netback.c revision 277103
1/*-
2 * Copyright (c) 2009-2011 Spectra Logic Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions, and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    substantially similar to the "NO WARRANTY" disclaimer below
13 *    ("Disclaimer") and any redistribution must be conditioned upon
14 *    including a substantially similar Disclaimer requirement for further
15 *    binary redistribution.
16 *
17 * NO WARRANTY
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGES.
29 *
30 * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31 *          Alan Somers         (Spectra Logic Corporation)
32 *          John Suykerbuyk     (Spectra Logic Corporation)
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/dev/xen/netback/netback.c 277103 2015-01-13 05:32:51Z delphij $");
37
38/**
39 * \file netback.c
40 *
41 * \brief Device driver supporting the vending of network access
42 * 	  from this FreeBSD domain to other domains.
43 */
44#include "opt_inet.h"
45#include "opt_inet6.h"
46
47#include "opt_sctp.h"
48
49#include <sys/param.h>
50#include <sys/kernel.h>
51
52#include <sys/bus.h>
53#include <sys/module.h>
54#include <sys/rman.h>
55#include <sys/socket.h>
56#include <sys/sockio.h>
57#include <sys/sysctl.h>
58
59#include <net/if.h>
60#include <net/if_var.h>
61#include <net/if_arp.h>
62#include <net/ethernet.h>
63#include <net/if_dl.h>
64#include <net/if_media.h>
65#include <net/if_types.h>
66
67#include <netinet/in.h>
68#include <netinet/ip.h>
69#include <netinet/if_ether.h>
70#if __FreeBSD_version >= 700000
71#include <netinet/tcp.h>
72#endif
73#include <netinet/ip_icmp.h>
74#include <netinet/udp.h>
75#include <machine/in_cksum.h>
76
77#include <vm/vm.h>
78#include <vm/pmap.h>
79#include <vm/vm_extern.h>
80#include <vm/vm_kern.h>
81
82#include <machine/_inttypes.h>
83
84#include <xen/xen-os.h>
85#include <xen/hypervisor.h>
86#include <xen/xen_intr.h>
87#include <xen/interface/io/netif.h>
88#include <xen/xenbus/xenbusvar.h>
89
90#include <machine/xen/xenvar.h>
91
92/*--------------------------- Compile-time Tunables --------------------------*/
93
94/*---------------------------------- Macros ----------------------------------*/
95/**
96 * Custom malloc type for all driver allocations.
97 */
98static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
99
100#define	XNB_SG	1	/* netback driver supports feature-sg */
101#define	XNB_GSO_TCPV4 1	/* netback driver supports feature-gso-tcpv4 */
102#define	XNB_RX_COPY 1	/* netback driver supports feature-rx-copy */
103#define	XNB_RX_FLIP 0	/* netback driver does not support feature-rx-flip */
104
105#undef XNB_DEBUG
106#define	XNB_DEBUG /* hardcode on during development */
107
108#ifdef XNB_DEBUG
109#define	DPRINTF(fmt, args...) \
110	printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
111#else
112#define	DPRINTF(fmt, args...) do {} while (0)
113#endif
114
115/* Default length for stack-allocated grant tables */
116#define	GNTTAB_LEN	(64)
117
118/* Features supported by all backends.  TSO and LRO can be negotiated */
119#define	XNB_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
120
121#define	NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
122#define	NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
123
124/**
125 * Two argument version of the standard macro.  Second argument is a tentative
126 * value of req_cons
127 */
128#define	RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({                     \
129	unsigned int req = (_r)->sring->req_prod - cons;          	\
130	unsigned int rsp = RING_SIZE(_r) -                              \
131	(cons - (_r)->rsp_prod_pvt);                          		\
132	req < rsp ? req : rsp;                                          \
133})
134
135#define	virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT)
136#define	virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
137
138/**
139 * Predefined array type of grant table copy descriptors.  Used to pass around
140 * statically allocated memory structures.
141 */
142typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
143
144/*--------------------------- Forward Declarations ---------------------------*/
145struct xnb_softc;
146struct xnb_pkt;
147
148static void	xnb_attach_failed(struct xnb_softc *xnb,
149				  int err, const char *fmt, ...)
150				  __printflike(3,4);
151static int	xnb_shutdown(struct xnb_softc *xnb);
152static int	create_netdev(device_t dev);
153static int	xnb_detach(device_t dev);
154static int	xnb_ifmedia_upd(struct ifnet *ifp);
155static void	xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
156static void 	xnb_intr(void *arg);
157static int	xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
158			 const struct mbuf *mbufc, gnttab_copy_table gnttab);
159static int	xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
160			 struct mbuf **mbufc, struct ifnet *ifnet,
161			 gnttab_copy_table gnttab);
162static int	xnb_ring2pkt(struct xnb_pkt *pkt,
163			     const netif_tx_back_ring_t *tx_ring,
164			     RING_IDX start);
165static void	xnb_txpkt2rsp(const struct xnb_pkt *pkt,
166			      netif_tx_back_ring_t *ring, int error);
167static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp);
168static int	xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
169				 const struct mbuf *mbufc,
170				 gnttab_copy_table gnttab,
171				 const netif_tx_back_ring_t *txb,
172				 domid_t otherend_id);
173static void	xnb_update_mbufc(struct mbuf *mbufc,
174				 const gnttab_copy_table gnttab, int n_entries);
175static int	xnb_mbufc2pkt(const struct mbuf *mbufc,
176			      struct xnb_pkt *pkt,
177			      RING_IDX start, int space);
178static int	xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
179				 const struct mbuf *mbufc,
180				 gnttab_copy_table gnttab,
181				 const netif_rx_back_ring_t *rxb,
182				 domid_t otherend_id);
183static int	xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
184			      const gnttab_copy_table gnttab, int n_entries,
185			      netif_rx_back_ring_t *ring);
186static void	xnb_stop(struct xnb_softc*);
187static int	xnb_ioctl(struct ifnet*, u_long, caddr_t);
188static void	xnb_start_locked(struct ifnet*);
189static void	xnb_start(struct ifnet*);
190static void	xnb_ifinit_locked(struct xnb_softc*);
191static void	xnb_ifinit(void*);
192#ifdef XNB_DEBUG
193static int	xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
194static int	xnb_dump_rings(SYSCTL_HANDLER_ARGS);
195#endif
196#if defined(INET) || defined(INET6)
197static void	xnb_add_mbuf_cksum(struct mbuf *mbufc);
198#endif
199/*------------------------------ Data Structures -----------------------------*/
200
201
202/**
203 * Representation of a xennet packet.  Simplified version of a packet as
204 * stored in the Xen tx ring.  Applicable to both RX and TX packets
205 */
206struct xnb_pkt{
207	/**
208	 * Array index of the first data-bearing (eg, not extra info) entry
209	 * for this packet
210	 */
211	RING_IDX	car;
212
213	/**
214	 * Array index of the second data-bearing entry for this packet.
215	 * Invalid if the packet has only one data-bearing entry.  If the
216	 * packet has more than two data-bearing entries, then the second
217	 * through the last will be sequential modulo the ring size
218	 */
219	RING_IDX	cdr;
220
221	/**
222	 * Optional extra info.  Only valid if flags contains
223	 * NETTXF_extra_info.  Note that extra.type will always be
224	 * XEN_NETIF_EXTRA_TYPE_GSO.  Currently, no known netfront or netback
225	 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
226	 */
227	netif_extra_info_t extra;
228
229	/** Size of entire packet in bytes.       */
230	uint16_t	size;
231
232	/** The size of the first entry's data in bytes */
233	uint16_t	car_size;
234
235	/**
236	 * Either NETTXF_ or NETRXF_ flags.  Note that the flag values are
237	 * not the same for TX and RX packets
238	 */
239	uint16_t	flags;
240
241	/**
242	 * The number of valid data-bearing entries (either netif_tx_request's
243	 * or netif_rx_response's) in the packet.  If this is 0, it means the
244	 * entire packet is invalid.
245	 */
246	uint16_t	list_len;
247
248	/** There was an error processing the packet */
249	uint8_t		error;
250};
251
252/** xnb_pkt method: initialize it */
253static inline void
254xnb_pkt_initialize(struct xnb_pkt *pxnb)
255{
256	bzero(pxnb, sizeof(*pxnb));
257}
258
259/** xnb_pkt method: mark the packet as valid */
260static inline void
261xnb_pkt_validate(struct xnb_pkt *pxnb)
262{
263	pxnb->error = 0;
264};
265
266/** xnb_pkt method: mark the packet as invalid */
267static inline void
268xnb_pkt_invalidate(struct xnb_pkt *pxnb)
269{
270	pxnb->error = 1;
271};
272
273/** xnb_pkt method: Check whether the packet is valid */
274static inline int
275xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
276{
277	return (! pxnb->error);
278}
279
280#ifdef XNB_DEBUG
281/** xnb_pkt method: print the packet's contents in human-readable format*/
282static void __unused
283xnb_dump_pkt(const struct xnb_pkt *pkt) {
284	if (pkt == NULL) {
285	  DPRINTF("Was passed a null pointer.\n");
286	  return;
287	}
288	DPRINTF("pkt address= %p\n", pkt);
289	DPRINTF("pkt->size=%d\n", pkt->size);
290	DPRINTF("pkt->car_size=%d\n", pkt->car_size);
291	DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
292	DPRINTF("pkt->list_len=%d\n", pkt->list_len);
293	/* DPRINTF("pkt->extra");	TODO */
294	DPRINTF("pkt->car=%d\n", pkt->car);
295	DPRINTF("pkt->cdr=%d\n", pkt->cdr);
296	DPRINTF("pkt->error=%d\n", pkt->error);
297}
298#endif /* XNB_DEBUG */
299
300static void
301xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
302{
303	if (txreq != NULL) {
304		DPRINTF("netif_tx_request index =%u\n", idx);
305		DPRINTF("netif_tx_request.gref  =%u\n", txreq->gref);
306		DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
307		DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
308		DPRINTF("netif_tx_request.id    =%hu\n", txreq->id);
309		DPRINTF("netif_tx_request.size  =%hu\n", txreq->size);
310	}
311}
312
313
314/**
315 * \brief Configuration data for a shared memory request ring
316 *        used to communicate with the front-end client of this
317 *        this driver.
