1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: stable/11/sys/kern/sched_4bsd.c 331722 2018-03-29 02:50:57Z eadler $");
37
38#include "opt_hwpmc_hooks.h"
39#include "opt_sched.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/cpuset.h>
44#include <sys/kernel.h>
45#include <sys/ktr.h>
46#include <sys/lock.h>
47#include <sys/kthread.h>
48#include <sys/mutex.h>
49#include <sys/proc.h>
50#include <sys/resourcevar.h>
51#include <sys/sched.h>
52#include <sys/sdt.h>
53#include <sys/smp.h>
54#include <sys/sysctl.h>
55#include <sys/sx.h>
56#include <sys/turnstile.h>
57#include <sys/umtx.h>
58#include <machine/pcb.h>
59#include <machine/smp.h>
60
61#ifdef HWPMC_HOOKS
62#include <sys/pmckern.h>
63#endif
64
65#ifdef KDTRACE_HOOKS
66#include <sys/dtrace_bsd.h>
67int				dtrace_vtime_active;
68dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
69#endif
70
71/*
72 * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
73 * the range 100-256 Hz (approximately).
74 */
75#define	ESTCPULIM(e) \
76    min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
77    RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
78#ifdef SMP
79#define	INVERSE_ESTCPU_WEIGHT	(8 * smp_cpus)
80#else
81#define	INVERSE_ESTCPU_WEIGHT	8	/* 1 / (priorities per estcpu level). */
82#endif
83#define	NICE_WEIGHT		1	/* Priorities per nice level. */
84
85#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
86
87/*
88 * The schedulable entity that runs a context.
89 * This is  an extension to the thread structure and is tailored to
90 * the requirements of this scheduler.
91 * All fields are protected by the scheduler lock.
92 */
93struct td_sched {
94	fixpt_t		ts_pctcpu;	/* %cpu during p_swtime. */
95	u_int		ts_estcpu;	/* Estimated cpu utilization. */
96	int		ts_cpticks;	/* Ticks of cpu time. */
97	int		ts_slptime;	/* Seconds !RUNNING. */
98	int		ts_slice;	/* Remaining part of time slice. */
99	int		ts_flags;
100	struct runq	*ts_runq;	/* runq the thread is currently on */
101#ifdef KTR
102	char		ts_name[TS_NAME_LEN];
103#endif
104};
105
106/* flags kept in td_flags */
107#define TDF_DIDRUN	TDF_SCHED0	/* thread actually ran. */
108#define TDF_BOUND	TDF_SCHED1	/* Bound to one CPU. */
109#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
110
111/* flags kept in ts_flags */
112#define	TSF_AFFINITY	0x0001		/* Has a non-"full" CPU set. */
113
114#define SKE_RUNQ_PCPU(ts)						\
115    ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
116
117#define	THREAD_CAN_SCHED(td, cpu)	\
118    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
119
120_Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
121    sizeof(struct thread0_storage),
122    "increase struct thread0_storage.t0st_sched size");
123
124static struct mtx sched_lock;
125
126static int	realstathz = 127; /* stathz is sometimes 0 and run off of hz. */
127static int	sched_tdcnt;	/* Total runnable threads in the system. */
128static int	sched_slice = 12; /* Thread run time before rescheduling. */
129
130static void	setup_runqs(void);
131static void	schedcpu(void);
132static void	schedcpu_thread(void);
133static void	sched_priority(struct thread *td, u_char prio);
134static void	sched_setup(void *dummy);
135static void	maybe_resched(struct thread *td);
136static void	updatepri(struct thread *td);
137static void	resetpriority(struct thread *td);
138static void	resetpriority_thread(struct thread *td);
139#ifdef SMP
140static int	sched_pickcpu(struct thread *td);
141static int	forward_wakeup(int cpunum);
142static void	kick_other_cpu(int pri, int cpuid);
143#endif
144
145static struct kproc_desc sched_kp = {
146        "schedcpu",
147        schedcpu_thread,
148        NULL
149};
150SYSINIT(schedcpu, SI_SUB_LAST, SI_ORDER_FIRST, kproc_start,
151    &sched_kp);
152SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
153
154static void sched_initticks(void *dummy);
155SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
156    NULL);
157
158/*
159 * Global run queue.
160 */
161static struct runq runq;
162
163#ifdef SMP
164/*
165 * Per-CPU run queues
166 */
167static struct runq runq_pcpu[MAXCPU];
168long runq_length[MAXCPU];
169
170static cpuset_t idle_cpus_mask;
171#endif
172
173struct pcpuidlestat {
174	u_int idlecalls;
175	u_int oldidlecalls;
176};
177static DPCPU_DEFINE(struct pcpuidlestat, idlestat);
178
179static void
180setup_runqs(void)
181{
182#ifdef SMP
183	int i;
184
185	for (i = 0; i < MAXCPU; ++i)
186		runq_init(&runq_pcpu[i]);
187#endif
188
189	runq_init(&runq);
190}
191
192static int
193sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
194{
195	int error, new_val, period;
196
197	period = 1000000 / realstathz;
198	new_val = period * sched_slice;
199	error = sysctl_handle_int(oidp, &new_val, 0, req);
200	if (error != 0 || req->newptr == NULL)
201		return (error);
202	if (new_val <= 0)
203		return (EINVAL);
204	sched_slice = imax(1, (new_val + period / 2) / period);
205	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
206	    realstathz);
207	return (0);
208}
209
210SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD, 0, "Scheduler");
211
212SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
213    "Scheduler name");
214SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
215    NULL, 0, sysctl_kern_quantum, "I",
216    "Quantum for timeshare threads in microseconds");
217SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
218    "Quantum for timeshare threads in stathz ticks");
219#ifdef SMP
220/* Enable forwarding of wakeups to all other cpus */
221static SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup, CTLFLAG_RD, NULL,
222    "Kernel SMP");
223
224static int runq_fuzz = 1;
225SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
226
227static int forward_wakeup_enabled = 1;
228SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
229	   &forward_wakeup_enabled, 0,
230	   "Forwarding of wakeup to idle CPUs");
231
232static int forward_wakeups_requested = 0;
233SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
234	   &forward_wakeups_requested, 0,
235	   "Requests for Forwarding of wakeup to idle CPUs");
236
237static int forward_wakeups_delivered = 0;
238SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
239	   &forward_wakeups_delivered, 0,
240	   "Completed Forwarding of wakeup to idle CPUs");
241
242static int forward_wakeup_use_mask = 1;
243SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
244	   &forward_wakeup_use_mask, 0,
245	   "Use the mask of idle cpus");
246
247static int forward_wakeup_use_loop = 0;
248SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
249	   &forward_wakeup_use_loop, 0,
250	   "Use a loop to find idle cpus");
251
252#endif
253#if 0
254static int sched_followon = 0;
255SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
256	   &sched_followon, 0,
257	   "allow threads to share a quantum");
258#endif
259
260SDT_PROVIDER_DEFINE(sched);
261
262SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *",
263    "struct proc *", "uint8_t");
264SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *",
265    "struct proc *", "void *");
266SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *",
267    "struct proc *", "void *", "int");
268SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *",
269    "struct proc *", "uint8_t", "struct thread *");
270SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
271SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
272    "struct proc *");
273SDT_PROBE_DEFINE(sched, , , on__cpu);
274SDT_PROBE_DEFINE(sched, , , remain__cpu);
275SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
276    "struct proc *");
277
278static __inline void
279sched_load_add(void)
280{
281
282	sched_tdcnt++;
283	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
284	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
285}
286
287static __inline void
288sched_load_rem(void)
289{
290
291	sched_tdcnt--;
292	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
293	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
294}
295/*
296 * Arrange to reschedule if necessary, taking the priorities and
297 * schedulers into account.
