1/*-
2 * Copyright (c) 1987, 1991, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2005-2009 Robert N. M. Watson
5 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray)
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
33 */
34
35/*
36 * Kernel malloc(9) implementation -- general purpose kernel memory allocator
37 * based on memory types.  Back end is implemented using the UMA(9) zone
38 * allocator.  A set of fixed-size buckets are used for smaller allocations,
39 * and a special UMA allocation interface is used for larger allocations.
40 * Callers declare memory types, and statistics are maintained independently
41 * for each memory type.  Statistics are maintained per-CPU for performance
42 * reasons.  See malloc(9) and comments in malloc.h for a detailed
43 * description.
44 */
45
46#include <sys/cdefs.h>
47__FBSDID("$FreeBSD: stable/11/sys/kern/kern_malloc.c 328210 2018-01-20 23:46:03Z kp $");
48
49#include "opt_ddb.h"
50#include "opt_vm.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/kdb.h>
55#include <sys/kernel.h>
56#include <sys/lock.h>
57#include <sys/malloc.h>
58#include <sys/mutex.h>
59#include <sys/vmmeter.h>
60#include <sys/proc.h>
61#include <sys/sbuf.h>
62#include <sys/sysctl.h>
63#include <sys/time.h>
64#include <sys/vmem.h>
65
66#include <vm/vm.h>
67#include <vm/pmap.h>
68#include <vm/vm_pageout.h>
69#include <vm/vm_param.h>
70#include <vm/vm_kern.h>
71#include <vm/vm_extern.h>
72#include <vm/vm_map.h>
73#include <vm/vm_page.h>
74#include <vm/uma.h>
75#include <vm/uma_int.h>
76#include <vm/uma_dbg.h>
77
78#ifdef DEBUG_MEMGUARD
79#include <vm/memguard.h>
80#endif
81#ifdef DEBUG_REDZONE
82#include <vm/redzone.h>
83#endif
84
85#if defined(INVARIANTS) && defined(__i386__)
86#include <machine/cpu.h>
87#endif
88
89#include <ddb/ddb.h>
90
91#ifdef KDTRACE_HOOKS
92#include <sys/dtrace_bsd.h>
93
94dtrace_malloc_probe_func_t	dtrace_malloc_probe;
95#endif
96
97/*
98 * When realloc() is called, if the new size is sufficiently smaller than
99 * the old size, realloc() will allocate a new, smaller block to avoid
100 * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
101 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
102 */
103#ifndef REALLOC_FRACTION
104#define	REALLOC_FRACTION	1	/* new block if <= half the size */
105#endif
106
107/*
108 * Centrally define some common malloc types.
109 */
110MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
111MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
112MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
113
114static struct malloc_type *kmemstatistics;
115static int kmemcount;
116
117#define KMEM_ZSHIFT	4
118#define KMEM_ZBASE	16
119#define KMEM_ZMASK	(KMEM_ZBASE - 1)
120
121#define KMEM_ZMAX	65536
122#define KMEM_ZSIZE	(KMEM_ZMAX >> KMEM_ZSHIFT)
123static uint8_t kmemsize[KMEM_ZSIZE + 1];
124
125#ifndef MALLOC_DEBUG_MAXZONES
126#define	MALLOC_DEBUG_MAXZONES	1
127#endif
128static int numzones = MALLOC_DEBUG_MAXZONES;
129
130/*
131 * Small malloc(9) memory allocations are allocated from a set of UMA buckets
132 * of various sizes.
133 *
134 * XXX: The comment here used to read "These won't be powers of two for
135 * long."  It's possible that a significant amount of wasted memory could be
136 * recovered by tuning the sizes of these buckets.
137 */
138struct {
139	int kz_size;
140	char *kz_name;
141	uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
142} kmemzones[] = {
143	{16, "16", },
144	{32, "32", },
145	{64, "64", },
146	{128, "128", },
147	{256, "256", },
148	{512, "512", },
149	{1024, "1024", },
150	{2048, "2048", },
151	{4096, "4096", },
152	{8192, "8192", },
153	{16384, "16384", },
154	{32768, "32768", },
155	{65536, "65536", },
156	{0, NULL},
157};
158
159/*
160 * Zone to allocate malloc type descriptions from.  For ABI reasons, memory
161 * types are described by a data structure passed by the declaring code, but
162 * the malloc(9) implementation has its own data structure describing the
163 * type and statistics.  This permits the malloc(9)-internal data structures
164 * to be modified without breaking binary-compiled kernel modules that
165 * declare malloc types.
