sched_4bsd.c revision 232700
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/kern/sched_4bsd.c 232700 2012-03-08 19:41:05Z jhb $");
37
38#include "opt_hwpmc_hooks.h"
39#include "opt_sched.h"
40#include "opt_kdtrace.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/cpuset.h>
45#include <sys/kernel.h>
46#include <sys/ktr.h>
47#include <sys/lock.h>
48#include <sys/kthread.h>
49#include <sys/mutex.h>
50#include <sys/proc.h>
51#include <sys/resourcevar.h>
52#include <sys/sched.h>
53#include <sys/smp.h>
54#include <sys/sysctl.h>
55#include <sys/sx.h>
56#include <sys/turnstile.h>
57#include <sys/umtx.h>
58#include <machine/pcb.h>
59#include <machine/smp.h>
60
61#ifdef HWPMC_HOOKS
62#include <sys/pmckern.h>
63#endif
64
65#ifdef KDTRACE_HOOKS
66#include <sys/dtrace_bsd.h>
67int				dtrace_vtime_active;
68dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
69#endif
70
71/*
72 * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
73 * the range 100-256 Hz (approximately).
74 */
75#define	ESTCPULIM(e) \
76    min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
77    RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
78#ifdef SMP
79#define	INVERSE_ESTCPU_WEIGHT	(8 * smp_cpus)
80#else
81#define	INVERSE_ESTCPU_WEIGHT	8	/* 1 / (priorities per estcpu level). */
82#endif
83#define	NICE_WEIGHT		1	/* Priorities per nice level. */
84
85#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
86
87/*
88 * The schedulable entity that runs a context.
89 * This is  an extension to the thread structure and is tailored to
90 * the requirements of this scheduler
91 */
92struct td_sched {
93	fixpt_t		ts_pctcpu;	/* (j) %cpu during p_swtime. */
94	int		ts_cpticks;	/* (j) Ticks of cpu time. */
95	int		ts_slptime;	/* (j) Seconds !RUNNING. */
96	int		ts_flags;
97	struct runq	*ts_runq;	/* runq the thread is currently on */
98#ifdef KTR
99	char		ts_name[TS_NAME_LEN];
100#endif
101};
102
103/* flags kept in td_flags */
104#define TDF_DIDRUN	TDF_SCHED0	/* thread actually ran. */
105#define TDF_BOUND	TDF_SCHED1	/* Bound to one CPU. */
106
107/* flags kept in ts_flags */
108#define	TSF_AFFINITY	0x0001		/* Has a non-"full" CPU set. */
109
110#define SKE_RUNQ_PCPU(ts)						\
111    ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
112
113#define	THREAD_CAN_SCHED(td, cpu)	\
114    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
115
116static struct td_sched td_sched0;
117struct mtx sched_lock;
118
119static int	sched_tdcnt;	/* Total runnable threads in the system. */
120static int	sched_quantum;	/* Roundrobin scheduling quantum in ticks. */
121#define	SCHED_QUANTUM	(hz / 10)	/* Default sched quantum */
122
123static void	setup_runqs(void);
124static void	schedcpu(void);
125static void	schedcpu_thread(void);
126static void	sched_priority(struct thread *td, u_char prio);
127static void	sched_setup(void *dummy);
128static void	maybe_resched(struct thread *td);
129static void	updatepri(struct thread *td);
130static void	resetpriority(struct thread *td);
131static void	resetpriority_thread(struct thread *td);
132#ifdef SMP
133static int	sched_pickcpu(struct thread *td);
134static int	forward_wakeup(int cpunum);
135static void	kick_other_cpu(int pri, int cpuid);
136#endif
137
138static struct kproc_desc sched_kp = {
139        "schedcpu",
140        schedcpu_thread,
141        NULL
142};
143SYSINIT(schedcpu, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, kproc_start,
144    &sched_kp);
145SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
146
147/*
148 * Global run queue.
149 */
150static struct runq runq;
151
152#ifdef SMP
153/*
154 * Per-CPU run queues
155 */
156static struct runq runq_pcpu[MAXCPU];
157long runq_length[MAXCPU];
158
159static cpuset_t idle_cpus_mask;
160#endif
161
162struct pcpuidlestat {
163	u_int idlecalls;
164	u_int oldidlecalls;
165};
166static DPCPU_DEFINE(struct pcpuidlestat, idlestat);
167
168static void
169setup_runqs(void)
170{
171#ifdef SMP
172	int i;
173
174	for (i = 0; i < MAXCPU; ++i)
175		runq_init(&runq_pcpu[i]);
176#endif
177
178	runq_init(&runq);
179}
180
181static int
182sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
183{
184	int error, new_val;
185
186	new_val = sched_quantum * tick;
187	error = sysctl_handle_int(oidp, &new_val, 0, req);
188        if (error != 0 || req->newptr == NULL)
189		return (error);
190	if (new_val < tick)
191		return (EINVAL);
192	sched_quantum = new_val / tick;
193	hogticks = 2 * sched_quantum;
194	return (0);
195}
196
197SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD, 0, "Scheduler");
198
199SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
200    "Scheduler name");
201
202SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
203    0, sizeof sched_quantum, sysctl_kern_quantum, "I",
204    "Roundrobin scheduling quantum in microseconds");
205
206#ifdef SMP
207/* Enable forwarding of wakeups to all other cpus */
208static SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup, CTLFLAG_RD, NULL,
209    "Kernel SMP");
210
211static int runq_fuzz = 1;
212SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
213
214static int forward_wakeup_enabled = 1;
215SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
216	   &forward_wakeup_enabled, 0,
217	   "Forwarding of wakeup to idle CPUs");
218
219static int forward_wakeups_requested = 0;
220SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
221	   &forward_wakeups_requested, 0,
222	   "Requests for Forwarding of wakeup to idle CPUs");
223
224static int forward_wakeups_delivered = 0;
225SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
226	   &forward_wakeups_delivered, 0,
227	   "Completed Forwarding of wakeup to idle CPUs");
228
229static int forward_wakeup_use_mask = 1;
230SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
231	   &forward_wakeup_use_mask, 0,
232	   "Use the mask of idle cpus");
233
234static int forward_wakeup_use_loop = 0;
235SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
236	   &forward_wakeup_use_loop, 0,
237	   "Use a loop to find idle cpus");
238
239#endif
240#if 0
241static int sched_followon = 0;
242SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
243	   &sched_followon, 0,
244	   "allow threads to share a quantum");
245#endif
246
247static __inline void
248sched_load_add(void)
249{
250
251	sched_tdcnt++;
252	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
253}
254
255static __inline void
256sched_load_rem(void)
257{
258
259	sched_tdcnt--;
260	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
261}
262/*
263 * Arrange to reschedule if necessary, taking the priorities and
264 * schedulers into account.