298 */
299static void
300maybe_resched(struct thread *td)
301{
302
303	THREAD_LOCK_ASSERT(td, MA_OWNED);
304	if (td->td_priority < curthread->td_priority)
305		curthread->td_flags |= TDF_NEEDRESCHED;
306}
307
308/*
309 * This function is called when a thread is about to be put on run queue
310 * because it has been made runnable or its priority has been adjusted.  It
311 * determines if the new thread should preempt the current thread.  If so,
312 * it sets td_owepreempt to request a preemption.
313 */
314int
315maybe_preempt(struct thread *td)
316{
317#ifdef PREEMPTION
318	struct thread *ctd;
319	int cpri, pri;
320
321	/*
322	 * The new thread should not preempt the current thread if any of the
323	 * following conditions are true:
324	 *
325	 *  - The kernel is in the throes of crashing (panicstr).
326	 *  - The current thread has a higher (numerically lower) or
327	 *    equivalent priority.  Note that this prevents curthread from
328	 *    trying to preempt to itself.
329	 *  - The current thread has an inhibitor set or is in the process of
330	 *    exiting.  In this case, the current thread is about to switch
331	 *    out anyways, so there's no point in preempting.  If we did,
332	 *    the current thread would not be properly resumed as well, so
333	 *    just avoid that whole landmine.
334	 *  - If the new thread's priority is not a realtime priority and
335	 *    the current thread's priority is not an idle priority and
336	 *    FULL_PREEMPTION is disabled.
337	 *
338	 * If all of these conditions are false, but the current thread is in
339	 * a nested critical section, then we have to defer the preemption
340	 * until we exit the critical section.  Otherwise, switch immediately
341	 * to the new thread.
342	 */
343	ctd = curthread;
344	THREAD_LOCK_ASSERT(td, MA_OWNED);
345	KASSERT((td->td_inhibitors == 0),
346			("maybe_preempt: trying to run inhibited thread"));
347	pri = td->td_priority;
348	cpri = ctd->td_priority;
349	if (panicstr != NULL || pri >= cpri /* || dumping */ ||
350	    TD_IS_INHIBITED(ctd))
351		return (0);
352#ifndef FULL_PREEMPTION
353	if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
354		return (0);
355#endif
356
357	CTR0(KTR_PROC, "maybe_preempt: scheduling preemption");
358	ctd->td_owepreempt = 1;
359	return (1);
360#else
361	return (0);
362#endif
363}
364
365/*
366 * Constants for digital decay and forget:
367 *	90% of (ts_estcpu) usage in 5 * loadav time
368 *	95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
369 *          Note that, as ps(1) mentions, this can let percentages
370 *          total over 100% (I've seen 137.9% for 3 processes).
371 *
372 * Note that schedclock() updates ts_estcpu and p_cpticks asynchronously.
373 *
374 * We wish to decay away 90% of ts_estcpu in (5 * loadavg) seconds.
375 * That is, the system wants to compute a value of decay such
376 * that the following for loop:
377 * 	for (i = 0; i < (5 * loadavg); i++)
378 * 		ts_estcpu *= decay;
379 * will compute
380 * 	ts_estcpu *= 0.1;
381 * for all values of loadavg:
382 *
383 * Mathematically this loop can be expressed by saying:
384 * 	decay ** (5 * loadavg) ~= .1
385 *
386 * The system computes decay as:
387 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
388 *
389 * We wish to prove that the system's computation of decay
390 * will always fulfill the equation:
391 * 	decay ** (5 * loadavg) ~= .1
392 *
393 * If we compute b as:
394 * 	b = 2 * loadavg
395 * then
396 * 	decay = b / (b + 1)
397 *
398 * We now need to prove two things:
399 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
400 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
401 *
402 * Facts:
403 *         For x close to zero, exp(x) =~ 1 + x, since
404 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
405 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
406 *         For x close to zero, ln(1+x) =~ x, since
407 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
408 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
409 *         ln(.1) =~ -2.30
410 *
411 * Proof of (1):
412 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
413 *	solving for factor,
414 *      ln(factor) =~ (-2.30/5*loadav), or
415 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
416 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
417 *
418 * Proof of (2):
419 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
420 *	solving for power,
421 *      power*ln(b/(b+1)) =~ -2.30, or
422 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
423 *
424 * Actual power values for the implemented algorithm are as follows:
425 *      loadav: 1       2       3       4
426 *      power:  5.68    10.32   14.94   19.55
427 */
428
429/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
430#define	loadfactor(loadav)	(2 * (loadav))
431#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
432
433/* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
434static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
435SYSCTL_UINT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
436
437/*
438 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
439 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
440 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
441 *
442 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
443 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
444 *
445 * If you don't want to bother with the faster/more-accurate formula, you
446 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
447 * (more general) method of calculating the %age of CPU used by a process.
448 */
449#define	CCPU_SHIFT	11
450
451/*
452 * Recompute process priorities, every hz ticks.
453 * MP-safe, called without the Giant mutex.
454 */
455/* ARGSUSED */
456static void
457schedcpu(void)
458{
459	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
460	struct thread *td;
461	struct proc *p;
462	struct td_sched *ts;
463	int awake;
464
465	sx_slock(&allproc_lock);
466	FOREACH_PROC_IN_SYSTEM(p) {
467		PROC_LOCK(p);
468		if (p->p_state == PRS_NEW) {
469			PROC_UNLOCK(p);
470			continue;
471		}
472		FOREACH_THREAD_IN_PROC(p, td) {
473			awake = 0;
474			ts = td_get_sched(td);
475			thread_lock(td);
476			/*
477			 * Increment sleep time (if sleeping).  We
478			 * ignore overflow, as above.
479			 */
480			/*
481			 * The td_sched slptimes are not touched in wakeup
482			 * because the thread may not HAVE everything in
483			 * memory? XXX I think this is out of date.