318 */
319struct xnb_ring_config {
320	/**
321	 * Runtime structures for ring access.  Unfortunately, TX and RX rings
322	 * use different data structures, and that cannot be changed since it
323	 * is part of the interdomain protocol.
324	 */
325	union{
326		netif_rx_back_ring_t	  rx_ring;
327		netif_tx_back_ring_t	  tx_ring;
328	} back_ring;
329
330	/**
331	 * The device bus address returned by the hypervisor when
332	 * mapping the ring and required to unmap it when a connection
333	 * is torn down.
334	 */
335	uint64_t	bus_addr;
336
337	/** The pseudo-physical address where ring memory is mapped.*/
338	uint64_t	gnt_addr;
339
340	/** KVA address where ring memory is mapped. */
341	vm_offset_t	va;
342
343	/**
344	 * Grant table handles, one per-ring page, returned by the
345	 * hyperpervisor upon mapping of the ring and required to
346	 * unmap it when a connection is torn down.
347	 */
348	grant_handle_t	handle;
349
350	/** The number of ring pages mapped for the current connection. */
351	unsigned	ring_pages;
352
353	/**
354	 * The grant references, one per-ring page, supplied by the
355	 * front-end, allowing us to reference the ring pages in the
356	 * front-end's domain and to map these pages into our own domain.
357	 */
358	grant_ref_t	ring_ref;
359};
360
361/**
362 * Per-instance connection state flags.
363 */
364typedef enum
365{
366	/** Communication with the front-end has been established. */
367	XNBF_RING_CONNECTED    = 0x01,
368
369	/**
370	 * Front-end requests exist in the ring and are waiting for
371	 * xnb_xen_req objects to free up.
372	 */
373	XNBF_RESOURCE_SHORTAGE = 0x02,
374
375	/** Connection teardown has started. */
376	XNBF_SHUTDOWN          = 0x04,
377
378	/** A thread is already performing shutdown processing. */
379	XNBF_IN_SHUTDOWN       = 0x08
380} xnb_flag_t;
381
382/**
383 * Types of rings.  Used for array indices and to identify a ring's control
384 * data structure type
385 */
386typedef enum{
387	XNB_RING_TYPE_TX = 0,	/* ID of TX rings, used for array indices */
388	XNB_RING_TYPE_RX = 1,	/* ID of RX rings, used for array indices */
389	XNB_NUM_RING_TYPES
390} xnb_ring_type_t;
391
392/**
393 * Per-instance configuration data.
394 */
395struct xnb_softc {
396	/** NewBus device corresponding to this instance. */
397	device_t		dev;
398
399	/* Media related fields */
400
401	/** Generic network media state */
402	struct ifmedia		sc_media;
403
404	/** Media carrier info */
405	struct ifnet 		*xnb_ifp;
406
407	/** Our own private carrier state */
408	unsigned carrier;
409
410	/** Device MAC Address */
411	uint8_t			mac[ETHER_ADDR_LEN];
412
413	/* Xen related fields */
414
415	/**
416	 * \brief The netif protocol abi in effect.
417	 *
418	 * There are situations where the back and front ends can
419	 * have a different, native abi (e.g. intel x86_64 and
420	 * 32bit x86 domains on the same machine).  The back-end
421	 * always accomodates the front-end's native abi.  That
422	 * value is pulled from the XenStore and recorded here.
423	 */
424	int			abi;
425
426	/**
427	 * Name of the bridge to which this VIF is connected, if any
428	 * This field is dynamically allocated by xenbus and must be free()ed
429	 * when no longer needed
430	 */
431	char			*bridge;
432
433	/** The interrupt driven even channel used to signal ring events. */
434	evtchn_port_t		evtchn;
435
436	/** Xen device handle.*/
437	long 			handle;
438
439	/** Handle to the communication ring event channel. */
440	xen_intr_handle_t	xen_intr_handle;
441
442	/**
443	 * \brief Cached value of the front-end's domain id.
444	 *
445	 * This value is used at once for each mapped page in
446	 * a transaction.  We cache it to avoid incuring the
447	 * cost of an ivar access every time this is needed.
448	 */
449	domid_t			otherend_id;
450
451	/**
452	 * Undocumented frontend feature.  Has something to do with
453	 * scatter/gather IO
454	 */
455	uint8_t			can_sg;
456	/** Undocumented frontend feature */
457	uint8_t			gso;
458	/** Undocumented frontend feature */
459	uint8_t			gso_prefix;
460	/** Can checksum TCP/UDP over IPv4 */
461	uint8_t			ip_csum;
462
463	/* Implementation related fields */
464	/**
465	 * Preallocated grant table copy descriptor for RX operations.
466	 * Access must be protected by rx_lock
467	 */
468	gnttab_copy_table	rx_gnttab;
469
470	/**
471	 * Preallocated grant table copy descriptor for TX operations.
472	 * Access must be protected by tx_lock
473	 */
474	gnttab_copy_table	tx_gnttab;
475
476#ifdef XENHVM
477	/**
478	 * Resource representing allocated physical address space
479	 * associated with our per-instance kva region.
480	 */
481	struct resource		*pseudo_phys_res;
482
483	/** Resource id for allocated physical address space. */
484	int			pseudo_phys_res_id;
485#endif
486
487	/** Ring mapping and interrupt configuration data. */
488	struct xnb_ring_config	ring_configs[XNB_NUM_RING_TYPES];
489
490	/**
491	 * Global pool of kva used for mapping remote domain ring
492	 * and I/O transaction data.
493	 */
494	vm_offset_t		kva;
495
496	/** Psuedo-physical address corresponding to kva. */
497	uint64_t		gnt_base_addr;
498
499	/** Various configuration and state bit flags. */
500	xnb_flag_t		flags;
501
502	/** Mutex protecting per-instance data in the receive path. */
503	struct mtx		rx_lock;
504
505	/** Mutex protecting per-instance data in the softc structure. */
506	struct mtx		sc_lock;
507
508	/** Mutex protecting per-instance data in the transmit path. */
509	struct mtx		tx_lock;
510
511	/** The size of the global kva pool. */
512	int			kva_size;
513
514	/** Name of the interface */
515	char			 if_name[IFNAMSIZ];
516};
517
518/*---------------------------- Debugging functions ---------------------------*/
519#ifdef XNB_DEBUG
520static void __unused
521xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
522{
523	if (entry == NULL) {
524		printf("NULL grant table pointer\n");
525		return;
526	}
527
528	if (entry->flags & GNTCOPY_dest_gref)
529		printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
530	else
531		printf("gnttab dest gmfn=\t%lu\n", entry->dest.u.gmfn);
532	printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
533	printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
534	if (entry->flags & GNTCOPY_source_gref)
535		printf("gnttab source ref=\t%u\n", entry->source.u.ref);
536	else
537		printf("gnttab source gmfn=\t%lu\n", entry->source.u.gmfn);
538	printf("gnttab source offset=\t%hu\n", entry->source.offset);
539	printf("gnttab source domid=\t%hu\n", entry->source.domid);
540	printf("gnttab len=\t%hu\n", entry->len);
541	printf("gnttab flags=\t%hu\n", entry->flags);
542	printf("gnttab status=\t%hd\n", entry->status);
543}
544
545static int
546xnb_dump_rings(SYSCTL_HANDLER_ARGS)
547{
548	static char results[720];
549	struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
550	netif_rx_back_ring_t const* rxb =
551		&xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
552	netif_tx_back_ring_t const* txb =
553		&xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
554
555	/* empty the result strings */
556	results[0] = 0;
557
558	if ( !txb || !txb->sring || !rxb || !rxb->sring )
559		return (SYSCTL_OUT(req, results, strnlen(results, 720)));
560
561	snprintf(results, 720,
562	    "\n\t%35s %18s\n"	/* TX, RX */
563	    "\t%16s %18d %18d\n"	/* req_cons */
564	    "\t%16s %18d %18d\n"	/* nr_ents */
565	    "\t%16s %18d %18d\n"	/* rsp_prod_pvt */
566	    "\t%16s %18p %18p\n"	/* sring */
567	    "\t%16s %18d %18d\n"	/* req_prod */
568	    "\t%16s %18d %18d\n"	/* req_event */
569	    "\t%16s %18d %18d\n"	/* rsp_prod */
570	    "\t%16s %18d %18d\n",	/* rsp_event */
571	    "TX", "RX",
572	    "req_cons", txb->req_cons, rxb->req_cons,
573	    "nr_ents", txb->nr_ents, rxb->nr_ents,
574	    "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
575	    "sring", txb->sring, rxb->sring,
576	    "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
577	    "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
578	    "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
579	    "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
580
581	return (SYSCTL_OUT(req, results, strnlen(results, 720)));
582}
583
584static void __unused
585xnb_dump_mbuf(const struct mbuf *m)
586{
587	int len;
588	uint8_t *d;
589	if (m == NULL)
590		return;
591
592	printf("xnb_dump_mbuf:\n");
593	if (m->m_flags & M_PKTHDR) {
594		printf("    flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
595		       "tso_segsz=%5hd\n",
596		       m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags,
597		       m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
598		printf("    rcvif=%16p,  len=%19d\n",
599		       m->m_pkthdr.rcvif, m->m_pkthdr.len);
600	}
601	printf("    m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
602	       m->m_next, m->m_nextpkt, m->m_data);
603	printf("    m_len=%17d, m_flags=%#15x, m_type=%18u\n",
604	       m->m_len, m->m_flags, m->m_type);
605
606	len = m->m_len;
607	d = mtod(m, uint8_t*);
608	while (len > 0) {
609		int i;
610		printf("                ");
611		for (i = 0; (i < 16) && (len > 0); i++, len--) {
612			printf("%02hhx ", *(d++));
613		}
614		printf("\n");
615	}
616}
617#endif /* XNB_DEBUG */
618
619/*------------------------ Inter-Domain Communication ------------------------*/
620/**
621 * Free dynamically allocated KVA or pseudo-physical address allocations.
622 *
623 * \param xnb  Per-instance xnb configuration structure.