265 */
266static void
267maybe_resched(struct thread *td)
268{
269
270	THREAD_LOCK_ASSERT(td, MA_OWNED);
271	if (td->td_priority < curthread->td_priority)
272		curthread->td_flags |= TDF_NEEDRESCHED;
273}
274
275/*
276 * This function is called when a thread is about to be put on run queue
277 * because it has been made runnable or its priority has been adjusted.  It
278 * determines if the new thread should be immediately preempted to.  If so,
279 * it switches to it and eventually returns true.  If not, it returns false
280 * so that the caller may place the thread on an appropriate run queue.
281 */
282int
283maybe_preempt(struct thread *td)
284{
285#ifdef PREEMPTION
286	struct thread *ctd;
287	int cpri, pri;
288
289	/*
290	 * The new thread should not preempt the current thread if any of the
291	 * following conditions are true:
292	 *
293	 *  - The kernel is in the throes of crashing (panicstr).
294	 *  - The current thread has a higher (numerically lower) or
295	 *    equivalent priority.  Note that this prevents curthread from
296	 *    trying to preempt to itself.
297	 *  - It is too early in the boot for context switches (cold is set).
298	 *  - The current thread has an inhibitor set or is in the process of
299	 *    exiting.  In this case, the current thread is about to switch
300	 *    out anyways, so there's no point in preempting.  If we did,
301	 *    the current thread would not be properly resumed as well, so
302	 *    just avoid that whole landmine.
303	 *  - If the new thread's priority is not a realtime priority and
304	 *    the current thread's priority is not an idle priority and
305	 *    FULL_PREEMPTION is disabled.
306	 *
307	 * If all of these conditions are false, but the current thread is in
308	 * a nested critical section, then we have to defer the preemption
309	 * until we exit the critical section.  Otherwise, switch immediately
310	 * to the new thread.
311	 */
312	ctd = curthread;
313	THREAD_LOCK_ASSERT(td, MA_OWNED);
314	KASSERT((td->td_inhibitors == 0),
315			("maybe_preempt: trying to run inhibited thread"));
316	pri = td->td_priority;
317	cpri = ctd->td_priority;
318	if (panicstr != NULL || pri >= cpri || cold /* || dumping */ ||
319	    TD_IS_INHIBITED(ctd))
320		return (0);
321#ifndef FULL_PREEMPTION
322	if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
323		return (0);
324#endif
325
326	if (ctd->td_critnest > 1) {
327		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
328		    ctd->td_critnest);
329		ctd->td_owepreempt = 1;
330		return (0);
331	}
332	/*
333	 * Thread is runnable but not yet put on system run queue.
334	 */
335	MPASS(ctd->td_lock == td->td_lock);
336	MPASS(TD_ON_RUNQ(td));
337	TD_SET_RUNNING(td);
338	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
339	    td->td_proc->p_pid, td->td_name);
340	mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT, td);
341	/*
342	 * td's lock pointer may have changed.  We have to return with it
343	 * locked.
344	 */
345	spinlock_enter();
346	thread_unlock(ctd);
347	thread_lock(td);
348	spinlock_exit();
349	return (1);
350#else
351	return (0);
352#endif
353}
354
355/*
356 * Constants for digital decay and forget:
357 *	90% of (td_estcpu) usage in 5 * loadav time
358 *	95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
359 *          Note that, as ps(1) mentions, this can let percentages
360 *          total over 100% (I've seen 137.9% for 3 processes).
361 *
362 * Note that schedclock() updates td_estcpu and p_cpticks asynchronously.
363 *
364 * We wish to decay away 90% of td_estcpu in (5 * loadavg) seconds.
365 * That is, the system wants to compute a value of decay such
366 * that the following for loop:
367 * 	for (i = 0; i < (5 * loadavg); i++)
368 * 		td_estcpu *= decay;
369 * will compute
370 * 	td_estcpu *= 0.1;
371 * for all values of loadavg:
372 *
373 * Mathematically this loop can be expressed by saying:
374 * 	decay ** (5 * loadavg) ~= .1
375 *
376 * The system computes decay as:
377 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
378 *
379 * We wish to prove that the system's computation of decay
380 * will always fulfill the equation:
381 * 	decay ** (5 * loadavg) ~= .1
382 *
383 * If we compute b as:
384 * 	b = 2 * loadavg
385 * then
386 * 	decay = b / (b + 1)
387 *
388 * We now need to prove two things:
389 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
390 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
391 *
392 * Facts:
393 *         For x close to zero, exp(x) =~ 1 + x, since
394 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
395 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
396 *         For x close to zero, ln(1+x) =~ x, since
397 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
398 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
399 *         ln(.1) =~ -2.30
400 *
401 * Proof of (1):
402 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
403 *	solving for factor,
404 *      ln(factor) =~ (-2.30/5*loadav), or
405 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
406 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
407 *
408 * Proof of (2):
409 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
410 *	solving for power,
411 *      power*ln(b/(b+1)) =~ -2.30, or
412 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
413 *
414 * Actual power values for the implemented algorithm are as follows:
415 *      loadav: 1       2       3       4
416 *      power:  5.68    10.32   14.94   19.55
417 */
418
419/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
420#define	loadfactor(loadav)	(2 * (loadav))
421#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
422
423/* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
424static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
425SYSCTL_UINT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
426
427/*
428 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
429 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
430 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
431 *
432 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
433 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
434 *
435 * If you don't want to bother with the faster/more-accurate formula, you
436 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
437 * (more general) method of calculating the %age of CPU used by a process.
438 */
439#define	CCPU_SHIFT	11
440
441/*
442 * Recompute process priorities, every hz ticks.
443 * MP-safe, called without the Giant mutex.
444 */
445/* ARGSUSED */
446static void
447schedcpu(void)
448{
449	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
450	struct thread *td;
451	struct proc *p;
452	struct td_sched *ts;
453	int awake, realstathz;
454
455	realstathz = stathz ? stathz : hz;
456	sx_slock(&allproc_lock);
457	FOREACH_PROC_IN_SYSTEM(p) {
458		PROC_LOCK(p);
459		if (p->p_state == PRS_NEW) {
460			PROC_UNLOCK(p);
461			continue;
462		}
463		FOREACH_THREAD_IN_PROC(p, td) {
464			awake = 0;
465			thread_lock(td);
466			ts = td->td_sched;
467			/*
468			 * Increment sleep time (if sleeping).  We
469			 * ignore overflow, as above.
