subr_rman.c revision 162224
1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * The kernel resource manager.  This code is responsible for keeping track
32 * of hardware resources which are apportioned out to various drivers.
33 * It does not actually assign those resources, and it is not expected
34 * that end-device drivers will call into this code directly.  Rather,
35 * the code which implements the buses that those devices are attached to,
36 * and the code which manages CPU resources, will call this code, and the
37 * end-device drivers will make upcalls to that code to actually perform
38 * the allocation.
39 *
40 * There are two sorts of resources managed by this code.  The first is
41 * the more familiar array (RMAN_ARRAY) type; resources in this class
42 * consist of a sequence of individually-allocatable objects which have
43 * been numbered in some well-defined order.  Most of the resources
44 * are of this type, as it is the most familiar.  The second type is
45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46 * resources in which each instance is indistinguishable from every
47 * other instance).  The principal anticipated application of gauges
48 * is in the context of power consumption, where a bus may have a specific
49 * power budget which all attached devices share.  RMAN_GAUGE is not
50 * implemented yet.
51 *
52 * For array resources, we make one simplifying assumption: two clients
53 * sharing the same resource must use the same range of indices.  That
54 * is to say, sharing of overlapping-but-not-identical regions is not
55 * permitted.
56 */
57
58#include <sys/cdefs.h>
59__FBSDID("$FreeBSD: head/sys/kern/subr_rman.c 162224 2006-09-11 19:31:52Z jhb $");
60
61#include <sys/param.h>
62#include <sys/systm.h>
63#include <sys/kernel.h>
64#include <sys/lock.h>
65#include <sys/malloc.h>
66#include <sys/mutex.h>
67#include <sys/bus.h>		/* XXX debugging */
68#include <machine/bus.h>
69#include <sys/rman.h>
70#include <sys/sysctl.h>
71
72/*
73 * We use a linked list rather than a bitmap because we need to be able to
74 * represent potentially huge objects (like all of a processor's physical
75 * address space).  That is also why the indices are defined to have type
76 * `unsigned long' -- that being the largest integral type in ISO C (1990).
77 * The 1999 version of C allows `long long'; we may need to switch to that
78 * at some point in the future, particularly if we want to support 36-bit
79 * addresses on IA32 hardware.
80 */
81struct resource_i {
82	struct resource		r_r;
83	TAILQ_ENTRY(resource_i)	r_link;
84	LIST_ENTRY(resource_i)	r_sharelink;
85	LIST_HEAD(, resource_i)	*r_sharehead;
86	u_long	r_start;	/* index of the first entry in this resource */
87	u_long	r_end;		/* index of the last entry (inclusive) */
88	u_int	r_flags;
89	void	*r_virtual;	/* virtual address of this resource */
90	struct	device *r_dev;	/* device which has allocated this resource */
91	struct	rman *r_rm;	/* resource manager from whence this came */
92	int	r_rid;		/* optional rid for this resource. */
93};
94
95int     rman_debug = 0;
96TUNABLE_INT("debug.rman_debug", &rman_debug);
97SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
98    &rman_debug, 0, "rman debug");
99
100#define DPRINTF(params) if (rman_debug) printf params
101
102static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
103
104struct	rman_head rman_head;
105static	struct mtx rman_mtx; /* mutex to protect rman_head */
106static	int int_rman_activate_resource(struct rman *rm, struct resource_i *r,
107				       struct resource_i **whohas);
108static	int int_rman_deactivate_resource(struct resource_i *r);
109static	int int_rman_release_resource(struct rman *rm, struct resource_i *r);
110
111static __inline struct resource_i *
112int_alloc_resource(int malloc_flag)
113{
114	struct resource_i *r;
115
116	r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
117	if (r != NULL) {
118		r->r_r.__r_i = r;
119	}
120	return (r);
121}
122
123int
124rman_init(struct rman *rm)
125{
126	static int once = 0;
127
128	if (once == 0) {
129		once = 1;
130		TAILQ_INIT(&rman_head);
131		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
132	}
133
134	if (rm->rm_type == RMAN_UNINIT)
135		panic("rman_init");
136	if (rm->rm_type == RMAN_GAUGE)
137		panic("implement RMAN_GAUGE");
138
139	TAILQ_INIT(&rm->rm_list);
140	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
141	if (rm->rm_mtx == NULL)
142		return ENOMEM;
143	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
144
145	mtx_lock(&rman_mtx);
146	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
147	mtx_unlock(&rman_mtx);
148	return 0;
149}
150
151/*
152 * NB: this interface is not robust against programming errors which
153 * add multiple copies of the same region.