484			 */
485			if (TD_ON_RUNQ(td)) {
486				awake = 1;
487				td->td_flags &= ~TDF_DIDRUN;
488			} else if (TD_IS_RUNNING(td)) {
489				awake = 1;
490				/* Do not clear TDF_DIDRUN */
491			} else if (td->td_flags & TDF_DIDRUN) {
492				awake = 1;
493				td->td_flags &= ~TDF_DIDRUN;
494			}
495
496			/*
497			 * ts_pctcpu is only for ps and ttyinfo().
498			 */
499			ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
500			/*
501			 * If the td_sched has been idle the entire second,
502			 * stop recalculating its priority until
503			 * it wakes up.
504			 */
505			if (ts->ts_cpticks != 0) {
506#if	(FSHIFT >= CCPU_SHIFT)
507				ts->ts_pctcpu += (realstathz == 100)
508				    ? ((fixpt_t) ts->ts_cpticks) <<
509				    (FSHIFT - CCPU_SHIFT) :
510				    100 * (((fixpt_t) ts->ts_cpticks)
511				    << (FSHIFT - CCPU_SHIFT)) / realstathz;
512#else
513				ts->ts_pctcpu += ((FSCALE - ccpu) *
514				    (ts->ts_cpticks *
515				    FSCALE / realstathz)) >> FSHIFT;
516#endif
517				ts->ts_cpticks = 0;
518			}
519			/*
520			 * If there are ANY running threads in this process,
521			 * then don't count it as sleeping.
522			 * XXX: this is broken.
523			 */
524			if (awake) {
525				if (ts->ts_slptime > 1) {
526					/*
527					 * In an ideal world, this should not
528					 * happen, because whoever woke us
529					 * up from the long sleep should have
530					 * unwound the slptime and reset our
531					 * priority before we run at the stale
532					 * priority.  Should KASSERT at some
533					 * point when all the cases are fixed.
534					 */
535					updatepri(td);
536				}
537				ts->ts_slptime = 0;
538			} else
539				ts->ts_slptime++;
540			if (ts->ts_slptime > 1) {
541				thread_unlock(td);
542				continue;
543			}
544			ts->ts_estcpu = decay_cpu(loadfac, ts->ts_estcpu);
545		      	resetpriority(td);
546			resetpriority_thread(td);
547			thread_unlock(td);
548		}
549		PROC_UNLOCK(p);
550	}
551	sx_sunlock(&allproc_lock);
552}
553
554/*
555 * Main loop for a kthread that executes schedcpu once a second.
556 */
557static void
558schedcpu_thread(void)
559{
560
561	for (;;) {
562		schedcpu();
563		pause("-", hz);
564	}
565}
566
567/*
568 * Recalculate the priority of a process after it has slept for a while.
569 * For all load averages >= 1 and max ts_estcpu of 255, sleeping for at
570 * least six times the loadfactor will decay ts_estcpu to zero.
571 */
572static void
573updatepri(struct thread *td)
574{
575	struct td_sched *ts;
576	fixpt_t loadfac;
577	unsigned int newcpu;
578
579	ts = td_get_sched(td);
580	loadfac = loadfactor(averunnable.ldavg[0]);
581	if (ts->ts_slptime > 5 * loadfac)
582		ts->ts_estcpu = 0;
583	else {
584		newcpu = ts->ts_estcpu;
585		ts->ts_slptime--;	/* was incremented in schedcpu() */
586		while (newcpu && --ts->ts_slptime)
587			newcpu = decay_cpu(loadfac, newcpu);
588		ts->ts_estcpu = newcpu;
589	}
590}
591
592/*
593 * Compute the priority of a process when running in user mode.
594 * Arrange to reschedule if the resulting priority is better
595 * than that of the current process.
596 */
597static void
598resetpriority(struct thread *td)
599{
600	u_int newpriority;
601
602	if (td->td_pri_class != PRI_TIMESHARE)
603		return;
604	newpriority = PUSER +
605	    td_get_sched(td)->ts_estcpu / INVERSE_ESTCPU_WEIGHT +
606	    NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
607	newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
608	    PRI_MAX_TIMESHARE);
609	sched_user_prio(td, newpriority);
610}
611
612/*
613 * Update the thread's priority when the associated process's user
614 * priority changes.
615 */
616static void
617resetpriority_thread(struct thread *td)
618{
619
620	/* Only change threads with a time sharing user priority. */
621	if (td->td_priority < PRI_MIN_TIMESHARE ||
622	    td->td_priority > PRI_MAX_TIMESHARE)
623		return;
624
625	/* XXX the whole needresched thing is broken, but not silly. */
626	maybe_resched(td);
627
628	sched_prio(td, td->td_user_pri);
629}
630
631/* ARGSUSED */
632static void
633sched_setup(void *dummy)
634{
635
636	setup_runqs();
637
638	/* Account for thread0. */
639	sched_load_add();
640}
641
642/*
643 * This routine determines time constants after stathz and hz are setup.
644 */
645static void
646sched_initticks(void *dummy)
647{
648
649	realstathz = stathz ? stathz : hz;
650	sched_slice = realstathz / 10;	/* ~100ms */
651	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
652	    realstathz);
653}
654
655/* External interfaces start here */
656
657/*
658 * Very early in the boot some setup of scheduler-specific
659 * parts of proc0 and of some scheduler resources needs to be done.
660 * Called from:
661 *  proc0_init()
662 */
663void
664schedinit(void)
665{
666
667	/*
668	 * Set up the scheduler specific parts of thread0.
669	 */
670	thread0.td_lock = &sched_lock;
671	td_get_sched(&thread0)->ts_slice = sched_slice;
672	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
673}
674
675int
676sched_runnable(void)
677{
678#ifdef SMP
679	return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
680#else
681	return runq_check(&runq);
682#endif
683}
684
685int
686sched_rr_interval(void)
687{
688
689	/* Convert sched_slice from stathz to hz. */
690	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
691}
692
693/*
694 * We adjust the priority of the current process.  The priority of a
695 * process gets worse as it accumulates CPU time.  The cpu usage
696 * estimator (ts_estcpu) is increased here.  resetpriority() will
697 * compute a different priority each time ts_estcpu increases by
698 * INVERSE_ESTCPU_WEIGHT (until PRI_MAX_TIMESHARE is reached).  The
699 * cpu usage estimator ramps up quite quickly when the process is
700 * running (linearly), and decays away exponentially, at a rate which
701 * is proportionally slower when the system is busy.  The basic
702 * principle is that the system will 90% forget that the process used
703 * a lot of CPU time in 5 * loadav seconds.  This causes the system to
704 * favor processes which haven't run much recently, and to round-robin
705 * among other processes.
706 */
707void
708sched_clock(struct thread *td)
709{
710	struct pcpuidlestat *stat;
711	struct td_sched *ts;
712
713	THREAD_LOCK_ASSERT(td, MA_OWNED);
714	ts = td_get_sched(td);
715
716	ts->ts_cpticks++;
717	ts->ts_estcpu = ESTCPULIM(ts->ts_estcpu + 1);
718	if ((ts->ts_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
719		resetpriority(td);
720		resetpriority_thread(td);
721	}
722
723	/*
724	 * Force a context switch if the current thread has used up a full
725	 * time slice (default is 100ms).