470			 */
471			/*
472			 * The td_sched slptimes are not touched in wakeup
473			 * because the thread may not HAVE everything in
474			 * memory? XXX I think this is out of date.
475			 */
476			if (TD_ON_RUNQ(td)) {
477				awake = 1;
478				td->td_flags &= ~TDF_DIDRUN;
479			} else if (TD_IS_RUNNING(td)) {
480				awake = 1;
481				/* Do not clear TDF_DIDRUN */
482			} else if (td->td_flags & TDF_DIDRUN) {
483				awake = 1;
484				td->td_flags &= ~TDF_DIDRUN;
485			}
486
487			/*
488			 * ts_pctcpu is only for ps and ttyinfo().
489			 */
490			ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
491			/*
492			 * If the td_sched has been idle the entire second,
493			 * stop recalculating its priority until
494			 * it wakes up.
495			 */
496			if (ts->ts_cpticks != 0) {
497#if	(FSHIFT >= CCPU_SHIFT)
498				ts->ts_pctcpu += (realstathz == 100)
499				    ? ((fixpt_t) ts->ts_cpticks) <<
500				    (FSHIFT - CCPU_SHIFT) :
501				    100 * (((fixpt_t) ts->ts_cpticks)
502				    << (FSHIFT - CCPU_SHIFT)) / realstathz;
503#else
504				ts->ts_pctcpu += ((FSCALE - ccpu) *
505				    (ts->ts_cpticks *
506				    FSCALE / realstathz)) >> FSHIFT;
507#endif
508				ts->ts_cpticks = 0;
509			}
510			/*
511			 * If there are ANY running threads in this process,
512			 * then don't count it as sleeping.
513			 * XXX: this is broken.
514			 */
515			if (awake) {
516				if (ts->ts_slptime > 1) {
517					/*
518					 * In an ideal world, this should not
519					 * happen, because whoever woke us
520					 * up from the long sleep should have
521					 * unwound the slptime and reset our
522					 * priority before we run at the stale
523					 * priority.  Should KASSERT at some
524					 * point when all the cases are fixed.
525					 */
526					updatepri(td);
527				}
528				ts->ts_slptime = 0;
529			} else
530				ts->ts_slptime++;
531			if (ts->ts_slptime > 1) {
532				thread_unlock(td);
533				continue;
534			}
535			td->td_estcpu = decay_cpu(loadfac, td->td_estcpu);
536		      	resetpriority(td);
537			resetpriority_thread(td);
538			thread_unlock(td);
539		}
540		PROC_UNLOCK(p);
541	}
542	sx_sunlock(&allproc_lock);
543}
544
545/*
546 * Main loop for a kthread that executes schedcpu once a second.
547 */
548static void
549schedcpu_thread(void)
550{
551
552	for (;;) {
553		schedcpu();
554		pause("-", hz);
555	}
556}
557
558/*
559 * Recalculate the priority of a process after it has slept for a while.
560 * For all load averages >= 1 and max td_estcpu of 255, sleeping for at
561 * least six times the loadfactor will decay td_estcpu to zero.
562 */
563static void
564updatepri(struct thread *td)
565{
566	struct td_sched *ts;
567	fixpt_t loadfac;
568	unsigned int newcpu;
569
570	ts = td->td_sched;
571	loadfac = loadfactor(averunnable.ldavg[0]);
572	if (ts->ts_slptime > 5 * loadfac)
573		td->td_estcpu = 0;
574	else {
575		newcpu = td->td_estcpu;
576		ts->ts_slptime--;	/* was incremented in schedcpu() */
577		while (newcpu && --ts->ts_slptime)
578			newcpu = decay_cpu(loadfac, newcpu);
579		td->td_estcpu = newcpu;
580	}
581}
582
583/*
584 * Compute the priority of a process when running in user mode.
585 * Arrange to reschedule if the resulting priority is better
586 * than that of the current process.
587 */
588static void
589resetpriority(struct thread *td)
590{
591	register unsigned int newpriority;
592
593	if (td->td_pri_class == PRI_TIMESHARE) {
594		newpriority = PUSER + td->td_estcpu / INVERSE_ESTCPU_WEIGHT +
595		    NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
596		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
597		    PRI_MAX_TIMESHARE);
598		sched_user_prio(td, newpriority);
599	}
600}
601
602/*
603 * Update the thread's priority when the associated process's user
604 * priority changes.
605 */
606static void
607resetpriority_thread(struct thread *td)
608{
609
610	/* Only change threads with a time sharing user priority. */
611	if (td->td_priority < PRI_MIN_TIMESHARE ||
612	    td->td_priority > PRI_MAX_TIMESHARE)
613		return;
614
615	/* XXX the whole needresched thing is broken, but not silly. */
616	maybe_resched(td);
617
618	sched_prio(td, td->td_user_pri);
619}
620
621/* ARGSUSED */
622static void
623sched_setup(void *dummy)
624{
625	setup_runqs();
626
627	if (sched_quantum == 0)
628		sched_quantum = SCHED_QUANTUM;
629	hogticks = 2 * sched_quantum;
630
631	/* Account for thread0. */
632	sched_load_add();
633}
634
635/* External interfaces start here */
636
637/*
638 * Very early in the boot some setup of scheduler-specific
639 * parts of proc0 and of some scheduler resources needs to be done.
640 * Called from:
641 *  proc0_init()
642 */
643void
644schedinit(void)
645{
646	/*
647	 * Set up the scheduler specific parts of proc0.
648	 */
649	proc0.p_sched = NULL; /* XXX */
650	thread0.td_sched = &td_sched0;
651	thread0.td_lock = &sched_lock;
652	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
653}
654
655int
656sched_runnable(void)
657{
658#ifdef SMP
659	return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
660#else
661	return runq_check(&runq);
662#endif
663}
664
665int
666sched_rr_interval(void)
667{
668	if (sched_quantum == 0)
669		sched_quantum = SCHED_QUANTUM;
670	return (sched_quantum);
671}
672
673/*
674 * We adjust the priority of the current process.  The priority of
675 * a process gets worse as it accumulates CPU time.  The cpu usage
676 * estimator (td_estcpu) is increased here.  resetpriority() will
677 * compute a different priority each time td_estcpu increases by
678 * INVERSE_ESTCPU_WEIGHT
679 * (until MAXPRI is reached).  The cpu usage estimator ramps up
680 * quite quickly when the process is running (linearly), and decays
681 * away exponentially, at a rate which is proportionally slower when
682 * the system is busy.  The basic principle is that the system will
683 * 90% forget that the process used a lot of CPU time in 5 * loadav
684 * seconds.  This causes the system to favor processes which haven't
685 * run much recently, and to round-robin among other processes.
