1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: stable/11/sys/fs/nfsclient/nfs_clbio.c 349308 2019-06-23 14:49:30Z asomers $");
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/bio.h>
41#include <sys/buf.h>
42#include <sys/kernel.h>
43#include <sys/mount.h>
44#include <sys/rwlock.h>
45#include <sys/vmmeter.h>
46#include <sys/vnode.h>
47
48#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/vm_extern.h>
51#include <vm/vm_page.h>
52#include <vm/vm_object.h>
53#include <vm/vm_pager.h>
54#include <vm/vnode_pager.h>
55
56#include <fs/nfs/nfsport.h>
57#include <fs/nfsclient/nfsmount.h>
58#include <fs/nfsclient/nfs.h>
59#include <fs/nfsclient/nfsnode.h>
60#include <fs/nfsclient/nfs_kdtrace.h>
61
62extern int newnfs_directio_allow_mmap;
63extern struct nfsstatsv1 nfsstatsv1;
64extern struct mtx ncl_iod_mutex;
65extern int ncl_numasync;
66extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
67extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
68extern int newnfs_directio_enable;
69extern int nfs_keep_dirty_on_error;
70
71int ncl_pbuf_freecnt = -1;	/* start out unlimited */
72
73static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
74    struct thread *td);
75static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
76    struct ucred *cred, int ioflag);
77
78/*
79 * Vnode op for VM getpages.
80 */
81SYSCTL_DECL(_vfs_nfs);
82static int use_buf_pager = 0;
83SYSCTL_INT(_vfs_nfs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN,
84    &use_buf_pager, 0,
85    "Use buffer pager instead of direct readrpc call");
86
87static daddr_t
88ncl_gbp_getblkno(struct vnode *vp, vm_ooffset_t off)
89{
90
91	return (off / vp->v_bufobj.bo_bsize);
92}
93
94static int
95ncl_gbp_getblksz(struct vnode *vp, daddr_t lbn)
96{
97	struct nfsnode *np;
98	u_quad_t nsize;
99	int biosize, bcount;
100
101	np = VTONFS(vp);
102	mtx_lock(&np->n_mtx);
103	nsize = np->n_size;
104	mtx_unlock(&np->n_mtx);
105
106	biosize = vp->v_bufobj.bo_bsize;
107	bcount = biosize;
108	if ((off_t)lbn * biosize >= nsize)
109		bcount = 0;
110	else if ((off_t)(lbn + 1) * biosize > nsize)
111		bcount = nsize - (off_t)lbn * biosize;
112	return (bcount);
113}
114
115int
116ncl_getpages(struct vop_getpages_args *ap)
117{
118	int i, error, nextoff, size, toff, count, npages;
119	struct uio uio;
120	struct iovec iov;
121	vm_offset_t kva;
122	struct buf *bp;
123	struct vnode *vp;
124	struct thread *td;
125	struct ucred *cred;
126	struct nfsmount *nmp;
127	vm_object_t object;
128	vm_page_t *pages;
129	struct nfsnode *np;
130
131	vp = ap->a_vp;
132	np = VTONFS(vp);
133	td = curthread;
134	cred = curthread->td_ucred;
135	nmp = VFSTONFS(vp->v_mount);
136	pages = ap->a_m;
137	npages = ap->a_count;
138
139	if ((object = vp->v_object) == NULL) {
140		printf("ncl_getpages: called with non-merged cache vnode\n");
141		return (VM_PAGER_ERROR);
142	}
143
144	if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
145		mtx_lock(&np->n_mtx);
146		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
147			mtx_unlock(&np->n_mtx);
148			printf("ncl_getpages: called on non-cacheable vnode\n");
149			return (VM_PAGER_ERROR);
150		} else
151			mtx_unlock(&np->n_mtx);
152	}
153
154	mtx_lock(&nmp->nm_mtx);
155	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
156	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
157		mtx_unlock(&nmp->nm_mtx);
158		/* We'll never get here for v4, because we always have fsinfo */
159		(void)ncl_fsinfo(nmp, vp, cred, td);
160	} else
161		mtx_unlock(&nmp->nm_mtx);
162
163	if (use_buf_pager)
164		return (vfs_bio_getpages(vp, pages, npages, ap->a_rbehind,
165		    ap->a_rahead, ncl_gbp_getblkno, ncl_gbp_getblksz));
166
167	/*
168	 * If the requested page is partially valid, just return it and
169	 * allow the pager to zero-out the blanks.  Partially valid pages
170	 * can only occur at the file EOF.
171	 *
172	 * XXXGL: is that true for NFS, where short read can occur???
173	 */
174	VM_OBJECT_WLOCK(object);
175	if (pages[npages - 1]->valid != 0 && --npages == 0)
176		goto out;
177	VM_OBJECT_WUNLOCK(object);
178
179	/*
180	 * We use only the kva address for the buffer, but this is extremely
181	 * convenient and fast.
182	 */
183	bp = getpbuf(&ncl_pbuf_freecnt);
184
185	kva = (vm_offset_t) bp->b_data;
186	pmap_qenter(kva, pages, npages);
187	PCPU_INC(cnt.v_vnodein);
188	PCPU_ADD(cnt.v_vnodepgsin, npages);
189
190	count = npages << PAGE_SHIFT;
191	iov.iov_base = (caddr_t) kva;
192	iov.iov_len = count;
193	uio.uio_iov = &iov;
194	uio.uio_iovcnt = 1;
195	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
196	uio.uio_resid = count;
197	uio.uio_segflg = UIO_SYSSPACE;
198	uio.uio_rw = UIO_READ;
199	uio.uio_td = td;
200
201	error = ncl_readrpc(vp, &uio, cred);
202	pmap_qremove(kva, npages);
203
204	relpbuf(bp, &ncl_pbuf_freecnt);
205
206	if (error && (uio.uio_resid == count)) {
207		printf("ncl_getpages: error %d\n", error);
208		return (VM_PAGER_ERROR);
209	}
210
211	/*
212	 * Calculate the number of bytes read and validate only that number
213	 * of bytes.  Note that due to pending writes, size may be 0.  This
214	 * does not mean that the remaining data is invalid!
215	 */
216
217	size = count - uio.uio_resid;
218	VM_OBJECT_WLOCK(object);
219	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
220		vm_page_t m;
221		nextoff = toff + PAGE_SIZE;
222		m = pages[i];
223
224		if (nextoff <= size) {
225			/*
226			 * Read operation filled an entire page
227			 */
228			m->valid = VM_PAGE_BITS_ALL;
229			KASSERT(m->dirty == 0,
230			    ("nfs_getpages: page %p is dirty", m));
231		} else if (size > toff) {
232			/*
233			 * Read operation filled a partial page.
234			 */
235			m->valid = 0;
236			vm_page_set_valid_range(m, 0, size - toff);
237			KASSERT(m->dirty == 0,
238			    ("nfs_getpages: page %p is dirty", m));
239		} else {
240			/*
241			 * Read operation was short.  If no error
242			 * occurred we may have hit a zero-fill
243			 * section.  We leave valid set to 0, and page
244			 * is freed by vm_page_readahead_finish() if
245			 * its index is not equal to requested, or
246			 * page is zeroed and set valid by
247			 * vm_pager_get_pages() for requested page.
248			 */
249			;
250		}
251	}
252out:
253	VM_OBJECT_WUNLOCK(object);
254	if (ap->a_rbehind)
255		*ap->a_rbehind = 0;
256	if (ap->a_rahead)
257		*ap->a_rahead = 0;
258	return (VM_PAGER_OK);
259}
260
261/*
262 * Vnode op for VM putpages.