726	 */
727	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
728		ts->ts_slice = sched_slice;
729		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
730	}
731
732	stat = DPCPU_PTR(idlestat);
733	stat->oldidlecalls = stat->idlecalls;
734	stat->idlecalls = 0;
735}
736
737/*
738 * Charge child's scheduling CPU usage to parent.
739 */
740void
741sched_exit(struct proc *p, struct thread *td)
742{
743
744	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "proc exit",
745	    "prio:%d", td->td_priority);
746
747	PROC_LOCK_ASSERT(p, MA_OWNED);
748	sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
749}
750
751void
752sched_exit_thread(struct thread *td, struct thread *child)
753{
754
755	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "exit",
756	    "prio:%d", child->td_priority);
757	thread_lock(td);
758	td_get_sched(td)->ts_estcpu = ESTCPULIM(td_get_sched(td)->ts_estcpu +
759	    td_get_sched(child)->ts_estcpu);
760	thread_unlock(td);
761	thread_lock(child);
762	if ((child->td_flags & TDF_NOLOAD) == 0)
763		sched_load_rem();
764	thread_unlock(child);
765}
766
767void
768sched_fork(struct thread *td, struct thread *childtd)
769{
770	sched_fork_thread(td, childtd);
771}
772
773void
774sched_fork_thread(struct thread *td, struct thread *childtd)
775{
776	struct td_sched *ts, *tsc;
777
778	childtd->td_oncpu = NOCPU;
779	childtd->td_lastcpu = NOCPU;
780	childtd->td_lock = &sched_lock;
781	childtd->td_cpuset = cpuset_ref(td->td_cpuset);
782	childtd->td_priority = childtd->td_base_pri;
783	ts = td_get_sched(childtd);
784	bzero(ts, sizeof(*ts));
785	tsc = td_get_sched(td);
786	ts->ts_estcpu = tsc->ts_estcpu;
787	ts->ts_flags |= (tsc->ts_flags & TSF_AFFINITY);
788	ts->ts_slice = 1;
789}
790
791void
792sched_nice(struct proc *p, int nice)
793{
794	struct thread *td;
795
796	PROC_LOCK_ASSERT(p, MA_OWNED);
797	p->p_nice = nice;
798	FOREACH_THREAD_IN_PROC(p, td) {
799		thread_lock(td);
800		resetpriority(td);
801		resetpriority_thread(td);
802		thread_unlock(td);
803	}
804}
805
806void
807sched_class(struct thread *td, int class)
808{
809	THREAD_LOCK_ASSERT(td, MA_OWNED);
810	td->td_pri_class = class;
811}
812
813/*
814 * Adjust the priority of a thread.
815 */
816static void
817sched_priority(struct thread *td, u_char prio)
818{
819
820
821	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "priority change",
822	    "prio:%d", td->td_priority, "new prio:%d", prio, KTR_ATTR_LINKED,
823	    sched_tdname(curthread));
824	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
825	if (td != curthread && prio > td->td_priority) {
826		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
827		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
828		    prio, KTR_ATTR_LINKED, sched_tdname(td));
829		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
830		    curthread);
831	}
832	THREAD_LOCK_ASSERT(td, MA_OWNED);
833	if (td->td_priority == prio)
834		return;
835	td->td_priority = prio;
836	if (TD_ON_RUNQ(td) && td->td_rqindex != (prio / RQ_PPQ)) {
837		sched_rem(td);
838		sched_add(td, SRQ_BORING);
839	}
840}
841
842/*
843 * Update a thread's priority when it is lent another thread's
844 * priority.
845 */
846void
847sched_lend_prio(struct thread *td, u_char prio)
848{
849
850	td->td_flags |= TDF_BORROWING;
851	sched_priority(td, prio);
852}
853
854/*
855 * Restore a thread's priority when priority propagation is
856 * over.  The prio argument is the minimum priority the thread
857 * needs to have to satisfy other possible priority lending
858 * requests.  If the thread's regulary priority is less
859 * important than prio the thread will keep a priority boost
860 * of prio.
861 */
862void
863sched_unlend_prio(struct thread *td, u_char prio)
864{
865	u_char base_pri;
866
867	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
868	    td->td_base_pri <= PRI_MAX_TIMESHARE)
869		base_pri = td->td_user_pri;
870	else
871		base_pri = td->td_base_pri;
872	if (prio >= base_pri) {
873		td->td_flags &= ~TDF_BORROWING;
874		sched_prio(td, base_pri);
875	} else
876		sched_lend_prio(td, prio);
877}
878
879void
880sched_prio(struct thread *td, u_char prio)
881{
882	u_char oldprio;
883
884	/* First, update the base priority. */
885	td->td_base_pri = prio;
886
887	/*
888	 * If the thread is borrowing another thread's priority, don't ever
889	 * lower the priority.
890	 */
891	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
892		return;
893
894	/* Change the real priority. */
895	oldprio = td->td_priority;
896	sched_priority(td, prio);
897
898	/*
899	 * If the thread is on a turnstile, then let the turnstile update
900	 * its state.
901	 */
902	if (TD_ON_LOCK(td) && oldprio != prio)
903		turnstile_adjust(td, oldprio);
904}
905
906void
907sched_user_prio(struct thread *td, u_char prio)
908{
909
910	THREAD_LOCK_ASSERT(td, MA_OWNED);
911	td->td_base_user_pri = prio;
912	if (td->td_lend_user_pri <= prio)
913		return;
914	td->td_user_pri = prio;
915}
916
917void
918sched_lend_user_prio(struct thread *td, u_char prio)
919{
920
921	THREAD_LOCK_ASSERT(td, MA_OWNED);
922	td->td_lend_user_pri = prio;
923	td->td_user_pri = min(prio, td->td_base_user_pri);
924	if (td->td_priority > td->td_user_pri)
925		sched_prio(td, td->td_user_pri);
926	else if (td->td_priority != td->td_user_pri)
927		td->td_flags |= TDF_NEEDRESCHED;
928}
929
930void
931sched_sleep(struct thread *td, int pri)
932{
933
934	THREAD_LOCK_ASSERT(td, MA_OWNED);
935	td->td_slptick = ticks;
936	td_get_sched(td)->ts_slptime = 0;
937	if (pri != 0 && PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
938		sched_prio(td, pri);
939	if (TD_IS_SUSPENDED(td) || pri >= PSOCK)
940		td->td_flags |= TDF_CANSWAP;
941}
942
943void
944sched_switch(struct thread *td, struct thread *newtd, int flags)
945{
946	struct mtx *tmtx;
947	struct td_sched *ts;
948	struct proc *p;
949	int preempted;
950
951	tmtx = NULL;
952	ts = td_get_sched(td);
953	p = td->td_proc;
954
955	THREAD_LOCK_ASSERT(td, MA_OWNED);
956
957	/*
958	 * Switch to the sched lock to fix things up and pick
959	 * a new thread.