624 */
625static void
626xnb_free_communication_mem(struct xnb_softc *xnb)
627{
628	if (xnb->kva != 0) {
629#ifndef XENHVM
630		kva_free(xnb->kva, xnb->kva_size);
631#else
632		if (xnb->pseudo_phys_res != NULL) {
633			bus_release_resource(xnb->dev, SYS_RES_MEMORY,
634			    xnb->pseudo_phys_res_id,
635			    xnb->pseudo_phys_res);
636			xnb->pseudo_phys_res = NULL;
637		}
638#endif /* XENHVM */
639	}
640	xnb->kva = 0;
641	xnb->gnt_base_addr = 0;
642}
643
644/**
645 * Cleanup all inter-domain communication mechanisms.
646 *
647 * \param xnb  Per-instance xnb configuration structure.
648 */
649static int
650xnb_disconnect(struct xnb_softc *xnb)
651{
652	struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
653	int error;
654	int i;
655
656	if (xnb->xen_intr_handle != NULL)
657		xen_intr_unbind(&xnb->xen_intr_handle);
658
659	/*
660	 * We may still have another thread currently processing requests.  We
661	 * must acquire the rx and tx locks to make sure those threads are done,
662	 * but we can release those locks as soon as we acquire them, because no
663	 * more interrupts will be arriving.
664	 */
665	mtx_lock(&xnb->tx_lock);
666	mtx_unlock(&xnb->tx_lock);
667	mtx_lock(&xnb->rx_lock);
668	mtx_unlock(&xnb->rx_lock);
669
670	/* Free malloc'd softc member variables */
671	if (xnb->bridge != NULL) {
672		free(xnb->bridge, M_XENSTORE);
673		xnb->bridge = NULL;
674	}
675
676	/* All request processing has stopped, so unmap the rings */
677	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
678		gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
679		gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
680		gnts[i].handle = xnb->ring_configs[i].handle;
681	}
682	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
683					  XNB_NUM_RING_TYPES);
684	KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
685
686	xnb_free_communication_mem(xnb);
687	/*
688	 * Zero the ring config structs because the pointers, handles, and
689	 * grant refs contained therein are no longer valid.
690	 */
691	bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
692	    sizeof(struct xnb_ring_config));
693	bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
694	    sizeof(struct xnb_ring_config));
695
696	xnb->flags &= ~XNBF_RING_CONNECTED;
697	return (0);
698}
699
700/**
701 * Map a single shared memory ring into domain local address space and
702 * initialize its control structure
703 *
704 * \param xnb	Per-instance xnb configuration structure
705 * \param ring_type	Array index of this ring in the xnb's array of rings
706 * \return 	An errno
707 */
708static int
709xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
710{
711	struct gnttab_map_grant_ref gnt;
712	struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
713	int error;
714
715	/* TX ring type = 0, RX =1 */
716	ring->va = xnb->kva + ring_type * PAGE_SIZE;
717	ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
718
719	gnt.host_addr = ring->gnt_addr;
720	gnt.flags     = GNTMAP_host_map;
721	gnt.ref       = ring->ring_ref;
722	gnt.dom       = xnb->otherend_id;
723
724	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
725	if (error != 0)
726		panic("netback: Ring page grant table op failed (%d)", error);
727
728	if (gnt.status != 0) {
729		ring->va = 0;
730		error = EACCES;
731		xenbus_dev_fatal(xnb->dev, error,
732				 "Ring shared page mapping failed. "
733				 "Status %d.", gnt.status);
734	} else {
735		ring->handle = gnt.handle;
736		ring->bus_addr = gnt.dev_bus_addr;
737
738		if (ring_type == XNB_RING_TYPE_TX) {
739			BACK_RING_INIT(&ring->back_ring.tx_ring,
740			    (netif_tx_sring_t*)ring->va,
741			    ring->ring_pages * PAGE_SIZE);
742		} else if (ring_type == XNB_RING_TYPE_RX) {
743			BACK_RING_INIT(&ring->back_ring.rx_ring,
744			    (netif_rx_sring_t*)ring->va,
745			    ring->ring_pages * PAGE_SIZE);
746		} else {
747			xenbus_dev_fatal(xnb->dev, error,
748				 "Unknown ring type %d", ring_type);
749		}
750	}
751
752	return error;
753}
754
755/**
756 * Setup the shared memory rings and bind an interrupt to the event channel
757 * used to notify us of ring changes.
758 *
759 * \param xnb  Per-instance xnb configuration structure.
760 */
761static int
762xnb_connect_comms(struct xnb_softc *xnb)
763{
764	int	error;
765	xnb_ring_type_t i;
766
767	if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
768		return (0);
769
770	/*
771	 * Kva for our rings are at the tail of the region of kva allocated
772	 * by xnb_alloc_communication_mem().
773	 */
774	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
775		error = xnb_connect_ring(xnb, i);
776		if (error != 0)
777	  		return error;
778	}
779
780	xnb->flags |= XNBF_RING_CONNECTED;
781
782	error = xen_intr_bind_remote_port(xnb->dev,
783					  xnb->otherend_id,
784					  xnb->evtchn,
785					  /*filter*/NULL,
786					  xnb_intr, /*arg*/xnb,
787					  INTR_TYPE_BIO | INTR_MPSAFE,
788					  &xnb->xen_intr_handle);
789	if (error != 0) {
790		(void)xnb_disconnect(xnb);
791		xenbus_dev_fatal(xnb->dev, error, "binding event channel");
792		return (error);
793	}
794
795	DPRINTF("rings connected!\n");
796
797	return (0);
798}
799
800/**
801 * Size KVA and pseudo-physical address allocations based on negotiated
802 * values for the size and number of I/O requests, and the size of our
803 * communication ring.
804 *
805 * \param xnb  Per-instance xnb configuration structure.
806 *
807 * These address spaces are used to dynamically map pages in the
808 * front-end's domain into our own.
809 */
810static int
811xnb_alloc_communication_mem(struct xnb_softc *xnb)
812{
813	xnb_ring_type_t i;
814
815	xnb->kva_size = 0;
816	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
817		xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
818	}
819#ifndef XENHVM
820	xnb->kva = kva_alloc(xnb->kva_size);
821	if (xnb->kva == 0)
822		return (ENOMEM);
823	xnb->gnt_base_addr = xnb->kva;
824#else /* defined XENHVM */
825	/*
826	 * Reserve a range of pseudo physical memory that we can map
827	 * into kva.  These pages will only be backed by machine
828	 * pages ("real memory") during the lifetime of front-end requests
829	 * via grant table operations.  We will map the netif tx and rx rings
830	 * into this space.
831	 */
832	xnb->pseudo_phys_res_id = 0;
833	xnb->pseudo_phys_res = bus_alloc_resource(xnb->dev, SYS_RES_MEMORY,
834						  &xnb->pseudo_phys_res_id,
835						  0, ~0, xnb->kva_size,
836						  RF_ACTIVE);
837	if (xnb->pseudo_phys_res == NULL) {
838		xnb->kva = 0;
839		return (ENOMEM);
840	}
841	xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
842	xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
843#endif /* !defined XENHVM */
844	return (0);
845}
846
847/**
848 * Collect information from the XenStore related to our device and its frontend
849 *
850 * \param xnb  Per-instance xnb configuration structure.
851 */
852static int
853xnb_collect_xenstore_info(struct xnb_softc *xnb)
854{
855	/**
856	 * \todo Linux collects the following info.  We should collect most
857	 * of this, too:
858	 * "feature-rx-notify"
859	 */
860	const char *otherend_path;
861	const char *our_path;
862	int err;
863	unsigned int rx_copy, bridge_len;
864	uint8_t no_csum_offload;
865
866	otherend_path = xenbus_get_otherend_path(xnb->dev);
867	our_path = xenbus_get_node(xnb->dev);
868
869	/* Collect the critical communication parameters */
870	err = xs_gather(XST_NIL, otherend_path,
871	    "tx-ring-ref", "%l" PRIu32,
872	    	&xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
873	    "rx-ring-ref", "%l" PRIu32,
874	    	&xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
875	    "event-channel", "%" PRIu32, &xnb->evtchn,
876	    NULL);
877	if (err != 0) {
878		xenbus_dev_fatal(xnb->dev, err,
879				 "Unable to retrieve ring information from "
880				 "frontend %s.  Unable to connect.",
881				 otherend_path);
882		return (err);
883	}
884
885	/* Collect the handle from xenstore */
886	err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
887	if (err != 0) {
888		xenbus_dev_fatal(xnb->dev, err,
889		    "Error reading handle from frontend %s.  "
890		    "Unable to connect.", otherend_path);
891	}
892
893	/*
894	 * Collect the bridgename, if any.  We do not need bridge_len; we just
895	 * throw it away
896	 */
897	err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
898		      (void**)&xnb->bridge);
899	if (err != 0)
900		xnb->bridge = NULL;
901
902	/*
903	 * Does the frontend request that we use rx copy?  If not, return an
904	 * error because this driver only supports rx copy.
905	 */
906	err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
907		       "%" PRIu32, &rx_copy);
908	if (err == ENOENT) {
909		err = 0;
910	 	rx_copy = 0;
911	}
912	if (err < 0) {
913		xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
914				 otherend_path);
915		return err;
916	}
917	/**
918	 * \todo: figure out the exact meaning of this feature, and when
919	 * the frontend will set it to true.  It should be set to true
920	 * at some point
921	 */
922/*        if (!rx_copy)*/
923/*          return EOPNOTSUPP;*/
924
925	/** \todo Collect the rx notify feature */
926
927	/*  Collect the feature-sg. */
928	if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
929		     "%hhu", &xnb->can_sg) < 0)
930		xnb->can_sg = 0;
931
932	/* Collect remaining frontend features */
933	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
934		     "%hhu", &xnb->gso) < 0)
935		xnb->gso = 0;
936
937	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
938		     "%hhu", &xnb->gso_prefix) < 0)
939		xnb->gso_prefix = 0;
940
941	if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
942		     "%hhu", &no_csum_offload) < 0)
943		no_csum_offload = 0;
944	xnb->ip_csum = (no_csum_offload == 0);
945
946	return (0);
947}
948
949/**
950 * Supply information about the physical device to the frontend
951 * via XenBus.
952 *
953 * \param xnb  Per-instance xnb configuration structure.
