1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_resource.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/11/sys/kern/kern_resource.c 347701 2019-05-16 14:46:21Z kib $");
39
40#include "opt_compat.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/sysproto.h>
45#include <sys/file.h>
46#include <sys/kernel.h>
47#include <sys/lock.h>
48#include <sys/malloc.h>
49#include <sys/mutex.h>
50#include <sys/priv.h>
51#include <sys/proc.h>
52#include <sys/refcount.h>
53#include <sys/racct.h>
54#include <sys/resourcevar.h>
55#include <sys/rwlock.h>
56#include <sys/sched.h>
57#include <sys/sx.h>
58#include <sys/syscallsubr.h>
59#include <sys/sysctl.h>
60#include <sys/sysent.h>
61#include <sys/time.h>
62#include <sys/umtx.h>
63
64#include <vm/vm.h>
65#include <vm/vm_param.h>
66#include <vm/pmap.h>
67#include <vm/vm_map.h>
68
69
70static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
71static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
72#define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
73static struct rwlock uihashtbl_lock;
74static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
75static u_long uihash;		/* size of hash table - 1 */
76
77static void	calcru1(struct proc *p, struct rusage_ext *ruxp,
78		    struct timeval *up, struct timeval *sp);
79static int	donice(struct thread *td, struct proc *chgp, int n);
80static struct uidinfo *uilookup(uid_t uid);
81static void	ruxagg_locked(struct rusage_ext *rux, struct thread *td);
82
83/*
84 * Resource controls and accounting.
85 */
86#ifndef _SYS_SYSPROTO_H_
87struct getpriority_args {
88	int	which;
89	int	who;
90};
91#endif
92int
93sys_getpriority(struct thread *td, struct getpriority_args *uap)
94{
95	struct proc *p;
96	struct pgrp *pg;
97	int error, low;
98
99	error = 0;
100	low = PRIO_MAX + 1;
101	switch (uap->which) {
102
103	case PRIO_PROCESS:
104		if (uap->who == 0)
105			low = td->td_proc->p_nice;
106		else {
107			p = pfind(uap->who);
108			if (p == NULL)
109				break;
110			if (p_cansee(td, p) == 0)
111				low = p->p_nice;
112			PROC_UNLOCK(p);
113		}
114		break;
115
116	case PRIO_PGRP:
117		sx_slock(&proctree_lock);
118		if (uap->who == 0) {
119			pg = td->td_proc->p_pgrp;
120			PGRP_LOCK(pg);
121		} else {
122			pg = pgfind(uap->who);
123			if (pg == NULL) {
124				sx_sunlock(&proctree_lock);
125				break;
126			}
127		}
128		sx_sunlock(&proctree_lock);
129		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
130			PROC_LOCK(p);
131			if (p->p_state == PRS_NORMAL &&
132			    p_cansee(td, p) == 0) {
133				if (p->p_nice < low)
134					low = p->p_nice;
135			}
136			PROC_UNLOCK(p);
137		}
138		PGRP_UNLOCK(pg);
139		break;
140
141	case PRIO_USER:
142		if (uap->who == 0)
143			uap->who = td->td_ucred->cr_uid;
144		sx_slock(&allproc_lock);
145		FOREACH_PROC_IN_SYSTEM(p) {
146			PROC_LOCK(p);
147			if (p->p_state == PRS_NORMAL &&
148			    p_cansee(td, p) == 0 &&
149			    p->p_ucred->cr_uid == uap->who) {
150				if (p->p_nice < low)
151					low = p->p_nice;
152			}
153			PROC_UNLOCK(p);
154		}
155		sx_sunlock(&allproc_lock);
156		break;
157
158	default:
159		error = EINVAL;
160		break;
161	}
162	if (low == PRIO_MAX + 1 && error == 0)
163		error = ESRCH;
164	td->td_retval[0] = low;
165	return (error);
166}
167
168#ifndef _SYS_SYSPROTO_H_
169struct setpriority_args {
170	int	which;
171	int	who;
172	int	prio;
173};
174#endif
175int
176sys_setpriority(struct thread *td, struct setpriority_args *uap)
177{
178	struct proc *curp, *p;
179	struct pgrp *pg;
180	int found = 0, error = 0;
181
182	curp = td->td_proc;
183	switch (uap->which) {
184	case PRIO_PROCESS:
185		if (uap->who == 0) {
186			PROC_LOCK(curp);
187			error = donice(td, curp, uap->prio);
188			PROC_UNLOCK(curp);
189		} else {
190			p = pfind(uap->who);
191			if (p == NULL)
192				break;
193			error = p_cansee(td, p);
194			if (error == 0)
195				error = donice(td, p, uap->prio);
196			PROC_UNLOCK(p);
197		}
198		found++;
199		break;
200
201	case PRIO_PGRP:
202		sx_slock(&proctree_lock);
203		if (uap->who == 0) {
204			pg = curp->p_pgrp;
205			PGRP_LOCK(pg);
206		} else {
207			pg = pgfind(uap->who);
208			if (pg == NULL) {
209				sx_sunlock(&proctree_lock);
210				break;
211			}
212		}
213		sx_sunlock(&proctree_lock);
214		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
215			PROC_LOCK(p);
216			if (p->p_state == PRS_NORMAL &&
217			    p_cansee(td, p) == 0) {
218				error = donice(td, p, uap->prio);
219				found++;
220			}
221			PROC_UNLOCK(p);
222		}
223		PGRP_UNLOCK(pg);
224		break;
225
226	case PRIO_USER:
227		if (uap->who == 0)
228			uap->who = td->td_ucred->cr_uid;
229		sx_slock(&allproc_lock);
230		FOREACH_PROC_IN_SYSTEM(p) {
231			PROC_LOCK(p);
232			if (p->p_state == PRS_NORMAL &&
233			    p->p_ucred->cr_uid == uap->who &&
234			    p_cansee(td, p) == 0) {
235				error = donice(td, p, uap->prio);
236				found++;
237			}
238			PROC_UNLOCK(p);
239		}
240		sx_sunlock(&allproc_lock);
241		break;
242
243	default:
244		error = EINVAL;
245		break;
246	}
247	if (found == 0 && error == 0)
248		error = ESRCH;
249	return (error);
250}
251
252/*
253 * Set "nice" for a (whole) process.