263 */
264int
265ncl_putpages(struct vop_putpages_args *ap)
266{
267	struct uio uio;
268	struct iovec iov;
269	int i, error, npages, count;
270	off_t offset;
271	int *rtvals;
272	struct vnode *vp;
273	struct thread *td;
274	struct ucred *cred;
275	struct nfsmount *nmp;
276	struct nfsnode *np;
277	vm_page_t *pages;
278
279	vp = ap->a_vp;
280	np = VTONFS(vp);
281	td = curthread;				/* XXX */
282	/* Set the cred to n_writecred for the write rpcs. */
283	if (np->n_writecred != NULL)
284		cred = crhold(np->n_writecred);
285	else
286		cred = crhold(curthread->td_ucred);	/* XXX */
287	nmp = VFSTONFS(vp->v_mount);
288	pages = ap->a_m;
289	count = ap->a_count;
290	rtvals = ap->a_rtvals;
291	npages = btoc(count);
292	offset = IDX_TO_OFF(pages[0]->pindex);
293
294	mtx_lock(&nmp->nm_mtx);
295	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
296	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
297		mtx_unlock(&nmp->nm_mtx);
298		(void)ncl_fsinfo(nmp, vp, cred, td);
299	} else
300		mtx_unlock(&nmp->nm_mtx);
301
302	mtx_lock(&np->n_mtx);
303	if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
304	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
305		mtx_unlock(&np->n_mtx);
306		printf("ncl_putpages: called on noncache-able vnode\n");
307		mtx_lock(&np->n_mtx);
308	}
309	/*
310	 * When putting pages, do not extend file past EOF.
311	 */
312	if (offset + count > np->n_size) {
313		count = np->n_size - offset;
314		if (count < 0)
315			count = 0;
316	}
317	mtx_unlock(&np->n_mtx);
318
319	for (i = 0; i < npages; i++)
320		rtvals[i] = VM_PAGER_ERROR;
321
322	PCPU_INC(cnt.v_vnodeout);
323	PCPU_ADD(cnt.v_vnodepgsout, count);
324
325	iov.iov_base = unmapped_buf;
326	iov.iov_len = count;
327	uio.uio_iov = &iov;
328	uio.uio_iovcnt = 1;
329	uio.uio_offset = offset;
330	uio.uio_resid = count;
331	uio.uio_segflg = UIO_NOCOPY;
332	uio.uio_rw = UIO_WRITE;
333	uio.uio_td = td;
334
335	error = VOP_WRITE(vp, &uio, vnode_pager_putpages_ioflags(ap->a_sync),
336	    cred);
337	crfree(cred);
338
339	if (error == 0 || !nfs_keep_dirty_on_error) {
340		vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid,
341		    np->n_size - offset, npages * PAGE_SIZE);
342	}
343	return (rtvals[0]);
344}
345
346/*
347 * For nfs, cache consistency can only be maintained approximately.
348 * Although RFC1094 does not specify the criteria, the following is
349 * believed to be compatible with the reference port.
350 * For nfs:
351 * If the file's modify time on the server has changed since the
352 * last read rpc or you have written to the file,
353 * you may have lost data cache consistency with the
354 * server, so flush all of the file's data out of the cache.
355 * Then force a getattr rpc to ensure that you have up to date
356 * attributes.
357 * NB: This implies that cache data can be read when up to
358 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
359 * attributes this could be forced by setting n_attrstamp to 0 before
360 * the VOP_GETATTR() call.
361 */
362static inline int
363nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
364{
365	int error = 0;
366	struct vattr vattr;
367	struct nfsnode *np = VTONFS(vp);
368	bool old_lock;
369
370	/*
371	 * Ensure the exclusove access to the node before checking
372	 * whether the cache is consistent.
373	 */
374	old_lock = ncl_excl_start(vp);
375	mtx_lock(&np->n_mtx);
376	if (np->n_flag & NMODIFIED) {
377		mtx_unlock(&np->n_mtx);
378		if (vp->v_type != VREG) {
379			if (vp->v_type != VDIR)
380				panic("nfs: bioread, not dir");
381			ncl_invaldir(vp);
382			error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1);
383			if (error != 0)
384				goto out;
385		}
386		np->n_attrstamp = 0;
387		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
388		error = VOP_GETATTR(vp, &vattr, cred);
389		if (error)
390			goto out;
391		mtx_lock(&np->n_mtx);
392		np->n_mtime = vattr.va_mtime;
393		mtx_unlock(&np->n_mtx);
394	} else {
395		mtx_unlock(&np->n_mtx);
396		error = VOP_GETATTR(vp, &vattr, cred);
397		if (error)
398			goto out;
399		mtx_lock(&np->n_mtx);
400		if ((np->n_flag & NSIZECHANGED)
401		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
402			mtx_unlock(&np->n_mtx);
403			if (vp->v_type == VDIR)
404				ncl_invaldir(vp);
405			error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1);
406			if (error != 0)
407				goto out;
408			mtx_lock(&np->n_mtx);
409			np->n_mtime = vattr.va_mtime;
410			np->n_flag &= ~NSIZECHANGED;
411		}
412		mtx_unlock(&np->n_mtx);
413	}
414out:
415	ncl_excl_finish(vp, old_lock);
416	return (error);
417}
418
419/*
420 * Vnode op for read using bio
421 */
422int
423ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
424{
425	struct nfsnode *np = VTONFS(vp);
426	int biosize, i;
427	struct buf *bp, *rabp;
428	struct thread *td;
429	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
430	daddr_t lbn, rabn;
431	int bcount;
432	int seqcount;
433	int nra, error = 0, n = 0, on = 0;
434	off_t tmp_off;
435
436	KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
437	if (uio->uio_resid == 0)
438		return (0);
439	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
440		return (EINVAL);
441	td = uio->uio_td;
442
443	mtx_lock(&nmp->nm_mtx);
444	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
445	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
446		mtx_unlock(&nmp->nm_mtx);
447		(void)ncl_fsinfo(nmp, vp, cred, td);
448		mtx_lock(&nmp->nm_mtx);
449	}
450	if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
451		(void) newnfs_iosize(nmp);
452
453	tmp_off = uio->uio_offset + uio->uio_resid;
454	if (vp->v_type != VDIR &&
455	    (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
456		mtx_unlock(&nmp->nm_mtx);
457		return (EFBIG);
458	}
459	mtx_unlock(&nmp->nm_mtx);
460
461	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
462		/* No caching/ no readaheads. Just read data into the user buffer */
463		return ncl_readrpc(vp, uio, cred);
464
465	biosize = vp->v_bufobj.bo_bsize;
466	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
467
468	error = nfs_bioread_check_cons(vp, td, cred);
469	if (error)
470		return error;
471
472	do {
473	    u_quad_t nsize;
474
475	    mtx_lock(&np->n_mtx);
476	    nsize = np->n_size;
477	    mtx_unlock(&np->n_mtx);
478
479	    switch (vp->v_type) {
480	    case VREG:
481		NFSINCRGLOBAL(nfsstatsv1.biocache_reads);
482		lbn = uio->uio_offset / biosize;
483		on = uio->uio_offset - (lbn * biosize);
484
485		/*
486		 * Start the read ahead(s), as required.
487		 */
488		if (nmp->nm_readahead > 0) {
489		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
490			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
491			rabn = lbn + 1 + nra;
492			if (incore(&vp->v_bufobj, rabn) == NULL) {
493			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
494			    if (!rabp) {
495				error = newnfs_sigintr(nmp, td);
496				return (error ? error : EINTR);
497			    }
498			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
499				rabp->b_flags |= B_ASYNC;
500				rabp->b_iocmd = BIO_READ;
501				vfs_busy_pages(rabp, 0);
502				if (ncl_asyncio(nmp, rabp, cred, td)) {
503				    rabp->b_flags |= B_INVAL;
504				    rabp->b_ioflags |= BIO_ERROR;
505				    vfs_unbusy_pages(rabp);
506				    brelse(rabp);
507				    break;
508				}
509			    } else {
510				brelse(rabp);
511			    }
512			}
513		    }
514		}
515
516		/* Note that bcount is *not* DEV_BSIZE aligned. */
517		bcount = biosize;
518		if ((off_t)lbn * biosize >= nsize) {
519			bcount = 0;
520		} else if ((off_t)(lbn + 1) * biosize > nsize) {
521			bcount = nsize - (off_t)lbn * biosize;
522		}
523		bp = nfs_getcacheblk(vp, lbn, bcount, td);
524
525		if (!bp) {
526			error = newnfs_sigintr(nmp, td);
527			return (error ? error : EINTR);
528		}
529
530		/*
531		 * If B_CACHE is not set, we must issue the read.  If this
532		 * fails, we return an error.