686 */
687void
688sched_clock(struct thread *td)
689{
690	struct pcpuidlestat *stat;
691	struct td_sched *ts;
692
693	THREAD_LOCK_ASSERT(td, MA_OWNED);
694	ts = td->td_sched;
695
696	ts->ts_cpticks++;
697	td->td_estcpu = ESTCPULIM(td->td_estcpu + 1);
698	if ((td->td_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
699		resetpriority(td);
700		resetpriority_thread(td);
701	}
702
703	/*
704	 * Force a context switch if the current thread has used up a full
705	 * quantum (default quantum is 100ms).
706	 */
707	if (!TD_IS_IDLETHREAD(td) &&
708	    ticks - PCPU_GET(switchticks) >= sched_quantum)
709		td->td_flags |= TDF_NEEDRESCHED;
710
711	stat = DPCPU_PTR(idlestat);
712	stat->oldidlecalls = stat->idlecalls;
713	stat->idlecalls = 0;
714}
715
716/*
717 * Charge child's scheduling CPU usage to parent.
718 */
719void
720sched_exit(struct proc *p, struct thread *td)
721{
722
723	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "proc exit",
724	    "prio:%d", td->td_priority);
725
726	PROC_LOCK_ASSERT(p, MA_OWNED);
727	sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
728}
729
730void
731sched_exit_thread(struct thread *td, struct thread *child)
732{
733
734	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "exit",
735	    "prio:%d", child->td_priority);
736	thread_lock(td);
737	td->td_estcpu = ESTCPULIM(td->td_estcpu + child->td_estcpu);
738	thread_unlock(td);
739	thread_lock(child);
740	if ((child->td_flags & TDF_NOLOAD) == 0)
741		sched_load_rem();
742	thread_unlock(child);
743}
744
745void
746sched_fork(struct thread *td, struct thread *childtd)
747{
748	sched_fork_thread(td, childtd);
749}
750
751void
752sched_fork_thread(struct thread *td, struct thread *childtd)
753{
754	struct td_sched *ts;
755
756	childtd->td_estcpu = td->td_estcpu;
757	childtd->td_lock = &sched_lock;
758	childtd->td_cpuset = cpuset_ref(td->td_cpuset);
759	childtd->td_priority = childtd->td_base_pri;
760	ts = childtd->td_sched;
761	bzero(ts, sizeof(*ts));
762	ts->ts_flags |= (td->td_sched->ts_flags & TSF_AFFINITY);
763}
764
765void
766sched_nice(struct proc *p, int nice)
767{
768	struct thread *td;
769
770	PROC_LOCK_ASSERT(p, MA_OWNED);
771	p->p_nice = nice;
772	FOREACH_THREAD_IN_PROC(p, td) {
773		thread_lock(td);
774		resetpriority(td);
775		resetpriority_thread(td);
776		thread_unlock(td);
777	}
778}
779
780void
781sched_class(struct thread *td, int class)
782{
783	THREAD_LOCK_ASSERT(td, MA_OWNED);
784	td->td_pri_class = class;
785}
786
787/*
788 * Adjust the priority of a thread.
789 */
790static void
791sched_priority(struct thread *td, u_char prio)
792{
793
794
795	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "priority change",
796	    "prio:%d", td->td_priority, "new prio:%d", prio, KTR_ATTR_LINKED,
797	    sched_tdname(curthread));
798	if (td != curthread && prio > td->td_priority) {
799		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
800		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
801		    prio, KTR_ATTR_LINKED, sched_tdname(td));
802	}
803	THREAD_LOCK_ASSERT(td, MA_OWNED);
804	if (td->td_priority == prio)
805		return;
806	td->td_priority = prio;
807	if (TD_ON_RUNQ(td) && td->td_rqindex != (prio / RQ_PPQ)) {
808		sched_rem(td);
809		sched_add(td, SRQ_BORING);
810	}
811}
812
813/*
814 * Update a thread's priority when it is lent another thread's
815 * priority.
816 */
817void
818sched_lend_prio(struct thread *td, u_char prio)
819{
820
821	td->td_flags |= TDF_BORROWING;
822	sched_priority(td, prio);
823}
824
825/*
826 * Restore a thread's priority when priority propagation is
827 * over.  The prio argument is the minimum priority the thread
828 * needs to have to satisfy other possible priority lending
829 * requests.  If the thread's regulary priority is less
830 * important than prio the thread will keep a priority boost
831 * of prio.
832 */
833void
834sched_unlend_prio(struct thread *td, u_char prio)
835{
836	u_char base_pri;
837
838	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
839	    td->td_base_pri <= PRI_MAX_TIMESHARE)
840		base_pri = td->td_user_pri;
841	else
842		base_pri = td->td_base_pri;
843	if (prio >= base_pri) {
844		td->td_flags &= ~TDF_BORROWING;
845		sched_prio(td, base_pri);
846	} else
847		sched_lend_prio(td, prio);
848}
849
850void
851sched_prio(struct thread *td, u_char prio)
852{
853	u_char oldprio;
854
855	/* First, update the base priority. */
856	td->td_base_pri = prio;
857
858	/*
859	 * If the thread is borrowing another thread's priority, don't ever
860	 * lower the priority.
861	 */
862	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
863		return;
864
865	/* Change the real priority. */
866	oldprio = td->td_priority;
867	sched_priority(td, prio);
868
869	/*
870	 * If the thread is on a turnstile, then let the turnstile update
871	 * its state.
872	 */
873	if (TD_ON_LOCK(td) && oldprio != prio)
874		turnstile_adjust(td, oldprio);
875}
876
877void
878sched_user_prio(struct thread *td, u_char prio)
879{
880
881	THREAD_LOCK_ASSERT(td, MA_OWNED);
882	td->td_base_user_pri = prio;
883	if (td->td_lend_user_pri <= prio)
884		return;
885	td->td_user_pri = prio;
886}
887
888void
889sched_lend_user_prio(struct thread *td, u_char prio)
890{
891
892	THREAD_LOCK_ASSERT(td, MA_OWNED);
893	td->td_lend_user_pri = prio;
894	td->td_user_pri = min(prio, td->td_base_user_pri);
895	if (td->td_priority > td->td_user_pri)
896		sched_prio(td, td->td_user_pri);
897	else if (td->td_priority != td->td_user_pri)
898		td->td_flags |= TDF_NEEDRESCHED;
899}
900
901void
902sched_sleep(struct thread *td, int pri)
903{
904
905	THREAD_LOCK_ASSERT(td, MA_OWNED);
906	td->td_slptick = ticks;
907	td->td_sched->ts_slptime = 0;
908	if (pri != 0 && PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
909		sched_prio(td, pri);
910	if (TD_IS_SUSPENDED(td) || pri >= PSOCK)
911		td->td_flags |= TDF_CANSWAP;
912}
913
914void
915sched_switch(struct thread *td, struct thread *newtd, int flags)
916{
917	struct mtx *tmtx;
918	struct td_sched *ts;
919	struct proc *p;
920
921	tmtx = NULL;
922	ts = td->td_sched;
923	p = td->td_proc;
924
925	THREAD_LOCK_ASSERT(td, MA_OWNED);
926
927	/*
928	 * Switch to the sched lock to fix things up and pick
929	 * a new thread.