960	 * Block the td_lock in order to avoid breaking the critical path.
961	 */
962	if (td->td_lock != &sched_lock) {
963		mtx_lock_spin(&sched_lock);
964		tmtx = thread_lock_block(td);
965	}
966
967	if ((td->td_flags & TDF_NOLOAD) == 0)
968		sched_load_rem();
969
970	td->td_lastcpu = td->td_oncpu;
971	preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
972	    (flags & SW_PREEMPT) != 0;
973	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
974	td->td_owepreempt = 0;
975	td->td_oncpu = NOCPU;
976
977	/*
978	 * At the last moment, if this thread is still marked RUNNING,
979	 * then put it back on the run queue as it has not been suspended
980	 * or stopped or any thing else similar.  We never put the idle
981	 * threads on the run queue, however.
982	 */
983	if (td->td_flags & TDF_IDLETD) {
984		TD_SET_CAN_RUN(td);
985#ifdef SMP
986		CPU_CLR(PCPU_GET(cpuid), &idle_cpus_mask);
987#endif
988	} else {
989		if (TD_IS_RUNNING(td)) {
990			/* Put us back on the run queue. */
991			sched_add(td, preempted ?
992			    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
993			    SRQ_OURSELF|SRQ_YIELDING);
994		}
995	}
996	if (newtd) {
997		/*
998		 * The thread we are about to run needs to be counted
999		 * as if it had been added to the run queue and selected.
1000		 * It came from:
1001		 * * A preemption
1002		 * * An upcall
1003		 * * A followon
1004		 */
1005		KASSERT((newtd->td_inhibitors == 0),
1006			("trying to run inhibited thread"));
1007		newtd->td_flags |= TDF_DIDRUN;
1008        	TD_SET_RUNNING(newtd);
1009		if ((newtd->td_flags & TDF_NOLOAD) == 0)
1010			sched_load_add();
1011	} else {
1012		newtd = choosethread();
1013		MPASS(newtd->td_lock == &sched_lock);
1014	}
1015
1016#if (KTR_COMPILE & KTR_SCHED) != 0
1017	if (TD_IS_IDLETHREAD(td))
1018		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
1019		    "prio:%d", td->td_priority);
1020	else
1021		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
1022		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
1023		    "lockname:\"%s\"", td->td_lockname);
1024#endif
1025
1026	if (td != newtd) {
1027#ifdef	HWPMC_HOOKS
1028		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1029			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1030#endif
1031
1032		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
1033
1034                /* I feel sleepy */
1035		lock_profile_release_lock(&sched_lock.lock_object);
1036#ifdef KDTRACE_HOOKS
1037		/*
1038		 * If DTrace has set the active vtime enum to anything
1039		 * other than INACTIVE (0), then it should have set the
1040		 * function to call.
1041		 */
1042		if (dtrace_vtime_active)
1043			(*dtrace_vtime_switch_func)(newtd);
1044#endif
1045
1046		cpu_switch(td, newtd, tmtx != NULL ? tmtx : td->td_lock);
1047		lock_profile_obtain_lock_success(&sched_lock.lock_object,
1048		    0, 0, __FILE__, __LINE__);
1049		/*
1050		 * Where am I?  What year is it?
1051		 * We are in the same thread that went to sleep above,
1052		 * but any amount of time may have passed. All our context
1053		 * will still be available as will local variables.
1054		 * PCPU values however may have changed as we may have
1055		 * changed CPU so don't trust cached values of them.
1056		 * New threads will go to fork_exit() instead of here
1057		 * so if you change things here you may need to change
1058		 * things there too.
1059		 *
1060		 * If the thread above was exiting it will never wake
1061		 * up again here, so either it has saved everything it
1062		 * needed to, or the thread_wait() or wait() will
1063		 * need to reap it.
1064		 */
1065
1066		SDT_PROBE0(sched, , , on__cpu);
1067#ifdef	HWPMC_HOOKS
1068		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1069			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1070#endif
1071	} else
1072		SDT_PROBE0(sched, , , remain__cpu);
1073
1074	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
1075	    "prio:%d", td->td_priority);
1076
1077#ifdef SMP
1078	if (td->td_flags & TDF_IDLETD)
1079		CPU_SET(PCPU_GET(cpuid), &idle_cpus_mask);
1080#endif
1081	sched_lock.mtx_lock = (uintptr_t)td;
1082	td->td_oncpu = PCPU_GET(cpuid);
1083	MPASS(td->td_lock == &sched_lock);
1084}
1085
1086void
1087sched_wakeup(struct thread *td)
1088{
1089	struct td_sched *ts;
1090
1091	THREAD_LOCK_ASSERT(td, MA_OWNED);
1092	ts = td_get_sched(td);
1093	td->td_flags &= ~TDF_CANSWAP;
1094	if (ts->ts_slptime > 1) {
1095		updatepri(td);
1096		resetpriority(td);
1097	}
1098	td->td_slptick = 0;
1099	ts->ts_slptime = 0;
1100	ts->ts_slice = sched_slice;
1101	sched_add(td, SRQ_BORING);
1102}
1103
1104#ifdef SMP
1105static int
1106forward_wakeup(int cpunum)
1107{
1108	struct pcpu *pc;
1109	cpuset_t dontuse, map, map2;
1110	u_int id, me;
1111	int iscpuset;
1112
1113	mtx_assert(&sched_lock, MA_OWNED);
1114
1115	CTR0(KTR_RUNQ, "forward_wakeup()");
1116
1117	if ((!forward_wakeup_enabled) ||
1118	     (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
1119		return (0);
1120	if (!smp_started || panicstr)
1121		return (0);
1122
1123	forward_wakeups_requested++;
1124
1125	/*
1126	 * Check the idle mask we received against what we calculated
1127	 * before in the old version.