166 */
167static uma_zone_t mt_zone;
168
169u_long vm_kmem_size;
170SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
171    "Size of kernel memory");
172
173static u_long kmem_zmax = KMEM_ZMAX;
174SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0,
175    "Maximum allocation size that malloc(9) would use UMA as backend");
176
177static u_long vm_kmem_size_min;
178SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
179    "Minimum size of kernel memory");
180
181static u_long vm_kmem_size_max;
182SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
183    "Maximum size of kernel memory");
184
185static u_int vm_kmem_size_scale;
186SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
187    "Scale factor for kernel memory size");
188
189static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
190SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
191    CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
192    sysctl_kmem_map_size, "LU", "Current kmem allocation size");
193
194static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
195SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
196    CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
197    sysctl_kmem_map_free, "LU", "Free space in kmem");
198
199/*
200 * The malloc_mtx protects the kmemstatistics linked list.
201 */
202struct mtx malloc_mtx;
203
204#ifdef MALLOC_PROFILE
205uint64_t krequests[KMEM_ZSIZE + 1];
206
207static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
208#endif
209
210static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
211
212/*
213 * time_uptime of the last malloc(9) failure (induced or real).
214 */
215static time_t t_malloc_fail;
216
217#if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
218static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
219    "Kernel malloc debugging options");
220#endif
221
222/*
223 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
224 * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
225 */
226#ifdef MALLOC_MAKE_FAILURES
227static int malloc_failure_rate;
228static int malloc_nowait_count;
229static int malloc_failure_count;
230SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN,
231    &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
232SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
233    &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
234#endif
235
236static int
237sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
238{
239	u_long size;
240
241	size = vmem_size(kmem_arena, VMEM_ALLOC);
242	return (sysctl_handle_long(oidp, &size, 0, req));
243}
244
245static int
246sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
247{
248	u_long size;
249
250	size = vmem_size(kmem_arena, VMEM_FREE);
251	return (sysctl_handle_long(oidp, &size, 0, req));
252}
253
254/*
255 * malloc(9) uma zone separation -- sub-page buffer overruns in one
256 * malloc type will affect only a subset of other malloc types.
257 */
258#if MALLOC_DEBUG_MAXZONES > 1
259static void
260tunable_set_numzones(void)
261{
262
263	TUNABLE_INT_FETCH("debug.malloc.numzones",
264	    &numzones);
265
266	/* Sanity check the number of malloc uma zones. */
267	if (numzones <= 0)
268		numzones = 1;
269	if (numzones > MALLOC_DEBUG_MAXZONES)
270		numzones = MALLOC_DEBUG_MAXZONES;
271}
272SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
273SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
274    &numzones, 0, "Number of malloc uma subzones");
275
276/*
277 * Any number that changes regularly is an okay choice for the
278 * offset.  Build numbers are pretty good of you have them.
279 */
280static u_int zone_offset = __FreeBSD_version;
281TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
282SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
283    &zone_offset, 0, "Separate malloc types by examining the "
284    "Nth character in the malloc type short description.");
285
286static u_int
287mtp_get_subzone(const char *desc)
288{
289	size_t len;
290	u_int val;
291
292	if (desc == NULL || (len = strlen(desc)) == 0)
293		return (0);
294	val = desc[zone_offset % len];
295	return (val % numzones);
296}
297#elif MALLOC_DEBUG_MAXZONES == 0
298#error "MALLOC_DEBUG_MAXZONES must be positive."