533		 */
534
535		if ((bp->b_flags & B_CACHE) == 0) {
536		    bp->b_iocmd = BIO_READ;
537		    vfs_busy_pages(bp, 0);
538		    error = ncl_doio(vp, bp, cred, td, 0);
539		    if (error) {
540			brelse(bp);
541			return (error);
542		    }
543		}
544
545		/*
546		 * on is the offset into the current bp.  Figure out how many
547		 * bytes we can copy out of the bp.  Note that bcount is
548		 * NOT DEV_BSIZE aligned.
549		 *
550		 * Then figure out how many bytes we can copy into the uio.
551		 */
552
553		n = 0;
554		if (on < bcount)
555			n = MIN((unsigned)(bcount - on), uio->uio_resid);
556		break;
557	    case VLNK:
558		NFSINCRGLOBAL(nfsstatsv1.biocache_readlinks);
559		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
560		if (!bp) {
561			error = newnfs_sigintr(nmp, td);
562			return (error ? error : EINTR);
563		}
564		if ((bp->b_flags & B_CACHE) == 0) {
565		    bp->b_iocmd = BIO_READ;
566		    vfs_busy_pages(bp, 0);
567		    error = ncl_doio(vp, bp, cred, td, 0);
568		    if (error) {
569			bp->b_ioflags |= BIO_ERROR;
570			brelse(bp);
571			return (error);
572		    }
573		}
574		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
575		on = 0;
576		break;
577	    case VDIR:
578		NFSINCRGLOBAL(nfsstatsv1.biocache_readdirs);
579		if (np->n_direofoffset
580		    && uio->uio_offset >= np->n_direofoffset) {
581		    return (0);
582		}
583		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
584		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
585		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
586		if (!bp) {
587		    error = newnfs_sigintr(nmp, td);
588		    return (error ? error : EINTR);
589		}
590		if ((bp->b_flags & B_CACHE) == 0) {
591		    bp->b_iocmd = BIO_READ;
592		    vfs_busy_pages(bp, 0);
593		    error = ncl_doio(vp, bp, cred, td, 0);
594		    if (error) {
595			    brelse(bp);
596		    }
597		    while (error == NFSERR_BAD_COOKIE) {
598			ncl_invaldir(vp);
599			error = ncl_vinvalbuf(vp, 0, td, 1);
600
601			/*
602			 * Yuck! The directory has been modified on the
603			 * server. The only way to get the block is by
604			 * reading from the beginning to get all the
605			 * offset cookies.
606			 *
607			 * Leave the last bp intact unless there is an error.
608			 * Loop back up to the while if the error is another
609			 * NFSERR_BAD_COOKIE (double yuch!).
610			 */
611			for (i = 0; i <= lbn && !error; i++) {
612			    if (np->n_direofoffset
613				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
614				    return (0);
615			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
616			    if (!bp) {
617				error = newnfs_sigintr(nmp, td);
618				return (error ? error : EINTR);
619			    }
620			    if ((bp->b_flags & B_CACHE) == 0) {
621				    bp->b_iocmd = BIO_READ;
622				    vfs_busy_pages(bp, 0);
623				    error = ncl_doio(vp, bp, cred, td, 0);
624				    /*
625				     * no error + B_INVAL == directory EOF,
626				     * use the block.
627				     */
628				    if (error == 0 && (bp->b_flags & B_INVAL))
629					    break;
630			    }
631			    /*
632			     * An error will throw away the block and the
633			     * for loop will break out.  If no error and this
634			     * is not the block we want, we throw away the
635			     * block and go for the next one via the for loop.
636			     */
637			    if (error || i < lbn)
638				    brelse(bp);
639			}
640		    }
641		    /*
642		     * The above while is repeated if we hit another cookie
643		     * error.  If we hit an error and it wasn't a cookie error,
644		     * we give up.
645		     */
646		    if (error)
647			    return (error);
648		}
649
650		/*
651		 * If not eof and read aheads are enabled, start one.
652		 * (You need the current block first, so that you have the
653		 *  directory offset cookie of the next block.)
654		 */
655		if (nmp->nm_readahead > 0 &&
656		    (bp->b_flags & B_INVAL) == 0 &&
657		    (np->n_direofoffset == 0 ||
658		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
659		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
660			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
661			if (rabp) {
662			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
663				rabp->b_flags |= B_ASYNC;
664				rabp->b_iocmd = BIO_READ;
665				vfs_busy_pages(rabp, 0);
666				if (ncl_asyncio(nmp, rabp, cred, td)) {
667				    rabp->b_flags |= B_INVAL;
668				    rabp->b_ioflags |= BIO_ERROR;
669				    vfs_unbusy_pages(rabp);
670				    brelse(rabp);
671				}
672			    } else {
673				brelse(rabp);
674			    }
675			}
676		}
677		/*
678		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
679		 * chopped for the EOF condition, we cannot tell how large
680		 * NFS directories are going to be until we hit EOF.  So
681		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
682		 * it just so happens that b_resid will effectively chop it
683		 * to EOF.  *BUT* this information is lost if the buffer goes
684		 * away and is reconstituted into a B_CACHE state ( due to
685		 * being VMIO ) later.  So we keep track of the directory eof
686		 * in np->n_direofoffset and chop it off as an extra step
687		 * right here.
688		 */
689		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
690		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
691			n = np->n_direofoffset - uio->uio_offset;
692		break;
693	    default:
694		printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
695		bp = NULL;
696		break;
697	    }
698
699	    if (n > 0) {
700		    error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio);
701	    }
702	    if (vp->v_type == VLNK)
703		n = 0;
704	    if (bp != NULL)
705		brelse(bp);
706	} while (error == 0 && uio->uio_resid > 0 && n > 0);
707	return (error);
708}
709
710/*
711 * The NFS write path cannot handle iovecs with len > 1. So we need to
712 * break up iovecs accordingly (restricting them to wsize).
713 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
714 * For the ASYNC case, 2 copies are needed. The first a copy from the
715 * user buffer to a staging buffer and then a second copy from the staging
716 * buffer to mbufs. This can be optimized by copying from the user buffer
717 * directly into mbufs and passing the chain down, but that requires a
718 * fair amount of re-working of the relevant codepaths (and can be done
719 * later).