930	 * Block the td_lock in order to avoid breaking the critical path.
931	 */
932	if (td->td_lock != &sched_lock) {
933		mtx_lock_spin(&sched_lock);
934		tmtx = thread_lock_block(td);
935	}
936
937	if ((td->td_flags & TDF_NOLOAD) == 0)
938		sched_load_rem();
939
940	td->td_lastcpu = td->td_oncpu;
941	if (!(flags & SW_PREEMPT))
942		td->td_flags &= ~TDF_NEEDRESCHED;
943	td->td_owepreempt = 0;
944	td->td_oncpu = NOCPU;
945
946	/*
947	 * At the last moment, if this thread is still marked RUNNING,
948	 * then put it back on the run queue as it has not been suspended
949	 * or stopped or any thing else similar.  We never put the idle
950	 * threads on the run queue, however.
951	 */
952	if (td->td_flags & TDF_IDLETD) {
953		TD_SET_CAN_RUN(td);
954#ifdef SMP
955		CPU_CLR(PCPU_GET(cpuid), &idle_cpus_mask);
956#endif
957	} else {
958		if (TD_IS_RUNNING(td)) {
959			/* Put us back on the run queue. */
960			sched_add(td, (flags & SW_PREEMPT) ?
961			    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
962			    SRQ_OURSELF|SRQ_YIELDING);
963		}
964	}
965	if (newtd) {
966		/*
967		 * The thread we are about to run needs to be counted
968		 * as if it had been added to the run queue and selected.
969		 * It came from:
970		 * * A preemption
971		 * * An upcall
972		 * * A followon
973		 */
974		KASSERT((newtd->td_inhibitors == 0),
975			("trying to run inhibited thread"));
976		newtd->td_flags |= TDF_DIDRUN;
977        	TD_SET_RUNNING(newtd);
978		if ((newtd->td_flags & TDF_NOLOAD) == 0)
979			sched_load_add();
980	} else {
981		newtd = choosethread();
982		MPASS(newtd->td_lock == &sched_lock);
983	}
984
985	if (td != newtd) {
986#ifdef	HWPMC_HOOKS
987		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
988			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
989#endif
990                /* I feel sleepy */
991		lock_profile_release_lock(&sched_lock.lock_object);
992#ifdef KDTRACE_HOOKS
993		/*
994		 * If DTrace has set the active vtime enum to anything
995		 * other than INACTIVE (0), then it should have set the
996		 * function to call.
997		 */
998		if (dtrace_vtime_active)
999			(*dtrace_vtime_switch_func)(newtd);
1000#endif
1001
1002		cpu_switch(td, newtd, tmtx != NULL ? tmtx : td->td_lock);
1003		lock_profile_obtain_lock_success(&sched_lock.lock_object,
1004		    0, 0, __FILE__, __LINE__);
1005		/*
1006		 * Where am I?  What year is it?
1007		 * We are in the same thread that went to sleep above,
1008		 * but any amount of time may have passed. All our context
1009		 * will still be available as will local variables.
1010		 * PCPU values however may have changed as we may have
1011		 * changed CPU so don't trust cached values of them.
1012		 * New threads will go to fork_exit() instead of here
1013		 * so if you change things here you may need to change
1014		 * things there too.
1015		 *
1016		 * If the thread above was exiting it will never wake
1017		 * up again here, so either it has saved everything it
1018		 * needed to, or the thread_wait() or wait() will
1019		 * need to reap it.
1020		 */
1021#ifdef	HWPMC_HOOKS
1022		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1023			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1024#endif
1025	}
1026
1027#ifdef SMP
1028	if (td->td_flags & TDF_IDLETD)
1029		CPU_SET(PCPU_GET(cpuid), &idle_cpus_mask);
1030#endif
1031	sched_lock.mtx_lock = (uintptr_t)td;
1032	td->td_oncpu = PCPU_GET(cpuid);
1033	MPASS(td->td_lock == &sched_lock);
1034}
1035
1036void
1037sched_wakeup(struct thread *td)
1038{
1039	struct td_sched *ts;
1040
1041	THREAD_LOCK_ASSERT(td, MA_OWNED);
1042	ts = td->td_sched;
1043	td->td_flags &= ~TDF_CANSWAP;
1044	if (ts->ts_slptime > 1) {
1045		updatepri(td);
1046		resetpriority(td);
1047	}
1048	td->td_slptick = 0;
1049	ts->ts_slptime = 0;
1050	sched_add(td, SRQ_BORING);
1051}
1052
1053#ifdef SMP
1054static int
1055forward_wakeup(int cpunum)
1056{
1057	struct pcpu *pc;
1058	cpuset_t dontuse, map, map2;
1059	u_int id, me;
1060	int iscpuset;
1061
1062	mtx_assert(&sched_lock, MA_OWNED);
1063
1064	CTR0(KTR_RUNQ, "forward_wakeup()");
1065
1066	if ((!forward_wakeup_enabled) ||
1067	     (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
1068		return (0);
1069	if (!smp_started || cold || panicstr)
1070		return (0);
1071
1072	forward_wakeups_requested++;
1073
1074	/*
1075	 * Check the idle mask we received against what we calculated
1076	 * before in the old version.