254 */
255static int
256donice(struct thread *td, struct proc *p, int n)
257{
258	int error;
259
260	PROC_LOCK_ASSERT(p, MA_OWNED);
261	if ((error = p_cansched(td, p)))
262		return (error);
263	if (n > PRIO_MAX)
264		n = PRIO_MAX;
265	if (n < PRIO_MIN)
266		n = PRIO_MIN;
267	if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0)
268		return (EACCES);
269	sched_nice(p, n);
270	return (0);
271}
272
273static int unprivileged_idprio;
274SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW,
275    &unprivileged_idprio, 0, "Allow non-root users to set an idle priority");
276
277/*
278 * Set realtime priority for LWP.
279 */
280#ifndef _SYS_SYSPROTO_H_
281struct rtprio_thread_args {
282	int		function;
283	lwpid_t		lwpid;
284	struct rtprio	*rtp;
285};
286#endif
287int
288sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
289{
290	struct proc *p;
291	struct rtprio rtp;
292	struct thread *td1;
293	int cierror, error;
294
295	/* Perform copyin before acquiring locks if needed. */
296	if (uap->function == RTP_SET)
297		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
298	else
299		cierror = 0;
300
301	if (uap->lwpid == 0 || uap->lwpid == td->td_tid) {
302		p = td->td_proc;
303		td1 = td;
304		PROC_LOCK(p);
305	} else {
306		/* Only look up thread in current process */
307		td1 = tdfind(uap->lwpid, curproc->p_pid);
308		if (td1 == NULL)
309			return (ESRCH);
310		p = td1->td_proc;
311	}
312
313	switch (uap->function) {
314	case RTP_LOOKUP:
315		if ((error = p_cansee(td, p)))
316			break;
317		pri_to_rtp(td1, &rtp);
318		PROC_UNLOCK(p);
319		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
320	case RTP_SET:
321		if ((error = p_cansched(td, p)) || (error = cierror))
322			break;
323
324		/* Disallow setting rtprio in most cases if not superuser. */
325
326		/*
327		 * Realtime priority has to be restricted for reasons which
328		 * should be obvious.  However, for idleprio processes, there is
329		 * a potential for system deadlock if an idleprio process gains
330		 * a lock on a resource that other processes need (and the
331		 * idleprio process can't run due to a CPU-bound normal
332		 * process).  Fix me!  XXX
333		 *
334		 * This problem is not only related to idleprio process.
335		 * A user level program can obtain a file lock and hold it
336		 * indefinitely.  Additionally, without idleprio processes it is
337		 * still conceivable that a program with low priority will never
338		 * get to run.  In short, allowing this feature might make it
339		 * easier to lock a resource indefinitely, but it is not the
340		 * only thing that makes it possible.
341		 */
342		if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
343		    (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
344		    unprivileged_idprio == 0)) {
345			error = priv_check(td, PRIV_SCHED_RTPRIO);
346			if (error)
347				break;
348		}
349		error = rtp_to_pri(&rtp, td1);
350		break;
351	default:
352		error = EINVAL;
353		break;
354	}
355	PROC_UNLOCK(p);
356	return (error);
357}
358
359/*
360 * Set realtime priority.
361 */
362#ifndef _SYS_SYSPROTO_H_
363struct rtprio_args {
364	int		function;
365	pid_t		pid;
366	struct rtprio	*rtp;
367};
368#endif
369int
370sys_rtprio(struct thread *td, struct rtprio_args *uap)
371{
372	struct proc *p;
373	struct thread *tdp;
374	struct rtprio rtp;
375	int cierror, error;
376
377	/* Perform copyin before acquiring locks if needed. */
378	if (uap->function == RTP_SET)
379		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
380	else
381		cierror = 0;
382
383	if (uap->pid == 0) {
384		p = td->td_proc;
385		PROC_LOCK(p);
386	} else {
387		p = pfind(uap->pid);
388		if (p == NULL)
389			return (ESRCH);
390	}
391
392	switch (uap->function) {
393	case RTP_LOOKUP:
394		if ((error = p_cansee(td, p)))
395			break;
396		/*
397		 * Return OUR priority if no pid specified,
398		 * or if one is, report the highest priority
399		 * in the process.  There isn't much more you can do as
400		 * there is only room to return a single priority.
401		 * Note: specifying our own pid is not the same
402		 * as leaving it zero.
403		 */
404		if (uap->pid == 0) {
405			pri_to_rtp(td, &rtp);
406		} else {
407			struct rtprio rtp2;
408
409			rtp.type = RTP_PRIO_IDLE;
410			rtp.prio = RTP_PRIO_MAX;
411			FOREACH_THREAD_IN_PROC(p, tdp) {
412				pri_to_rtp(tdp, &rtp2);
413				if (rtp2.type <  rtp.type ||
414				    (rtp2.type == rtp.type &&
415				    rtp2.prio < rtp.prio)) {
416					rtp.type = rtp2.type;
417					rtp.prio = rtp2.prio;
418				}
419			}
420		}
421		PROC_UNLOCK(p);
422		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
423	case RTP_SET:
424		if ((error = p_cansched(td, p)) || (error = cierror))
425			break;
426
427		/*
428		 * Disallow setting rtprio in most cases if not superuser.
429		 * See the comment in sys_rtprio_thread about idprio
430		 * threads holding a lock.
431		 */
432		if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
433		    (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
434		    !unprivileged_idprio)) {
435			error = priv_check(td, PRIV_SCHED_RTPRIO);
436			if (error)
437				break;
438		}
439
440		/*
441		 * If we are setting our own priority, set just our
442		 * thread but if we are doing another process,
443		 * do all the threads on that process. If we
444		 * specify our own pid we do the latter.