954 */
955static int
956xnb_publish_backend_info(struct xnb_softc *xnb)
957{
958	struct xs_transaction xst;
959	const char *our_path;
960	int error;
961
962	our_path = xenbus_get_node(xnb->dev);
963
964	do {
965		error = xs_transaction_start(&xst);
966		if (error != 0) {
967			xenbus_dev_fatal(xnb->dev, error,
968					 "Error publishing backend info "
969					 "(start transaction)");
970			break;
971		}
972
973		error = xs_printf(xst, our_path, "feature-sg",
974				  "%d", XNB_SG);
975		if (error != 0)
976			break;
977
978		error = xs_printf(xst, our_path, "feature-gso-tcpv4",
979				  "%d", XNB_GSO_TCPV4);
980		if (error != 0)
981			break;
982
983		error = xs_printf(xst, our_path, "feature-rx-copy",
984				  "%d", XNB_RX_COPY);
985		if (error != 0)
986			break;
987
988		error = xs_printf(xst, our_path, "feature-rx-flip",
989				  "%d", XNB_RX_FLIP);
990		if (error != 0)
991			break;
992
993		error = xs_transaction_end(xst, 0);
994		if (error != 0 && error != EAGAIN) {
995			xenbus_dev_fatal(xnb->dev, error, "ending transaction");
996			break;
997		}
998
999	} while (error == EAGAIN);
1000
1001	return (error);
1002}
1003
1004/**
1005 * Connect to our netfront peer now that it has completed publishing
1006 * its configuration into the XenStore.
1007 *
1008 * \param xnb  Per-instance xnb configuration structure.
1009 */
1010static void
1011xnb_connect(struct xnb_softc *xnb)
1012{
1013	int	error;
1014
1015	if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
1016		return;
1017
1018	if (xnb_collect_xenstore_info(xnb) != 0)
1019		return;
1020
1021	xnb->flags &= ~XNBF_SHUTDOWN;
1022
1023	/* Read front end configuration. */
1024
1025	/* Allocate resources whose size depends on front-end configuration. */
1026	error = xnb_alloc_communication_mem(xnb);
1027	if (error != 0) {
1028		xenbus_dev_fatal(xnb->dev, error,
1029				 "Unable to allocate communication memory");
1030		return;
1031	}
1032
1033	/*
1034	 * Connect communication channel.
1035	 */
1036	error = xnb_connect_comms(xnb);
1037	if (error != 0) {
1038		/* Specific errors are reported by xnb_connect_comms(). */
1039		return;
1040	}
1041	xnb->carrier = 1;
1042
1043	/* Ready for I/O. */
1044	xenbus_set_state(xnb->dev, XenbusStateConnected);
1045}
1046
1047/*-------------------------- Device Teardown Support -------------------------*/
1048/**
1049 * Perform device shutdown functions.
1050 *
1051 * \param xnb  Per-instance xnb configuration structure.
1052 *
1053 * Mark this instance as shutting down, wait for any active requests
1054 * to drain, disconnect from the front-end, and notify any waiters (e.g.
1055 * a thread invoking our detach method) that detach can now proceed.
1056 */
1057static int
1058xnb_shutdown(struct xnb_softc *xnb)
1059{
1060	/*
1061	 * Due to the need to drop our mutex during some
1062	 * xenbus operations, it is possible for two threads
1063	 * to attempt to close out shutdown processing at
1064	 * the same time.  Tell the caller that hits this
1065	 * race to try back later.
1066	 */
1067	if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1068		return (EAGAIN);
1069
1070	xnb->flags |= XNBF_SHUTDOWN;
1071
1072	xnb->flags |= XNBF_IN_SHUTDOWN;
1073
1074	mtx_unlock(&xnb->sc_lock);
1075	/* Free the network interface */
1076	xnb->carrier = 0;
1077	if (xnb->xnb_ifp != NULL) {
1078		ether_ifdetach(xnb->xnb_ifp);
1079		if_free(xnb->xnb_ifp);
1080		xnb->xnb_ifp = NULL;
1081	}
1082	mtx_lock(&xnb->sc_lock);
1083
1084	xnb_disconnect(xnb);
1085
1086	mtx_unlock(&xnb->sc_lock);
1087	if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1088		xenbus_set_state(xnb->dev, XenbusStateClosing);
1089	mtx_lock(&xnb->sc_lock);
1090
1091	xnb->flags &= ~XNBF_IN_SHUTDOWN;
1092
1093
1094	/* Indicate to xnb_detach() that is it safe to proceed. */
1095	wakeup(xnb);
1096
1097	return (0);
1098}
1099
1100/**
1101 * Report an attach time error to the console and Xen, and cleanup
1102 * this instance by forcing immediate detach processing.
1103 *
1104 * \param xnb  Per-instance xnb configuration structure.
1105 * \param err  Errno describing the error.
1106 * \param fmt  Printf style format and arguments
1107 */
1108static void
1109xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1110{
1111	va_list ap;
1112	va_list ap_hotplug;
1113
1114	va_start(ap, fmt);
1115	va_copy(ap_hotplug, ap);
1116	xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1117		  "hotplug-error", fmt, ap_hotplug);
1118	va_end(ap_hotplug);
1119	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1120		  "hotplug-status", "error");
1121
1122	xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1123	va_end(ap);
1124
1125	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1126		  "online", "0");
1127	xnb_detach(xnb->dev);
1128}
1129
1130/*---------------------------- NewBus Entrypoints ----------------------------*/
1131/**
1132 * Inspect a XenBus device and claim it if is of the appropriate type.
1133 *
1134 * \param dev  NewBus device object representing a candidate XenBus device.
1135 *
1136 * \return  0 for success, errno codes for failure.
1137 */
1138static int
1139xnb_probe(device_t dev)
1140{
1141	 if (!strcmp(xenbus_get_type(dev), "vif")) {
1142		DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1143		    devclass_get_name(device_get_devclass(dev)));
1144		device_set_desc(dev, "Backend Virtual Network Device");
1145		device_quiet(dev);
1146		return (0);
1147	}
1148	return (ENXIO);
1149}
1150
1151/**
1152 * Setup sysctl variables to control various Network Back parameters.
1153 *
1154 * \param xnb  Xen Net Back softc.
1155 *
1156 */
1157static void
1158xnb_setup_sysctl(struct xnb_softc *xnb)
1159{
1160	struct sysctl_ctx_list *sysctl_ctx = NULL;
1161	struct sysctl_oid      *sysctl_tree = NULL;
1162
1163	sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1164	if (sysctl_ctx == NULL)
1165		return;
1166
1167	sysctl_tree = device_get_sysctl_tree(xnb->dev);
1168	if (sysctl_tree == NULL)
1169		return;
1170
1171#ifdef XNB_DEBUG
1172	SYSCTL_ADD_PROC(sysctl_ctx,
1173			SYSCTL_CHILDREN(sysctl_tree),
1174			OID_AUTO,
1175			"unit_test_results",
1176			CTLTYPE_STRING | CTLFLAG_RD,
1177			xnb,
1178			0,
1179			xnb_unit_test_main,
1180			"A",
1181			"Results of builtin unit tests");
1182
1183	SYSCTL_ADD_PROC(sysctl_ctx,
1184			SYSCTL_CHILDREN(sysctl_tree),
1185			OID_AUTO,
1186			"dump_rings",
1187			CTLTYPE_STRING | CTLFLAG_RD,
1188			xnb,
1189			0,
1190			xnb_dump_rings,
1191			"A",
1192			"Xennet Back Rings");
1193#endif /* XNB_DEBUG */
1194}
1195
1196/**
1197 * Create a network device.
1198 * @param handle device handle
1199 */
1200int
1201create_netdev(device_t dev)
1202{
1203	struct ifnet *ifp;
1204	struct xnb_softc *xnb;
1205	int err = 0;
1206	uint32_t handle;
1207
1208	xnb = device_get_softc(dev);
1209	mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1210	mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1211	mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1212
1213	xnb->dev = dev;
1214
1215	ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1216	ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1217	ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1218
1219	/*
1220	 * Set the MAC address to a dummy value (00:00:00:00:00),
1221	 * if the MAC address of the host-facing interface is set
1222	 * to the same as the guest-facing one (the value found in
1223	 * xenstore), the bridge would stop delivering packets to
1224	 * us because it would see that the destination address of
1225	 * the packet is the same as the interface, and so the bridge
1226	 * would expect the packet has already been delivered locally
1227	 * (and just drop it).
1228	 */
1229	bzero(&xnb->mac[0], sizeof(xnb->mac));
1230
1231	/* The interface will be named using the following nomenclature:
1232	 *
1233	 * xnb<domid>.<handle>
1234	 *
1235	 * Where handle is the oder of the interface referred to the guest.
1236	 */
1237	err = xs_scanf(XST_NIL, xenbus_get_node(xnb->dev), "handle", NULL,
1238		       "%" PRIu32, &handle);
1239	if (err != 0)
1240		return (err);
1241	snprintf(xnb->if_name, IFNAMSIZ, "xnb%" PRIu16 ".%" PRIu32,
1242	    xenbus_get_otherend_id(dev), handle);
1243
1244	if (err == 0) {
1245		/* Set up ifnet structure */
1246		ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1247		ifp->if_softc = xnb;
1248		if_initname(ifp, xnb->if_name,  IF_DUNIT_NONE);
1249		ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1250		ifp->if_ioctl = xnb_ioctl;
1251		ifp->if_output = ether_output;
1252		ifp->if_start = xnb_start;
1253#ifdef notyet
1254		ifp->if_watchdog = xnb_watchdog;
1255#endif
1256		ifp->if_init = xnb_ifinit;
1257		ifp->if_mtu = ETHERMTU;
1258		ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1;
1259
1260		ifp->if_hwassist = XNB_CSUM_FEATURES;
1261		ifp->if_capabilities = IFCAP_HWCSUM;
1262		ifp->if_capenable = IFCAP_HWCSUM;
1263
1264		ether_ifattach(ifp, xnb->mac);
1265		xnb->carrier = 0;
1266	}
1267
1268	return err;
1269}
1270
1271/**
1272 * Attach to a XenBus device that has been claimed by our probe routine.
1273 *
1274 * \param dev  NewBus device object representing this Xen Net Back instance.
1275 *
1276 * \return  0 for success, errno codes for failure.