299#else
300static inline u_int
301mtp_get_subzone(const char *desc)
302{
303
304	return (0);
305}
306#endif /* MALLOC_DEBUG_MAXZONES > 1 */
307
308int
309malloc_last_fail(void)
310{
311
312	return (time_uptime - t_malloc_fail);
313}
314
315/*
316 * An allocation has succeeded -- update malloc type statistics for the
317 * amount of bucket size.  Occurs within a critical section so that the
318 * thread isn't preempted and doesn't migrate while updating per-PCU
319 * statistics.
320 */
321static void
322malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
323    int zindx)
324{
325	struct malloc_type_internal *mtip;
326	struct malloc_type_stats *mtsp;
327
328	critical_enter();
329	mtip = mtp->ks_handle;
330	mtsp = &mtip->mti_stats[curcpu];
331	if (size > 0) {
332		mtsp->mts_memalloced += size;
333		mtsp->mts_numallocs++;
334	}
335	if (zindx != -1)
336		mtsp->mts_size |= 1 << zindx;
337
338#ifdef KDTRACE_HOOKS
339	if (dtrace_malloc_probe != NULL) {
340		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
341		if (probe_id != 0)
342			(dtrace_malloc_probe)(probe_id,
343			    (uintptr_t) mtp, (uintptr_t) mtip,
344			    (uintptr_t) mtsp, size, zindx);
345	}
346#endif
347
348	critical_exit();
349}
350
351void
352malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
353{
354
355	if (size > 0)
356		malloc_type_zone_allocated(mtp, size, -1);
357}
358
359/*
360 * A free operation has occurred -- update malloc type statistics for the
361 * amount of the bucket size.  Occurs within a critical section so that the
362 * thread isn't preempted and doesn't migrate while updating per-CPU
363 * statistics.
364 */
365void
366malloc_type_freed(struct malloc_type *mtp, unsigned long size)
367{
368	struct malloc_type_internal *mtip;
369	struct malloc_type_stats *mtsp;
370
371	critical_enter();
372	mtip = mtp->ks_handle;
373	mtsp = &mtip->mti_stats[curcpu];
374	mtsp->mts_memfreed += size;
375	mtsp->mts_numfrees++;
376
377#ifdef KDTRACE_HOOKS
378	if (dtrace_malloc_probe != NULL) {
379		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
380		if (probe_id != 0)
381			(dtrace_malloc_probe)(probe_id,
382			    (uintptr_t) mtp, (uintptr_t) mtip,
383			    (uintptr_t) mtsp, size, 0);
384	}
385#endif
386
387	critical_exit();
388}
389
390/*
391 *	contigmalloc:
392 *
393 *	Allocate a block of physically contiguous memory.
394 *
395 *	If M_NOWAIT is set, this routine will not block and return NULL if
396 *	the allocation fails.
397 */
398void *
399contigmalloc(unsigned long size, struct malloc_type *type, int flags,
400    vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
401    vm_paddr_t boundary)
402{
403	void *ret;
404
405	ret = (void *)kmem_alloc_contig(kernel_arena, size, flags, low, high,
406	    alignment, boundary, VM_MEMATTR_DEFAULT);
407	if (ret != NULL)
408		malloc_type_allocated(type, round_page(size));
409	return (ret);
410}
411
412/*
413 *	contigfree:
414 *
415 *	Free a block of memory allocated by contigmalloc.
416 *
417 *	This routine may not block.
418 */
419void
420contigfree(void *addr, unsigned long size, struct malloc_type *type)
421{
422
423	kmem_free(kernel_arena, (vm_offset_t)addr, size);
424	malloc_type_freed(type, round_page(size));
425}
426
427/*
428 *	malloc:
429 *
430 *	Allocate a block of memory.
431 *
432 *	If M_NOWAIT is set, this routine will not block and return NULL if
433 *	the allocation fails.