445		 */
446		if (uap->pid == 0) {
447			error = rtp_to_pri(&rtp, td);
448		} else {
449			FOREACH_THREAD_IN_PROC(p, td) {
450				if ((error = rtp_to_pri(&rtp, td)) != 0)
451					break;
452			}
453		}
454		break;
455	default:
456		error = EINVAL;
457		break;
458	}
459	PROC_UNLOCK(p);
460	return (error);
461}
462
463int
464rtp_to_pri(struct rtprio *rtp, struct thread *td)
465{
466	u_char  newpri, oldclass, oldpri;
467
468	switch (RTP_PRIO_BASE(rtp->type)) {
469	case RTP_PRIO_REALTIME:
470		if (rtp->prio > RTP_PRIO_MAX)
471			return (EINVAL);
472		newpri = PRI_MIN_REALTIME + rtp->prio;
473		break;
474	case RTP_PRIO_NORMAL:
475		if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE))
476			return (EINVAL);
477		newpri = PRI_MIN_TIMESHARE + rtp->prio;
478		break;
479	case RTP_PRIO_IDLE:
480		if (rtp->prio > RTP_PRIO_MAX)
481			return (EINVAL);
482		newpri = PRI_MIN_IDLE + rtp->prio;
483		break;
484	default:
485		return (EINVAL);
486	}
487
488	thread_lock(td);
489	oldclass = td->td_pri_class;
490	sched_class(td, rtp->type);	/* XXX fix */
491	oldpri = td->td_user_pri;
492	sched_user_prio(td, newpri);
493	if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL ||
494	    td->td_pri_class != RTP_PRIO_NORMAL))
495		sched_prio(td, td->td_user_pri);
496	if (TD_ON_UPILOCK(td) && oldpri != newpri) {
497		critical_enter();
498		thread_unlock(td);
499		umtx_pi_adjust(td, oldpri);
500		critical_exit();
501	} else
502		thread_unlock(td);
503	return (0);
504}
505
506void
507pri_to_rtp(struct thread *td, struct rtprio *rtp)
508{
509
510	thread_lock(td);
511	switch (PRI_BASE(td->td_pri_class)) {
512	case PRI_REALTIME:
513		rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME;
514		break;
515	case PRI_TIMESHARE:
516		rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE;
517		break;
518	case PRI_IDLE:
519		rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE;
520		break;
521	default:
522		break;
523	}
524	rtp->type = td->td_pri_class;
525	thread_unlock(td);
526}
527
528#if defined(COMPAT_43)
529#ifndef _SYS_SYSPROTO_H_
530struct osetrlimit_args {
531	u_int	which;
532	struct	orlimit *rlp;
533};
534#endif
535int
536osetrlimit(struct thread *td, struct osetrlimit_args *uap)
537{
538	struct orlimit olim;
539	struct rlimit lim;
540	int error;
541
542	if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
543		return (error);
544	lim.rlim_cur = olim.rlim_cur;
545	lim.rlim_max = olim.rlim_max;
546	error = kern_setrlimit(td, uap->which, &lim);
547	return (error);
548}
549
550#ifndef _SYS_SYSPROTO_H_
551struct ogetrlimit_args {
552	u_int	which;
553	struct	orlimit *rlp;
554};
555#endif
556int
557ogetrlimit(struct thread *td, struct ogetrlimit_args *uap)
558{
559	struct orlimit olim;
560	struct rlimit rl;
561	int error;
562
563	if (uap->which >= RLIM_NLIMITS)
564		return (EINVAL);
565	lim_rlimit(td, uap->which, &rl);
566
567	/*
568	 * XXX would be more correct to convert only RLIM_INFINITY to the
569	 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
570	 * values.  Most 64->32 and 32->16 conversions, including not
571	 * unimportant ones of uids are even more broken than what we
572	 * do here (they blindly truncate).  We don't do this correctly
573	 * here since we have little experience with EOVERFLOW yet.
574	 * Elsewhere, getuid() can't fail...
575	 */
576	olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
577	olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
578	error = copyout(&olim, uap->rlp, sizeof(olim));
579	return (error);
580}
581#endif /* COMPAT_43 */
582
583#ifndef _SYS_SYSPROTO_H_
584struct __setrlimit_args {
585	u_int	which;
586	struct	rlimit *rlp;
587};
588#endif
589int
590sys_setrlimit(struct thread *td, struct __setrlimit_args *uap)
591{
592	struct rlimit alim;
593	int error;
594
595	if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
596		return (error);
597	error = kern_setrlimit(td, uap->which, &alim);
598	return (error);
599}
600
601static void
602lim_cb(void *arg)
603{
604	struct rlimit rlim;
605	struct thread *td;
606	struct proc *p;
607
608	p = arg;
609	PROC_LOCK_ASSERT(p, MA_OWNED);
610	/*
611	 * Check if the process exceeds its cpu resource allocation.  If
612	 * it reaches the max, arrange to kill the process in ast().
613	 */
614	if (p->p_cpulimit == RLIM_INFINITY)
615		return;
616	PROC_STATLOCK(p);
617	FOREACH_THREAD_IN_PROC(p, td) {
618		ruxagg(p, td);
619	}
620	PROC_STATUNLOCK(p);
621	if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) {
622		lim_rlimit_proc(p, RLIMIT_CPU, &rlim);
623		if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
624			killproc(p, "exceeded maximum CPU limit");
625		} else {
626			if (p->p_cpulimit < rlim.rlim_max)
627				p->p_cpulimit += 5;
628			kern_psignal(p, SIGXCPU);
629		}
630	}
631	if ((p->p_flag & P_WEXIT) == 0)
632		callout_reset_sbt(&p->p_limco, SBT_1S, 0,
633		    lim_cb, p, C_PREL(1));
634}
635
636int
637kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp)
638{
639
640	return (kern_proc_setrlimit(td, td->td_proc, which, limp));
641}
642
643int
644kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which,
645    struct rlimit *limp)
646{
647	struct plimit *newlim, *oldlim;
648	struct rlimit *alimp;
649	struct rlimit oldssiz;
650	int error;
651
652	if (which >= RLIM_NLIMITS)
653		return (EINVAL);
654
655	/*
656	 * Preserve historical bugs by treating negative limits as unsigned.