1277 */
1278static int
1279xnb_attach(device_t dev)
1280{
1281	struct xnb_softc *xnb;
1282	int	error;
1283	xnb_ring_type_t	i;
1284
1285	error = create_netdev(dev);
1286	if (error != 0) {
1287		xenbus_dev_fatal(dev, error, "creating netdev");
1288		return (error);
1289	}
1290
1291	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1292
1293	/*
1294	 * Basic initialization.
1295	 * After this block it is safe to call xnb_detach()
1296	 * to clean up any allocated data for this instance.
1297	 */
1298	xnb = device_get_softc(dev);
1299	xnb->otherend_id = xenbus_get_otherend_id(dev);
1300	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1301		xnb->ring_configs[i].ring_pages = 1;
1302	}
1303
1304	/*
1305	 * Setup sysctl variables.
1306	 */
1307	xnb_setup_sysctl(xnb);
1308
1309	/* Update hot-plug status to satisfy xend. */
1310	error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1311			  "hotplug-status", "connected");
1312	if (error != 0) {
1313		xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1314				  xenbus_get_node(xnb->dev));
1315		return (error);
1316	}
1317
1318	if ((error = xnb_publish_backend_info(xnb)) != 0) {
1319		/*
1320		 * If we can't publish our data, we cannot participate
1321		 * in this connection, and waiting for a front-end state
1322		 * change will not help the situation.
1323		 */
1324		xnb_attach_failed(xnb, error,
1325		    "Publishing backend status for %s",
1326				  xenbus_get_node(xnb->dev));
1327		return error;
1328	}
1329
1330	/* Tell the front end that we are ready to connect. */
1331	xenbus_set_state(dev, XenbusStateInitWait);
1332
1333	return (0);
1334}
1335
1336/**
1337 * Detach from a net back device instance.
1338 *
1339 * \param dev  NewBus device object representing this Xen Net Back instance.
1340 *
1341 * \return  0 for success, errno codes for failure.
1342 *
1343 * \note A net back device may be detached at any time in its life-cycle,
1344 *       including part way through the attach process.  For this reason,
1345 *       initialization order and the intialization state checks in this
1346 *       routine must be carefully coupled so that attach time failures
1347 *       are gracefully handled.
1348 */
1349static int
1350xnb_detach(device_t dev)
1351{
1352	struct xnb_softc *xnb;
1353
1354	DPRINTF("\n");
1355
1356	xnb = device_get_softc(dev);
1357	mtx_lock(&xnb->sc_lock);
1358	while (xnb_shutdown(xnb) == EAGAIN) {
1359		msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1360		       "xnb_shutdown", 0);
1361	}
1362	mtx_unlock(&xnb->sc_lock);
1363	DPRINTF("\n");
1364
1365	mtx_destroy(&xnb->tx_lock);
1366	mtx_destroy(&xnb->rx_lock);
1367	mtx_destroy(&xnb->sc_lock);
1368	return (0);
1369}
1370
1371/**
1372 * Prepare this net back device for suspension of this VM.
1373 *
1374 * \param dev  NewBus device object representing this Xen net Back instance.
1375 *
1376 * \return  0 for success, errno codes for failure.
1377 */
1378static int
1379xnb_suspend(device_t dev)
1380{
1381	return (0);
1382}
1383
1384/**
1385 * Perform any processing required to recover from a suspended state.
1386 *
1387 * \param dev  NewBus device object representing this Xen Net Back instance.
1388 *
1389 * \return  0 for success, errno codes for failure.
1390 */
1391static int
1392xnb_resume(device_t dev)
1393{
1394	return (0);
1395}
1396
1397/**
1398 * Handle state changes expressed via the XenStore by our front-end peer.
1399 *
1400 * \param dev             NewBus device object representing this Xen
1401 *                        Net Back instance.
1402 * \param frontend_state  The new state of the front-end.
1403 *
1404 * \return  0 for success, errno codes for failure.
1405 */
1406static void
1407xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1408{
1409	struct xnb_softc *xnb;
1410
1411	xnb = device_get_softc(dev);
1412
1413	DPRINTF("frontend_state=%s, xnb_state=%s\n",
1414	        xenbus_strstate(frontend_state),
1415		xenbus_strstate(xenbus_get_state(xnb->dev)));
1416
1417	switch (frontend_state) {
1418	case XenbusStateInitialising:
1419		break;
1420	case XenbusStateInitialised:
1421	case XenbusStateConnected:
1422		xnb_connect(xnb);
1423		break;
1424	case XenbusStateClosing:
1425	case XenbusStateClosed:
1426		mtx_lock(&xnb->sc_lock);
1427		xnb_shutdown(xnb);
1428		mtx_unlock(&xnb->sc_lock);
1429		if (frontend_state == XenbusStateClosed)
1430			xenbus_set_state(xnb->dev, XenbusStateClosed);
1431		break;
1432	default:
1433		xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1434				 frontend_state);
1435		break;
1436	}
1437}
1438
1439
1440/*---------------------------- Request Processing ----------------------------*/
1441/**
1442 * Interrupt handler bound to the shared ring's event channel.
1443 * Entry point for the xennet transmit path in netback
1444 * Transfers packets from the Xen ring to the host's generic networking stack
1445 *
1446 * \param arg  Callback argument registerd during event channel
1447 *             binding - the xnb_softc for this instance.
1448 */
1449static void
1450xnb_intr(void *arg)
1451{
1452	struct xnb_softc *xnb;
1453	struct ifnet *ifp;
1454	netif_tx_back_ring_t *txb;
1455	RING_IDX req_prod_local;
1456
1457	xnb = (struct xnb_softc *)arg;
1458	ifp = xnb->xnb_ifp;
1459	txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1460
1461	mtx_lock(&xnb->tx_lock);
1462	do {
1463		int notify;
1464		req_prod_local = txb->sring->req_prod;
1465		xen_rmb();
1466
1467		for (;;) {
1468			struct mbuf *mbufc;
1469			int err;
1470
1471			err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1472			    	       xnb->tx_gnttab);
1473			if (err || (mbufc == NULL))
1474				break;
1475
1476			/* Send the packet to the generic network stack */
1477			(*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc);
1478		}
1479
1480		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1481		if (notify != 0)
1482			xen_intr_signal(xnb->xen_intr_handle);
1483
1484		txb->sring->req_event = txb->req_cons + 1;
1485		xen_mb();
1486	} while (txb->sring->req_prod != req_prod_local) ;
1487	mtx_unlock(&xnb->tx_lock);
1488
1489	xnb_start(ifp);
1490}
1491
1492
1493/**
1494 * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1495 * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1496 * \param[out]	pkt	The returned packet.  If there is an error building
1497 * 			the packet, pkt.list_len will be set to 0.
1498 * \param[in]	tx_ring	Pointer to the Ring that is the input to this function
1499 * \param[in]	start	The ring index of the first potential request
1500 * \return		The number of requests consumed to build this packet
1501 */
1502static int
1503xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1504	     RING_IDX start)
1505{
1506	/*
1507	 * Outline:
1508	 * 1) Initialize pkt
1509	 * 2) Read the first request of the packet
1510	 * 3) Read the extras
1511	 * 4) Set cdr
1512	 * 5) Loop on the remainder of the packet
1513	 * 6) Finalize pkt (stuff like car_size and list_len)
1514	 */
1515	int idx = start;
1516	int discard = 0;	/* whether to discard the packet */
1517	int more_data = 0;	/* there are more request past the last one */
1518	uint16_t cdr_size = 0;	/* accumulated size of requests 2 through n */
1519
1520	xnb_pkt_initialize(pkt);
1521
1522	/* Read the first request */
1523	if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1524		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1525		pkt->size = tx->size;
1526		pkt->flags = tx->flags & ~NETTXF_more_data;
1527		more_data = tx->flags & NETTXF_more_data;
1528		pkt->list_len++;
1529		pkt->car = idx;
1530		idx++;
1531	}
1532
1533	/* Read the extra info */
1534	if ((pkt->flags & NETTXF_extra_info) &&
1535	    RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1536		netif_extra_info_t *ext =
1537		    (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1538		pkt->extra.type = ext->type;
1539		switch (pkt->extra.type) {
1540			case XEN_NETIF_EXTRA_TYPE_GSO:
1541				pkt->extra.u.gso = ext->u.gso;
1542				break;
1543			default:
1544				/*
1545				 * The reference Linux netfront driver will
1546				 * never set any other extra.type.  So we don't
1547				 * know what to do with it.  Let's print an
1548				 * error, then consume and discard the packet
1549				 */
1550				printf("xnb(%s:%d): Unknown extra info type %d."
1551				       "  Discarding packet\n",
1552				       __func__, __LINE__, pkt->extra.type);
1553				xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1554				    start));
1555				xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1556				    idx));
1557				discard = 1;
1558				break;
1559		}
1560
1561		pkt->extra.flags = ext->flags;
1562		if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1563			/*
1564			 * The reference linux netfront driver never sets this
1565			 * flag (nor does any other known netfront).  So we
1566			 * will discard the packet.
1567			 */
1568			printf("xnb(%s:%d): Request sets "
1569			    "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1570			    "that\n", __func__, __LINE__);
1571			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1572			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1573			discard = 1;
1574		}
1575
1576		idx++;
1577	}
1578
1579	/* Set cdr.  If there is not more data, cdr is invalid */
1580	pkt->cdr = idx;
1581
1582	/* Loop on remainder of packet */
1583	while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1584		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1585		pkt->list_len++;
1586		cdr_size += tx->size;
1587		if (tx->flags & ~NETTXF_more_data) {
1588			/* There should be no other flags set at this point */
1589			printf("xnb(%s:%d): Request sets unknown flags %d "
1590			    "after the 1st request in the packet.\n",
1591			    __func__, __LINE__, tx->flags);
1592			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1593			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1594		}
1595
1596		more_data = tx->flags & NETTXF_more_data;
1597		idx++;
1598	}
1599
1600	/* Finalize packet */
1601	if (more_data != 0) {
1602		/* The ring ran out of requests before finishing the packet */
1603		xnb_pkt_invalidate(pkt);
1604		idx = start;	/* tell caller that we consumed no requests */
1605	} else {
1606		/* Calculate car_size */
1607		pkt->car_size = pkt->size - cdr_size;
1608	}
1609	if (discard != 0) {
1610		xnb_pkt_invalidate(pkt);
1611	}
1612
1613	return idx - start;
1614}
1615
1616
1617/**
1618 * Respond to all the requests that constituted pkt.  Builds the responses and
1619 * writes them to the ring, but doesn't push them to the shared ring.
