1/*-
2 * Copyright (c) 2009-2011 Spectra Logic Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions, and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    substantially similar to the "NO WARRANTY" disclaimer below
13 *    ("Disclaimer") and any redistribution must be conditioned upon
14 *    including a substantially similar Disclaimer requirement for further
15 *    binary redistribution.
16 *
17 * NO WARRANTY
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGES.
29 *
30 * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31 *          Alan Somers         (Spectra Logic Corporation)
32 *          John Suykerbuyk     (Spectra Logic Corporation)
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: stable/11/sys/dev/xen/netback/netback.c 346817 2019-04-28 13:21:01Z dchagin $");
37
38/**
39 * \file netback.c
40 *
41 * \brief Device driver supporting the vending of network access
42 * 	  from this FreeBSD domain to other domains.
43 */
44#include "opt_inet.h"
45#include "opt_inet6.h"
46
47#include "opt_sctp.h"
48
49#include <sys/param.h>
50#include <sys/kernel.h>
51
52#include <sys/bus.h>
53#include <sys/module.h>
54#include <sys/rman.h>
55#include <sys/socket.h>
56#include <sys/sockio.h>
57#include <sys/sysctl.h>
58
59#include <net/if.h>
60#include <net/if_var.h>
61#include <net/if_arp.h>
62#include <net/ethernet.h>
63#include <net/if_dl.h>
64#include <net/if_media.h>
65#include <net/if_types.h>
66
67#include <netinet/in.h>
68#include <netinet/ip.h>
69#include <netinet/if_ether.h>
70#if __FreeBSD_version >= 700000
71#include <netinet/tcp.h>
72#endif
73#include <netinet/ip_icmp.h>
74#include <netinet/udp.h>
75#include <machine/in_cksum.h>
76
77#include <vm/vm.h>
78#include <vm/pmap.h>
79#include <vm/vm_extern.h>
80#include <vm/vm_kern.h>
81
82#include <machine/_inttypes.h>
83
84#include <xen/xen-os.h>
85#include <xen/hypervisor.h>
86#include <xen/xen_intr.h>
87#include <xen/interface/io/netif.h>
88#include <xen/xenbus/xenbusvar.h>
89
90/*--------------------------- Compile-time Tunables --------------------------*/
91
92/*---------------------------------- Macros ----------------------------------*/
93/**
94 * Custom malloc type for all driver allocations.
95 */
96static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
97
98#define	XNB_SG	1	/* netback driver supports feature-sg */
99#define	XNB_GSO_TCPV4 0	/* netback driver supports feature-gso-tcpv4 */
100#define	XNB_RX_COPY 1	/* netback driver supports feature-rx-copy */
101#define	XNB_RX_FLIP 0	/* netback driver does not support feature-rx-flip */
102
103#undef XNB_DEBUG
104#define	XNB_DEBUG /* hardcode on during development */
105
106#ifdef XNB_DEBUG
107#define	DPRINTF(fmt, args...) \
108	printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
109#else
110#define	DPRINTF(fmt, args...) do {} while (0)
111#endif
112
113/* Default length for stack-allocated grant tables */
114#define	GNTTAB_LEN	(64)
115
116/* Features supported by all backends.  TSO and LRO can be negotiated */
117#define	XNB_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
118
119#define	NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
120#define	NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
121
122/**
123 * Two argument version of the standard macro.  Second argument is a tentative
124 * value of req_cons
125 */
126#define	RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({                     \
127	unsigned int req = (_r)->sring->req_prod - cons;          	\
128	unsigned int rsp = RING_SIZE(_r) -                              \
129	(cons - (_r)->rsp_prod_pvt);                          		\
130	req < rsp ? req : rsp;                                          \
131})
132
133#define	virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT)
134#define	virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
135
136/**
137 * Predefined array type of grant table copy descriptors.  Used to pass around
138 * statically allocated memory structures.
139 */
140typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
141
142/*--------------------------- Forward Declarations ---------------------------*/
143struct xnb_softc;
144struct xnb_pkt;
145
146static void	xnb_attach_failed(struct xnb_softc *xnb,
147				  int err, const char *fmt, ...)