657	 */
658	if (limp->rlim_cur < 0)
659		limp->rlim_cur = RLIM_INFINITY;
660	if (limp->rlim_max < 0)
661		limp->rlim_max = RLIM_INFINITY;
662
663	oldssiz.rlim_cur = 0;
664	newlim = lim_alloc();
665	PROC_LOCK(p);
666	oldlim = p->p_limit;
667	alimp = &oldlim->pl_rlimit[which];
668	if (limp->rlim_cur > alimp->rlim_max ||
669	    limp->rlim_max > alimp->rlim_max)
670		if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) {
671			PROC_UNLOCK(p);
672			lim_free(newlim);
673			return (error);
674		}
675	if (limp->rlim_cur > limp->rlim_max)
676		limp->rlim_cur = limp->rlim_max;
677	lim_copy(newlim, oldlim);
678	alimp = &newlim->pl_rlimit[which];
679
680	switch (which) {
681
682	case RLIMIT_CPU:
683		if (limp->rlim_cur != RLIM_INFINITY &&
684		    p->p_cpulimit == RLIM_INFINITY)
685			callout_reset_sbt(&p->p_limco, SBT_1S, 0,
686			    lim_cb, p, C_PREL(1));
687		p->p_cpulimit = limp->rlim_cur;
688		break;
689	case RLIMIT_DATA:
690		if (limp->rlim_cur > maxdsiz)
691			limp->rlim_cur = maxdsiz;
692		if (limp->rlim_max > maxdsiz)
693			limp->rlim_max = maxdsiz;
694		break;
695
696	case RLIMIT_STACK:
697		if (limp->rlim_cur > maxssiz)
698			limp->rlim_cur = maxssiz;
699		if (limp->rlim_max > maxssiz)
700			limp->rlim_max = maxssiz;
701		oldssiz = *alimp;
702		if (p->p_sysent->sv_fixlimit != NULL)
703			p->p_sysent->sv_fixlimit(&oldssiz,
704			    RLIMIT_STACK);
705		break;
706
707	case RLIMIT_NOFILE:
708		if (limp->rlim_cur > maxfilesperproc)
709			limp->rlim_cur = maxfilesperproc;
710		if (limp->rlim_max > maxfilesperproc)
711			limp->rlim_max = maxfilesperproc;
712		break;
713
714	case RLIMIT_NPROC:
715		if (limp->rlim_cur > maxprocperuid)
716			limp->rlim_cur = maxprocperuid;
717		if (limp->rlim_max > maxprocperuid)
718			limp->rlim_max = maxprocperuid;
719		if (limp->rlim_cur < 1)
720			limp->rlim_cur = 1;
721		if (limp->rlim_max < 1)
722			limp->rlim_max = 1;
723		break;
724	}
725	if (p->p_sysent->sv_fixlimit != NULL)
726		p->p_sysent->sv_fixlimit(limp, which);
727	*alimp = *limp;
728	p->p_limit = newlim;
729	PROC_UPDATE_COW(p);
730	PROC_UNLOCK(p);
731	lim_free(oldlim);
732
733	if (which == RLIMIT_STACK &&
734	    /*
735	     * Skip calls from exec_new_vmspace(), done when stack is
736	     * not mapped yet.
737	     */
738	    (td != curthread || (p->p_flag & P_INEXEC) == 0)) {
739		/*
740		 * Stack is allocated to the max at exec time with only
741		 * "rlim_cur" bytes accessible.  If stack limit is going
742		 * up make more accessible, if going down make inaccessible.
743		 */
744		if (limp->rlim_cur != oldssiz.rlim_cur) {
745			vm_offset_t addr;
746			vm_size_t size;
747			vm_prot_t prot;
748
749			if (limp->rlim_cur > oldssiz.rlim_cur) {
750				prot = p->p_sysent->sv_stackprot;
751				size = limp->rlim_cur - oldssiz.rlim_cur;
752				addr = p->p_sysent->sv_usrstack -
753				    limp->rlim_cur;
754			} else {
755				prot = VM_PROT_NONE;
756				size = oldssiz.rlim_cur - limp->rlim_cur;
757				addr = p->p_sysent->sv_usrstack -
758				    oldssiz.rlim_cur;
759			}
760			addr = trunc_page(addr);
761			size = round_page(size);
762			(void)vm_map_protect(&p->p_vmspace->vm_map,
763			    addr, addr + size, prot, FALSE);
764		}
765	}
766
767	return (0);
768}
769
770#ifndef _SYS_SYSPROTO_H_
771struct __getrlimit_args {
772	u_int	which;
773	struct	rlimit *rlp;
774};
775#endif
776/* ARGSUSED */
777int
778sys_getrlimit(struct thread *td, struct __getrlimit_args *uap)
779{
780	struct rlimit rlim;
781	int error;
782
783	if (uap->which >= RLIM_NLIMITS)
784		return (EINVAL);
785	lim_rlimit(td, uap->which, &rlim);
786	error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
787	return (error);
788}
789
790/*
791 * Transform the running time and tick information for children of proc p
792 * into user and system time usage.
793 */
794void
795calccru(struct proc *p, struct timeval *up, struct timeval *sp)
796{
797
798	PROC_LOCK_ASSERT(p, MA_OWNED);
799	calcru1(p, &p->p_crux, up, sp);
800}
801
802/*
803 * Transform the running time and tick information in proc p into user
804 * and system time usage.  If appropriate, include the current time slice
805 * on this CPU.
806 */
807void
808calcru(struct proc *p, struct timeval *up, struct timeval *sp)
809{
810	struct thread *td;
811	uint64_t runtime, u;
812
813	PROC_LOCK_ASSERT(p, MA_OWNED);
814	PROC_STATLOCK_ASSERT(p, MA_OWNED);
815	/*
816	 * If we are getting stats for the current process, then add in the
817	 * stats that this thread has accumulated in its current time slice.
818	 * We reset the thread and CPU state as if we had performed a context
819	 * switch right here.