154 */
155int
156rman_manage_region(struct rman *rm, u_long start, u_long end)
157{
158	struct resource_i *r, *s, *t;
159
160	DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
161	    rm->rm_descr, start, end));
162	r = int_alloc_resource(M_NOWAIT);
163	if (r == NULL)
164		return ENOMEM;
165	r->r_start = start;
166	r->r_end = end;
167	r->r_rm = rm;
168
169	mtx_lock(rm->rm_mtx);
170
171	/* Skip entries before us. */
172	for (s = TAILQ_FIRST(&rm->rm_list);
173	     s && s->r_end + 1 < r->r_start;
174	     s = TAILQ_NEXT(s, r_link))
175		;
176
177	/* If we ran off the end of the list, insert at the tail. */
178	if (s == NULL) {
179		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
180	} else {
181		/* Check for any overlap with the current region. */
182		if (r->r_start <= s->r_end && r->r_end >= s->r_start)
183			return EBUSY;
184
185		/* Check for any overlap with the next region. */
186		t = TAILQ_NEXT(s, r_link);
187		if (t && r->r_start <= t->r_end && r->r_end >= t->r_start)
188			return EBUSY;
189
190		/*
191		 * See if this region can be merged with the next region.  If
192		 * not, clear the pointer.
193		 */
194		if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
195			t = NULL;
196
197		/* See if we can merge with the current region. */
198		if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
199			/* Can we merge all 3 regions? */
200			if (t != NULL) {
201				s->r_end = t->r_end;
202				TAILQ_REMOVE(&rm->rm_list, t, r_link);
203				free(r, M_RMAN);
204				free(t, M_RMAN);
205			} else {
206				s->r_end = r->r_end;
207				free(r, M_RMAN);
208			}
209		} else {
210			/* Can we merge with just the next region? */
211			if (t != NULL) {
212				t->r_start = r->r_start;
213				free(r, M_RMAN);
214			} else
215				TAILQ_INSERT_BEFORE(s, r, r_link);
216		}
217	}
218
219	mtx_unlock(rm->rm_mtx);
220	return 0;
221}
222
223int
224rman_init_from_resource(struct rman *rm, struct resource *r)
225{
226	int rv;
227
228	if ((rv = rman_init(rm)) != 0)
229		return (rv);
230	return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
231}
232
233int
234rman_fini(struct rman *rm)
235{
236	struct resource_i *r;
237
238	mtx_lock(rm->rm_mtx);
239	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
240		if (r->r_flags & RF_ALLOCATED) {
241			mtx_unlock(rm->rm_mtx);
242			return EBUSY;
243		}
244	}
245
246	/*
247	 * There really should only be one of these if we are in this
248	 * state and the code is working properly, but it can't hurt.