434 */
435void *
436malloc(unsigned long size, struct malloc_type *mtp, int flags)
437{
438	int indx;
439	struct malloc_type_internal *mtip;
440	caddr_t va;
441	uma_zone_t zone;
442#if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
443	unsigned long osize = size;
444#endif
445
446#ifdef INVARIANTS
447	KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
448	/*
449	 * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
450	 */
451	indx = flags & (M_WAITOK | M_NOWAIT);
452	if (indx != M_NOWAIT && indx != M_WAITOK) {
453		static	struct timeval lasterr;
454		static	int curerr, once;
455		if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
456			printf("Bad malloc flags: %x\n", indx);
457			kdb_backtrace();
458			flags |= M_WAITOK;
459			once++;
460		}
461	}
462#endif
463#ifdef MALLOC_MAKE_FAILURES
464	if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
465		atomic_add_int(&malloc_nowait_count, 1);
466		if ((malloc_nowait_count % malloc_failure_rate) == 0) {
467			atomic_add_int(&malloc_failure_count, 1);
468			t_malloc_fail = time_uptime;
469			return (NULL);
470		}
471	}
472#endif
473	if (flags & M_WAITOK)
474		KASSERT(curthread->td_intr_nesting_level == 0,
475		   ("malloc(M_WAITOK) in interrupt context"));
476	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
477	    ("malloc: called with spinlock or critical section held"));
478
479#ifdef DEBUG_MEMGUARD
480	if (memguard_cmp_mtp(mtp, size)) {
481		va = memguard_alloc(size, flags);
482		if (va != NULL)
483			return (va);
484		/* This is unfortunate but should not be fatal. */
485	}
486#endif
487
488#ifdef DEBUG_REDZONE
489	size = redzone_size_ntor(size);
490#endif
491
492	if (size <= kmem_zmax) {
493		mtip = mtp->ks_handle;
494		if (size & KMEM_ZMASK)
495			size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
496		indx = kmemsize[size >> KMEM_ZSHIFT];
497		KASSERT(mtip->mti_zone < numzones,
498		    ("mti_zone %u out of range %d",
499		    mtip->mti_zone, numzones));
500		zone = kmemzones[indx].kz_zone[mtip->mti_zone];
501#ifdef MALLOC_PROFILE
502		krequests[size >> KMEM_ZSHIFT]++;
503#endif
504		va = uma_zalloc(zone, flags);
505		if (va != NULL)
506			size = zone->uz_size;
507		malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
508	} else {
509		size = roundup(size, PAGE_SIZE);
510		zone = NULL;
511		va = uma_large_malloc(size, flags);
512		malloc_type_allocated(mtp, va == NULL ? 0 : size);
513	}
514	if (flags & M_WAITOK)
515		KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
516	else if (va == NULL)
517		t_malloc_fail = time_uptime;
518#ifdef DIAGNOSTIC
519	if (va != NULL && !(flags & M_ZERO)) {
520		memset(va, 0x70, osize);
521	}
522#endif
523#ifdef DEBUG_REDZONE
524	if (va != NULL)
525		va = redzone_setup(va, osize);
526#endif
527	return ((void *) va);
528}
529
530void *
531mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags)
532{
533
534	if (WOULD_OVERFLOW(nmemb, size))
535		panic("mallocarray: %zu * %zu overflowed", nmemb, size);
536
537	return (malloc(size * nmemb, type, flags));
538}
539
540/*
541 *	free:
542 *
543 *	Free a block of memory allocated by malloc.
544 *
545 *	This routine may not block.
546 */
547void
548free(void *addr, struct malloc_type *mtp)
549{
550	uma_slab_t slab;
551	u_long size;
552
553	KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic"));
554	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
555	    ("free: called with spinlock or critical section held"));
556
557	/* free(NULL, ...) does nothing */
558	if (addr == NULL)
559		return;
560
561#ifdef DEBUG_MEMGUARD
562	if (is_memguard_addr(addr)) {
563		memguard_free(addr);
564		return;
565	}
566#endif
567
568#ifdef DEBUG_REDZONE
569	redzone_check(addr);
570	addr = redzone_addr_ntor(addr);
571#endif
572
573	slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
574
575	if (slab == NULL)
576		panic("free: address %p(%p) has not been allocated.\n",
577		    addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
578
579	if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
580#ifdef INVARIANTS
581		struct malloc_type **mtpp = addr;
582#endif
583		size = slab->us_keg->uk_size;
584#ifdef INVARIANTS
585		/*
586		 * Cache a pointer to the malloc_type that most recently freed
587		 * this memory here.  This way we know who is most likely to
588		 * have stepped on it later.