1077	 */
1078	me = PCPU_GET(cpuid);
1079
1080	/* Don't bother if we should be doing it ourself. */
1081	if (CPU_ISSET(me, &idle_cpus_mask) &&
1082	    (cpunum == NOCPU || me == cpunum))
1083		return (0);
1084
1085	CPU_SETOF(me, &dontuse);
1086	CPU_OR(&dontuse, &stopped_cpus);
1087	CPU_OR(&dontuse, &hlt_cpus_mask);
1088	CPU_ZERO(&map2);
1089	if (forward_wakeup_use_loop) {
1090		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1091			id = pc->pc_cpuid;
1092			if (!CPU_ISSET(id, &dontuse) &&
1093			    pc->pc_curthread == pc->pc_idlethread) {
1094				CPU_SET(id, &map2);
1095			}
1096		}
1097	}
1098
1099	if (forward_wakeup_use_mask) {
1100		map = idle_cpus_mask;
1101		CPU_NAND(&map, &dontuse);
1102
1103		/* If they are both on, compare and use loop if different. */
1104		if (forward_wakeup_use_loop) {
1105			if (CPU_CMP(&map, &map2)) {
1106				printf("map != map2, loop method preferred\n");
1107				map = map2;
1108			}
1109		}
1110	} else {
1111		map = map2;
1112	}
1113
1114	/* If we only allow a specific CPU, then mask off all the others. */
1115	if (cpunum != NOCPU) {
1116		KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
1117		iscpuset = CPU_ISSET(cpunum, &map);
1118		if (iscpuset == 0)
1119			CPU_ZERO(&map);
1120		else
1121			CPU_SETOF(cpunum, &map);
1122	}
1123	if (!CPU_EMPTY(&map)) {
1124		forward_wakeups_delivered++;
1125		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1126			id = pc->pc_cpuid;
1127			if (!CPU_ISSET(id, &map))
1128				continue;
1129			if (cpu_idle_wakeup(pc->pc_cpuid))
1130				CPU_CLR(id, &map);
1131		}
1132		if (!CPU_EMPTY(&map))
1133			ipi_selected(map, IPI_AST);
1134		return (1);
1135	}
1136	if (cpunum == NOCPU)
1137		printf("forward_wakeup: Idle processor not found\n");
1138	return (0);
1139}
1140
1141static void
1142kick_other_cpu(int pri, int cpuid)
1143{
1144	struct pcpu *pcpu;
1145	int cpri;
1146
1147	pcpu = pcpu_find(cpuid);
1148	if (CPU_ISSET(cpuid, &idle_cpus_mask)) {
1149		forward_wakeups_delivered++;
1150		if (!cpu_idle_wakeup(cpuid))
1151			ipi_cpu(cpuid, IPI_AST);
1152		return;
1153	}
1154
1155	cpri = pcpu->pc_curthread->td_priority;
1156	if (pri >= cpri)
1157		return;
1158
1159#if defined(IPI_PREEMPTION) && defined(PREEMPTION)
1160#if !defined(FULL_PREEMPTION)
1161	if (pri <= PRI_MAX_ITHD)
1162#endif /* ! FULL_PREEMPTION */
1163	{
1164		ipi_cpu(cpuid, IPI_PREEMPT);
1165		return;
1166	}
1167#endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
1168
1169	pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
1170	ipi_cpu(cpuid, IPI_AST);
1171	return;
1172}
1173#endif /* SMP */
1174
1175#ifdef SMP
1176static int
1177sched_pickcpu(struct thread *td)
1178{
1179	int best, cpu;
1180
1181	mtx_assert(&sched_lock, MA_OWNED);
1182
1183	if (THREAD_CAN_SCHED(td, td->td_lastcpu))
1184		best = td->td_lastcpu;
1185	else
1186		best = NOCPU;
1187	CPU_FOREACH(cpu) {
1188		if (!THREAD_CAN_SCHED(td, cpu))
1189			continue;
1190
1191		if (best == NOCPU)
1192			best = cpu;
1193		else if (runq_length[cpu] < runq_length[best])
1194			best = cpu;
1195	}
1196	KASSERT(best != NOCPU, ("no valid CPUs"));
1197
1198	return (best);
1199}
1200#endif
1201
1202void
1203sched_add(struct thread *td, int flags)
1204#ifdef SMP
1205{
1206	cpuset_t tidlemsk;
1207	struct td_sched *ts;
1208	u_int cpu, cpuid;
1209	int forwarded = 0;
1210	int single_cpu = 0;
1211
1212	ts = td->td_sched;
1213	THREAD_LOCK_ASSERT(td, MA_OWNED);
1214	KASSERT((td->td_inhibitors == 0),
1215	    ("sched_add: trying to run inhibited thread"));
1216	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1217	    ("sched_add: bad thread state"));
1218	KASSERT(td->td_flags & TDF_INMEM,
1219	    ("sched_add: thread swapped out"));
1220
1221	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1222	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1223	    sched_tdname(curthread));
1224	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1225	    KTR_ATTR_LINKED, sched_tdname(td));
1226
1227
1228	/*
1229	 * Now that the thread is moving to the run-queue, set the lock
1230	 * to the scheduler's lock.
1231	 */
1232	if (td->td_lock != &sched_lock) {
1233		mtx_lock_spin(&sched_lock);
1234		thread_lock_set(td, &sched_lock);
1235	}
1236	TD_SET_RUNQ(td);
1237
1238	/*
1239	 * If SMP is started and the thread is pinned or otherwise limited to
1240	 * a specific set of CPUs, queue the thread to a per-CPU run queue.
1241	 * Otherwise, queue the thread to the global run queue.
1242	 *
1243	 * If SMP has not yet been started we must use the global run queue
1244	 * as per-CPU state may not be initialized yet and we may crash if we
1245	 * try to access the per-CPU run queues.
1246	 */
1247	if (smp_started && (td->td_pinned != 0 || td->td_flags & TDF_BOUND ||
1248	    ts->ts_flags & TSF_AFFINITY)) {
1249		if (td->td_pinned != 0)
1250			cpu = td->td_lastcpu;
1251		else if (td->td_flags & TDF_BOUND) {
1252			/* Find CPU from bound runq. */
1253			KASSERT(SKE_RUNQ_PCPU(ts),
1254			    ("sched_add: bound td_sched not on cpu runq"));
1255			cpu = ts->ts_runq - &runq_pcpu[0];
1256		} else
1257			/* Find a valid CPU for our cpuset */
1258			cpu = sched_pickcpu(td);
1259		ts->ts_runq = &runq_pcpu[cpu];
1260		single_cpu = 1;
1261		CTR3(KTR_RUNQ,
1262		    "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
1263		    cpu);
1264	} else {
1265		CTR2(KTR_RUNQ,
1266		    "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts,
1267		    td);
1268		cpu = NOCPU;
1269		ts->ts_runq = &runq;
1270	}
1271
1272	cpuid = PCPU_GET(cpuid);
1273	if (single_cpu && cpu != cpuid) {
1274	        kick_other_cpu(td->td_priority, cpu);
1275	} else {
1276		if (!single_cpu) {
1277			tidlemsk = idle_cpus_mask;
1278			CPU_NAND(&tidlemsk, &hlt_cpus_mask);
1279			CPU_CLR(cpuid, &tidlemsk);
1280
1281			if (!CPU_ISSET(cpuid, &idle_cpus_mask) &&
1282			    ((flags & SRQ_INTR) == 0) &&
1283			    !CPU_EMPTY(&tidlemsk))
1284				forwarded = forward_wakeup(cpu);
1285		}
1286
1287		if (!forwarded) {
1288			if ((flags & SRQ_YIELDING) == 0 && maybe_preempt(td))
1289				return;
1290			else
1291				maybe_resched(td);
1292		}
1293	}
1294
1295	if ((td->td_flags & TDF_NOLOAD) == 0)
1296		sched_load_add();
1297	runq_add(ts->ts_runq, td, flags);
1298	if (cpu != NOCPU)
1299		runq_length[cpu]++;
1300}
1301#else /* SMP */
1302{
1303	struct td_sched *ts;
1304
1305	ts = td->td_sched;
1306	THREAD_LOCK_ASSERT(td, MA_OWNED);
1307	KASSERT((td->td_inhibitors == 0),
1308	    ("sched_add: trying to run inhibited thread"));
1309	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1310	    ("sched_add: bad thread state"));
1311	KASSERT(td->td_flags & TDF_INMEM,
1312	    ("sched_add: thread swapped out"));
1313	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1314	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1315	    sched_tdname(curthread));
1316	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1317	    KTR_ATTR_LINKED, sched_tdname(td));
1318
1319	/*
1320	 * Now that the thread is moving to the run-queue, set the lock
1321	 * to the scheduler's lock.