820	 */
821	td = curthread;
822	if (td->td_proc == p) {
823		u = cpu_ticks();
824		runtime = u - PCPU_GET(switchtime);
825		td->td_runtime += runtime;
826		td->td_incruntime += runtime;
827		PCPU_SET(switchtime, u);
828	}
829	/* Make sure the per-thread stats are current. */
830	FOREACH_THREAD_IN_PROC(p, td) {
831		if (td->td_incruntime == 0)
832			continue;
833		ruxagg(p, td);
834	}
835	calcru1(p, &p->p_rux, up, sp);
836}
837
838/* Collect resource usage for a single thread. */
839void
840rufetchtd(struct thread *td, struct rusage *ru)
841{
842	struct proc *p;
843	uint64_t runtime, u;
844
845	p = td->td_proc;
846	PROC_STATLOCK_ASSERT(p, MA_OWNED);
847	THREAD_LOCK_ASSERT(td, MA_OWNED);
848	/*
849	 * If we are getting stats for the current thread, then add in the
850	 * stats that this thread has accumulated in its current time slice.
851	 * We reset the thread and CPU state as if we had performed a context
852	 * switch right here.
853	 */
854	if (td == curthread) {
855		u = cpu_ticks();
856		runtime = u - PCPU_GET(switchtime);
857		td->td_runtime += runtime;
858		td->td_incruntime += runtime;
859		PCPU_SET(switchtime, u);
860	}
861	ruxagg(p, td);
862	*ru = td->td_ru;
863	calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime);
864}
865
866/* XXX: the MI version is too slow to use: */
867#ifndef __HAVE_INLINE_FLSLL
868#define	flsll(x)	(fls((x) >> 32) != 0 ? fls((x) >> 32) + 32 : fls(x))
869#endif
870
871static uint64_t
872mul64_by_fraction(uint64_t a, uint64_t b, uint64_t c)
873{
874	uint64_t acc, bh, bl;
875	int i, s, sa, sb;
876
877	/*
878	 * Calculate (a * b) / c accurately enough without overflowing.  c
879	 * must be nonzero, and its top bit must be 0.  a or b must be
880	 * <= c, and the implementation is tuned for b <= c.
881	 *
882	 * The comments about times are for use in calcru1() with units of
883	 * microseconds for 'a' and stathz ticks at 128 Hz for b and c.
884	 *
885	 * Let n be the number of top zero bits in c.  Each iteration
886	 * either returns, or reduces b by right shifting it by at least n.
887	 * The number of iterations is at most 1 + 64 / n, and the error is
888	 * at most the number of iterations.
889	 *
890	 * It is very unusual to need even 2 iterations.  Previous
891	 * implementations overflowed essentially by returning early in the
892	 * first iteration, with n = 38 giving overflow at 105+ hours and
893	 * n = 32 giving overlow at at 388+ days despite a more careful
894	 * calculation.  388 days is a reasonable uptime, and the calculation
895	 * needs to work for the uptime times the number of CPUs since 'a'
896	 * is per-process.
897	 */
898	if (a >= (uint64_t)1 << 63)
899		return (0);		/* Unsupported arg -- can't happen. */
900	acc = 0;
901	for (i = 0; i < 128; i++) {
902		sa = flsll(a);
903		sb = flsll(b);
904		if (sa + sb <= 64)
905			/* Up to 105 hours on first iteration. */
906			return (acc + (a * b) / c);
907		if (a >= c) {
908			/*
909			 * This reduction is based on a = q * c + r, with the
910			 * remainder r < c.  'a' may be large to start, and
911			 * moving bits from b into 'a' at the end of the loop
912			 * sets the top bit of 'a', so the reduction makes
913			 * significant progress.
914			 */
915			acc += (a / c) * b;
916			a %= c;
917			sa = flsll(a);
918			if (sa + sb <= 64)
919				/* Up to 388 days on first iteration. */
920				return (acc + (a * b) / c);
921		}
922
923		/*
924		 * This step writes a * b as a * ((bh << s) + bl) =
925		 * a * (bh << s) + a * bl = (a << s) * bh + a * bl.  The 2
926		 * additive terms are handled separately.  Splitting in
927		 * this way is linear except for rounding errors.
928		 *
929		 * s = 64 - sa is the maximum such that a << s fits in 64
930		 * bits.  Since a < c and c has at least 1 zero top bit,
931		 * sa < 64 and s > 0.  Thus this step makes progress by
932		 * reducing b (it increases 'a', but taking remainders on
933		 * the next iteration completes the reduction).
934		 *
935		 * Finally, the choice for s is just what is needed to keep
936		 * a * bl from overflowing, so we don't need complications
937		 * like a recursive call mul64_by_fraction(a, bl, c) to
938		 * handle the second additive term.
939		 */
940		s = 64 - sa;
941		bh = b >> s;
942		bl = b - (bh << s);
943		acc += (a * bl) / c;
944		a <<= s;
945		b = bh;
946	}
947	return (0);		/* Algorithm failure -- can't happen. */
948}
949
950static void
951calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
952    struct timeval *sp)
953{
954	/* {user, system, interrupt, total} {ticks, usec}: */
955	uint64_t ut, uu, st, su, it, tt, tu;
956
957	ut = ruxp->rux_uticks;
958	st = ruxp->rux_sticks;
959	it = ruxp->rux_iticks;
960	tt = ut + st + it;
961	if (tt == 0) {
962		/* Avoid divide by zero */
963		st = 1;
964		tt = 1;
965	}
966	tu = cputick2usec(ruxp->rux_runtime);
967	if ((int64_t)tu < 0) {
968		/* XXX: this should be an assert /phk */
969		printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
970		    (intmax_t)tu, p->p_pid, p->p_comm);
971		tu = ruxp->rux_tu;
972	}
973
974	/* Subdivide tu.  Avoid overflow in the multiplications. */
975	if (__predict_true(tu <= ((uint64_t)1 << 38) && tt <= (1 << 26))) {
976		/* Up to 76 hours when stathz is 128. */
977		uu = (tu * ut) / tt;
978		su = (tu * st) / tt;
979	} else {
980		uu = mul64_by_fraction(tu, ut, tt);
981		su = mul64_by_fraction(tu, st, tt);
982	}
983
984	if (tu >= ruxp->rux_tu) {
985		/*
986		 * The normal case, time increased.