589		 *
590		 * This code assumes that size is a multiple of 8 bytes for
591		 * 64 bit machines
592		 */
593		mtpp = (struct malloc_type **)
594		    ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
595		mtpp += (size - sizeof(struct malloc_type *)) /
596		    sizeof(struct malloc_type *);
597		*mtpp = mtp;
598#endif
599		uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
600	} else {
601		size = slab->us_size;
602		uma_large_free(slab);
603	}
604	malloc_type_freed(mtp, size);
605}
606
607/*
608 *	realloc: change the size of a memory block
609 */
610void *
611realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
612{
613	uma_slab_t slab;
614	unsigned long alloc;
615	void *newaddr;
616
617	KASSERT(mtp->ks_magic == M_MAGIC,
618	    ("realloc: bad malloc type magic"));
619	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
620	    ("realloc: called with spinlock or critical section held"));
621
622	/* realloc(NULL, ...) is equivalent to malloc(...) */
623	if (addr == NULL)
624		return (malloc(size, mtp, flags));
625
626	/*
627	 * XXX: Should report free of old memory and alloc of new memory to
628	 * per-CPU stats.
629	 */
630
631#ifdef DEBUG_MEMGUARD
632	if (is_memguard_addr(addr))
633		return (memguard_realloc(addr, size, mtp, flags));
634#endif
635
636#ifdef DEBUG_REDZONE
637	slab = NULL;
638	alloc = redzone_get_size(addr);
639#else
640	slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
641
642	/* Sanity check */
643	KASSERT(slab != NULL,
644	    ("realloc: address %p out of range", (void *)addr));
645
646	/* Get the size of the original block */
647	if (!(slab->us_flags & UMA_SLAB_MALLOC))
648		alloc = slab->us_keg->uk_size;
649	else
650		alloc = slab->us_size;
651
652	/* Reuse the original block if appropriate */
653	if (size <= alloc
654	    && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
655		return (addr);
656#endif /* !DEBUG_REDZONE */
657
658	/* Allocate a new, bigger (or smaller) block */
659	if ((newaddr = malloc(size, mtp, flags)) == NULL)
660		return (NULL);
661
662	/* Copy over original contents */
663	bcopy(addr, newaddr, min(size, alloc));
664	free(addr, mtp);
665	return (newaddr);
666}
667
668/*
669 *	reallocf: same as realloc() but free memory on failure.
670 */
671void *
672reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
673{
674	void *mem;
675
676	if ((mem = realloc(addr, size, mtp, flags)) == NULL)
677		free(addr, mtp);
678	return (mem);
679}
680
681/*
682 * Wake the uma reclamation pagedaemon thread when we exhaust KVA.  It
683 * will call the lowmem handler and uma_reclaim() callbacks in a
684 * context that is safe.
685 */
686static void
687kmem_reclaim(vmem_t *vm, int flags)
688{
689
690	uma_reclaim_wakeup();
691	pagedaemon_wakeup();
692}
693
694#ifndef __sparc64__
695CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
696#endif
697
698/*
699 * Initialize the kernel memory (kmem) arena.
700 */
701void
702kmeminit(void)
703{
704	u_long mem_size;
705	u_long tmp;
706
707#ifdef VM_KMEM_SIZE
708	if (vm_kmem_size == 0)
709		vm_kmem_size = VM_KMEM_SIZE;
710#endif
711#ifdef VM_KMEM_SIZE_MIN
712	if (vm_kmem_size_min == 0)
713		vm_kmem_size_min = VM_KMEM_SIZE_MIN;
714#endif
715#ifdef VM_KMEM_SIZE_MAX
716	if (vm_kmem_size_max == 0)
717		vm_kmem_size_max = VM_KMEM_SIZE_MAX;
718#endif
719	/*
720	 * Calculate the amount of kernel virtual address (KVA) space that is
721	 * preallocated to the kmem arena.  In order to support a wide range
722	 * of machines, it is a function of the physical memory size,
723	 * specifically,
724	 *
725	 *	min(max(physical memory size / VM_KMEM_SIZE_SCALE,
726	 *	    VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
727	 *
728	 * Every architecture must define an integral value for
729	 * VM_KMEM_SIZE_SCALE.  However, the definitions of VM_KMEM_SIZE_MIN
730	 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
731	 * ceiling on this preallocation, are optional.  Typically,
732	 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
733	 * a given architecture.