148				  __printflike(3,4);
149static int	xnb_shutdown(struct xnb_softc *xnb);
150static int	create_netdev(device_t dev);
151static int	xnb_detach(device_t dev);
152static int	xnb_ifmedia_upd(struct ifnet *ifp);
153static void	xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
154static void 	xnb_intr(void *arg);
155static int	xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
156			 const struct mbuf *mbufc, gnttab_copy_table gnttab);
157static int	xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
158			 struct mbuf **mbufc, struct ifnet *ifnet,
159			 gnttab_copy_table gnttab);
160static int	xnb_ring2pkt(struct xnb_pkt *pkt,
161			     const netif_tx_back_ring_t *tx_ring,
162			     RING_IDX start);
163static void	xnb_txpkt2rsp(const struct xnb_pkt *pkt,
164			      netif_tx_back_ring_t *ring, int error);
165static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp);
166static int	xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
167				 struct mbuf *mbufc,
168				 gnttab_copy_table gnttab,
169				 const netif_tx_back_ring_t *txb,
170				 domid_t otherend_id);
171static void	xnb_update_mbufc(struct mbuf *mbufc,
172				 const gnttab_copy_table gnttab, int n_entries);
173static int	xnb_mbufc2pkt(const struct mbuf *mbufc,
174			      struct xnb_pkt *pkt,
175			      RING_IDX start, int space);
176static int	xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
177				 const struct mbuf *mbufc,
178				 gnttab_copy_table gnttab,
179				 const netif_rx_back_ring_t *rxb,
180				 domid_t otherend_id);
181static int	xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
182			      const gnttab_copy_table gnttab, int n_entries,
183			      netif_rx_back_ring_t *ring);
184static void	xnb_stop(struct xnb_softc*);
185static int	xnb_ioctl(struct ifnet*, u_long, caddr_t);
186static void	xnb_start_locked(struct ifnet*);
187static void	xnb_start(struct ifnet*);
188static void	xnb_ifinit_locked(struct xnb_softc*);
189static void	xnb_ifinit(void*);
190#ifdef XNB_DEBUG
191static int	xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
192static int	xnb_dump_rings(SYSCTL_HANDLER_ARGS);
193#endif
194#if defined(INET) || defined(INET6)
195static void	xnb_add_mbuf_cksum(struct mbuf *mbufc);
196#endif
197/*------------------------------ Data Structures -----------------------------*/
198
199
200/**
201 * Representation of a xennet packet.  Simplified version of a packet as
202 * stored in the Xen tx ring.  Applicable to both RX and TX packets
203 */
204struct xnb_pkt{
205	/**
206	 * Array index of the first data-bearing (eg, not extra info) entry
207	 * for this packet
208	 */
209	RING_IDX	car;
210
211	/**
212	 * Array index of the second data-bearing entry for this packet.
213	 * Invalid if the packet has only one data-bearing entry.  If the
214	 * packet has more than two data-bearing entries, then the second
215	 * through the last will be sequential modulo the ring size
216	 */
217	RING_IDX	cdr;
218
219	/**
220	 * Optional extra info.  Only valid if flags contains
221	 * NETTXF_extra_info.  Note that extra.type will always be
222	 * XEN_NETIF_EXTRA_TYPE_GSO.  Currently, no known netfront or netback
223	 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
224	 */
225	netif_extra_info_t extra;
226
227	/** Size of entire packet in bytes.       */
228	uint16_t	size;
229
230	/** The size of the first entry's data in bytes */
231	uint16_t	car_size;
232
233	/**
234	 * Either NETTXF_ or NETRXF_ flags.  Note that the flag values are
235	 * not the same for TX and RX packets
236	 */
237	uint16_t	flags;
238
239	/**
240	 * The number of valid data-bearing entries (either netif_tx_request's
241	 * or netif_rx_response's) in the packet.  If this is 0, it means the
242	 * entire packet is invalid.