249	 */
250	while (!TAILQ_EMPTY(&rm->rm_list)) {
251		r = TAILQ_FIRST(&rm->rm_list);
252		TAILQ_REMOVE(&rm->rm_list, r, r_link);
253		free(r, M_RMAN);
254	}
255	mtx_unlock(rm->rm_mtx);
256	mtx_lock(&rman_mtx);
257	TAILQ_REMOVE(&rman_head, rm, rm_link);
258	mtx_unlock(&rman_mtx);
259	mtx_destroy(rm->rm_mtx);
260	free(rm->rm_mtx, M_RMAN);
261
262	return 0;
263}
264
265struct resource *
266rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
267		      u_long count, u_long bound,  u_int flags,
268		      struct device *dev)
269{
270	u_int	want_activate;
271	struct	resource_i *r, *s, *rv;
272	u_long	rstart, rend, amask, bmask;
273
274	rv = NULL;
275
276	DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], "
277	       "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end,
278	       count, flags,
279	       dev == NULL ? "<null>" : device_get_nameunit(dev)));
280	want_activate = (flags & RF_ACTIVE);
281	flags &= ~RF_ACTIVE;
282
283	mtx_lock(rm->rm_mtx);
284
285	for (r = TAILQ_FIRST(&rm->rm_list);
286	     r && r->r_end < start;
287	     r = TAILQ_NEXT(r, r_link))
288		;
289
290	if (r == NULL) {
291		DPRINTF(("could not find a region\n"));
292		goto out;
293	}
294
295	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
296	/* If bound is 0, bmask will also be 0 */
297	bmask = ~(bound - 1);
298	/*
299	 * First try to find an acceptable totally-unshared region.
300	 */
301	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
302		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
303		if (s->r_start + count - 1 > end) {
304			DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n",
305			    s->r_start, end));
306			break;
307		}
308		if (s->r_flags & RF_ALLOCATED) {
309			DPRINTF(("region is allocated\n"));
310			continue;
311		}
312		rstart = ulmax(s->r_start, start);
313		/*
314		 * Try to find a region by adjusting to boundary and alignment
315		 * until both conditions are satisfied. This is not an optimal
316		 * algorithm, but in most cases it isn't really bad, either.
317		 */
318		do {
319			rstart = (rstart + amask) & ~amask;
320			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
321				rstart += bound - (rstart & ~bmask);
322		} while ((rstart & amask) != 0 && rstart < end &&
323		    rstart < s->r_end);
324		rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
325		if (rstart > rend) {
326			DPRINTF(("adjusted start exceeds end\n"));
327			continue;
328		}
329		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
330		       rstart, rend, (rend - rstart + 1), count));
331
332		if ((rend - rstart + 1) >= count) {
333			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
334			       rstart, rend, (rend - rstart + 1)));
335			if ((s->r_end - s->r_start + 1) == count) {
336				DPRINTF(("candidate region is entire chunk\n"));
337				rv = s;
338				rv->r_flags |= RF_ALLOCATED | flags;
339				rv->r_dev = dev;
340				goto out;
341			}
342
343			/*
344			 * If s->r_start < rstart and
345			 *    s->r_end > rstart + count - 1, then
346			 * we need to split the region into three pieces
347			 * (the middle one will get returned to the user).
348			 * Otherwise, we are allocating at either the
349			 * beginning or the end of s, so we only need to
350			 * split it in two.  The first case requires
351			 * two new allocations; the second requires but one.
352			 */
353			rv = int_alloc_resource(M_NOWAIT);
354			if (rv == NULL)
355				goto out;
356			rv->r_start = rstart;
357			rv->r_end = rstart + count - 1;
358			rv->r_flags = flags | RF_ALLOCATED;
359			rv->r_dev = dev;
360			rv->r_rm = rm;
361
362			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
363				DPRINTF(("splitting region in three parts: "
364				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
365				       s->r_start, rv->r_start - 1,
366				       rv->r_start, rv->r_end,
367				       rv->r_end + 1, s->r_end));
368				/*
369				 * We are allocating in the middle.
370				 */
371				r = int_alloc_resource(M_NOWAIT);
372				if (r == NULL) {
373					free(rv, M_RMAN);
374					rv = NULL;
375					goto out;
376				}
377				r->r_start = rv->r_end + 1;
378				r->r_end = s->r_end;
379				r->r_flags = s->r_flags;
380				r->r_rm = rm;
381				s->r_end = rv->r_start - 1;
382				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
383						     r_link);
384				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
385						     r_link);
386			} else if (s->r_start == rv->r_start) {
387				DPRINTF(("allocating from the beginning\n"));
388				/*
389				 * We are allocating at the beginning.