720 */
721static int
722nfs_directio_write(vp, uiop, cred, ioflag)
723	struct vnode *vp;
724	struct uio *uiop;
725	struct ucred *cred;
726	int ioflag;
727{
728	int error;
729	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
730	struct thread *td = uiop->uio_td;
731	int size;
732	int wsize;
733
734	mtx_lock(&nmp->nm_mtx);
735	wsize = nmp->nm_wsize;
736	mtx_unlock(&nmp->nm_mtx);
737	if (ioflag & IO_SYNC) {
738		int iomode, must_commit;
739		struct uio uio;
740		struct iovec iov;
741do_sync:
742		while (uiop->uio_resid > 0) {
743			size = MIN(uiop->uio_resid, wsize);
744			size = MIN(uiop->uio_iov->iov_len, size);
745			iov.iov_base = uiop->uio_iov->iov_base;
746			iov.iov_len = size;
747			uio.uio_iov = &iov;
748			uio.uio_iovcnt = 1;
749			uio.uio_offset = uiop->uio_offset;
750			uio.uio_resid = size;
751			uio.uio_segflg = UIO_USERSPACE;
752			uio.uio_rw = UIO_WRITE;
753			uio.uio_td = td;
754			iomode = NFSWRITE_FILESYNC;
755			error = ncl_writerpc(vp, &uio, cred, &iomode,
756			    &must_commit, 0);
757			KASSERT((must_commit == 0),
758				("ncl_directio_write: Did not commit write"));
759			if (error)
760				return (error);
761			uiop->uio_offset += size;
762			uiop->uio_resid -= size;
763			if (uiop->uio_iov->iov_len <= size) {
764				uiop->uio_iovcnt--;
765				uiop->uio_iov++;
766			} else {
767				uiop->uio_iov->iov_base =
768					(char *)uiop->uio_iov->iov_base + size;
769				uiop->uio_iov->iov_len -= size;
770			}
771		}
772	} else {
773		struct uio *t_uio;
774		struct iovec *t_iov;
775		struct buf *bp;
776
777		/*
778		 * Break up the write into blocksize chunks and hand these
779		 * over to nfsiod's for write back.
780		 * Unfortunately, this incurs a copy of the data. Since
781		 * the user could modify the buffer before the write is
782		 * initiated.
783		 *
784		 * The obvious optimization here is that one of the 2 copies
785		 * in the async write path can be eliminated by copying the
786		 * data here directly into mbufs and passing the mbuf chain
787		 * down. But that will require a fair amount of re-working
788		 * of the code and can be done if there's enough interest
789		 * in NFS directio access.
790		 */
791		while (uiop->uio_resid > 0) {
792			size = MIN(uiop->uio_resid, wsize);
793			size = MIN(uiop->uio_iov->iov_len, size);
794			bp = getpbuf(&ncl_pbuf_freecnt);
795			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
796			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
797			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
798			t_iov->iov_len = size;
799			t_uio->uio_iov = t_iov;
800			t_uio->uio_iovcnt = 1;
801			t_uio->uio_offset = uiop->uio_offset;
802			t_uio->uio_resid = size;
803			t_uio->uio_segflg = UIO_SYSSPACE;
804			t_uio->uio_rw = UIO_WRITE;
805			t_uio->uio_td = td;
806			KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
807			    uiop->uio_segflg == UIO_SYSSPACE,
808			    ("nfs_directio_write: Bad uio_segflg"));
809			if (uiop->uio_segflg == UIO_USERSPACE) {
810				error = copyin(uiop->uio_iov->iov_base,
811				    t_iov->iov_base, size);
812				if (error != 0)
813					goto err_free;
814			} else
815				/*
816				 * UIO_SYSSPACE may never happen, but handle
817				 * it just in case it does.
818				 */
819				bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
820				    size);
821			bp->b_flags |= B_DIRECT;
822			bp->b_iocmd = BIO_WRITE;
823			if (cred != NOCRED) {
824				crhold(cred);
825				bp->b_wcred = cred;
826			} else
827				bp->b_wcred = NOCRED;
828			bp->b_caller1 = (void *)t_uio;
829			bp->b_vp = vp;
830			error = ncl_asyncio(nmp, bp, NOCRED, td);
831err_free:
832			if (error) {
833				free(t_iov->iov_base, M_NFSDIRECTIO);
834				free(t_iov, M_NFSDIRECTIO);
835				free(t_uio, M_NFSDIRECTIO);
836				bp->b_vp = NULL;
837				relpbuf(bp, &ncl_pbuf_freecnt);
838				if (error == EINTR)
839					return (error);
840				goto do_sync;
841			}
842			uiop->uio_offset += size;
843			uiop->uio_resid -= size;
844			if (uiop->uio_iov->iov_len <= size) {
845				uiop->uio_iovcnt--;
846				uiop->uio_iov++;
847			} else {
848				uiop->uio_iov->iov_base =
849					(char *)uiop->uio_iov->iov_base + size;
850				uiop->uio_iov->iov_len -= size;
851			}
852		}
853	}
854	return (0);
855}
856
857/*
858 * Vnode op for write using bio
859 */
860int
861ncl_write(struct vop_write_args *ap)
862{
863	int biosize;
864	struct uio *uio = ap->a_uio;
865	struct thread *td = uio->uio_td;
866	struct vnode *vp = ap->a_vp;
867	struct nfsnode *np = VTONFS(vp);
868	struct ucred *cred = ap->a_cred;
869	int ioflag = ap->a_ioflag;
870	struct buf *bp;
871	struct vattr vattr;
872	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
873	daddr_t lbn;
874	int bcount, noncontig_write, obcount;
875	int bp_cached, n, on, error = 0, error1, wouldcommit;
876	size_t orig_resid, local_resid;
877	off_t orig_size, tmp_off;
878
879	KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
880	KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
881	    ("ncl_write proc"));
882	if (vp->v_type != VREG)
883		return (EIO);
884	mtx_lock(&np->n_mtx);
885	if (np->n_flag & NWRITEERR) {
886		np->n_flag &= ~NWRITEERR;
887		mtx_unlock(&np->n_mtx);
888		return (np->n_error);
889	} else
890		mtx_unlock(&np->n_mtx);
891	mtx_lock(&nmp->nm_mtx);
892	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
893	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
894		mtx_unlock(&nmp->nm_mtx);
895		(void)ncl_fsinfo(nmp, vp, cred, td);
896		mtx_lock(&nmp->nm_mtx);
897	}
898	if (nmp->nm_wsize == 0)
899		(void) newnfs_iosize(nmp);
900	mtx_unlock(&nmp->nm_mtx);
901
902	/*
903	 * Synchronously flush pending buffers if we are in synchronous
904	 * mode or if we are appending.
905	 */
906	if (ioflag & (IO_APPEND | IO_SYNC)) {
907		mtx_lock(&np->n_mtx);
908		if (np->n_flag & NMODIFIED) {
909			mtx_unlock(&np->n_mtx);
910#ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
911			/*
912			 * Require non-blocking, synchronous writes to
913			 * dirty files to inform the program it needs
914			 * to fsync(2) explicitly.
915			 */
916			if (ioflag & IO_NDELAY)
917				return (EAGAIN);
918#endif
919			np->n_attrstamp = 0;
920			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
921			error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag &
922			    IO_VMIO) != 0 ? V_VMIO : 0), td, 1);
923			if (error != 0)
924				return (error);
925		} else
926			mtx_unlock(&np->n_mtx);
927	}
928
929	orig_resid = uio->uio_resid;
930	mtx_lock(&np->n_mtx);
931	orig_size = np->n_size;
932	mtx_unlock(&np->n_mtx);
933
934	/*
935	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
936	 * get the append lock.
937	 */
938	if (ioflag & IO_APPEND) {
939		np->n_attrstamp = 0;
940		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
941		error = VOP_GETATTR(vp, &vattr, cred);
942		if (error)
943			return (error);
944		mtx_lock(&np->n_mtx);
945		uio->uio_offset = np->n_size;
946		mtx_unlock(&np->n_mtx);
947	}
948
949	if (uio->uio_offset < 0)
950		return (EINVAL);
951	tmp_off = uio->uio_offset + uio->uio_resid;
952	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
953		return (EFBIG);
954	if (uio->uio_resid == 0)
955		return (0);
956
957	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
958		return nfs_directio_write(vp, uio, cred, ioflag);
959
960	/*
961	 * Maybe this should be above the vnode op call, but so long as
962	 * file servers have no limits, i don't think it matters
963	 */
964	if (vn_rlimit_fsize(vp, uio, td))
965		return (EFBIG);
966
967	biosize = vp->v_bufobj.bo_bsize;
968	/*
969	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
970	 * would exceed the local maximum per-file write commit size when
971	 * combined with those, we must decide whether to flush,
972	 * go synchronous, or return error.  We don't bother checking
973	 * IO_UNIT -- we just make all writes atomic anyway, as there's
974	 * no point optimizing for something that really won't ever happen.