734	 */
735	mem_size = vm_cnt.v_page_count;
736	if (mem_size <= 32768) /* delphij XXX 128MB */
737		kmem_zmax = PAGE_SIZE;
738
739	if (vm_kmem_size_scale < 1)
740		vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
741
742	/*
743	 * Check if we should use defaults for the "vm_kmem_size"
744	 * variable:
745	 */
746	if (vm_kmem_size == 0) {
747		vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
748
749		if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
750			vm_kmem_size = vm_kmem_size_min;
751		if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
752			vm_kmem_size = vm_kmem_size_max;
753	}
754
755	/*
756	 * The amount of KVA space that is preallocated to the
757	 * kmem arena can be set statically at compile-time or manually
758	 * through the kernel environment.  However, it is still limited to
759	 * twice the physical memory size, which has been sufficient to handle
760	 * the most severe cases of external fragmentation in the kmem arena.
761	 */
762	if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
763		vm_kmem_size = 2 * mem_size * PAGE_SIZE;
764
765	vm_kmem_size = round_page(vm_kmem_size);
766#ifdef DEBUG_MEMGUARD
767	tmp = memguard_fudge(vm_kmem_size, kernel_map);
768#else
769	tmp = vm_kmem_size;
770#endif
771	vmem_init(kmem_arena, "kmem arena", kva_alloc(tmp), tmp, PAGE_SIZE,
772	    0, 0);
773	vmem_set_reclaim(kmem_arena, kmem_reclaim);
774
775#ifdef DEBUG_MEMGUARD
776	/*
777	 * Initialize MemGuard if support compiled in.  MemGuard is a
778	 * replacement allocator used for detecting tamper-after-free
779	 * scenarios as they occur.  It is only used for debugging.
780	 */
781	memguard_init(kmem_arena);
782#endif
783}
784
785/*
786 * Initialize the kernel memory allocator
787 */
788/* ARGSUSED*/
789static void
790mallocinit(void *dummy)
791{
792	int i;
793	uint8_t indx;
794
795	mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
796
797	kmeminit();
798
799	uma_startup2();
800
801	if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX)
802		kmem_zmax = KMEM_ZMAX;
803
804	mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
805#ifdef INVARIANTS
806	    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
807#else
808	    NULL, NULL, NULL, NULL,
809#endif
810	    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
811	for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
812		int size = kmemzones[indx].kz_size;
813		char *name = kmemzones[indx].kz_name;
814		int subzone;
815
816		for (subzone = 0; subzone < numzones; subzone++) {
817			kmemzones[indx].kz_zone[subzone] =
818			    uma_zcreate(name, size,
819#ifdef INVARIANTS
820			    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
821#else
822			    NULL, NULL, NULL, NULL,
823#endif
824			    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
825		}
826		for (;i <= size; i+= KMEM_ZBASE)
827			kmemsize[i >> KMEM_ZSHIFT] = indx;
828
829	}
830}
831SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL);
832
833void
834malloc_init(void *data)
835{
836	struct malloc_type_internal *mtip;
837	struct malloc_type *mtp;
838
839	KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init"));
840
841	mtp = data;
842	if (mtp->ks_magic != M_MAGIC)
843		panic("malloc_init: bad malloc type magic");
844
845	mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
846	mtp->ks_handle = mtip;
847	mtip->mti_zone = mtp_get_subzone(mtp->ks_shortdesc);
848
849	mtx_lock(&malloc_mtx);
850	mtp->ks_next = kmemstatistics;
851	kmemstatistics = mtp;
852	kmemcount++;
853	mtx_unlock(&malloc_mtx);
854}
855
856void
857malloc_uninit(void *data)
858{
859	struct malloc_type_internal *mtip;
860	struct malloc_type_stats *mtsp;
861	struct malloc_type *mtp, *temp;
862	uma_slab_t slab;
863	long temp_allocs, temp_bytes;
864	int i;
865
866	mtp = data;
867	KASSERT(mtp->ks_magic == M_MAGIC,
868	    ("malloc_uninit: bad malloc type magic"));
869	KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
870
871	mtx_lock(&malloc_mtx);
872	mtip = mtp->ks_handle;
873	mtp->ks_handle = NULL;
874	if (mtp != kmemstatistics) {
875		for (temp = kmemstatistics; temp != NULL;
876		    temp = temp->ks_next) {
877			if (temp->ks_next == mtp) {
878				temp->ks_next = mtp->ks_next;
879				break;
880			}
881		}
882		KASSERT(temp,
883		    ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
884	} else
885		kmemstatistics = mtp->ks_next;
886	kmemcount--;
887	mtx_unlock(&malloc_mtx);
888
889	/*
890	 * Look for memory leaks.