1620 * \param[in] pkt	the packet that needs a response
1621 * \param[in] error	true if there was an error handling the packet, such
1622 * 			as in the hypervisor copy op or mbuf allocation
1623 * \param[out] ring	Responses go here
1624 */
1625static void
1626xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1627	      int error)
1628{
1629	/*
1630	 * Outline:
1631	 * 1) Respond to the first request
1632	 * 2) Respond to the extra info reques
1633	 * Loop through every remaining request in the packet, generating
1634	 * responses that copy those requests' ids and sets the status
1635	 * appropriately.
1636	 */
1637	netif_tx_request_t *tx;
1638	netif_tx_response_t *rsp;
1639	int i;
1640	uint16_t status;
1641
1642	status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1643		NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1644	KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1645	    ("Cannot respond to ring requests out of order"));
1646
1647	if (pkt->list_len >= 1) {
1648		uint16_t id;
1649		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1650		id = tx->id;
1651		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1652		rsp->id = id;
1653		rsp->status = status;
1654		ring->rsp_prod_pvt++;
1655
1656		if (pkt->flags & NETRXF_extra_info) {
1657			rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1658			rsp->status = NETIF_RSP_NULL;
1659			ring->rsp_prod_pvt++;
1660		}
1661	}
1662
1663	for (i=0; i < pkt->list_len - 1; i++) {
1664		uint16_t id;
1665		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1666		id = tx->id;
1667		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1668		rsp->id = id;
1669		rsp->status = status;
1670		ring->rsp_prod_pvt++;
1671	}
1672}
1673
1674/**
1675 * Create an mbuf chain to represent a packet.  Initializes all of the headers
1676 * in the mbuf chain, but does not copy the data.  The returned chain must be
1677 * free()'d when no longer needed
1678 * \param[in]	pkt	A packet to model the mbuf chain after
1679 * \return	A newly allocated mbuf chain, possibly with clusters attached.
1680 * 		NULL on failure
1681 */
1682static struct mbuf*
1683xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp)
1684{
1685	/**
1686	 * \todo consider using a memory pool for mbufs instead of
1687	 * reallocating them for every packet
1688	 */
1689	/** \todo handle extra data */
1690	struct mbuf *m;
1691
1692	m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1693
1694	if (m != NULL) {
1695		m->m_pkthdr.rcvif = ifp;
1696		if (pkt->flags & NETTXF_data_validated) {
1697			/*
1698			 * We lie to the host OS and always tell it that the
1699			 * checksums are ok, because the packet is unlikely to
1700			 * get corrupted going across domains.
1701			 */
1702			m->m_pkthdr.csum_flags = (
1703				CSUM_IP_CHECKED |
1704				CSUM_IP_VALID   |
1705				CSUM_DATA_VALID |
1706				CSUM_PSEUDO_HDR
1707				);
1708			m->m_pkthdr.csum_data = 0xffff;
1709		}
1710	}
1711	return m;
1712}
1713
1714/**
1715 * Build a gnttab_copy table that can be used to copy data from a pkt
1716 * to an mbufc.  Does not actually perform the copy.  Always uses gref's on
1717 * the packet side.
1718 * \param[in]	pkt	pkt's associated requests form the src for
1719 * 			the copy operation
1720 * \param[in]	mbufc	mbufc's storage forms the dest for the copy operation
1721 * \param[out]  gnttab	Storage for the returned grant table
1722 * \param[in]	txb	Pointer to the backend ring structure
1723 * \param[in]	otherend_id	The domain ID of the other end of the copy
1724 * \return 		The number of gnttab entries filled
1725 */
1726static int
1727xnb_txpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1728		 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1729		 domid_t otherend_id)
1730{
1731
1732	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1733	int gnt_idx = 0;		/* index into grant table */
1734	RING_IDX r_idx = pkt->car;	/* index into tx ring buffer */
1735	int r_ofs = 0;	/* offset of next data within tx request's data area */
1736	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1737	/* size in bytes that still needs to be represented in the table */
1738	uint16_t size_remaining = pkt->size;
1739
1740	while (size_remaining > 0) {
1741		const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1742		const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1743		const size_t req_size =
1744			r_idx == pkt->car ? pkt->car_size : txq->size;
1745		const size_t pkt_space = req_size - r_ofs;
1746		/*
1747		 * space is the largest amount of data that can be copied in the
1748		 * grant table's next entry
1749		 */
1750		const size_t space = MIN(pkt_space, mbuf_space);
1751
1752		/* TODO: handle this error condition without panicking */
1753		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1754
1755		gnttab[gnt_idx].source.u.ref = txq->gref;
1756		gnttab[gnt_idx].source.domid = otherend_id;
1757		gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1758		gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1759		    mtod(mbuf, vm_offset_t) + m_ofs);
1760		gnttab[gnt_idx].dest.offset = virt_to_offset(
1761		    mtod(mbuf, vm_offset_t) + m_ofs);
1762		gnttab[gnt_idx].dest.domid = DOMID_SELF;
1763		gnttab[gnt_idx].len = space;
1764		gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1765
1766		gnt_idx++;
1767		r_ofs += space;
1768		m_ofs += space;
1769		size_remaining -= space;
1770		if (req_size - r_ofs <= 0) {
1771			/* Must move to the next tx request */
1772			r_ofs = 0;
1773			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1774		}
1775		if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1776			/* Must move to the next mbuf */
1777			m_ofs = 0;
1778			mbuf = mbuf->m_next;
1779		}
1780	}
1781
1782	return gnt_idx;
1783}
1784
1785/**
1786 * Check the status of the grant copy operations, and update mbufs various
1787 * non-data fields to reflect the data present.
1788 * \param[in,out] mbufc	mbuf chain to update.  The chain must be valid and of
1789 * 			the correct length, and data should already be present
1790 * \param[in] gnttab	A grant table for a just completed copy op
1791 * \param[in] n_entries The number of valid entries in the grant table
1792 */
1793static void
1794xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1795    		 int n_entries)
1796{
1797	struct mbuf *mbuf = mbufc;
1798	int i;
1799	size_t total_size = 0;
1800
1801	for (i = 0; i < n_entries; i++) {
1802		KASSERT(gnttab[i].status == GNTST_okay,
1803		    ("Some gnttab_copy entry had error status %hd\n",
1804		    gnttab[i].status));
1805
1806		mbuf->m_len += gnttab[i].len;
1807		total_size += gnttab[i].len;
1808		if (M_TRAILINGSPACE(mbuf) <= 0) {
1809			mbuf = mbuf->m_next;
1810		}
1811	}
1812	mbufc->m_pkthdr.len = total_size;
1813
1814#if defined(INET) || defined(INET6)
1815	xnb_add_mbuf_cksum(mbufc);
1816#endif
1817}
1818
1819/**
1820 * Dequeue at most one packet from the shared ring
1821 * \param[in,out] txb	Netif tx ring.  A packet will be removed from it, and
1822 * 			its private indices will be updated.  But the indices
1823 * 			will not be pushed to the shared ring.
1824 * \param[in] ifnet	Interface to which the packet will be sent
1825 * \param[in] otherend	Domain ID of the other end of the ring
1826 * \param[out] mbufc	The assembled mbuf chain, ready to send to the generic
1827 * 			networking stack
1828 * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
1829 * 			this a function parameter so that we will take less
1830 * 			stack space.
1831 * \return		An error code
1832 */
1833static int
1834xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1835	 struct ifnet *ifnet, gnttab_copy_table gnttab)
1836{
1837	struct xnb_pkt pkt;
1838	/* number of tx requests consumed to build the last packet */
1839	int num_consumed;
1840	int nr_ents;
1841
1842	*mbufc = NULL;
1843	num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1844	if (num_consumed == 0)
1845		return 0;	/* Nothing to receive */
1846
1847	/* update statistics independent of errors */
1848	if_inc_counter(ifnet, IFCOUNTER_IPACKETS, 1);
1849
1850	/*
1851	 * if we got here, then 1 or more requests was consumed, but the packet
1852	 * is not necessarily valid.
1853	 */
1854	if (xnb_pkt_is_valid(&pkt) == 0) {
1855		/* got a garbage packet, respond and drop it */
1856		xnb_txpkt2rsp(&pkt, txb, 1);
1857		txb->req_cons += num_consumed;
1858		DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1859				num_consumed);
1860		if_inc_counter(ifnet, IFCOUNTER_IERRORS, 1);
1861		return EINVAL;
1862	}
1863
1864	*mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1865
1866	if (*mbufc == NULL) {
1867		/*
1868		 * Couldn't allocate mbufs.  Respond and drop the packet.  Do
1869		 * not consume the requests
1870		 */
1871		xnb_txpkt2rsp(&pkt, txb, 1);
1872		DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1873		    num_consumed);
1874		if_inc_counter(ifnet, IFCOUNTER_IQDROPS, 1);
1875		return ENOMEM;
1876	}
1877
1878	nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1879
1880	if (nr_ents > 0) {
1881		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1882		    gnttab, nr_ents);
1883		KASSERT(hv_ret == 0,
1884		    ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1885		xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1886	}
1887
1888	xnb_txpkt2rsp(&pkt, txb, 0);
1889	txb->req_cons += num_consumed;
1890	return 0;
1891}
1892
1893/**
1894 * Create an xnb_pkt based on the contents of an mbuf chain.