390				 */
391				s->r_start = rv->r_end + 1;
392				TAILQ_INSERT_BEFORE(s, rv, r_link);
393			} else {
394				DPRINTF(("allocating at the end\n"));
395				/*
396				 * We are allocating at the end.
397				 */
398				s->r_end = rv->r_start - 1;
399				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
400						     r_link);
401			}
402			goto out;
403		}
404	}
405
406	/*
407	 * Now find an acceptable shared region, if the client's requirements
408	 * allow sharing.  By our implementation restriction, a candidate
409	 * region must match exactly by both size and sharing type in order
410	 * to be considered compatible with the client's request.  (The
411	 * former restriction could probably be lifted without too much
412	 * additional work, but this does not seem warranted.)
413	 */
414	DPRINTF(("no unshared regions found\n"));
415	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
416		goto out;
417
418	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
419		if (s->r_start > end)
420			break;
421		if ((s->r_flags & flags) != flags)
422			continue;
423		rstart = ulmax(s->r_start, start);
424		rend = ulmin(s->r_end, ulmax(start + count - 1, end));
425		if (s->r_start >= start && s->r_end <= end
426		    && (s->r_end - s->r_start + 1) == count &&
427		    (s->r_start & amask) == 0 &&
428		    ((s->r_start ^ s->r_end) & bmask) == 0) {
429			rv = int_alloc_resource(M_NOWAIT);
430			if (rv == NULL)
431				goto out;
432			rv->r_start = s->r_start;
433			rv->r_end = s->r_end;
434			rv->r_flags = s->r_flags &
435				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
436			rv->r_dev = dev;
437			rv->r_rm = rm;
438			if (s->r_sharehead == NULL) {
439				s->r_sharehead = malloc(sizeof *s->r_sharehead,
440						M_RMAN, M_NOWAIT | M_ZERO);
441				if (s->r_sharehead == NULL) {
442					free(rv, M_RMAN);
443					rv = NULL;
444					goto out;
445				}
446				LIST_INIT(s->r_sharehead);
447				LIST_INSERT_HEAD(s->r_sharehead, s,
448						 r_sharelink);
449				s->r_flags |= RF_FIRSTSHARE;
450			}
451			rv->r_sharehead = s->r_sharehead;
452			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
453			goto out;
454		}
455	}
456
457	/*
458	 * We couldn't find anything.
459	 */
460out:
461	/*
462	 * If the user specified RF_ACTIVE in the initial flags,
463	 * which is reflected in `want_activate', we attempt to atomically
464	 * activate the resource.  If this fails, we release the resource
465	 * and indicate overall failure.  (This behavior probably doesn't
466	 * make sense for RF_TIMESHARE-type resources.)
467	 */
468	if (rv && want_activate) {
469		struct resource_i *whohas;
470		if (int_rman_activate_resource(rm, rv, &whohas)) {
471			int_rman_release_resource(rm, rv);
472			rv = NULL;
473		}
474	}
475
476	mtx_unlock(rm->rm_mtx);
477	return (rv == NULL ? NULL : &rv->r_r);
478}
479
480struct resource *
481rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
482		      u_int flags, struct device *dev)
483{
484
485	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
486	    dev));
487}
488
489static int
490int_rman_activate_resource(struct rman *rm, struct resource_i *r,
491			   struct resource_i **whohas)
492{
493	struct resource_i *s;
494	int ok;
495
496	/*
497	 * If we are not timesharing, then there is nothing much to do.
498	 * If we already have the resource, then there is nothing at all to do.
499	 * If we are not on a sharing list with anybody else, then there is
500	 * little to do.