975	 */
976	wouldcommit = 0;
977	if (!(ioflag & IO_SYNC)) {
978		int nflag;
979
980		mtx_lock(&np->n_mtx);
981		nflag = np->n_flag;
982		mtx_unlock(&np->n_mtx);
983		if (nflag & NMODIFIED) {
984			BO_LOCK(&vp->v_bufobj);
985			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
986				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
987				    b_bobufs) {
988					if (bp->b_flags & B_NEEDCOMMIT)
989						wouldcommit += bp->b_bcount;
990				}
991			}
992			BO_UNLOCK(&vp->v_bufobj);
993		}
994	}
995
996	do {
997		if (!(ioflag & IO_SYNC)) {
998			wouldcommit += biosize;
999			if (wouldcommit > nmp->nm_wcommitsize) {
1000				np->n_attrstamp = 0;
1001				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1002				error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag &
1003				    IO_VMIO) != 0 ? V_VMIO : 0), td, 1);
1004				if (error != 0)
1005					return (error);
1006				wouldcommit = biosize;
1007			}
1008		}
1009
1010		NFSINCRGLOBAL(nfsstatsv1.biocache_writes);
1011		lbn = uio->uio_offset / biosize;
1012		on = uio->uio_offset - (lbn * biosize);
1013		n = MIN((unsigned)(biosize - on), uio->uio_resid);
1014again:
1015		/*
1016		 * Handle direct append and file extension cases, calculate
1017		 * unaligned buffer size.
1018		 */
1019		mtx_lock(&np->n_mtx);
1020		if ((np->n_flag & NHASBEENLOCKED) == 0 &&
1021		    (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0)
1022			noncontig_write = 1;
1023		else
1024			noncontig_write = 0;
1025		if ((uio->uio_offset == np->n_size ||
1026		    (noncontig_write != 0 &&
1027		    lbn == (np->n_size / biosize) &&
1028		    uio->uio_offset + n > np->n_size)) && n) {
1029			mtx_unlock(&np->n_mtx);
1030			/*
1031			 * Get the buffer (in its pre-append state to maintain
1032			 * B_CACHE if it was previously set).  Resize the
1033			 * nfsnode after we have locked the buffer to prevent
1034			 * readers from reading garbage.
1035			 */
1036			obcount = np->n_size - (lbn * biosize);
1037			bp = nfs_getcacheblk(vp, lbn, obcount, td);
1038
1039			if (bp != NULL) {
1040				long save;
1041
1042				mtx_lock(&np->n_mtx);
1043				np->n_size = uio->uio_offset + n;
1044				np->n_flag |= NMODIFIED;
1045				vnode_pager_setsize(vp, np->n_size);
1046				mtx_unlock(&np->n_mtx);
1047
1048				save = bp->b_flags & B_CACHE;
1049				bcount = on + n;
1050				allocbuf(bp, bcount);
1051				bp->b_flags |= save;
1052				if (noncontig_write != 0 && on > obcount)
1053					vfs_bio_bzero_buf(bp, obcount, on -
1054					    obcount);
1055			}
1056		} else {
1057			/*
1058			 * Obtain the locked cache block first, and then
1059			 * adjust the file's size as appropriate.
1060			 */
1061			bcount = on + n;
1062			if ((off_t)lbn * biosize + bcount < np->n_size) {
1063				if ((off_t)(lbn + 1) * biosize < np->n_size)
1064					bcount = biosize;
1065				else
1066					bcount = np->n_size - (off_t)lbn * biosize;
1067			}
1068			mtx_unlock(&np->n_mtx);
1069			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1070			mtx_lock(&np->n_mtx);
1071			if (uio->uio_offset + n > np->n_size) {
1072				np->n_size = uio->uio_offset + n;
1073				np->n_flag |= NMODIFIED;
1074				vnode_pager_setsize(vp, np->n_size);
1075			}
1076			mtx_unlock(&np->n_mtx);
1077		}
1078
1079		if (!bp) {
1080			error = newnfs_sigintr(nmp, td);
1081			if (!error)
1082				error = EINTR;
1083			break;
1084		}
1085
1086		/*
1087		 * Issue a READ if B_CACHE is not set.  In special-append
1088		 * mode, B_CACHE is based on the buffer prior to the write
1089		 * op and is typically set, avoiding the read.  If a read
1090		 * is required in special append mode, the server will
1091		 * probably send us a short-read since we extended the file
1092		 * on our end, resulting in b_resid == 0 and, thusly,
1093		 * B_CACHE getting set.
1094		 *
1095		 * We can also avoid issuing the read if the write covers
1096		 * the entire buffer.  We have to make sure the buffer state
1097		 * is reasonable in this case since we will not be initiating
1098		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1099		 * more information.
1100		 *
1101		 * B_CACHE may also be set due to the buffer being cached
1102		 * normally.
1103		 */
1104
1105		bp_cached = 1;
1106		if (on == 0 && n == bcount) {
1107			if ((bp->b_flags & B_CACHE) == 0)
1108				bp_cached = 0;
1109			bp->b_flags |= B_CACHE;
1110			bp->b_flags &= ~B_INVAL;
1111			bp->b_ioflags &= ~BIO_ERROR;
1112		}
1113
1114		if ((bp->b_flags & B_CACHE) == 0) {
1115			bp->b_iocmd = BIO_READ;
1116			vfs_busy_pages(bp, 0);
1117			error = ncl_doio(vp, bp, cred, td, 0);
1118			if (error) {
1119				brelse(bp);
1120				break;
1121			}
1122		}
1123		if (bp->b_wcred == NOCRED)
1124			bp->b_wcred = crhold(cred);
1125		mtx_lock(&np->n_mtx);
1126		np->n_flag |= NMODIFIED;
1127		mtx_unlock(&np->n_mtx);
1128
1129		/*
1130		 * If dirtyend exceeds file size, chop it down.  This should
1131		 * not normally occur but there is an append race where it
1132		 * might occur XXX, so we log it.
1133		 *
1134		 * If the chopping creates a reverse-indexed or degenerate
1135		 * situation with dirtyoff/end, we 0 both of them.
1136		 */
1137
1138		if (bp->b_dirtyend > bcount) {
1139			printf("NFS append race @%lx:%d\n",
1140			    (long)bp->b_blkno * DEV_BSIZE,
1141			    bp->b_dirtyend - bcount);
1142			bp->b_dirtyend = bcount;
1143		}
1144
1145		if (bp->b_dirtyoff >= bp->b_dirtyend)
1146			bp->b_dirtyoff = bp->b_dirtyend = 0;
1147
1148		/*
1149		 * If the new write will leave a contiguous dirty
1150		 * area, just update the b_dirtyoff and b_dirtyend,
1151		 * otherwise force a write rpc of the old dirty area.
1152		 *
1153		 * If there has been a file lock applied to this file
1154		 * or vfs.nfs.old_noncontig_writing is set, do the following:
1155		 * While it is possible to merge discontiguous writes due to
1156		 * our having a B_CACHE buffer ( and thus valid read data
1157		 * for the hole), we don't because it could lead to
1158		 * significant cache coherency problems with multiple clients,
1159		 * especially if locking is implemented later on.
1160		 *
1161		 * If vfs.nfs.old_noncontig_writing is not set and there has
1162		 * not been file locking done on this file:
1163		 * Relax coherency a bit for the sake of performance and
1164		 * expand the current dirty region to contain the new
1165		 * write even if it means we mark some non-dirty data as
1166		 * dirty.