1895 * \param[in] mbufc	mbuf chain to transform into a packet
1896 * \param[out] pkt	Storage for the newly generated xnb_pkt
1897 * \param[in] start	The ring index of the first available slot in the rx
1898 * 			ring
1899 * \param[in] space	The number of free slots in the rx ring
1900 * \retval 0		Success
1901 * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
1902 * \retval EAGAIN	There was not enough space in the ring to queue the
1903 * 			packet
1904 */
1905static int
1906xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1907	      RING_IDX start, int space)
1908{
1909
1910	int retval = 0;
1911
1912	if ((mbufc == NULL) ||
1913	     ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1914	     (mbufc->m_pkthdr.len == 0)) {
1915		xnb_pkt_invalidate(pkt);
1916		retval = EINVAL;
1917	} else {
1918		int slots_required;
1919
1920		xnb_pkt_validate(pkt);
1921		pkt->flags = 0;
1922		pkt->size = mbufc->m_pkthdr.len;
1923		pkt->car = start;
1924		pkt->car_size = mbufc->m_len;
1925
1926		if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1927			pkt->flags |= NETRXF_extra_info;
1928			pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1929			pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1930			pkt->extra.u.gso.pad = 0;
1931			pkt->extra.u.gso.features = 0;
1932			pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1933			pkt->extra.flags = 0;
1934			pkt->cdr = start + 2;
1935		} else {
1936			pkt->cdr = start + 1;
1937		}
1938		if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1939			pkt->flags |=
1940			    (NETRXF_csum_blank | NETRXF_data_validated);
1941		}
1942
1943		/*
1944		 * Each ring response can have up to PAGE_SIZE of data.
1945		 * Assume that we can defragment the mbuf chain efficiently
1946		 * into responses so that each response but the last uses all
1947		 * PAGE_SIZE bytes.
1948		 */
1949		pkt->list_len = (pkt->size + PAGE_SIZE - 1) / PAGE_SIZE;
1950
1951		if (pkt->list_len > 1) {
1952			pkt->flags |= NETRXF_more_data;
1953		}
1954
1955		slots_required = pkt->list_len +
1956			(pkt->flags & NETRXF_extra_info ? 1 : 0);
1957		if (slots_required > space) {
1958			xnb_pkt_invalidate(pkt);
1959			retval = EAGAIN;
1960		}
1961	}
1962
1963	return retval;
1964}
1965
1966/**
1967 * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1968 * to the frontend's shared buffers.  Does not actually perform the copy.
1969 * Always uses gref's on the other end's side.
1970 * \param[in]	pkt	pkt's associated responses form the dest for the copy
1971 * 			operatoin
1972 * \param[in]	mbufc	The source for the copy operation
1973 * \param[out]	gnttab	Storage for the returned grant table
1974 * \param[in]	rxb	Pointer to the backend ring structure
1975 * \param[in]	otherend_id	The domain ID of the other end of the copy
1976 * \return 		The number of gnttab entries filled
1977 */
1978static int
1979xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1980		 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1981		 domid_t otherend_id)
1982{
1983
1984	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1985	int gnt_idx = 0;		/* index into grant table */
1986	RING_IDX r_idx = pkt->car;	/* index into rx ring buffer */
1987	int r_ofs = 0;	/* offset of next data within rx request's data area */
1988	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1989	/* size in bytes that still needs to be represented in the table */
1990	uint16_t size_remaining;
1991
1992	size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1993
1994	while (size_remaining > 0) {
1995		const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1996		const size_t mbuf_space = mbuf->m_len - m_ofs;
1997		/* Xen shared pages have an implied size of PAGE_SIZE */
1998		const size_t req_size = PAGE_SIZE;
1999		const size_t pkt_space = req_size - r_ofs;
2000		/*
2001		 * space is the largest amount of data that can be copied in the
2002		 * grant table's next entry
2003		 */
2004		const size_t space = MIN(pkt_space, mbuf_space);
2005
2006		/* TODO: handle this error condition without panicing */
2007		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
2008
2009		gnttab[gnt_idx].dest.u.ref = rxq->gref;
2010		gnttab[gnt_idx].dest.domid = otherend_id;
2011		gnttab[gnt_idx].dest.offset = r_ofs;
2012		gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
2013		    mtod(mbuf, vm_offset_t) + m_ofs);
2014		gnttab[gnt_idx].source.offset = virt_to_offset(
2015		    mtod(mbuf, vm_offset_t) + m_ofs);
2016		gnttab[gnt_idx].source.domid = DOMID_SELF;
2017		gnttab[gnt_idx].len = space;
2018		gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
2019
2020		gnt_idx++;
2021
2022		r_ofs += space;
2023		m_ofs += space;
2024		size_remaining -= space;
2025		if (req_size - r_ofs <= 0) {
2026			/* Must move to the next rx request */
2027			r_ofs = 0;
2028			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
2029		}
2030		if (mbuf->m_len - m_ofs <= 0) {
2031			/* Must move to the next mbuf */
2032			m_ofs = 0;
2033			mbuf = mbuf->m_next;
2034		}
2035	}
2036
2037	return gnt_idx;
2038}
2039
2040/**
2041 * Generates responses for all the requests that constituted pkt.  Builds
2042 * responses and writes them to the ring, but doesn't push the shared ring
2043 * indices.
2044 * \param[in] pkt	the packet that needs a response
2045 * \param[in] gnttab	The grant copy table corresponding to this packet.
2046 * 			Used to determine how many rsp->netif_rx_response_t's to
2047 * 			generate.
2048 * \param[in] n_entries	Number of relevant entries in the grant table
2049 * \param[out] ring	Responses go here
2050 * \return		The number of RX requests that were consumed to generate
2051 * 			the responses
2052 */
2053static int
2054xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2055    	      int n_entries, netif_rx_back_ring_t *ring)
2056{
2057	/*
2058	 * This code makes the following assumptions:
2059	 *	* All entries in gnttab set GNTCOPY_dest_gref
2060	 *	* The entries in gnttab are grouped by their grefs: any two
2061	 *	   entries with the same gref must be adjacent
2062	 */
2063	int error = 0;
2064	int gnt_idx, i;
2065	int n_responses = 0;
2066	grant_ref_t last_gref = GRANT_REF_INVALID;
2067	RING_IDX r_idx;
2068
2069	KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2070
2071	/*
2072	 * In the event of an error, we only need to send one response to the
2073	 * netfront.  In that case, we musn't write any data to the responses
2074	 * after the one we send.  So we must loop all the way through gnttab
2075	 * looking for errors before we generate any responses
2076	 *
2077	 * Since we're looping through the grant table anyway, we'll count the
2078	 * number of different gref's in it, which will tell us how many
2079	 * responses to generate
2080	 */
2081	for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2082		int16_t status = gnttab[gnt_idx].status;
2083		if (status != GNTST_okay) {
2084			DPRINTF(
2085			    "Got error %d for hypervisor gnttab_copy status\n",
2086			    status);
2087			error = 1;
2088			break;
2089		}
2090		if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2091			n_responses++;
2092			last_gref = gnttab[gnt_idx].dest.u.ref;
2093		}
2094	}
2095
2096	if (error != 0) {
2097		uint16_t id;
2098		netif_rx_response_t *rsp;
2099
2100		id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2101		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2102		rsp->id = id;
2103		rsp->status = NETIF_RSP_ERROR;
2104		n_responses = 1;
2105	} else {
2106		gnt_idx = 0;
2107		const int has_extra = pkt->flags & NETRXF_extra_info;
2108		if (has_extra != 0)
2109			n_responses++;
2110
2111		for (i = 0; i < n_responses; i++) {
2112			netif_rx_request_t rxq;
2113			netif_rx_response_t *rsp;
2114
2115			r_idx = ring->rsp_prod_pvt + i;
2116			/*
2117			 * We copy the structure of rxq instead of making a
2118			 * pointer because it shares the same memory as rsp.
2119			 */
2120			rxq = *(RING_GET_REQUEST(ring, r_idx));
2121			rsp = RING_GET_RESPONSE(ring, r_idx);
2122			if (has_extra && (i == 1)) {
2123				netif_extra_info_t *ext =
2124					(netif_extra_info_t*)rsp;
2125				ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2126				ext->flags = 0;
2127				ext->u.gso.size = pkt->extra.u.gso.size;
2128				ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2129				ext->u.gso.pad = 0;
2130				ext->u.gso.features = 0;
2131			} else {
2132				rsp->id = rxq.id;
2133				rsp->status = GNTST_okay;
2134				rsp->offset = 0;
2135				rsp->flags = 0;
2136				if (i < pkt->list_len - 1)
2137					rsp->flags |= NETRXF_more_data;
2138				if ((i == 0) && has_extra)
2139					rsp->flags |= NETRXF_extra_info;
2140				if ((i == 0) &&
2141					(pkt->flags & NETRXF_data_validated)) {
2142					rsp->flags |= NETRXF_data_validated;
2143					rsp->flags |= NETRXF_csum_blank;
2144				}
2145				rsp->status = 0;
2146				for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2147				    gnt_idx++) {
2148					rsp->status += gnttab[gnt_idx].len;
2149				}
2150			}
2151		}
2152	}
2153
2154	ring->req_cons += n_responses;
2155	ring->rsp_prod_pvt += n_responses;
2156	return n_responses;
2157}
2158
2159#if defined(INET) || defined(INET6)
2160/**
2161 * Add IP, TCP, and/or UDP checksums to every mbuf in a chain.  The first mbuf
2162 * in the chain must start with a struct ether_header.
2163 *
2164 * XXX This function will perform incorrectly on UDP packets that are split up
2165 * into multiple ethernet frames.