501	 */
502	if ((r->r_flags & RF_TIMESHARE) == 0
503	    || (r->r_flags & RF_ACTIVE) != 0
504	    || r->r_sharehead == NULL) {
505		r->r_flags |= RF_ACTIVE;
506		return 0;
507	}
508
509	ok = 1;
510	for (s = LIST_FIRST(r->r_sharehead); s && ok;
511	     s = LIST_NEXT(s, r_sharelink)) {
512		if ((s->r_flags & RF_ACTIVE) != 0) {
513			ok = 0;
514			*whohas = s;
515		}
516	}
517	if (ok) {
518		r->r_flags |= RF_ACTIVE;
519		return 0;
520	}
521	return EBUSY;
522}
523
524int
525rman_activate_resource(struct resource *re)
526{
527	int rv;
528	struct resource_i *r, *whohas;
529	struct rman *rm;
530
531	r = re->__r_i;
532	rm = r->r_rm;
533	mtx_lock(rm->rm_mtx);
534	rv = int_rman_activate_resource(rm, r, &whohas);
535	mtx_unlock(rm->rm_mtx);
536	return rv;
537}
538
539int
540rman_await_resource(struct resource *re, int pri, int timo)
541{
542	int	rv;
543	struct	resource_i *r, *whohas;
544	struct	rman *rm;
545
546	r = re->__r_i;
547	rm = r->r_rm;
548	mtx_lock(rm->rm_mtx);
549	for (;;) {
550		rv = int_rman_activate_resource(rm, r, &whohas);
551		if (rv != EBUSY)
552			return (rv);	/* returns with mutex held */
553
554		if (r->r_sharehead == NULL)
555			panic("rman_await_resource");
556		whohas->r_flags |= RF_WANTED;
557		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
558		if (rv) {
559			mtx_unlock(rm->rm_mtx);
560			return (rv);
561		}
562	}
563}
564
565static int
566int_rman_deactivate_resource(struct resource_i *r)
567{
568
569	r->r_flags &= ~RF_ACTIVE;
570	if (r->r_flags & RF_WANTED) {
571		r->r_flags &= ~RF_WANTED;
572		wakeup(r->r_sharehead);
573	}
574	return 0;
575}
576
577int
578rman_deactivate_resource(struct resource *r)
579{
580	struct	rman *rm;
581
582	rm = r->__r_i->r_rm;
583	mtx_lock(rm->rm_mtx);
584	int_rman_deactivate_resource(r->__r_i);
585	mtx_unlock(rm->rm_mtx);
586	return 0;
587}
588
589static int
590int_rman_release_resource(struct rman *rm, struct resource_i *r)
591{
592	struct	resource_i *s, *t;
593
594	if (r->r_flags & RF_ACTIVE)
595		int_rman_deactivate_resource(r);
596
597	/*
598	 * Check for a sharing list first.  If there is one, then we don't
599	 * have to think as hard.
600	 */
601	if (r->r_sharehead) {
602		/*
603		 * If a sharing list exists, then we know there are at
604		 * least two sharers.
605		 *
606		 * If we are in the main circleq, appoint someone else.
607		 */
608		LIST_REMOVE(r, r_sharelink);
609		s = LIST_FIRST(r->r_sharehead);
610		if (r->r_flags & RF_FIRSTSHARE) {
611			s->r_flags |= RF_FIRSTSHARE;
612			TAILQ_INSERT_BEFORE(r, s, r_link);
613			TAILQ_REMOVE(&rm->rm_list, r, r_link);
614		}
615
616		/*
617		 * Make sure that the sharing list goes away completely
618		 * if the resource is no longer being shared at all.
619		 */
620		if (LIST_NEXT(s, r_sharelink) == NULL) {
621			free(s->r_sharehead, M_RMAN);
622			s->r_sharehead = NULL;
623			s->r_flags &= ~RF_FIRSTSHARE;
624		}
625		goto out;
626	}
627
628	/*
629	 * Look at the adjacent resources in the list and see if our
630	 * segment can be merged with any of them.  If either of the
631	 * resources is allocated or is not exactly adjacent then they
632	 * cannot be merged with our segment.