243	 */
244	uint16_t	list_len;
245
246	/** There was an error processing the packet */
247	uint8_t		error;
248};
249
250/** xnb_pkt method: initialize it */
251static inline void
252xnb_pkt_initialize(struct xnb_pkt *pxnb)
253{
254	bzero(pxnb, sizeof(*pxnb));
255}
256
257/** xnb_pkt method: mark the packet as valid */
258static inline void
259xnb_pkt_validate(struct xnb_pkt *pxnb)
260{
261	pxnb->error = 0;
262};
263
264/** xnb_pkt method: mark the packet as invalid */
265static inline void
266xnb_pkt_invalidate(struct xnb_pkt *pxnb)
267{
268	pxnb->error = 1;
269};
270
271/** xnb_pkt method: Check whether the packet is valid */
272static inline int
273xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
274{
275	return (! pxnb->error);
276}
277
278#ifdef XNB_DEBUG
279/** xnb_pkt method: print the packet's contents in human-readable format*/
280static void __unused
281xnb_dump_pkt(const struct xnb_pkt *pkt) {
282	if (pkt == NULL) {
283	  DPRINTF("Was passed a null pointer.\n");
284	  return;
285	}
286	DPRINTF("pkt address= %p\n", pkt);
287	DPRINTF("pkt->size=%d\n", pkt->size);
288	DPRINTF("pkt->car_size=%d\n", pkt->car_size);
289	DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
290	DPRINTF("pkt->list_len=%d\n", pkt->list_len);
291	/* DPRINTF("pkt->extra");	TODO */
292	DPRINTF("pkt->car=%d\n", pkt->car);
293	DPRINTF("pkt->cdr=%d\n", pkt->cdr);
294	DPRINTF("pkt->error=%d\n", pkt->error);
295}
296#endif /* XNB_DEBUG */
297
298static void
299xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
300{
301	if (txreq != NULL) {
302		DPRINTF("netif_tx_request index =%u\n", idx);
303		DPRINTF("netif_tx_request.gref  =%u\n", txreq->gref);
304		DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
305		DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
306		DPRINTF("netif_tx_request.id    =%hu\n", txreq->id);
307		DPRINTF("netif_tx_request.size  =%hu\n", txreq->size);
308	}
309}
310
311
312/**
313 * \brief Configuration data for a shared memory request ring
314 *        used to communicate with the front-end client of this
315 *        this driver.
316 */
317struct xnb_ring_config {
318	/**
319	 * Runtime structures for ring access.  Unfortunately, TX and RX rings
320	 * use different data structures, and that cannot be changed since it
321	 * is part of the interdomain protocol.
322	 */
323	union{
324		netif_rx_back_ring_t	  rx_ring;
325		netif_tx_back_ring_t	  tx_ring;
326	} back_ring;
327
328	/**
329	 * The device bus address returned by the hypervisor when
330	 * mapping the ring and required to unmap it when a connection
331	 * is torn down.
332	 */
333	uint64_t	bus_addr;
334
335	/** The pseudo-physical address where ring memory is mapped.*/
336	uint64_t	gnt_addr;
337
338	/** KVA address where ring memory is mapped. */
339	vm_offset_t	va;
340
341	/**
342	 * Grant table handles, one per-ring page, returned by the
343	 * hyperpervisor upon mapping of the ring and required to
344	 * unmap it when a connection is torn down.
345	 */
346	grant_handle_t	handle;
347
348	/** The number of ring pages mapped for the current connection. */
349	unsigned	ring_pages;
350
351	/**
352	 * The grant references, one per-ring page, supplied by the
353	 * front-end, allowing us to reference the ring pages in the
354	 * front-end's domain and to map these pages into our own domain.
355	 */
356	grant_ref_t	ring_ref;
357};
358
359/**
360 * Per-instance connection state flags.
361 */
362typedef enum
363{
364	/** Communication with the front-end has been established. */
365	XNBF_RING_CONNECTED    = 0x01,
366
367	/**
368	 * Front-end requests exist in the ring and are waiting for
369	 * xnb_xen_req objects to free up.
370	 */
371	XNBF_RESOURCE_SHORTAGE = 0x02,
372
373	/** Connection teardown has started. */
374	XNBF_SHUTDOWN          = 0x04,
375
376	/** A thread is already performing shutdown processing. */
377	XNBF_IN_SHUTDOWN       = 0x08
378} xnb_flag_t;
379
380/**
381 * Types of rings.  Used for array indices and to identify a ring's control
382 * data structure type
383 */
384typedef enum{
385	XNB_RING_TYPE_TX = 0,	/* ID of TX rings, used for array indices */
386	XNB_RING_TYPE_RX = 1,	/* ID of RX rings, used for array indices */
387	XNB_NUM_RING_TYPES
388} xnb_ring_type_t;
389
390/**
391 * Per-instance configuration data.
392 */
393struct xnb_softc {
394	/** NewBus device corresponding to this instance. */
395	device_t		dev;
396
397	/* Media related fields */
398
399	/** Generic network media state */
400	struct ifmedia		sc_media;
401
402	/** Media carrier info */
403	struct ifnet 		*xnb_ifp;
404
405	/** Our own private carrier state */
406	unsigned carrier;
407
408	/** Device MAC Address */
409	uint8_t			mac[ETHER_ADDR_LEN];
410
411	/* Xen related fields */
412
413	/**
414	 * \brief The netif protocol abi in effect.