1128	 */
1129	me = PCPU_GET(cpuid);
1130
1131	/* Don't bother if we should be doing it ourself. */
1132	if (CPU_ISSET(me, &idle_cpus_mask) &&
1133	    (cpunum == NOCPU || me == cpunum))
1134		return (0);
1135
1136	CPU_SETOF(me, &dontuse);
1137	CPU_OR(&dontuse, &stopped_cpus);
1138	CPU_OR(&dontuse, &hlt_cpus_mask);
1139	CPU_ZERO(&map2);
1140	if (forward_wakeup_use_loop) {
1141		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1142			id = pc->pc_cpuid;
1143			if (!CPU_ISSET(id, &dontuse) &&
1144			    pc->pc_curthread == pc->pc_idlethread) {
1145				CPU_SET(id, &map2);
1146			}
1147		}
1148	}
1149
1150	if (forward_wakeup_use_mask) {
1151		map = idle_cpus_mask;
1152		CPU_NAND(&map, &dontuse);
1153
1154		/* If they are both on, compare and use loop if different. */
1155		if (forward_wakeup_use_loop) {
1156			if (CPU_CMP(&map, &map2)) {
1157				printf("map != map2, loop method preferred\n");
1158				map = map2;
1159			}
1160		}
1161	} else {
1162		map = map2;
1163	}
1164
1165	/* If we only allow a specific CPU, then mask off all the others. */
1166	if (cpunum != NOCPU) {
1167		KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
1168		iscpuset = CPU_ISSET(cpunum, &map);
1169		if (iscpuset == 0)
1170			CPU_ZERO(&map);
1171		else
1172			CPU_SETOF(cpunum, &map);
1173	}
1174	if (!CPU_EMPTY(&map)) {
1175		forward_wakeups_delivered++;
1176		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1177			id = pc->pc_cpuid;
1178			if (!CPU_ISSET(id, &map))
1179				continue;
1180			if (cpu_idle_wakeup(pc->pc_cpuid))
1181				CPU_CLR(id, &map);
1182		}
1183		if (!CPU_EMPTY(&map))
1184			ipi_selected(map, IPI_AST);
1185		return (1);
1186	}
1187	if (cpunum == NOCPU)
1188		printf("forward_wakeup: Idle processor not found\n");
1189	return (0);
1190}
1191
1192static void
1193kick_other_cpu(int pri, int cpuid)
1194{
1195	struct pcpu *pcpu;
1196	int cpri;
1197
1198	pcpu = pcpu_find(cpuid);
1199	if (CPU_ISSET(cpuid, &idle_cpus_mask)) {
1200		forward_wakeups_delivered++;
1201		if (!cpu_idle_wakeup(cpuid))
1202			ipi_cpu(cpuid, IPI_AST);
1203		return;
1204	}
1205
1206	cpri = pcpu->pc_curthread->td_priority;
1207	if (pri >= cpri)
1208		return;
1209
1210#if defined(IPI_PREEMPTION) && defined(PREEMPTION)
1211#if !defined(FULL_PREEMPTION)
1212	if (pri <= PRI_MAX_ITHD)
1213#endif /* ! FULL_PREEMPTION */
1214	{
1215		ipi_cpu(cpuid, IPI_PREEMPT);
1216		return;
1217	}
1218#endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
1219
1220	pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
1221	ipi_cpu(cpuid, IPI_AST);
1222	return;
1223}
1224#endif /* SMP */
1225
1226#ifdef SMP
1227static int
1228sched_pickcpu(struct thread *td)
1229{
1230	int best, cpu;
1231
1232	mtx_assert(&sched_lock, MA_OWNED);
1233
1234	if (td->td_lastcpu != NOCPU && THREAD_CAN_SCHED(td, td->td_lastcpu))
1235		best = td->td_lastcpu;
1236	else
1237		best = NOCPU;
1238	CPU_FOREACH(cpu) {
1239		if (!THREAD_CAN_SCHED(td, cpu))
1240			continue;
1241
1242		if (best == NOCPU)
1243			best = cpu;
1244		else if (runq_length[cpu] < runq_length[best])
1245			best = cpu;
1246	}
1247	KASSERT(best != NOCPU, ("no valid CPUs"));
1248
1249	return (best);
1250}
1251#endif
1252
1253void
1254sched_add(struct thread *td, int flags)
1255#ifdef SMP
1256{
1257	cpuset_t tidlemsk;
1258	struct td_sched *ts;
1259	u_int cpu, cpuid;
1260	int forwarded = 0;
1261	int single_cpu = 0;
1262
1263	ts = td_get_sched(td);
1264	THREAD_LOCK_ASSERT(td, MA_OWNED);
1265	KASSERT((td->td_inhibitors == 0),
1266	    ("sched_add: trying to run inhibited thread"));
1267	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1268	    ("sched_add: bad thread state"));
1269	KASSERT(td->td_flags & TDF_INMEM,
1270	    ("sched_add: thread swapped out"));
1271
1272	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1273	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1274	    sched_tdname(curthread));
1275	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1276	    KTR_ATTR_LINKED, sched_tdname(td));
1277	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
1278	    flags & SRQ_PREEMPTED);
1279
1280
1281	/*
1282	 * Now that the thread is moving to the run-queue, set the lock
1283	 * to the scheduler's lock.
1284	 */
1285	if (td->td_lock != &sched_lock) {
1286		mtx_lock_spin(&sched_lock);
1287		thread_lock_set(td, &sched_lock);
1288	}
1289	TD_SET_RUNQ(td);
1290
1291	/*
1292	 * If SMP is started and the thread is pinned or otherwise limited to
1293	 * a specific set of CPUs, queue the thread to a per-CPU run queue.
1294	 * Otherwise, queue the thread to the global run queue.
1295	 *
1296	 * If SMP has not yet been started we must use the global run queue
1297	 * as per-CPU state may not be initialized yet and we may crash if we
1298	 * try to access the per-CPU run queues.
1299	 */
1300	if (smp_started && (td->td_pinned != 0 || td->td_flags & TDF_BOUND ||
1301	    ts->ts_flags & TSF_AFFINITY)) {
1302		if (td->td_pinned != 0)
1303			cpu = td->td_lastcpu;
1304		else if (td->td_flags & TDF_BOUND) {
1305			/* Find CPU from bound runq. */
1306			KASSERT(SKE_RUNQ_PCPU(ts),
1307			    ("sched_add: bound td_sched not on cpu runq"));
1308			cpu = ts->ts_runq - &runq_pcpu[0];
1309		} else
1310			/* Find a valid CPU for our cpuset */
1311			cpu = sched_pickcpu(td);
1312		ts->ts_runq = &runq_pcpu[cpu];
1313		single_cpu = 1;
1314		CTR3(KTR_RUNQ,
1315		    "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
1316		    cpu);
1317	} else {
1318		CTR2(KTR_RUNQ,
1319		    "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts,
1320		    td);
1321		cpu = NOCPU;
1322		ts->ts_runq = &runq;
1323	}
1324
1325	if ((td->td_flags & TDF_NOLOAD) == 0)
1326		sched_load_add();
1327	runq_add(ts->ts_runq, td, flags);
1328	if (cpu != NOCPU)
1329		runq_length[cpu]++;
1330
1331	cpuid = PCPU_GET(cpuid);
1332	if (single_cpu && cpu != cpuid) {
1333	        kick_other_cpu(td->td_priority, cpu);
1334	} else {
1335		if (!single_cpu) {
1336			tidlemsk = idle_cpus_mask;
1337			CPU_NAND(&tidlemsk, &hlt_cpus_mask);
1338			CPU_CLR(cpuid, &tidlemsk);
1339
1340			if (!CPU_ISSET(cpuid, &idle_cpus_mask) &&
1341			    ((flags & SRQ_INTR) == 0) &&
1342			    !CPU_EMPTY(&tidlemsk))
1343				forwarded = forward_wakeup(cpu);
1344		}
1345
1346		if (!forwarded) {
1347			if (!maybe_preempt(td))
1348				maybe_resched(td);
1349		}
1350	}
1351}
1352#else /* SMP */
1353{
1354	struct td_sched *ts;
1355
1356	ts = td_get_sched(td);
1357	THREAD_LOCK_ASSERT(td, MA_OWNED);
1358	KASSERT((td->td_inhibitors == 0),
1359	    ("sched_add: trying to run inhibited thread"));
1360	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1361	    ("sched_add: bad thread state"));
1362	KASSERT(td->td_flags & TDF_INMEM,
1363	    ("sched_add: thread swapped out"));
1364	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1365	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1366	    sched_tdname(curthread));
1367	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1368	    KTR_ATTR_LINKED, sched_tdname(td));
1369	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
1370	    flags & SRQ_PREEMPTED);
1371
1372	/*
1373	 * Now that the thread is moving to the run-queue, set the lock
1374	 * to the scheduler's lock.