1167		 */
1168
1169		if (noncontig_write == 0 && bp->b_dirtyend > 0 &&
1170		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1171			if (bwrite(bp) == EINTR) {
1172				error = EINTR;
1173				break;
1174			}
1175			goto again;
1176		}
1177
1178		local_resid = uio->uio_resid;
1179		error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio);
1180
1181		if (error != 0 && !bp_cached) {
1182			/*
1183			 * This block has no other content then what
1184			 * possibly was written by the faulty uiomove.
1185			 * Release it, forgetting the data pages, to
1186			 * prevent the leak of uninitialized data to
1187			 * usermode.
1188			 */
1189			bp->b_ioflags |= BIO_ERROR;
1190			brelse(bp);
1191			uio->uio_offset -= local_resid - uio->uio_resid;
1192			uio->uio_resid = local_resid;
1193			break;
1194		}
1195
1196		/*
1197		 * Since this block is being modified, it must be written
1198		 * again and not just committed.  Since write clustering does
1199		 * not work for the stage 1 data write, only the stage 2
1200		 * commit rpc, we have to clear B_CLUSTEROK as well.
1201		 */
1202		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1203
1204		/*
1205		 * Get the partial update on the progress made from
1206		 * uiomove, if an error occurred.
1207		 */
1208		if (error != 0)
1209			n = local_resid - uio->uio_resid;
1210
1211		/*
1212		 * Only update dirtyoff/dirtyend if not a degenerate
1213		 * condition.
1214		 */
1215		if (n > 0) {
1216			if (bp->b_dirtyend > 0) {
1217				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1218				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1219			} else {
1220				bp->b_dirtyoff = on;
1221				bp->b_dirtyend = on + n;
1222			}
1223			vfs_bio_set_valid(bp, on, n);
1224		}
1225
1226		/*
1227		 * If IO_SYNC do bwrite().
1228		 *
1229		 * IO_INVAL appears to be unused.  The idea appears to be
1230		 * to turn off caching in this case.  Very odd.  XXX
1231		 */
1232		if ((ioflag & IO_SYNC)) {
1233			if (ioflag & IO_INVAL)
1234				bp->b_flags |= B_NOCACHE;
1235			error1 = bwrite(bp);
1236			if (error1 != 0) {
1237				if (error == 0)
1238					error = error1;
1239				break;
1240			}
1241		} else if ((n + on) == biosize || (ioflag & IO_ASYNC) != 0) {
1242			bp->b_flags |= B_ASYNC;
1243			(void) ncl_writebp(bp, 0, NULL);
1244		} else {
1245			bdwrite(bp);
1246		}
1247
1248		if (error != 0)
1249			break;
1250	} while (uio->uio_resid > 0 && n > 0);
1251
1252	if (error != 0) {
1253		if (ioflag & IO_UNIT) {
1254			VATTR_NULL(&vattr);
1255			vattr.va_size = orig_size;
1256			/* IO_SYNC is handled implicitely */
1257			(void)VOP_SETATTR(vp, &vattr, cred);
1258			uio->uio_offset -= orig_resid - uio->uio_resid;
1259			uio->uio_resid = orig_resid;
1260		}
1261	}
1262
1263	return (error);
1264}
1265
1266/*
1267 * Get an nfs cache block.
1268 *
1269 * Allocate a new one if the block isn't currently in the cache
1270 * and return the block marked busy. If the calling process is
1271 * interrupted by a signal for an interruptible mount point, return
1272 * NULL.
1273 *
1274 * The caller must carefully deal with the possible B_INVAL state of
1275 * the buffer.  ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
1276 * indirectly), so synchronous reads can be issued without worrying about
1277 * the B_INVAL state.  We have to be a little more careful when dealing
1278 * with writes (see comments in nfs_write()) when extending a file past
1279 * its EOF.
1280 */
1281static struct buf *
1282nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1283{
1284	struct buf *bp;
1285	struct mount *mp;
1286	struct nfsmount *nmp;
1287
1288	mp = vp->v_mount;
1289	nmp = VFSTONFS(mp);
1290
1291	if (nmp->nm_flag & NFSMNT_INT) {
1292		sigset_t oldset;
1293
1294		newnfs_set_sigmask(td, &oldset);
1295		bp = getblk(vp, bn, size, PCATCH, 0, 0);
1296		newnfs_restore_sigmask(td, &oldset);
1297		while (bp == NULL) {
1298			if (newnfs_sigintr(nmp, td))
1299				return (NULL);
1300			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1301		}
1302	} else {
1303		bp = getblk(vp, bn, size, 0, 0, 0);
1304	}
1305
1306	if (vp->v_type == VREG)
1307		bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
1308	return (bp);
1309}
1310
1311/*
1312 * Flush and invalidate all dirty buffers. If another process is already
1313 * doing the flush, just wait for completion.
1314 */
1315int
1316ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1317{
1318	struct nfsnode *np = VTONFS(vp);
1319	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1320	int error = 0, slpflag, slptimeo;
1321	bool old_lock;
1322
1323	ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
1324
1325	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1326		intrflg = 0;
1327	if (NFSCL_FORCEDISM(nmp->nm_mountp))
1328		intrflg = 1;
1329	if (intrflg) {
1330		slpflag = PCATCH;
1331		slptimeo = 2 * hz;
1332	} else {
1333		slpflag = 0;
1334		slptimeo = 0;
1335	}
1336
1337	old_lock = ncl_excl_start(vp);
1338	if (old_lock)
1339		flags |= V_ALLOWCLEAN;
1340
1341	/*
1342	 * Now, flush as required.
1343	 */
1344	if ((flags & (V_SAVE | V_VMIO)) == V_SAVE &&
1345	     vp->v_bufobj.bo_object != NULL) {
1346		VM_OBJECT_WLOCK(vp->v_bufobj.bo_object);
1347		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1348		VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object);
1349		/*
1350		 * If the page clean was interrupted, fail the invalidation.
1351		 * Not doing so, we run the risk of losing dirty pages in the
1352		 * vinvalbuf() call below.
1353		 */
1354		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1355			goto out;
1356	}
1357
1358	error = vinvalbuf(vp, flags, slpflag, 0);
1359	while (error) {
1360		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1361			goto out;
1362		error = vinvalbuf(vp, flags, 0, slptimeo);
1363	}
1364	if (NFSHASPNFS(nmp)) {
1365		nfscl_layoutcommit(vp, td);
1366		/*
1367		 * Invalidate the attribute cache, since writes to a DS
1368		 * won't update the size attribute.
1369		 */
1370		mtx_lock(&np->n_mtx);
1371		np->n_attrstamp = 0;
1372	} else
1373		mtx_lock(&np->n_mtx);
1374	if (np->n_directio_asyncwr == 0)
1375		np->n_flag &= ~NMODIFIED;
1376	mtx_unlock(&np->n_mtx);
1377out:
1378	ncl_excl_finish(vp, old_lock);
1379	return error;
1380}
1381
1382/*
1383 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1384 * This is mainly to avoid queueing async I/O requests when the nfsiods
1385 * are all hung on a dead server.
1386 *
1387 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1388 * is eventually dequeued by the async daemon, ncl_doio() *will*.
1389 */
1390int
1391ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1392{
1393	int iod;
1394	int gotiod;
1395	int slpflag = 0;
1396	int slptimeo = 0;
1397	int error, error2;
1398
1399	/*
1400	 * Commits are usually short and sweet so lets save some cpu and
1401	 * leave the async daemons for more important rpc's (such as reads
1402	 * and writes).
1403	 *
1404	 * Readdirplus RPCs do vget()s to acquire the vnodes for entries
1405	 * in the directory in order to update attributes. This can deadlock
1406	 * with another thread that is waiting for async I/O to be done by
1407	 * an nfsiod thread while holding a lock on one of these vnodes.
1408	 * To avoid this deadlock, don't allow the async nfsiod threads to
1409	 * perform Readdirplus RPCs.