415	 *
416	 * There are situations where the back and front ends can
417	 * have a different, native abi (e.g. intel x86_64 and
418	 * 32bit x86 domains on the same machine).  The back-end
419	 * always accommodates the front-end's native abi.  That
420	 * value is pulled from the XenStore and recorded here.
421	 */
422	int			abi;
423
424	/**
425	 * Name of the bridge to which this VIF is connected, if any
426	 * This field is dynamically allocated by xenbus and must be free()ed
427	 * when no longer needed
428	 */
429	char			*bridge;
430
431	/** The interrupt driven even channel used to signal ring events. */
432	evtchn_port_t		evtchn;
433
434	/** Xen device handle.*/
435	long 			handle;
436
437	/** Handle to the communication ring event channel. */
438	xen_intr_handle_t	xen_intr_handle;
439
440	/**
441	 * \brief Cached value of the front-end's domain id.
442	 *
443	 * This value is used at once for each mapped page in
444	 * a transaction.  We cache it to avoid incuring the
445	 * cost of an ivar access every time this is needed.
446	 */
447	domid_t			otherend_id;
448
449	/**
450	 * Undocumented frontend feature.  Has something to do with
451	 * scatter/gather IO
452	 */
453	uint8_t			can_sg;
454	/** Undocumented frontend feature */
455	uint8_t			gso;
456	/** Undocumented frontend feature */
457	uint8_t			gso_prefix;
458	/** Can checksum TCP/UDP over IPv4 */
459	uint8_t			ip_csum;
460
461	/* Implementation related fields */
462	/**
463	 * Preallocated grant table copy descriptor for RX operations.
464	 * Access must be protected by rx_lock
465	 */
466	gnttab_copy_table	rx_gnttab;
467
468	/**
469	 * Preallocated grant table copy descriptor for TX operations.
470	 * Access must be protected by tx_lock
471	 */
472	gnttab_copy_table	tx_gnttab;
473
474	/**
475	 * Resource representing allocated physical address space
476	 * associated with our per-instance kva region.
477	 */
478	struct resource		*pseudo_phys_res;
479
480	/** Resource id for allocated physical address space. */
481	int			pseudo_phys_res_id;
482
483	/** Ring mapping and interrupt configuration data. */
484	struct xnb_ring_config	ring_configs[XNB_NUM_RING_TYPES];
485
486	/**
487	 * Global pool of kva used for mapping remote domain ring
488	 * and I/O transaction data.
489	 */
490	vm_offset_t		kva;
491
492	/** Pseudo-physical address corresponding to kva. */
493	uint64_t		gnt_base_addr;
494
495	/** Various configuration and state bit flags. */
496	xnb_flag_t		flags;
497
498	/** Mutex protecting per-instance data in the receive path. */
499	struct mtx		rx_lock;
500
501	/** Mutex protecting per-instance data in the softc structure. */
502	struct mtx		sc_lock;
503
504	/** Mutex protecting per-instance data in the transmit path. */
505	struct mtx		tx_lock;
506
507	/** The size of the global kva pool. */
508	int			kva_size;
509
510	/** Name of the interface */
511	char			 if_name[IFNAMSIZ];
512};
513
514/*---------------------------- Debugging functions ---------------------------*/
515#ifdef XNB_DEBUG
516static void __unused
517xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
518{
519	if (entry == NULL) {
520		printf("NULL grant table pointer\n");
521		return;
522	}
523
524	if (entry->flags & GNTCOPY_dest_gref)
525		printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
526	else
527		printf("gnttab dest gmfn=\t%"PRI_xen_pfn"\n",
528		       entry->dest.u.gmfn);
529	printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
530	printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
531	if (entry->flags & GNTCOPY_source_gref)
532		printf("gnttab source ref=\t%u\n", entry->source.u.ref);
533	else
534		printf("gnttab source gmfn=\t%"PRI_xen_pfn"\n",
535		       entry->source.u.gmfn);
536	printf("gnttab source offset=\t%hu\n", entry->source.offset);
537	printf("gnttab source domid=\t%hu\n", entry->source.domid);
538	printf("gnttab len=\t%hu\n", entry->len);
539	printf("gnttab flags=\t%hu\n", entry->flags);
540	printf("gnttab status=\t%hd\n", entry->status);
541}
542
543static int
544xnb_dump_rings(SYSCTL_HANDLER_ARGS)
545{
546	static char results[720];
547	struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
548	netif_rx_back_ring_t const* rxb =
549		&xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
550	netif_tx_back_ring_t const* txb =
551		&xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