987		 * Enforce monotonicity of bucketed numbers.
988		 */
989		if (uu < ruxp->rux_uu)
990			uu = ruxp->rux_uu;
991		if (su < ruxp->rux_su)
992			su = ruxp->rux_su;
993	} else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
994		/*
995		 * When we calibrate the cputicker, it is not uncommon to
996		 * see the presumably fixed frequency increase slightly over
997		 * time as a result of thermal stabilization and NTP
998		 * discipline (of the reference clock).  We therefore ignore
999		 * a bit of backwards slop because we  expect to catch up
1000		 * shortly.  We use a 3 microsecond limit to catch low
1001		 * counts and a 1% limit for high counts.
1002		 */
1003		uu = ruxp->rux_uu;
1004		su = ruxp->rux_su;
1005		tu = ruxp->rux_tu;
1006	} else { /* tu < ruxp->rux_tu */
1007		/*
1008		 * What happened here was likely that a laptop, which ran at
1009		 * a reduced clock frequency at boot, kicked into high gear.
1010		 * The wisdom of spamming this message in that case is
1011		 * dubious, but it might also be indicative of something
1012		 * serious, so lets keep it and hope laptops can be made
1013		 * more truthful about their CPU speed via ACPI.
1014		 */
1015		printf("calcru: runtime went backwards from %ju usec "
1016		    "to %ju usec for pid %d (%s)\n",
1017		    (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
1018		    p->p_pid, p->p_comm);
1019	}
1020
1021	ruxp->rux_uu = uu;
1022	ruxp->rux_su = su;
1023	ruxp->rux_tu = tu;
1024
1025	up->tv_sec = uu / 1000000;
1026	up->tv_usec = uu % 1000000;
1027	sp->tv_sec = su / 1000000;
1028	sp->tv_usec = su % 1000000;
1029}
1030
1031#ifndef _SYS_SYSPROTO_H_
1032struct getrusage_args {
1033	int	who;
1034	struct	rusage *rusage;
1035};
1036#endif
1037int
1038sys_getrusage(struct thread *td, struct getrusage_args *uap)
1039{
1040	struct rusage ru;
1041	int error;
1042
1043	error = kern_getrusage(td, uap->who, &ru);
1044	if (error == 0)
1045		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
1046	return (error);
1047}
1048
1049int
1050kern_getrusage(struct thread *td, int who, struct rusage *rup)
1051{
1052	struct proc *p;
1053	int error;
1054
1055	error = 0;
1056	p = td->td_proc;
1057	PROC_LOCK(p);
1058	switch (who) {
1059	case RUSAGE_SELF:
1060		rufetchcalc(p, rup, &rup->ru_utime,
1061		    &rup->ru_stime);
1062		break;
1063
1064	case RUSAGE_CHILDREN:
1065		*rup = p->p_stats->p_cru;
1066		calccru(p, &rup->ru_utime, &rup->ru_stime);
1067		break;
1068
1069	case RUSAGE_THREAD:
1070		PROC_STATLOCK(p);
1071		thread_lock(td);
1072		rufetchtd(td, rup);
1073		thread_unlock(td);
1074		PROC_STATUNLOCK(p);
1075		break;
1076
1077	default:
1078		error = EINVAL;
1079	}
1080	PROC_UNLOCK(p);
1081	return (error);
1082}
1083
1084void
1085rucollect(struct rusage *ru, struct rusage *ru2)
1086{
1087	long *ip, *ip2;
1088	int i;
1089
1090	if (ru->ru_maxrss < ru2->ru_maxrss)
1091		ru->ru_maxrss = ru2->ru_maxrss;
1092	ip = &ru->ru_first;
1093	ip2 = &ru2->ru_first;
1094	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
1095		*ip++ += *ip2++;
1096}
1097
1098void
1099ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2,
1100    struct rusage_ext *rux2)
1101{
1102
1103	rux->rux_runtime += rux2->rux_runtime;
1104	rux->rux_uticks += rux2->rux_uticks;
1105	rux->rux_sticks += rux2->rux_sticks;
1106	rux->rux_iticks += rux2->rux_iticks;
1107	rux->rux_uu += rux2->rux_uu;
1108	rux->rux_su += rux2->rux_su;
1109	rux->rux_tu += rux2->rux_tu;
1110	rucollect(ru, ru2);
1111}
1112
1113/*
1114 * Aggregate tick counts into the proc's rusage_ext.
1115 */
1116static void
1117ruxagg_locked(struct rusage_ext *rux, struct thread *td)
1118{
1119
1120	THREAD_LOCK_ASSERT(td, MA_OWNED);
1121	PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED);
1122	rux->rux_runtime += td->td_incruntime;
1123	rux->rux_uticks += td->td_uticks;
1124	rux->rux_sticks += td->td_sticks;
1125	rux->rux_iticks += td->td_iticks;
1126}
1127
1128void
1129ruxagg(struct proc *p, struct thread *td)
1130{
1131
1132	thread_lock(td);
1133	ruxagg_locked(&p->p_rux, td);
1134	ruxagg_locked(&td->td_rux, td);
1135	td->td_incruntime = 0;
1136	td->td_uticks = 0;
1137	td->td_iticks = 0;
1138	td->td_sticks = 0;
1139	thread_unlock(td);
1140}
1141
1142/*
1143 * Update the rusage_ext structure and fetch a valid aggregate rusage
1144 * for proc p if storage for one is supplied.
1145 */
1146void
1147rufetch(struct proc *p, struct rusage *ru)
1148{
1149	struct thread *td;
1150
1151	PROC_STATLOCK_ASSERT(p, MA_OWNED);
1152
1153	*ru = p->p_ru;
1154	if (p->p_numthreads > 0)  {
1155		FOREACH_THREAD_IN_PROC(p, td) {
1156			ruxagg(p, td);
1157			rucollect(ru, &td->td_ru);
1158		}
1159	}
1160}
1161
1162/*
1163 * Atomically perform a rufetch and a calcru together.