633	 */
634	s = TAILQ_PREV(r, resource_head, r_link);
635	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
636	    s->r_end + 1 != r->r_start))
637		s = NULL;
638	t = TAILQ_NEXT(r, r_link);
639	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
640	    r->r_end + 1 != t->r_start))
641		t = NULL;
642
643	if (s != NULL && t != NULL) {
644		/*
645		 * Merge all three segments.
646		 */
647		s->r_end = t->r_end;
648		TAILQ_REMOVE(&rm->rm_list, r, r_link);
649		TAILQ_REMOVE(&rm->rm_list, t, r_link);
650		free(t, M_RMAN);
651	} else if (s != NULL) {
652		/*
653		 * Merge previous segment with ours.
654		 */
655		s->r_end = r->r_end;
656		TAILQ_REMOVE(&rm->rm_list, r, r_link);
657	} else if (t != NULL) {
658		/*
659		 * Merge next segment with ours.
660		 */
661		t->r_start = r->r_start;
662		TAILQ_REMOVE(&rm->rm_list, r, r_link);
663	} else {
664		/*
665		 * At this point, we know there is nothing we
666		 * can potentially merge with, because on each
667		 * side, there is either nothing there or what is
668		 * there is still allocated.  In that case, we don't
669		 * want to remove r from the list; we simply want to
670		 * change it to an unallocated region and return
671		 * without freeing anything.
672		 */
673		r->r_flags &= ~RF_ALLOCATED;
674		return 0;
675	}
676
677out:
678	free(r, M_RMAN);
679	return 0;
680}
681
682int
683rman_release_resource(struct resource *re)
684{
685	int	rv;
686	struct	resource_i *r;
687	struct	rman *rm;
688
689	r = re->__r_i;
690	rm = r->r_rm;
691	mtx_lock(rm->rm_mtx);
692	rv = int_rman_release_resource(rm, r);
693	mtx_unlock(rm->rm_mtx);
694	return (rv);
695}
696
697uint32_t
698rman_make_alignment_flags(uint32_t size)
699{
700	int	i;
701
702	/*
703	 * Find the hightest bit set, and add one if more than one bit
704	 * set.  We're effectively computing the ceil(log2(size)) here.
705	 */
706	for (i = 31; i > 0; i--)
707		if ((1 << i) & size)
708			break;
709	if (~(1 << i) & size)
710		i++;
711
712	return(RF_ALIGNMENT_LOG2(i));
713}
714
715u_long
716rman_get_start(struct resource *r)
717{
718	return (r->__r_i->r_start);
719}
720
721u_long
722rman_get_end(struct resource *r)
723{
724	return (r->__r_i->r_end);
725}
726
727u_long
728rman_get_size(struct resource *r)
729{
730	return (r->__r_i->r_end - r->__r_i->r_start + 1);
731}
732
733u_int
734rman_get_flags(struct resource *r)
735{
736	return (r->__r_i->r_flags);
737}
738
739void
740rman_set_virtual(struct resource *r, void *v)
741{
742	r->__r_i->r_virtual = v;
743}
744
745void *
746rman_get_virtual(struct resource *r)
747{
748	return (r->__r_i->r_virtual);
749}
750
751void
752rman_set_bustag(struct resource *r, bus_space_tag_t t)
753{
754	r->r_bustag = t;
755}
756
757bus_space_tag_t
758rman_get_bustag(struct resource *r)
759{
760	return (r->r_bustag);
761}
762
763void
764rman_set_bushandle(struct resource *r, bus_space_handle_t h)
765{
766	r->r_bushandle = h;
767}
768
769bus_space_handle_t
770rman_get_bushandle(struct resource *r)
771{
772	return (r->r_bushandle);
773}
774
775void
776rman_set_rid(struct resource *r, int rid)
777{
778	r->__r_i->r_rid = rid;
779}
780
781void
782rman_set_start(struct resource *r, u_long start)
783{
784	r->__r_i->r_start = start;
785}
786
787void
788rman_set_end(struct resource *r, u_long end)
789{
790	r->__r_i->r_end = end;
791}
792
793int
794rman_get_rid(struct resource *r)
795{
796	return (r->__r_i->r_rid);
797}
798
799struct device *
800rman_get_device(struct resource *r)
801{
802	return (r->__r_i->r_dev);
803}
804
805void
806rman_set_device(struct resource *r, struct device *dev)
807{
808	r->__r_i->r_dev = dev;
809}
810
811int
812rman_is_region_manager(struct resource *r, struct rman *rm)
813{
814
815	return (r->__r_i->r_rm == rm);
816}
817
818/*
819 * Sysctl interface for scanning the resource lists.