552
553	/* empty the result strings */
554	results[0] = 0;
555
556	if ( !txb || !txb->sring || !rxb || !rxb->sring )
557		return (SYSCTL_OUT(req, results, strnlen(results, 720)));
558
559	snprintf(results, 720,
560	    "\n\t%35s %18s\n"	/* TX, RX */
561	    "\t%16s %18d %18d\n"	/* req_cons */
562	    "\t%16s %18d %18d\n"	/* nr_ents */
563	    "\t%16s %18d %18d\n"	/* rsp_prod_pvt */
564	    "\t%16s %18p %18p\n"	/* sring */
565	    "\t%16s %18d %18d\n"	/* req_prod */
566	    "\t%16s %18d %18d\n"	/* req_event */
567	    "\t%16s %18d %18d\n"	/* rsp_prod */
568	    "\t%16s %18d %18d\n",	/* rsp_event */
569	    "TX", "RX",
570	    "req_cons", txb->req_cons, rxb->req_cons,
571	    "nr_ents", txb->nr_ents, rxb->nr_ents,
572	    "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
573	    "sring", txb->sring, rxb->sring,
574	    "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
575	    "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
576	    "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
577	    "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
578
579	return (SYSCTL_OUT(req, results, strnlen(results, 720)));
580}
581
582static void __unused
583xnb_dump_mbuf(const struct mbuf *m)
584{
585	int len;
586	uint8_t *d;
587	if (m == NULL)
588		return;
589
590	printf("xnb_dump_mbuf:\n");
591	if (m->m_flags & M_PKTHDR) {
592		printf("    flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
593		       "tso_segsz=%5hd\n",
594		       m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags,
595		       m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
596		printf("    rcvif=%16p,  len=%19d\n",
597		       m->m_pkthdr.rcvif, m->m_pkthdr.len);
598	}
599	printf("    m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
600	       m->m_next, m->m_nextpkt, m->m_data);
601	printf("    m_len=%17d, m_flags=%#15x, m_type=%18u\n",
602	       m->m_len, m->m_flags, m->m_type);
603
604	len = m->m_len;
605	d = mtod(m, uint8_t*);
606	while (len > 0) {
607		int i;
608		printf("                ");
609		for (i = 0; (i < 16) && (len > 0); i++, len--) {
610			printf("%02hhx ", *(d++));
611		}
612		printf("\n");
613	}
614}
615#endif /* XNB_DEBUG */
616
617/*------------------------ Inter-Domain Communication ------------------------*/
618/**
619 * Free dynamically allocated KVA or pseudo-physical address allocations.
620 *
621 * \param xnb  Per-instance xnb configuration structure.
622 */
623static void
624xnb_free_communication_mem(struct xnb_softc *xnb)
625{
626	if (xnb->kva != 0) {
627		if (xnb->pseudo_phys_res != NULL) {
628			xenmem_free(xnb->dev, xnb->pseudo_phys_res_id,
629			    xnb->pseudo_phys_res);
630			xnb->pseudo_phys_res = NULL;
631		}
632	}
633	xnb->kva = 0;
634	xnb->gnt_base_addr = 0;
635}
636
637/**
638 * Cleanup all inter-domain communication mechanisms.
639 *
640 * \param xnb  Per-instance xnb configuration structure.
641 */
642static int
643xnb_disconnect(struct xnb_softc *xnb)
644{
645	struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
646	int error;
647	int i;
648
649	if (xnb->xen_intr_handle != NULL)
650		xen_intr_unbind(&xnb->xen_intr_handle);
651
652	/*
653	 * We may still have another thread currently processing requests.  We
654	 * must acquire the rx and tx locks to make sure those threads are done,
655	 * but we can release those locks as soon as we acquire them, because no
656	 * more interrupts will be arriving.
657	 */
658	mtx_lock(&xnb->tx_lock);
659	mtx_unlock(&xnb->tx_lock);
660	mtx_lock(&xnb->rx_lock);
661	mtx_unlock(&xnb->rx_lock);
662
663	/* Free malloc'd softc member variables */
664	if (xnb->bridge != NULL) {
665		free(xnb->bridge, M_XENSTORE);
666		xnb->bridge = NULL;
667	}
668
669	/* All request processing has stopped, so unmap the rings */
670	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
671		gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
672		gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
673		gnts[i].handle = xnb->ring_configs[i].handle;
674	}
675	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
676					  XNB_NUM_RING_TYPES);
677	KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
678
679	xnb_free_communication_mem(xnb);
680	/*
681	 * Zero the ring config structs because the pointers, handles, and
682	 * grant refs contained therein are no longer valid.