1164 * Consumers, can safely assume the calcru is executed only once
1165 * rufetch is completed.
1166 */
1167void
1168rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up,
1169    struct timeval *sp)
1170{
1171
1172	PROC_STATLOCK(p);
1173	rufetch(p, ru);
1174	calcru(p, up, sp);
1175	PROC_STATUNLOCK(p);
1176}
1177
1178/*
1179 * Allocate a new resource limits structure and initialize its
1180 * reference count and mutex pointer.
1181 */
1182struct plimit *
1183lim_alloc()
1184{
1185	struct plimit *limp;
1186
1187	limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
1188	refcount_init(&limp->pl_refcnt, 1);
1189	return (limp);
1190}
1191
1192struct plimit *
1193lim_hold(struct plimit *limp)
1194{
1195
1196	refcount_acquire(&limp->pl_refcnt);
1197	return (limp);
1198}
1199
1200void
1201lim_fork(struct proc *p1, struct proc *p2)
1202{
1203
1204	PROC_LOCK_ASSERT(p1, MA_OWNED);
1205	PROC_LOCK_ASSERT(p2, MA_OWNED);
1206
1207	p2->p_limit = lim_hold(p1->p_limit);
1208	callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0);
1209	if (p1->p_cpulimit != RLIM_INFINITY)
1210		callout_reset_sbt(&p2->p_limco, SBT_1S, 0,
1211		    lim_cb, p2, C_PREL(1));
1212}
1213
1214void
1215lim_free(struct plimit *limp)
1216{
1217
1218	if (refcount_release(&limp->pl_refcnt))
1219		free((void *)limp, M_PLIMIT);
1220}
1221
1222/*
1223 * Make a copy of the plimit structure.
1224 * We share these structures copy-on-write after fork.
1225 */
1226void
1227lim_copy(struct plimit *dst, struct plimit *src)
1228{
1229
1230	KASSERT(dst->pl_refcnt <= 1, ("lim_copy to shared limit"));
1231	bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
1232}
1233
1234/*
1235 * Return the hard limit for a particular system resource.  The
1236 * which parameter specifies the index into the rlimit array.
1237 */
1238rlim_t
1239lim_max(struct thread *td, int which)
1240{
1241	struct rlimit rl;
1242
1243	lim_rlimit(td, which, &rl);
1244	return (rl.rlim_max);
1245}
1246
1247rlim_t
1248lim_max_proc(struct proc *p, int which)
1249{
1250	struct rlimit rl;
1251
1252	lim_rlimit_proc(p, which, &rl);
1253	return (rl.rlim_max);
1254}
1255
1256/*
1257 * Return the current (soft) limit for a particular system resource.
1258 * The which parameter which specifies the index into the rlimit array
1259 */
1260rlim_t
1261lim_cur(struct thread *td, int which)
1262{
1263	struct rlimit rl;
1264
1265	lim_rlimit(td, which, &rl);
1266	return (rl.rlim_cur);
1267}
1268
1269rlim_t
1270lim_cur_proc(struct proc *p, int which)
1271{
1272	struct rlimit rl;
1273
1274	lim_rlimit_proc(p, which, &rl);
1275	return (rl.rlim_cur);
1276}
1277
1278/*
1279 * Return a copy of the entire rlimit structure for the system limit
1280 * specified by 'which' in the rlimit structure pointed to by 'rlp'.
1281 */
1282void
1283lim_rlimit(struct thread *td, int which, struct rlimit *rlp)
1284{
1285	struct proc *p = td->td_proc;
1286
1287	MPASS(td == curthread);
1288	KASSERT(which >= 0 && which < RLIM_NLIMITS,
1289	    ("request for invalid resource limit"));
1290	*rlp = td->td_limit->pl_rlimit[which];
1291	if (p->p_sysent->sv_fixlimit != NULL)
1292		p->p_sysent->sv_fixlimit(rlp, which);
1293}
1294
1295void
1296lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp)
1297{
1298
1299	PROC_LOCK_ASSERT(p, MA_OWNED);
1300	KASSERT(which >= 0 && which < RLIM_NLIMITS,
1301	    ("request for invalid resource limit"));
1302	*rlp = p->p_limit->pl_rlimit[which];
1303	if (p->p_sysent->sv_fixlimit != NULL)
1304		p->p_sysent->sv_fixlimit(rlp, which);
1305}
1306
1307void
1308uihashinit()
1309{
1310
1311	uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
1312	rw_init(&uihashtbl_lock, "uidinfo hash");
1313}
1314
1315/*
1316 * Look up a uidinfo struct for the parameter uid.
1317 * uihashtbl_lock must be locked.
1318 * Increase refcount on uidinfo struct returned.
1319 */
1320static struct uidinfo *
1321uilookup(uid_t uid)
1322{
1323	struct uihashhead *uipp;
1324	struct uidinfo *uip;
1325
1326	rw_assert(&uihashtbl_lock, RA_LOCKED);
1327	uipp = UIHASH(uid);
1328	LIST_FOREACH(uip, uipp, ui_hash)
1329		if (uip->ui_uid == uid) {
1330			uihold(uip);
1331			break;
1332		}
1333
1334	return (uip);
1335}
1336
1337/*
1338 * Find or allocate a struct uidinfo for a particular uid.
1339 * Returns with uidinfo struct referenced.
1340 * uifree() should be called on a struct uidinfo when released.
1341 */
1342struct uidinfo *
1343uifind(uid_t uid)
1344{
1345	struct uidinfo *new_uip, *uip;
1346
1347	rw_rlock(&uihashtbl_lock);
1348	uip = uilookup(uid);
1349	rw_runlock(&uihashtbl_lock);
1350	if (uip != NULL)
1351		return (uip);
1352
1353	new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO);
1354	racct_create(&new_uip->ui_racct);
1355	refcount_init(&new_uip->ui_ref, 1);
1356	new_uip->ui_uid = uid;
1357	mtx_init(&new_uip->ui_vmsize_mtx, "ui_vmsize", NULL, MTX_DEF);
1358
1359	rw_wlock(&uihashtbl_lock);
1360	/*
1361	 * There's a chance someone created our uidinfo while we
1362	 * were in malloc and not holding the lock, so we have to
1363	 * make sure we don't insert a duplicate uidinfo.