1322	 */
1323	if (td->td_lock != &sched_lock) {
1324		mtx_lock_spin(&sched_lock);
1325		thread_lock_set(td, &sched_lock);
1326	}
1327	TD_SET_RUNQ(td);
1328	CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
1329	ts->ts_runq = &runq;
1330
1331	/*
1332	 * If we are yielding (on the way out anyhow) or the thread
1333	 * being saved is US, then don't try be smart about preemption
1334	 * or kicking off another CPU as it won't help and may hinder.
1335	 * In the YIEDLING case, we are about to run whoever is being
1336	 * put in the queue anyhow, and in the OURSELF case, we are
1337	 * puting ourself on the run queue which also only happens
1338	 * when we are about to yield.
1339	 */
1340	if ((flags & SRQ_YIELDING) == 0) {
1341		if (maybe_preempt(td))
1342			return;
1343	}
1344	if ((td->td_flags & TDF_NOLOAD) == 0)
1345		sched_load_add();
1346	runq_add(ts->ts_runq, td, flags);
1347	maybe_resched(td);
1348}
1349#endif /* SMP */
1350
1351void
1352sched_rem(struct thread *td)
1353{
1354	struct td_sched *ts;
1355
1356	ts = td->td_sched;
1357	KASSERT(td->td_flags & TDF_INMEM,
1358	    ("sched_rem: thread swapped out"));
1359	KASSERT(TD_ON_RUNQ(td),
1360	    ("sched_rem: thread not on run queue"));
1361	mtx_assert(&sched_lock, MA_OWNED);
1362	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
1363	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1364	    sched_tdname(curthread));
1365
1366	if ((td->td_flags & TDF_NOLOAD) == 0)
1367		sched_load_rem();
1368#ifdef SMP
1369	if (ts->ts_runq != &runq)
1370		runq_length[ts->ts_runq - runq_pcpu]--;
1371#endif
1372	runq_remove(ts->ts_runq, td);
1373	TD_SET_CAN_RUN(td);
1374}
1375
1376/*
1377 * Select threads to run.  Note that running threads still consume a
1378 * slot.
1379 */
1380struct thread *
1381sched_choose(void)
1382{
1383	struct thread *td;
1384	struct runq *rq;
1385
1386	mtx_assert(&sched_lock,  MA_OWNED);
1387#ifdef SMP
1388	struct thread *tdcpu;
1389
1390	rq = &runq;
1391	td = runq_choose_fuzz(&runq, runq_fuzz);
1392	tdcpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
1393
1394	if (td == NULL ||
1395	    (tdcpu != NULL &&
1396	     tdcpu->td_priority < td->td_priority)) {
1397		CTR2(KTR_RUNQ, "choosing td %p from pcpu runq %d", tdcpu,
1398		     PCPU_GET(cpuid));
1399		td = tdcpu;
1400		rq = &runq_pcpu[PCPU_GET(cpuid)];
1401	} else {
1402		CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", td);
1403	}
1404
1405#else
1406	rq = &runq;
1407	td = runq_choose(&runq);
1408#endif
1409
1410	if (td) {
1411#ifdef SMP
1412		if (td == tdcpu)
1413			runq_length[PCPU_GET(cpuid)]--;
1414#endif
1415		runq_remove(rq, td);
1416		td->td_flags |= TDF_DIDRUN;
1417
1418		KASSERT(td->td_flags & TDF_INMEM,
1419		    ("sched_choose: thread swapped out"));
1420		return (td);
1421	}
1422	return (PCPU_GET(idlethread));
1423}
1424
1425void
1426sched_preempt(struct thread *td)
1427{
1428	thread_lock(td);
1429	if (td->td_critnest > 1)
1430		td->td_owepreempt = 1;
1431	else
1432		mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT, NULL);
1433	thread_unlock(td);
1434}
1435
1436void
1437sched_userret(struct thread *td)
1438{
1439	/*
1440	 * XXX we cheat slightly on the locking here to avoid locking in
1441	 * the usual case.  Setting td_priority here is essentially an
1442	 * incomplete workaround for not setting it properly elsewhere.
1443	 * Now that some interrupt handlers are threads, not setting it
1444	 * properly elsewhere can clobber it in the window between setting
1445	 * it here and returning to user mode, so don't waste time setting
1446	 * it perfectly here.