1375	 */
1376	if (td->td_lock != &sched_lock) {
1377		mtx_lock_spin(&sched_lock);
1378		thread_lock_set(td, &sched_lock);
1379	}
1380	TD_SET_RUNQ(td);
1381	CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
1382	ts->ts_runq = &runq;
1383
1384	if ((td->td_flags & TDF_NOLOAD) == 0)
1385		sched_load_add();
1386	runq_add(ts->ts_runq, td, flags);
1387	if (!maybe_preempt(td))
1388		maybe_resched(td);
1389}
1390#endif /* SMP */
1391
1392void
1393sched_rem(struct thread *td)
1394{
1395	struct td_sched *ts;
1396
1397	ts = td_get_sched(td);
1398	KASSERT(td->td_flags & TDF_INMEM,
1399	    ("sched_rem: thread swapped out"));
1400	KASSERT(TD_ON_RUNQ(td),
1401	    ("sched_rem: thread not on run queue"));
1402	mtx_assert(&sched_lock, MA_OWNED);
1403	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
1404	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1405	    sched_tdname(curthread));
1406	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
1407
1408	if ((td->td_flags & TDF_NOLOAD) == 0)
1409		sched_load_rem();
1410#ifdef SMP
1411	if (ts->ts_runq != &runq)
1412		runq_length[ts->ts_runq - runq_pcpu]--;
1413#endif
1414	runq_remove(ts->ts_runq, td);
1415	TD_SET_CAN_RUN(td);
1416}
1417
1418/*
1419 * Select threads to run.  Note that running threads still consume a
1420 * slot.
1421 */
1422struct thread *
1423sched_choose(void)
1424{
1425	struct thread *td;
1426	struct runq *rq;
1427
1428	mtx_assert(&sched_lock,  MA_OWNED);
1429#ifdef SMP
1430	struct thread *tdcpu;
1431
1432	rq = &runq;
1433	td = runq_choose_fuzz(&runq, runq_fuzz);
1434	tdcpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
1435
1436	if (td == NULL ||
1437	    (tdcpu != NULL &&
1438	     tdcpu->td_priority < td->td_priority)) {
1439		CTR2(KTR_RUNQ, "choosing td %p from pcpu runq %d", tdcpu,
1440		     PCPU_GET(cpuid));
1441		td = tdcpu;
1442		rq = &runq_pcpu[PCPU_GET(cpuid)];
1443	} else {
1444		CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", td);
1445	}
1446
1447#else
1448	rq = &runq;
1449	td = runq_choose(&runq);
1450#endif
1451
1452	if (td) {
1453#ifdef SMP
1454		if (td == tdcpu)
1455			runq_length[PCPU_GET(cpuid)]--;
1456#endif
1457		runq_remove(rq, td);
1458		td->td_flags |= TDF_DIDRUN;
1459
1460		KASSERT(td->td_flags & TDF_INMEM,
1461		    ("sched_choose: thread swapped out"));
1462		return (td);
1463	}
1464	return (PCPU_GET(idlethread));
1465}
1466
1467void
1468sched_preempt(struct thread *td)
1469{
1470
1471	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
1472	thread_lock(td);
1473	if (td->td_critnest > 1)
1474		td->td_owepreempt = 1;
1475	else
1476		mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT, NULL);
1477	thread_unlock(td);
1478}
1479
1480void
1481sched_userret(struct thread *td)
1482{
1483	/*
1484	 * XXX we cheat slightly on the locking here to avoid locking in
1485	 * the usual case.  Setting td_priority here is essentially an
1486	 * incomplete workaround for not setting it properly elsewhere.
1487	 * Now that some interrupt handlers are threads, not setting it
1488	 * properly elsewhere can clobber it in the window between setting
1489	 * it here and returning to user mode, so don't waste time setting
1490	 * it perfectly here.
1491	 */
1492	KASSERT((td->td_flags & TDF_BORROWING) == 0,
1493	    ("thread with borrowed priority returning to userland"));
1494	if (td->td_priority != td->td_user_pri) {
1495		thread_lock(td);
1496		td->td_priority = td->td_user_pri;
1497		td->td_base_pri = td->td_user_pri;
1498		thread_unlock(td);
1499	}
1500}
1501
1502void
1503sched_bind(struct thread *td, int cpu)
1504{
1505	struct td_sched *ts;
1506
1507	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
1508	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
1509
1510	ts = td_get_sched(td);
1511
1512	td->td_flags |= TDF_BOUND;
1513#ifdef SMP
1514	ts->ts_runq = &runq_pcpu[cpu];
1515	if (PCPU_GET(cpuid) == cpu)
1516		return;
1517
1518	mi_switch(SW_VOL, NULL);
1519#endif
1520}
1521
1522void
1523sched_unbind(struct thread* td)
1524{
1525	THREAD_LOCK_ASSERT(td, MA_OWNED);
1526	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
1527	td->td_flags &= ~TDF_BOUND;
1528}
1529
1530int
1531sched_is_bound(struct thread *td)
1532{
1533	THREAD_LOCK_ASSERT(td, MA_OWNED);
1534	return (td->td_flags & TDF_BOUND);
1535}
1536
1537void
1538sched_relinquish(struct thread *td)
1539{
1540	thread_lock(td);
1541	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
1542	thread_unlock(td);
1543}
1544
1545int
1546sched_load(void)
1547{
1548	return (sched_tdcnt);
1549}
1550
1551int
1552sched_sizeof_proc(void)
1553{
1554	return (sizeof(struct proc));
1555}
1556
1557int
1558sched_sizeof_thread(void)
1559{
1560	return (sizeof(struct thread) + sizeof(struct td_sched));
1561}
1562
1563fixpt_t
1564sched_pctcpu(struct thread *td)
1565{
1566	struct td_sched *ts;
1567
1568	THREAD_LOCK_ASSERT(td, MA_OWNED);
1569	ts = td_get_sched(td);
1570	return (ts->ts_pctcpu);
1571}
1572
1573#ifdef RACCT
1574/*
1575 * Calculates the contribution to the thread cpu usage for the latest
1576 * (unfinished) second.