891	 */
892	temp_allocs = temp_bytes = 0;
893	for (i = 0; i < MAXCPU; i++) {
894		mtsp = &mtip->mti_stats[i];
895		temp_allocs += mtsp->mts_numallocs;
896		temp_allocs -= mtsp->mts_numfrees;
897		temp_bytes += mtsp->mts_memalloced;
898		temp_bytes -= mtsp->mts_memfreed;
899	}
900	if (temp_allocs > 0 || temp_bytes > 0) {
901		printf("Warning: memory type %s leaked memory on destroy "
902		    "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
903		    temp_allocs, temp_bytes);
904	}
905
906	slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
907	uma_zfree_arg(mt_zone, mtip, slab);
908}
909
910struct malloc_type *
911malloc_desc2type(const char *desc)
912{
913	struct malloc_type *mtp;
914
915	mtx_assert(&malloc_mtx, MA_OWNED);
916	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
917		if (strcmp(mtp->ks_shortdesc, desc) == 0)
918			return (mtp);
919	}
920	return (NULL);
921}
922
923static int
924sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
925{
926	struct malloc_type_stream_header mtsh;
927	struct malloc_type_internal *mtip;
928	struct malloc_type_header mth;
929	struct malloc_type *mtp;
930	int error, i;
931	struct sbuf sbuf;
932
933	error = sysctl_wire_old_buffer(req, 0);
934	if (error != 0)
935		return (error);
936	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
937	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
938	mtx_lock(&malloc_mtx);
939
940	/*
941	 * Insert stream header.
942	 */
943	bzero(&mtsh, sizeof(mtsh));
944	mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
945	mtsh.mtsh_maxcpus = MAXCPU;
946	mtsh.mtsh_count = kmemcount;
947	(void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
948
949	/*
950	 * Insert alternating sequence of type headers and type statistics.
951	 */
952	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
953		mtip = (struct malloc_type_internal *)mtp->ks_handle;
954
955		/*
956		 * Insert type header.
957		 */
958		bzero(&mth, sizeof(mth));
959		strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
960		(void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
961
962		/*
963		 * Insert type statistics for each CPU.