1447	 */
1448	KASSERT((td->td_flags & TDF_BORROWING) == 0,
1449	    ("thread with borrowed priority returning to userland"));
1450	if (td->td_priority != td->td_user_pri) {
1451		thread_lock(td);
1452		td->td_priority = td->td_user_pri;
1453		td->td_base_pri = td->td_user_pri;
1454		thread_unlock(td);
1455	}
1456}
1457
1458void
1459sched_bind(struct thread *td, int cpu)
1460{
1461	struct td_sched *ts;
1462
1463	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
1464	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
1465
1466	ts = td->td_sched;
1467
1468	td->td_flags |= TDF_BOUND;
1469#ifdef SMP
1470	ts->ts_runq = &runq_pcpu[cpu];
1471	if (PCPU_GET(cpuid) == cpu)
1472		return;
1473
1474	mi_switch(SW_VOL, NULL);
1475#endif
1476}
1477
1478void
1479sched_unbind(struct thread* td)
1480{
1481	THREAD_LOCK_ASSERT(td, MA_OWNED);
1482	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
1483	td->td_flags &= ~TDF_BOUND;
1484}
1485
1486int
1487sched_is_bound(struct thread *td)
1488{
1489	THREAD_LOCK_ASSERT(td, MA_OWNED);
1490	return (td->td_flags & TDF_BOUND);
1491}
1492
1493void
1494sched_relinquish(struct thread *td)
1495{
1496	thread_lock(td);
1497	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
1498	thread_unlock(td);
1499}
1500
1501int
1502sched_load(void)
1503{
1504	return (sched_tdcnt);
1505}
1506
1507int
1508sched_sizeof_proc(void)
1509{
1510	return (sizeof(struct proc));
1511}
1512
1513int
1514sched_sizeof_thread(void)
1515{
1516	return (sizeof(struct thread) + sizeof(struct td_sched));
1517}
1518
1519fixpt_t
1520sched_pctcpu(struct thread *td)
1521{
1522	struct td_sched *ts;
1523
1524	THREAD_LOCK_ASSERT(td, MA_OWNED);
1525	ts = td->td_sched;
1526	return (ts->ts_pctcpu);
1527}
1528
1529void
1530sched_tick(int cnt)
1531{
1532}
1533
1534/*
1535 * The actual idle process.
1536 */
1537void
1538sched_idletd(void *dummy)
1539{
1540	struct pcpuidlestat *stat;
1541
1542	stat = DPCPU_PTR(idlestat);
1543	for (;;) {
1544		mtx_assert(&Giant, MA_NOTOWNED);
1545
1546		while (sched_runnable() == 0) {
1547			cpu_idle(stat->idlecalls + stat->oldidlecalls > 64);
1548			stat->idlecalls++;
1549		}
1550
1551		mtx_lock_spin(&sched_lock);
1552		mi_switch(SW_VOL | SWT_IDLE, NULL);
1553		mtx_unlock_spin(&sched_lock);
1554	}
1555}
1556
1557/*
1558 * A CPU is entering for the first time or a thread is exiting.
1559 */
1560void
1561sched_throw(struct thread *td)
1562{
1563	/*
1564	 * Correct spinlock nesting.  The idle thread context that we are
1565	 * borrowing was created so that it would start out with a single
1566	 * spin lock (sched_lock) held in fork_trampoline().  Since we've
1567	 * explicitly acquired locks in this function, the nesting count
1568	 * is now 2 rather than 1.  Since we are nested, calling
1569	 * spinlock_exit() will simply adjust the counts without allowing
1570	 * spin lock using code to interrupt us.
1571	 */
1572	if (td == NULL) {
1573		mtx_lock_spin(&sched_lock);
1574		spinlock_exit();
1575		PCPU_SET(switchtime, cpu_ticks());
1576		PCPU_SET(switchticks, ticks);
1577	} else {
1578		lock_profile_release_lock(&sched_lock.lock_object);
1579		MPASS(td->td_lock == &sched_lock);
1580	}
1581	mtx_assert(&sched_lock, MA_OWNED);
1582	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
1583	cpu_throw(td, choosethread());	/* doesn't return */
1584}
1585
1586void
1587sched_fork_exit(struct thread *td)
1588{
1589
1590	/*
1591	 * Finish setting up thread glue so that it begins execution in a
1592	 * non-nested critical section with sched_lock held but not recursed.
1593	 */
1594	td->td_oncpu = PCPU_GET(cpuid);
1595	sched_lock.mtx_lock = (uintptr_t)td;
1596	lock_profile_obtain_lock_success(&sched_lock.lock_object,
1597	    0, 0, __FILE__, __LINE__);
1598	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
1599}
1600
1601char *
1602sched_tdname(struct thread *td)
1603{
1604#ifdef KTR
1605	struct td_sched *ts;
1606
1607	ts = td->td_sched;
1608	if (ts->ts_name[0] == '\0')
1609		snprintf(ts->ts_name, sizeof(ts->ts_name),
1610		    "%s tid %d", td->td_name, td->td_tid);
1611	return (ts->ts_name);
1612#else
1613	return (td->td_name);
1614#endif
1615}
1616
1617#ifdef KTR
1618void
1619sched_clear_tdname(struct thread *td)
1620{
1621	struct td_sched *ts;
1622
1623	ts = td->td_sched;
1624	ts->ts_name[0] = '\0';
1625}
1626#endif
1627
1628void
1629sched_affinity(struct thread *td)
1630{
1631#ifdef SMP
1632	struct td_sched *ts;
1633	int cpu;
1634
1635	THREAD_LOCK_ASSERT(td, MA_OWNED);
1636
1637	/*
1638	 * Set the TSF_AFFINITY flag if there is at least one CPU this
1639	 * thread can't run on.
1640	 */
1641	ts = td->td_sched;
1642	ts->ts_flags &= ~TSF_AFFINITY;
1643	CPU_FOREACH(cpu) {
1644		if (!THREAD_CAN_SCHED(td, cpu)) {
1645			ts->ts_flags |= TSF_AFFINITY;
1646			break;
1647		}
1648	}
1649
1650	/*
1651	 * If this thread can run on all CPUs, nothing else to do.
1652	 */
1653	if (!(ts->ts_flags & TSF_AFFINITY))
1654		return;
1655
1656	/* Pinned threads and bound threads should be left alone. */
1657	if (td->td_pinned != 0 || td->td_flags & TDF_BOUND)
1658		return;
1659
1660	switch (td->td_state) {
1661	case TDS_RUNQ:
1662		/*
1663		 * If we are on a per-CPU runqueue that is in the set,
1664		 * then nothing needs to be done.
1665		 */
1666		if (ts->ts_runq != &runq &&
1667		    THREAD_CAN_SCHED(td, ts->ts_runq - runq_pcpu))
1668			return;
1669
1670		/* Put this thread on a valid per-CPU runqueue. */
1671		sched_rem(td);
1672		sched_add(td, SRQ_BORING);
1673		break;
1674	case TDS_RUNNING:
1675		/*
1676		 * See if our current CPU is in the set.  If not, force a
1677		 * context switch.
1678		 */
1679		if (THREAD_CAN_SCHED(td, td->td_oncpu))
1680			return;
1681
1682		td->td_flags |= TDF_NEEDRESCHED;
1683		if (td != curthread)
1684			ipi_cpu(cpu, IPI_AST);
1685		break;
1686	default:
1687		break;
1688	}
1689#endif
1690}
1691