1410	 */
1411	mtx_lock(&ncl_iod_mutex);
1412	if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1413	     (nmp->nm_bufqiods > ncl_numasync / 2)) ||
1414	    (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) {
1415		mtx_unlock(&ncl_iod_mutex);
1416		return(EIO);
1417	}
1418again:
1419	if (nmp->nm_flag & NFSMNT_INT)
1420		slpflag = PCATCH;
1421	gotiod = FALSE;
1422
1423	/*
1424	 * Find a free iod to process this request.
1425	 */
1426	for (iod = 0; iod < ncl_numasync; iod++)
1427		if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
1428			gotiod = TRUE;
1429			break;
1430		}
1431
1432	/*
1433	 * Try to create one if none are free.
1434	 */
1435	if (!gotiod)
1436		ncl_nfsiodnew();
1437	else {
1438		/*
1439		 * Found one, so wake it up and tell it which
1440		 * mount to process.
1441		 */
1442		NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
1443		    iod, nmp));
1444		ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1445		ncl_iodmount[iod] = nmp;
1446		nmp->nm_bufqiods++;
1447		wakeup(&ncl_iodwant[iod]);
1448	}
1449
1450	/*
1451	 * If none are free, we may already have an iod working on this mount
1452	 * point.  If so, it will process our request.
1453	 */
1454	if (!gotiod) {
1455		if (nmp->nm_bufqiods > 0) {
1456			NFS_DPF(ASYNCIO,
1457				("ncl_asyncio: %d iods are already processing mount %p\n",
1458				 nmp->nm_bufqiods, nmp));
1459			gotiod = TRUE;
1460		}
1461	}
1462
1463	/*
1464	 * If we have an iod which can process the request, then queue
1465	 * the buffer.
1466	 */
1467	if (gotiod) {
1468		/*
1469		 * Ensure that the queue never grows too large.  We still want
1470		 * to asynchronize so we block rather then return EIO.
1471		 */
1472		while (nmp->nm_bufqlen >= 2*ncl_numasync) {
1473			NFS_DPF(ASYNCIO,
1474				("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
1475			nmp->nm_bufqwant = TRUE;
1476			error = newnfs_msleep(td, &nmp->nm_bufq,
1477			    &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
1478			   slptimeo);
1479			if (error) {
1480				error2 = newnfs_sigintr(nmp, td);
1481				if (error2) {
1482					mtx_unlock(&ncl_iod_mutex);
1483					return (error2);
1484				}
1485				if (slpflag == PCATCH) {
1486					slpflag = 0;
1487					slptimeo = 2 * hz;
1488				}
1489			}
1490			/*
1491			 * We might have lost our iod while sleeping,
1492			 * so check and loop if necessary.
1493			 */
1494			goto again;
1495		}
1496
1497		/* We might have lost our nfsiod */
1498		if (nmp->nm_bufqiods == 0) {
1499			NFS_DPF(ASYNCIO,
1500				("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1501			goto again;
1502		}
1503
1504		if (bp->b_iocmd == BIO_READ) {
1505			if (bp->b_rcred == NOCRED && cred != NOCRED)
1506				bp->b_rcred = crhold(cred);
1507		} else {
1508			if (bp->b_wcred == NOCRED && cred != NOCRED)
1509				bp->b_wcred = crhold(cred);
1510		}
1511
1512		if (bp->b_flags & B_REMFREE)
1513			bremfreef(bp);
1514		BUF_KERNPROC(bp);
1515		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1516		nmp->nm_bufqlen++;
1517		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1518			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1519			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1520			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1521			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1522		}
1523		mtx_unlock(&ncl_iod_mutex);
1524		return (0);
1525	}
1526
1527	mtx_unlock(&ncl_iod_mutex);
1528
1529	/*
1530	 * All the iods are busy on other mounts, so return EIO to
1531	 * force the caller to process the i/o synchronously.
1532	 */
1533	NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
1534	return (EIO);
1535}
1536
1537void
1538ncl_doio_directwrite(struct buf *bp)
1539{
1540	int iomode, must_commit;
1541	struct uio *uiop = (struct uio *)bp->b_caller1;
1542	char *iov_base = uiop->uio_iov->iov_base;
1543
1544	iomode = NFSWRITE_FILESYNC;
1545	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1546	ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
1547	KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
1548	free(iov_base, M_NFSDIRECTIO);
1549	free(uiop->uio_iov, M_NFSDIRECTIO);
1550	free(uiop, M_NFSDIRECTIO);
1551	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1552		struct nfsnode *np = VTONFS(bp->b_vp);
1553		mtx_lock(&np->n_mtx);
1554		if (NFSHASPNFS(VFSTONFS(vnode_mount(bp->b_vp)))) {
1555			/*
1556			 * Invalidate the attribute cache, since writes to a DS
1557			 * won't update the size attribute.
1558			 */
1559			np->n_attrstamp = 0;
1560		}
1561		np->n_directio_asyncwr--;
1562		if (np->n_directio_asyncwr == 0) {
1563			np->n_flag &= ~NMODIFIED;
1564			if ((np->n_flag & NFSYNCWAIT)) {
1565				np->n_flag &= ~NFSYNCWAIT;
1566				wakeup((caddr_t)&np->n_directio_asyncwr);
1567			}
1568		}
1569		mtx_unlock(&np->n_mtx);
1570	}
1571	bp->b_vp = NULL;
1572	relpbuf(bp, &ncl_pbuf_freecnt);
1573}
1574
1575/*
1576 * Do an I/O operation to/from a cache block. This may be called
1577 * synchronously or from an nfsiod.
1578 */
1579int
1580ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
1581    int called_from_strategy)
1582{
1583	struct uio *uiop;
1584	struct nfsnode *np;
1585	struct nfsmount *nmp;
1586	int error = 0, iomode, must_commit = 0;
1587	struct uio uio;
1588	struct iovec io;
1589	struct proc *p = td ? td->td_proc : NULL;
1590	uint8_t	iocmd;
1591
1592	np = VTONFS(vp);
1593	nmp = VFSTONFS(vp->v_mount);
1594	uiop = &uio;
1595	uiop->uio_iov = &io;
1596	uiop->uio_iovcnt = 1;
1597	uiop->uio_segflg = UIO_SYSSPACE;
1598	uiop->uio_td = td;
1599
1600	/*
1601	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1602	 * do this here so we do not have to do it in all the code that
1603	 * calls us.
1604	 */
1605	bp->b_flags &= ~B_INVAL;
1606	bp->b_ioflags &= ~BIO_ERROR;
1607
1608	KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
1609	iocmd = bp->b_iocmd;
1610	if (iocmd == BIO_READ) {
1611	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1612	    io.iov_base = bp->b_data;
1613	    uiop->uio_rw = UIO_READ;
1614
1615	    switch (vp->v_type) {
1616	    case VREG:
1617		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1618		NFSINCRGLOBAL(nfsstatsv1.read_bios);
1619		error = ncl_readrpc(vp, uiop, cr);
1620
1621		if (!error) {
1622		    if (uiop->uio_resid) {
1623			/*
1624			 * If we had a short read with no error, we must have
1625			 * hit a file hole.  We should zero-fill the remainder.
1626			 * This can also occur if the server hits the file EOF.
1627			 *
1628			 * Holes used to be able to occur due to pending
1629			 * writes, but that is not possible any longer.