964		 */
965		for (i = 0; i < MAXCPU; i++) {
966			(void)sbuf_bcat(&sbuf, &mtip->mti_stats[i],
967			    sizeof(mtip->mti_stats[i]));
968		}
969	}
970	mtx_unlock(&malloc_mtx);
971	error = sbuf_finish(&sbuf);
972	sbuf_delete(&sbuf);
973	return (error);
974}
975
976SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
977    0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
978    "Return malloc types");
979
980SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
981    "Count of kernel malloc types");
982
983void
984malloc_type_list(malloc_type_list_func_t *func, void *arg)
985{
986	struct malloc_type *mtp, **bufmtp;
987	int count, i;
988	size_t buflen;
989
990	mtx_lock(&malloc_mtx);
991restart:
992	mtx_assert(&malloc_mtx, MA_OWNED);
993	count = kmemcount;
994	mtx_unlock(&malloc_mtx);
995
996	buflen = sizeof(struct malloc_type *) * count;
997	bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
998
999	mtx_lock(&malloc_mtx);
1000
1001	if (count < kmemcount) {
1002		free(bufmtp, M_TEMP);
1003		goto restart;
1004	}
1005
1006	for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
1007		bufmtp[i] = mtp;
1008
1009	mtx_unlock(&malloc_mtx);
1010
1011	for (i = 0; i < count; i++)
1012		(func)(bufmtp[i], arg);
1013
1014	free(bufmtp, M_TEMP);
1015}
1016
1017#ifdef DDB
1018DB_SHOW_COMMAND(malloc, db_show_malloc)
1019{
1020	struct malloc_type_internal *mtip;
1021	struct malloc_type *mtp;
1022	uint64_t allocs, frees;
1023	uint64_t alloced, freed;
1024	int i;
1025
1026	db_printf("%18s %12s  %12s %12s\n", "Type", "InUse", "MemUse",
1027	    "Requests");
1028	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1029		mtip = (struct malloc_type_internal *)mtp->ks_handle;
1030		allocs = 0;
1031		frees = 0;
1032		alloced = 0;
1033		freed = 0;
1034		for (i = 0; i < MAXCPU; i++) {
1035			allocs += mtip->mti_stats[i].mts_numallocs;
1036			frees += mtip->mti_stats[i].mts_numfrees;
1037			alloced += mtip->mti_stats[i].mts_memalloced;
1038			freed += mtip->mti_stats[i].mts_memfreed;
1039		}
1040		db_printf("%18s %12ju %12juK %12ju\n",
1041		    mtp->ks_shortdesc, allocs - frees,
1042		    (alloced - freed + 1023) / 1024, allocs);
1043		if (db_pager_quit)
1044			break;
1045	}
1046}
1047
1048#if MALLOC_DEBUG_MAXZONES > 1
1049DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
1050{
1051	struct malloc_type_internal *mtip;
1052	struct malloc_type *mtp;
1053	u_int subzone;
1054
1055	if (!have_addr) {
1056		db_printf("Usage: show multizone_matches <malloc type/addr>\n");
1057		return;
1058	}
1059	mtp = (void *)addr;
1060	if (mtp->ks_magic != M_MAGIC) {
1061		db_printf("Magic %lx does not match expected %x\n",
1062		    mtp->ks_magic, M_MAGIC);
1063		return;
1064	}
1065
1066	mtip = mtp->ks_handle;
1067	subzone = mtip->mti_zone;
1068
1069	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1070		mtip = mtp->ks_handle;
1071		if (mtip->mti_zone != subzone)
1072			continue;
1073		db_printf("%s\n", mtp->ks_shortdesc);
1074		if (db_pager_quit)
1075			break;
1076	}
1077}
1078#endif /* MALLOC_DEBUG_MAXZONES > 1 */
1079#endif /* DDB */
1080
1081#ifdef MALLOC_PROFILE
1082
1083static int
1084sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
1085{
1086	struct sbuf sbuf;
1087	uint64_t count;
1088	uint64_t waste;
1089	uint64_t mem;
1090	int error;
1091	int rsize;
1092	int size;
1093	int i;
1094
1095	waste = 0;
1096	mem = 0;
1097
1098	error = sysctl_wire_old_buffer(req, 0);
1099	if (error != 0)
1100		return (error);
1101	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
1102	sbuf_printf(&sbuf,
1103	    "\n  Size                    Requests  Real Size\n");
1104	for (i = 0; i < KMEM_ZSIZE; i++) {
1105		size = i << KMEM_ZSHIFT;
1106		rsize = kmemzones[kmemsize[i]].kz_size;
1107		count = (long long unsigned)krequests[i];
1108
1109		sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
1110		    (unsigned long long)count, rsize);
1111
1112		if ((rsize * count) > (size * count))
1113			waste += (rsize * count) - (size * count);
1114		mem += (rsize * count);
1115	}
1116	sbuf_printf(&sbuf,
1117	    "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
1118	    (unsigned long long)mem, (unsigned long long)waste);
1119	error = sbuf_finish(&sbuf);
1120	sbuf_delete(&sbuf);
1121	return (error);
1122}
1123
1124SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
1125    NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
1126#endif /* MALLOC_PROFILE */
1127