1577 */
1578fixpt_t
1579sched_pctcpu_delta(struct thread *td)
1580{
1581	struct td_sched *ts;
1582	fixpt_t delta;
1583	int realstathz;
1584
1585	THREAD_LOCK_ASSERT(td, MA_OWNED);
1586	ts = td_get_sched(td);
1587	delta = 0;
1588	realstathz = stathz ? stathz : hz;
1589	if (ts->ts_cpticks != 0) {
1590#if	(FSHIFT >= CCPU_SHIFT)
1591		delta = (realstathz == 100)
1592		    ? ((fixpt_t) ts->ts_cpticks) <<
1593		    (FSHIFT - CCPU_SHIFT) :
1594		    100 * (((fixpt_t) ts->ts_cpticks)
1595		    << (FSHIFT - CCPU_SHIFT)) / realstathz;
1596#else
1597		delta = ((FSCALE - ccpu) *
1598		    (ts->ts_cpticks *
1599		    FSCALE / realstathz)) >> FSHIFT;
1600#endif
1601	}
1602
1603	return (delta);
1604}
1605#endif
1606
1607u_int
1608sched_estcpu(struct thread *td)
1609{
1610
1611	return (td_get_sched(td)->ts_estcpu);
1612}
1613
1614/*
1615 * The actual idle process.
1616 */
1617void
1618sched_idletd(void *dummy)
1619{
1620	struct pcpuidlestat *stat;
1621
1622	THREAD_NO_SLEEPING();
1623	stat = DPCPU_PTR(idlestat);
1624	for (;;) {
1625		mtx_assert(&Giant, MA_NOTOWNED);
1626
1627		while (sched_runnable() == 0) {
1628			cpu_idle(stat->idlecalls + stat->oldidlecalls > 64);
1629			stat->idlecalls++;
1630		}
1631
1632		mtx_lock_spin(&sched_lock);
1633		mi_switch(SW_VOL | SWT_IDLE, NULL);
1634		mtx_unlock_spin(&sched_lock);
1635	}
1636}
1637
1638/*
1639 * A CPU is entering for the first time or a thread is exiting.
1640 */
1641void
1642sched_throw(struct thread *td)
1643{
1644	/*
1645	 * Correct spinlock nesting.  The idle thread context that we are
1646	 * borrowing was created so that it would start out with a single
1647	 * spin lock (sched_lock) held in fork_trampoline().  Since we've
1648	 * explicitly acquired locks in this function, the nesting count
1649	 * is now 2 rather than 1.  Since we are nested, calling
1650	 * spinlock_exit() will simply adjust the counts without allowing
1651	 * spin lock using code to interrupt us.
1652	 */
1653	if (td == NULL) {
1654		mtx_lock_spin(&sched_lock);
1655		spinlock_exit();
1656		PCPU_SET(switchtime, cpu_ticks());
1657		PCPU_SET(switchticks, ticks);
1658	} else {
1659		lock_profile_release_lock(&sched_lock.lock_object);
1660		MPASS(td->td_lock == &sched_lock);
1661		td->td_lastcpu = td->td_oncpu;
1662		td->td_oncpu = NOCPU;
1663	}
1664	mtx_assert(&sched_lock, MA_OWNED);
1665	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
1666	cpu_throw(td, choosethread());	/* doesn't return */
1667}
1668
1669void
1670sched_fork_exit(struct thread *td)
1671{
1672
1673	/*
1674	 * Finish setting up thread glue so that it begins execution in a
1675	 * non-nested critical section with sched_lock held but not recursed.
1676	 */
1677	td->td_oncpu = PCPU_GET(cpuid);
1678	sched_lock.mtx_lock = (uintptr_t)td;
1679	lock_profile_obtain_lock_success(&sched_lock.lock_object,
1680	    0, 0, __FILE__, __LINE__);
1681	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
1682
1683	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
1684	    "prio:%d", td->td_priority);
1685	SDT_PROBE0(sched, , , on__cpu);
1686}
1687
1688char *
1689sched_tdname(struct thread *td)
1690{
1691#ifdef KTR
1692	struct td_sched *ts;
1693
1694	ts = td_get_sched(td);
1695	if (ts->ts_name[0] == '\0')
1696		snprintf(ts->ts_name, sizeof(ts->ts_name),
1697		    "%s tid %d", td->td_name, td->td_tid);
1698	return (ts->ts_name);
1699#else
1700	return (td->td_name);
1701#endif
1702}
1703
1704#ifdef KTR
1705void
1706sched_clear_tdname(struct thread *td)
1707{
1708	struct td_sched *ts;
1709
1710	ts = td_get_sched(td);
1711	ts->ts_name[0] = '\0';
1712}
1713#endif
1714
1715void
1716sched_affinity(struct thread *td)
1717{
1718#ifdef SMP
1719	struct td_sched *ts;
1720	int cpu;
1721
1722	THREAD_LOCK_ASSERT(td, MA_OWNED);
1723
1724	/*
1725	 * Set the TSF_AFFINITY flag if there is at least one CPU this
1726	 * thread can't run on.
1727	 */
1728	ts = td_get_sched(td);
1729	ts->ts_flags &= ~TSF_AFFINITY;
1730	CPU_FOREACH(cpu) {
1731		if (!THREAD_CAN_SCHED(td, cpu)) {
1732			ts->ts_flags |= TSF_AFFINITY;
1733			break;
1734		}
1735	}
1736
1737	/*
1738	 * If this thread can run on all CPUs, nothing else to do.
1739	 */
1740	if (!(ts->ts_flags & TSF_AFFINITY))
1741		return;
1742
1743	/* Pinned threads and bound threads should be left alone. */
1744	if (td->td_pinned != 0 || td->td_flags & TDF_BOUND)
1745		return;
1746
1747	switch (td->td_state) {
1748	case TDS_RUNQ:
1749		/*
1750		 * If we are on a per-CPU runqueue that is in the set,
1751		 * then nothing needs to be done.
1752		 */
1753		if (ts->ts_runq != &runq &&
1754		    THREAD_CAN_SCHED(td, ts->ts_runq - runq_pcpu))
1755			return;
1756
1757		/* Put this thread on a valid per-CPU runqueue. */
1758		sched_rem(td);
1759		sched_add(td, SRQ_BORING);
1760		break;
1761	case TDS_RUNNING:
1762		/*
1763		 * See if our current CPU is in the set.  If not, force a
1764		 * context switch.
1765		 */
1766		if (THREAD_CAN_SCHED(td, td->td_oncpu))
1767			return;
1768
1769		td->td_flags |= TDF_NEEDRESCHED;
1770		if (td != curthread)
1771			ipi_cpu(cpu, IPI_AST);
1772		break;
1773	default:
1774		break;
1775	}
1776#endif
1777}
1778