683	 */
684	bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
685	    sizeof(struct xnb_ring_config));
686	bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
687	    sizeof(struct xnb_ring_config));
688
689	xnb->flags &= ~XNBF_RING_CONNECTED;
690	return (0);
691}
692
693/**
694 * Map a single shared memory ring into domain local address space and
695 * initialize its control structure
696 *
697 * \param xnb	Per-instance xnb configuration structure
698 * \param ring_type	Array index of this ring in the xnb's array of rings
699 * \return 	An errno
700 */
701static int
702xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
703{
704	struct gnttab_map_grant_ref gnt;
705	struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
706	int error;
707
708	/* TX ring type = 0, RX =1 */
709	ring->va = xnb->kva + ring_type * PAGE_SIZE;
710	ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
711
712	gnt.host_addr = ring->gnt_addr;
713	gnt.flags     = GNTMAP_host_map;
714	gnt.ref       = ring->ring_ref;
715	gnt.dom       = xnb->otherend_id;
716
717	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
718	if (error != 0)
719		panic("netback: Ring page grant table op failed (%d)", error);
720
721	if (gnt.status != 0) {
722		ring->va = 0;
723		error = EACCES;
724		xenbus_dev_fatal(xnb->dev, error,
725				 "Ring shared page mapping failed. "
726				 "Status %d.", gnt.status);
727	} else {
728		ring->handle = gnt.handle;
729		ring->bus_addr = gnt.dev_bus_addr;
730
731		if (ring_type == XNB_RING_TYPE_TX) {
732			BACK_RING_INIT(&ring->back_ring.tx_ring,
733			    (netif_tx_sring_t*)ring->va,
734			    ring->ring_pages * PAGE_SIZE);
735		} else if (ring_type == XNB_RING_TYPE_RX) {
736			BACK_RING_INIT(&ring->back_ring.rx_ring,
737			    (netif_rx_sring_t*)ring->va,
738			    ring->ring_pages * PAGE_SIZE);
739		} else {
740			xenbus_dev_fatal(xnb->dev, error,
741				 "Unknown ring type %d", ring_type);
742		}
743	}
744
745	return error;
746}
747
748/**
749 * Setup the shared memory rings and bind an interrupt to the event channel
750 * used to notify us of ring changes.
751 *
752 * \param xnb  Per-instance xnb configuration structure.
753 */
754static int
755xnb_connect_comms(struct xnb_softc *xnb)
756{
757	int	error;
758	xnb_ring_type_t i;
759
760	if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
761		return (0);
762
763	/*
764	 * Kva for our rings are at the tail of the region of kva allocated
765	 * by xnb_alloc_communication_mem().
766	 */
767	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
768		error = xnb_connect_ring(xnb, i);
769		if (error != 0)
770	  		return error;
771	}
772
773	xnb->flags |= XNBF_RING_CONNECTED;
774
775	error = xen_intr_bind_remote_port(xnb->dev,
776					  xnb->otherend_id,
777					  xnb->evtchn,
778					  /*filter*/NULL,
779					  xnb_intr, /*arg*/xnb,
780					  INTR_TYPE_BIO | INTR_MPSAFE,
781					  &xnb->xen_intr_handle);
782	if (error != 0) {
783		(void)xnb_disconnect(xnb);
784		xenbus_dev_fatal(xnb->dev, error, "binding event channel");
785		return (error);
786	}
787
788	DPRINTF("rings connected!\n");
789
790	return (0);
791}
792
793/**
794 * Size KVA and pseudo-physical address allocations based on negotiated
795 * values for the size and number of I/O requests, and the size of our
796 * communication ring.
797 *
798 * \param xnb  Per-instance xnb configuration structure.
799 *
800 * These address spaces are used to dynamically map pages in the
801 * front-end's domain into our own.
802 */
803static int
804xnb_alloc_communication_mem(struct xnb_softc *xnb)
805{
806	xnb_ring_type_t i;
807
808	xnb->kva_size = 0;
809	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
810		xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
811	}
812
813	/*
814	 * Reserve a range of pseudo physical memory that we can map
815	 * into kva.  These pages will only be backed by machine
816	 * pages ("real memory") during the lifetime of front-end requests
817	 * via grant table operations.  We will map the netif tx and rx rings
818	 * into this space.