820 *
821 * We take two input parameters; the index into the list of resource
822 * managers, and the resource offset into the list.
823 */
824static int
825sysctl_rman(SYSCTL_HANDLER_ARGS)
826{
827	int			*name = (int *)arg1;
828	u_int			namelen = arg2;
829	int			rman_idx, res_idx;
830	struct rman		*rm;
831	struct resource_i	*res;
832	struct u_rman		urm;
833	struct u_resource	ures;
834	int			error;
835
836	if (namelen != 3)
837		return (EINVAL);
838
839	if (bus_data_generation_check(name[0]))
840		return (EINVAL);
841	rman_idx = name[1];
842	res_idx = name[2];
843
844	/*
845	 * Find the indexed resource manager
846	 */
847	mtx_lock(&rman_mtx);
848	TAILQ_FOREACH(rm, &rman_head, rm_link) {
849		if (rman_idx-- == 0)
850			break;
851	}
852	mtx_unlock(&rman_mtx);
853	if (rm == NULL)
854		return (ENOENT);
855
856	/*
857	 * If the resource index is -1, we want details on the
858	 * resource manager.
859	 */
860	if (res_idx == -1) {
861		bzero(&urm, sizeof(urm));
862		urm.rm_handle = (uintptr_t)rm;
863		strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
864		urm.rm_start = rm->rm_start;
865		urm.rm_size = rm->rm_end - rm->rm_start + 1;
866		urm.rm_type = rm->rm_type;
867
868		error = SYSCTL_OUT(req, &urm, sizeof(urm));
869		return (error);
870	}
871
872	/*
873	 * Find the indexed resource and return it.
874	 */
875	mtx_lock(rm->rm_mtx);
876	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
877		if (res_idx-- == 0) {
878			bzero(&ures, sizeof(ures));
879			ures.r_handle = (uintptr_t)res;
880			ures.r_parent = (uintptr_t)res->r_rm;
881			ures.r_device = (uintptr_t)res->r_dev;
882			if (res->r_dev != NULL) {
883				if (device_get_name(res->r_dev) != NULL) {
884					snprintf(ures.r_devname, RM_TEXTLEN,
885					    "%s%d",
886					    device_get_name(res->r_dev),
887					    device_get_unit(res->r_dev));
888				} else {
889					strlcpy(ures.r_devname, "nomatch",
890					    RM_TEXTLEN);
891				}
892			} else {
893				ures.r_devname[0] = '\0';
894			}
895			ures.r_start = res->r_start;
896			ures.r_size = res->r_end - res->r_start + 1;
897			ures.r_flags = res->r_flags;
898
899			mtx_unlock(rm->rm_mtx);
900			error = SYSCTL_OUT(req, &ures, sizeof(ures));
901			return (error);
902		}
903	}
904	mtx_unlock(rm->rm_mtx);
905	return (ENOENT);
906}
907
908SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
909    "kernel resource manager");
910