1364	 */
1365	if ((uip = uilookup(uid)) == NULL) {
1366		LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash);
1367		rw_wunlock(&uihashtbl_lock);
1368		uip = new_uip;
1369	} else {
1370		rw_wunlock(&uihashtbl_lock);
1371		racct_destroy(&new_uip->ui_racct);
1372		mtx_destroy(&new_uip->ui_vmsize_mtx);
1373		free(new_uip, M_UIDINFO);
1374	}
1375	return (uip);
1376}
1377
1378/*
1379 * Place another refcount on a uidinfo struct.
1380 */
1381void
1382uihold(struct uidinfo *uip)
1383{
1384
1385	refcount_acquire(&uip->ui_ref);
1386}
1387
1388/*-
1389 * Since uidinfo structs have a long lifetime, we use an
1390 * opportunistic refcounting scheme to avoid locking the lookup hash
1391 * for each release.
1392 *
1393 * If the refcount hits 0, we need to free the structure,
1394 * which means we need to lock the hash.
1395 * Optimal case:
1396 *   After locking the struct and lowering the refcount, if we find
1397 *   that we don't need to free, simply unlock and return.
1398 * Suboptimal case:
1399 *   If refcount lowering results in need to free, bump the count
1400 *   back up, lose the lock and acquire the locks in the proper
1401 *   order to try again.
1402 */
1403void
1404uifree(struct uidinfo *uip)
1405{
1406	int old;
1407
1408	/* Prepare for optimal case. */
1409	old = uip->ui_ref;
1410	if (old > 1 && atomic_cmpset_int(&uip->ui_ref, old, old - 1))
1411		return;
1412
1413	/* Prepare for suboptimal case. */
1414	rw_wlock(&uihashtbl_lock);
1415	if (refcount_release(&uip->ui_ref) == 0) {
1416		rw_wunlock(&uihashtbl_lock);
1417		return;
1418	}
1419
1420	racct_destroy(&uip->ui_racct);
1421	LIST_REMOVE(uip, ui_hash);
1422	rw_wunlock(&uihashtbl_lock);
1423
1424	if (uip->ui_sbsize != 0)
1425		printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
1426		    uip->ui_uid, uip->ui_sbsize);
1427	if (uip->ui_proccnt != 0)
1428		printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1429		    uip->ui_uid, uip->ui_proccnt);
1430	if (uip->ui_vmsize != 0)
1431		printf("freeing uidinfo: uid = %d, swapuse = %lld\n",
1432		    uip->ui_uid, (unsigned long long)uip->ui_vmsize);
1433	mtx_destroy(&uip->ui_vmsize_mtx);
1434	free(uip, M_UIDINFO);
1435}
1436
1437#ifdef RACCT
1438void
1439ui_racct_foreach(void (*callback)(struct racct *racct,
1440    void *arg2, void *arg3), void (*pre)(void), void (*post)(void),
1441    void *arg2, void *arg3)
1442{
1443	struct uidinfo *uip;
1444	struct uihashhead *uih;
1445
1446	rw_rlock(&uihashtbl_lock);
1447	if (pre != NULL)
1448		(pre)();
1449	for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) {
1450		LIST_FOREACH(uip, uih, ui_hash) {
1451			(callback)(uip->ui_racct, arg2, arg3);
1452		}
1453	}
1454	if (post != NULL)
1455		(post)();
1456	rw_runlock(&uihashtbl_lock);
1457}
1458#endif
1459
1460static inline int
1461chglimit(struct uidinfo *uip, long *limit, int diff, rlim_t max, const char *name)
1462{
1463
1464	/* Don't allow them to exceed max, but allow subtraction. */
1465	if (diff > 0 && max != 0) {
1466		if (atomic_fetchadd_long(limit, (long)diff) + diff > max) {
1467			atomic_subtract_long(limit, (long)diff);
1468			return (0);
1469		}
1470	} else {
1471		atomic_add_long(limit, (long)diff);
1472		if (*limit < 0)
1473			printf("negative %s for uid = %d\n", name, uip->ui_uid);
1474	}
1475	return (1);
1476}
1477
1478/*
1479 * Change the count associated with number of processes
1480 * a given user is using.  When 'max' is 0, don't enforce a limit
1481 */
1482int
1483chgproccnt(struct uidinfo *uip, int diff, rlim_t max)
1484{
1485
1486	return (chglimit(uip, &uip->ui_proccnt, diff, max, "proccnt"));
1487}
1488
1489/*
1490 * Change the total socket buffer size a user has used.
1491 */
1492int
1493chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max)
1494{
1495	int diff, rv;
1496
1497	diff = to - *hiwat;
1498	if (diff > 0 && max == 0) {
1499		rv = 0;
1500	} else {
1501		rv = chglimit(uip, &uip->ui_sbsize, diff, max, "sbsize");
1502		if (rv != 0)
1503			*hiwat = to;
1504	}
1505	return (rv);
1506}
1507
1508/*
1509 * Change the count associated with number of pseudo-terminals
1510 * a given user is using.  When 'max' is 0, don't enforce a limit
1511 */
1512int
1513chgptscnt(struct uidinfo *uip, int diff, rlim_t max)
1514{
1515
1516	return (chglimit(uip, &uip->ui_ptscnt, diff, max, "ptscnt"));
1517}
1518
1519int
1520chgkqcnt(struct uidinfo *uip, int diff, rlim_t max)
1521{
1522
1523	return (chglimit(uip, &uip->ui_kqcnt, diff, max, "kqcnt"));
1524}
1525
1526int
1527chgumtxcnt(struct uidinfo *uip, int diff, rlim_t max)
1528{
1529
1530	return (chglimit(uip, &uip->ui_umtxcnt, diff, max, "umtxcnt"));
1531}
1532