819	 */
820	xnb->pseudo_phys_res_id = 0;
821	xnb->pseudo_phys_res = xenmem_alloc(xnb->dev, &xnb->pseudo_phys_res_id,
822	    xnb->kva_size);
823	if (xnb->pseudo_phys_res == NULL) {
824		xnb->kva = 0;
825		return (ENOMEM);
826	}
827	xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
828	xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
829	return (0);
830}
831
832/**
833 * Collect information from the XenStore related to our device and its frontend
834 *
835 * \param xnb  Per-instance xnb configuration structure.
836 */
837static int
838xnb_collect_xenstore_info(struct xnb_softc *xnb)
839{
840	/**
841	 * \todo Linux collects the following info.  We should collect most
842	 * of this, too:
843	 * "feature-rx-notify"
844	 */
845	const char *otherend_path;
846	const char *our_path;
847	int err;
848	unsigned int rx_copy, bridge_len;
849	uint8_t no_csum_offload;
850
851	otherend_path = xenbus_get_otherend_path(xnb->dev);
852	our_path = xenbus_get_node(xnb->dev);
853
854	/* Collect the critical communication parameters */
855	err = xs_gather(XST_NIL, otherend_path,
856	    "tx-ring-ref", "%l" PRIu32,
857	    	&xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
858	    "rx-ring-ref", "%l" PRIu32,
859	    	&xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
860	    "event-channel", "%" PRIu32, &xnb->evtchn,
861	    NULL);
862	if (err != 0) {
863		xenbus_dev_fatal(xnb->dev, err,
864				 "Unable to retrieve ring information from "
865				 "frontend %s.  Unable to connect.",
866				 otherend_path);
867		return (err);
868	}
869
870	/* Collect the handle from xenstore */
871	err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
872	if (err != 0) {
873		xenbus_dev_fatal(xnb->dev, err,
874		    "Error reading handle from frontend %s.  "
875		    "Unable to connect.", otherend_path);
876	}
877
878	/*
879	 * Collect the bridgename, if any.  We do not need bridge_len; we just
880	 * throw it away
881	 */
882	err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
883		      (void**)&xnb->bridge);
884	if (err != 0)
885		xnb->bridge = NULL;
886
887	/*
888	 * Does the frontend request that we use rx copy?  If not, return an
889	 * error because this driver only supports rx copy.
890	 */
891	err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
892		       "%" PRIu32, &rx_copy);
893	if (err == ENOENT) {
894		err = 0;
895	 	rx_copy = 0;
896	}
897	if (err < 0) {
898		xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
899				 otherend_path);
900		return err;
901	}
902	/**
903	 * \todo: figure out the exact meaning of this feature, and when
904	 * the frontend will set it to true.  It should be set to true
905	 * at some point
906	 */
907/*        if (!rx_copy)*/
908/*          return EOPNOTSUPP;*/
909
910	/** \todo Collect the rx notify feature */
911
912	/*  Collect the feature-sg. */
913	if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
914		     "%hhu", &xnb->can_sg) < 0)
915		xnb->can_sg = 0;
916
917	/* Collect remaining frontend features */
918	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
919		     "%hhu", &xnb->gso) < 0)
920		xnb->gso = 0;
921
922	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
923		     "%hhu", &xnb->gso_prefix) < 0)
924		xnb->gso_prefix = 0;
925
926	if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
927		     "%hhu", &no_csum_offload) < 0)
928		no_csum_offload = 0;
929	xnb->ip_csum = (no_csum_offload == 0);
930
931	return (0);
932}
933
934/**
935 * Supply information about the physical device to the frontend
936 * via XenBus.
937 *
938 * \param xnb  Per-instance xnb configuration structure.
939 */
940static int
941xnb_publish_backend_info(struct xnb_softc *xnb)
942{
943	struct xs_transaction xst;
944	const char *our_path;
945	int error;
946
947	our_path = xenbus_get_node(xnb->dev);
948
949	do {
950		error = xs_transaction_start(&xst);
951		if (error != 0) {
952			xenbus_dev_fatal(xnb->dev, error,
953					 "Error publishing backend info "
954					 "(start transaction)");
955			break;
956		}
957
958		error = xs_printf(xst, our_path, "feature-sg",
959				  "%d", XNB_SG);
960		if (error != 0)
961			break;
962
963		error = xs_printf(xst, our_path, "feature-gso-tcpv4",
964				  "%d", XNB_GSO_TCPV4);
965		if (error != 0)
966			break;
967
968		error = xs_printf(xst, our_path, "feature-rx-copy",
969				  "%d", XNB_RX_COPY);
970		if (error != 0)
971			break;
972
973		error = xs_printf(xst, our_path, "feature-rx-flip",
974				  "%d", XNB_RX_FLIP);
975		if (error != 0)
976			break;
977
978		error = xs_transaction_end(xst, 0);
979		if (error != 0 && error != EAGAIN) {
980			xenbus_dev_fatal(xnb->dev, error, "ending transaction");
981			break;
982		}
983
984	} while (error == EAGAIN);
985
986	return (error);
987}
988
989/**
990 * Connect to our netfront peer now that it has completed publishing
991 * its configuration into the XenStore.