1630			 */
1631			int nread = bp->b_bcount - uiop->uio_resid;
1632			ssize_t left = uiop->uio_resid;
1633
1634			if (left > 0)
1635				bzero((char *)bp->b_data + nread, left);
1636			uiop->uio_resid = 0;
1637		    }
1638		}
1639		/* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
1640		if (p && (vp->v_vflag & VV_TEXT)) {
1641			mtx_lock(&np->n_mtx);
1642			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
1643				mtx_unlock(&np->n_mtx);
1644				PROC_LOCK(p);
1645				killproc(p, "text file modification");
1646				PROC_UNLOCK(p);
1647			} else
1648				mtx_unlock(&np->n_mtx);
1649		}
1650		break;
1651	    case VLNK:
1652		uiop->uio_offset = (off_t)0;
1653		NFSINCRGLOBAL(nfsstatsv1.readlink_bios);
1654		error = ncl_readlinkrpc(vp, uiop, cr);
1655		break;
1656	    case VDIR:
1657		NFSINCRGLOBAL(nfsstatsv1.readdir_bios);
1658		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1659		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1660			error = ncl_readdirplusrpc(vp, uiop, cr, td);
1661			if (error == NFSERR_NOTSUPP)
1662				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1663		}
1664		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1665			error = ncl_readdirrpc(vp, uiop, cr, td);
1666		/*
1667		 * end-of-directory sets B_INVAL but does not generate an
1668		 * error.
1669		 */
1670		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1671			bp->b_flags |= B_INVAL;
1672		break;
1673	    default:
1674		printf("ncl_doio:  type %x unexpected\n", vp->v_type);
1675		break;
1676	    }
1677	    if (error) {
1678		bp->b_ioflags |= BIO_ERROR;
1679		bp->b_error = error;
1680	    }
1681	} else {
1682	    /*
1683	     * If we only need to commit, try to commit
1684	     */
1685	    if (bp->b_flags & B_NEEDCOMMIT) {
1686		    int retv;
1687		    off_t off;
1688
1689		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1690		    retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1691			bp->b_wcred, td);
1692		    if (retv == 0) {
1693			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1694			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1695			    bp->b_resid = 0;
1696			    bufdone(bp);
1697			    return (0);
1698		    }
1699		    if (retv == NFSERR_STALEWRITEVERF) {
1700			    ncl_clearcommit(vp->v_mount);
1701		    }
1702	    }
1703
1704	    /*
1705	     * Setup for actual write
1706	     */
1707	    mtx_lock(&np->n_mtx);
1708	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1709		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1710	    mtx_unlock(&np->n_mtx);
1711
1712	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1713		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1714		    - bp->b_dirtyoff;
1715		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1716		    + bp->b_dirtyoff;
1717		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1718		uiop->uio_rw = UIO_WRITE;
1719		NFSINCRGLOBAL(nfsstatsv1.write_bios);
1720
1721		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1722		    iomode = NFSWRITE_UNSTABLE;
1723		else
1724		    iomode = NFSWRITE_FILESYNC;
1725
1726		error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
1727		    called_from_strategy);
1728
1729		/*
1730		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1731		 * to cluster the buffers needing commit.  This will allow
1732		 * the system to submit a single commit rpc for the whole
1733		 * cluster.  We can do this even if the buffer is not 100%
1734		 * dirty (relative to the NFS blocksize), so we optimize the
1735		 * append-to-file-case.
1736		 *
1737		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1738		 * cleared because write clustering only works for commit
1739		 * rpc's, not for the data portion of the write).
1740		 */
1741
1742		if (!error && iomode == NFSWRITE_UNSTABLE) {
1743		    bp->b_flags |= B_NEEDCOMMIT;
1744		    if (bp->b_dirtyoff == 0
1745			&& bp->b_dirtyend == bp->b_bcount)
1746			bp->b_flags |= B_CLUSTEROK;
1747		} else {
1748		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1749		}
1750
1751		/*
1752		 * For an interrupted write, the buffer is still valid
1753		 * and the write hasn't been pushed to the server yet,
1754		 * so we can't set BIO_ERROR and report the interruption
1755		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1756		 * is not relevant, so the rpc attempt is essentially
1757		 * a noop.  For the case of a V3 write rpc not being
1758		 * committed to stable storage, the block is still
1759		 * dirty and requires either a commit rpc or another
1760		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1761		 * the block is reused. This is indicated by setting
1762		 * the B_DELWRI and B_NEEDCOMMIT flags.
1763		 *
1764		 * EIO is returned by ncl_writerpc() to indicate a recoverable
1765		 * write error and is handled as above, except that
1766		 * B_EINTR isn't set. One cause of this is a stale stateid
1767		 * error for the RPC that indicates recovery is required,
1768		 * when called with called_from_strategy != 0.
1769		 *
1770		 * If the buffer is marked B_PAGING, it does not reside on
1771		 * the vp's paging queues so we cannot call bdirty().  The
1772		 * bp in this case is not an NFS cache block so we should
1773		 * be safe. XXX
1774		 *
1775		 * The logic below breaks up errors into recoverable and
1776		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1777		 * and keep the buffer around for potential write retries.
1778		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1779		 * and save the error in the nfsnode. This is less than ideal
1780		 * but necessary. Keeping such buffers around could potentially
1781		 * cause buffer exhaustion eventually (they can never be written
1782		 * out, so will get constantly be re-dirtied). It also causes
1783		 * all sorts of vfs panics. For non-recoverable write errors,
1784		 * also invalidate the attrcache, so we'll be forced to go over
1785		 * the wire for this object, returning an error to user on next
1786		 * call (most of the time).
1787		 */
1788		if (error == EINTR || error == EIO || error == ETIMEDOUT
1789		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1790			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1791			if ((bp->b_flags & B_PAGING) == 0) {
1792			    bdirty(bp);
1793			    bp->b_flags &= ~B_DONE;
1794			}
1795			if ((error == EINTR || error == ETIMEDOUT) &&
1796			    (bp->b_flags & B_ASYNC) == 0)
1797			    bp->b_flags |= B_EINTR;
1798		} else {
1799		    if (error) {
1800			bp->b_ioflags |= BIO_ERROR;
1801			bp->b_flags |= B_INVAL;
1802			bp->b_error = np->n_error = error;
1803			mtx_lock(&np->n_mtx);
1804			np->n_flag |= NWRITEERR;
1805			np->n_attrstamp = 0;
1806			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1807			mtx_unlock(&np->n_mtx);
1808		    }
1809		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1810		}
1811	    } else {
1812		bp->b_resid = 0;
1813		bufdone(bp);
1814		return (0);
1815	    }
1816	}
1817	bp->b_resid = uiop->uio_resid;
1818	if (must_commit)
1819	    ncl_clearcommit(vp->v_mount);
1820	bufdone(bp);
1821	return (error);
1822}
1823
1824/*
1825 * Used to aid in handling ftruncate() operations on the NFS client side.
1826 * Truncation creates a number of special problems for NFS.  We have to
1827 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1828 * we have to properly handle VM pages or (potentially dirty) buffers
1829 * that straddle the truncation point.
1830 */
1831
1832int
1833ncl_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize)
1834{
1835	struct nfsnode *np = VTONFS(vp);
1836	u_quad_t tsize;
1837	int biosize = vp->v_bufobj.bo_bsize;
1838	int error = 0;
1839
1840	mtx_lock(&np->n_mtx);
1841	tsize = np->n_size;
1842	np->n_size = nsize;
1843	mtx_unlock(&np->n_mtx);
1844
1845	if (nsize < tsize) {
1846		struct buf *bp;
1847		daddr_t lbn;
1848		int bufsize;
1849
1850		/*
1851		 * vtruncbuf() doesn't get the buffer overlapping the
1852		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1853		 * buffer that now needs to be truncated.
1854		 */
1855		error = vtruncbuf(vp, nsize, biosize);
1856		lbn = nsize / biosize;
1857		bufsize = nsize - (lbn * biosize);
1858		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1859		if (!bp)
1860			return EINTR;
1861		if (bp->b_dirtyoff > bp->b_bcount)
1862			bp->b_dirtyoff = bp->b_bcount;
1863		if (bp->b_dirtyend > bp->b_bcount)
1864			bp->b_dirtyend = bp->b_bcount;
1865		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1866		brelse(bp);
1867	} else {
1868		vnode_pager_setsize(vp, nsize);
1869	}
1870	return(error);
1871}
1872
1873