uint32_t
598rman_make_alignment_flags(uint32_t size)
599{
600	int	i;
601
602	/*
603	 * Find the hightest bit set, and add one if more than one bit
604	 * set.  We're effectively computing the ceil(log2(size)) here.
605	 */
606	for (i = 31; i > 0; i--)
607		if ((1 << i) & size)
608			break;
609	if (~(1 << i) & size)
610		i++;
611
612	return(RF_ALIGNMENT_LOG2(i));
613}
614