2166 */
2167static void
2168xnb_add_mbuf_cksum(struct mbuf *mbufc)
2169{
2170	struct ether_header *eh;
2171	struct ip *iph;
2172	uint16_t ether_type;
2173
2174	eh = mtod(mbufc, struct ether_header*);
2175	ether_type = ntohs(eh->ether_type);
2176	if (ether_type != ETHERTYPE_IP) {
2177		/* Nothing to calculate */
2178		return;
2179	}
2180
2181	iph = (struct ip*)(eh + 1);
2182	if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2183		iph->ip_sum = 0;
2184		iph->ip_sum = in_cksum_hdr(iph);
2185	}
2186
2187	switch (iph->ip_p) {
2188	case IPPROTO_TCP:
2189		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2190			size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2191			struct tcphdr *th = (struct tcphdr*)(iph + 1);
2192			th->th_sum = in_pseudo(iph->ip_src.s_addr,
2193			    iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2194			th->th_sum = in_cksum_skip(mbufc,
2195			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2196			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2197		}
2198		break;
2199	case IPPROTO_UDP:
2200		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2201			size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2202			struct udphdr *uh = (struct udphdr*)(iph + 1);
2203			uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2204			    iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2205			uh->uh_sum = in_cksum_skip(mbufc,
2206			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2207			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2208		}
2209		break;
2210	default:
2211		break;
2212	}
2213}
2214#endif /* INET || INET6 */
2215
2216static void
2217xnb_stop(struct xnb_softc *xnb)
2218{
2219	struct ifnet *ifp;
2220
2221	mtx_assert(&xnb->sc_lock, MA_OWNED);
2222	ifp = xnb->xnb_ifp;
2223	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2224	if_link_state_change(ifp, LINK_STATE_DOWN);
2225}
2226
2227static int
2228xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2229{
2230	struct xnb_softc *xnb = ifp->if_softc;
2231	struct ifreq *ifr = (struct ifreq*) data;
2232#ifdef INET
2233	struct ifaddr *ifa = (struct ifaddr*)data;
2234#endif
2235	int error = 0;
2236
2237	switch (cmd) {
2238		case SIOCSIFFLAGS:
2239			mtx_lock(&xnb->sc_lock);
2240			if (ifp->if_flags & IFF_UP) {
2241				xnb_ifinit_locked(xnb);
2242			} else {
2243				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2244					xnb_stop(xnb);
2245				}
2246			}
2247			/*
2248			 * Note: netfront sets a variable named xn_if_flags
2249			 * here, but that variable is never read
2250			 */
2251			mtx_unlock(&xnb->sc_lock);
2252			break;
2253		case SIOCSIFADDR:
2254#ifdef INET
2255			mtx_lock(&xnb->sc_lock);
2256			if (ifa->ifa_addr->sa_family == AF_INET) {
2257				ifp->if_flags |= IFF_UP;
2258				if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2259					ifp->if_drv_flags &= ~(IFF_DRV_RUNNING |
2260							IFF_DRV_OACTIVE);
2261					if_link_state_change(ifp,
2262							LINK_STATE_DOWN);
2263					ifp->if_drv_flags |= IFF_DRV_RUNNING;
2264					ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2265					if_link_state_change(ifp,
2266					    LINK_STATE_UP);
2267				}
2268				arp_ifinit(ifp, ifa);
2269				mtx_unlock(&xnb->sc_lock);
2270			} else {
2271				mtx_unlock(&xnb->sc_lock);
2272#endif
2273				error = ether_ioctl(ifp, cmd, data);
2274#ifdef INET
2275			}
2276#endif
2277			break;
2278		case SIOCSIFCAP:
2279			mtx_lock(&xnb->sc_lock);
2280			if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2281				ifp->if_capenable |= IFCAP_TXCSUM;
2282				ifp->if_hwassist |= XNB_CSUM_FEATURES;
2283			} else {
2284				ifp->if_capenable &= ~(IFCAP_TXCSUM);
2285				ifp->if_hwassist &= ~(XNB_CSUM_FEATURES);
2286			}
2287			if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2288				ifp->if_capenable |= IFCAP_RXCSUM;
2289			} else {
2290				ifp->if_capenable &= ~(IFCAP_RXCSUM);
2291			}
2292			/*
2293			 * TODO enable TSO4 and LRO once we no longer need
2294			 * to calculate checksums in software
2295			 */
2296#if 0
2297			if (ifr->if_reqcap |= IFCAP_TSO4) {
2298				if (IFCAP_TXCSUM & ifp->if_capenable) {
2299					printf("xnb: Xen netif requires that "
2300						"TXCSUM be enabled in order "
2301						"to use TSO4\n");
2302					error = EINVAL;
2303				} else {
2304					ifp->if_capenable |= IFCAP_TSO4;
2305					ifp->if_hwassist |= CSUM_TSO;
2306				}
2307			} else {
2308				ifp->if_capenable &= ~(IFCAP_TSO4);
2309				ifp->if_hwassist &= ~(CSUM_TSO);
2310			}
2311			if (ifr->ifreqcap |= IFCAP_LRO) {
2312				ifp->if_capenable |= IFCAP_LRO;
2313			} else {
2314				ifp->if_capenable &= ~(IFCAP_LRO);
2315			}
2316#endif
2317			mtx_unlock(&xnb->sc_lock);
2318			break;
2319		case SIOCSIFMTU:
2320			ifp->if_mtu = ifr->ifr_mtu;
2321			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2322			xnb_ifinit(xnb);
2323			break;
2324		case SIOCADDMULTI:
2325		case SIOCDELMULTI:
2326		case SIOCSIFMEDIA:
2327		case SIOCGIFMEDIA:
2328			error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2329			break;
2330		default:
2331			error = ether_ioctl(ifp, cmd, data);
2332			break;
2333	}
2334	return (error);
2335}
2336
2337static void
2338xnb_start_locked(struct ifnet *ifp)
2339{
2340	netif_rx_back_ring_t *rxb;
2341	struct xnb_softc *xnb;
2342	struct mbuf *mbufc;
2343	RING_IDX req_prod_local;
2344
2345	xnb = ifp->if_softc;
2346	rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2347
2348	if (!xnb->carrier)
2349		return;
2350
2351	do {
2352		int out_of_space = 0;
2353		int notify;
2354		req_prod_local = rxb->sring->req_prod;
2355		xen_rmb();
2356		for (;;) {
2357			int error;
2358
2359			IF_DEQUEUE(&ifp->if_snd, mbufc);
2360			if (mbufc == NULL)
2361				break;
2362			error = xnb_send(rxb, xnb->otherend_id, mbufc,
2363			    		 xnb->rx_gnttab);
2364			switch (error) {
2365				case EAGAIN:
2366					/*
2367					 * Insufficient space in the ring.
2368					 * Requeue pkt and send when space is
2369					 * available.
2370					 */
2371					IF_PREPEND(&ifp->if_snd, mbufc);
2372					/*
2373					 * Perhaps the frontend missed an IRQ
2374					 * and went to sleep.  Notify it to wake
2375					 * it up.
2376					 */
2377					out_of_space = 1;
2378					break;
2379
2380				case EINVAL:
2381					/* OS gave a corrupt packet.  Drop it.*/
2382					if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2383					/* FALLTHROUGH */
2384				default:
2385					/* Send succeeded, or packet had error.
2386					 * Free the packet */
2387					if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2388					if (mbufc)
2389						m_freem(mbufc);
2390					break;
2391			}
2392			if (out_of_space != 0)
2393				break;
2394		}
2395
2396		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2397		if ((notify != 0) || (out_of_space != 0))
2398			xen_intr_signal(xnb->xen_intr_handle);
2399		rxb->sring->req_event = req_prod_local + 1;
2400		xen_mb();
2401	} while (rxb->sring->req_prod != req_prod_local) ;
2402}
2403
2404/**
2405 * Sends one packet to the ring.  Blocks until the packet is on the ring
2406 * \param[in]	mbufc	Contains one packet to send.  Caller must free
2407 * \param[in,out] rxb	The packet will be pushed onto this ring, but the
2408 * 			otherend will not be notified.
2409 * \param[in]	otherend The domain ID of the other end of the connection
2410 * \retval	EAGAIN	The ring did not have enough space for the packet.
2411 * 			The ring has not been modified
2412 * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
2413 * 			this a function parameter so that we will take less
2414 * 			stack space.
2415 * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
2416 */
2417static int
2418xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2419	 gnttab_copy_table gnttab)
2420{
2421	struct xnb_pkt pkt;
2422	int error, n_entries, n_reqs;
2423	RING_IDX space;
2424
2425	space = ring->sring->req_prod - ring->req_cons;
2426	error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2427	if (error != 0)
2428		return error;
2429	n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2430	if (n_entries != 0) {
2431		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2432		    gnttab, n_entries);
2433		KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2434		    hv_ret));
2435	}
2436
2437	n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2438
2439	return 0;
2440}
2441
2442static void
2443xnb_start(struct ifnet *ifp)
2444{
2445	struct xnb_softc *xnb;
2446
2447	xnb = ifp->if_softc;
2448	mtx_lock(&xnb->rx_lock);
2449	xnb_start_locked(ifp);
2450	mtx_unlock(&xnb->rx_lock);
2451}
2452
2453/* equivalent of network_open() in Linux */
2454static void
2455xnb_ifinit_locked(struct xnb_softc *xnb)
2456{
2457	struct ifnet *ifp;
2458
2459	ifp = xnb->xnb_ifp;
2460
2461	mtx_assert(&xnb->sc_lock, MA_OWNED);
2462
2463	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2464		return;
2465
2466	xnb_stop(xnb);
2467
2468	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2469	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2470	if_link_state_change(ifp, LINK_STATE_UP);
2471}
2472
2473
2474static void
2475xnb_ifinit(void *xsc)
2476{
2477	struct xnb_softc *xnb = xsc;
2478
2479	mtx_lock(&xnb->sc_lock);
2480	xnb_ifinit_locked(xnb);
2481	mtx_unlock(&xnb->sc_lock);
2482}
2483
2484/**
2485 * Callback used by the generic networking code to tell us when our carrier
2486 * state has changed.  Since we don't have a physical carrier, we don't care
2487 */
2488static int
2489xnb_ifmedia_upd(struct ifnet *ifp)
2490{
2491	return (0);
2492}
2493
2494/**
2495 * Callback used by the generic networking code to ask us what our carrier
2496 * state is.  Since we don't have a physical carrier, this is very simple
2497 */
2498static void
2499xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2500{
2501	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2502	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2503}
2504
2505
2506/*---------------------------- NewBus Registration ---------------------------*/
2507static device_method_t xnb_methods[] = {
2508	/* Device interface */
2509	DEVMETHOD(device_probe,		xnb_probe),
2510	DEVMETHOD(device_attach,	xnb_attach),
2511	DEVMETHOD(device_detach,	xnb_detach),
2512	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2513	DEVMETHOD(device_suspend,	xnb_suspend),
2514	DEVMETHOD(device_resume,	xnb_resume),
2515
2516	/* Xenbus interface */
2517	DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2518
2519	{ 0, 0 }
2520};
2521
2522static driver_t xnb_driver = {
2523	"xnb",
2524	xnb_methods,
2525	sizeof(struct xnb_softc),
2526};
2527devclass_t xnb_devclass;
2528
2529DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0);
2530
2531
2532/*-------------------------- Unit Tests -------------------------------------*/
2533#ifdef XNB_DEBUG
2534#include "netback_unit_tests.c"
2535#endif
2536