992 *
993 * \param xnb  Per-instance xnb configuration structure.
994 */
995static void
996xnb_connect(struct xnb_softc *xnb)
997{
998	int	error;
999
1000	if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
1001		return;
1002
1003	if (xnb_collect_xenstore_info(xnb) != 0)
1004		return;
1005
1006	xnb->flags &= ~XNBF_SHUTDOWN;
1007
1008	/* Read front end configuration. */
1009
1010	/* Allocate resources whose size depends on front-end configuration. */
1011	error = xnb_alloc_communication_mem(xnb);
1012	if (error != 0) {
1013		xenbus_dev_fatal(xnb->dev, error,
1014				 "Unable to allocate communication memory");
1015		return;
1016	}
1017
1018	/*
1019	 * Connect communication channel.
1020	 */
1021	error = xnb_connect_comms(xnb);
1022	if (error != 0) {
1023		/* Specific errors are reported by xnb_connect_comms(). */
1024		return;
1025	}
1026	xnb->carrier = 1;
1027
1028	/* Ready for I/O. */
1029	xenbus_set_state(xnb->dev, XenbusStateConnected);
1030}
1031
1032/*-------------------------- Device Teardown Support -------------------------*/
1033/**
1034 * Perform device shutdown functions.
1035 *
1036 * \param xnb  Per-instance xnb configuration structure.
1037 *
1038 * Mark this instance as shutting down, wait for any active requests
1039 * to drain, disconnect from the front-end, and notify any waiters (e.g.
1040 * a thread invoking our detach method) that detach can now proceed.
1041 */
1042static int
1043xnb_shutdown(struct xnb_softc *xnb)
1044{
1045	/*
1046	 * Due to the need to drop our mutex during some
1047	 * xenbus operations, it is possible for two threads
1048	 * to attempt to close out shutdown processing at
1049	 * the same time.  Tell the caller that hits this
1050	 * race to try back later.
1051	 */
1052	if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1053		return (EAGAIN);
1054
1055	xnb->flags |= XNBF_SHUTDOWN;
1056
1057	xnb->flags |= XNBF_IN_SHUTDOWN;
1058
1059	mtx_unlock(&xnb->sc_lock);
1060	/* Free the network interface */
1061	xnb->carrier = 0;
1062	if (xnb->xnb_ifp != NULL) {
1063		ether_ifdetach(xnb->xnb_ifp);
1064		if_free(xnb->xnb_ifp);
1065		xnb->xnb_ifp = NULL;
1066	}
1067	mtx_lock(&xnb->sc_lock);
1068
1069	xnb_disconnect(xnb);
1070
1071	mtx_unlock(&xnb->sc_lock);
1072	if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1073		xenbus_set_state(xnb->dev, XenbusStateClosing);
1074	mtx_lock(&xnb->sc_lock);
1075
1076	xnb->flags &= ~XNBF_IN_SHUTDOWN;
1077
1078
1079	/* Indicate to xnb_detach() that is it safe to proceed. */
1080	wakeup(xnb);
1081
1082	return (0);
1083}
1084
1085/**
1086 * Report an attach time error to the console and Xen, and cleanup
1087 * this instance by forcing immediate detach processing.
1088 *
1089 * \param xnb  Per-instance xnb configuration structure.
1090 * \param err  Errno describing the error.
1091 * \param fmt  Printf style format and arguments
1092 */
1093static void
1094xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1095{
1096	va_list ap;
1097	va_list ap_hotplug;
1098
1099	va_start(ap, fmt);
1100	va_copy(ap_hotplug, ap);
1101	xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1102		  "hotplug-error", fmt, ap_hotplug);
1103	va_end(ap_hotplug);
1104	(void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1105		  "hotplug-status", "error");
1106
1107	xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1108	va_end(ap);
1109
1110	(void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev), "online", "0");
1111	xnb_detach(xnb->dev);
1112}
1113
1114/*---------------------------- NewBus Entrypoints ----------------------------*/
1115/**
1116 * Inspect a XenBus device and claim it if is of the appropriate type.
1117 *
1118 * \param dev  NewBus device object representing a candidate XenBus device.
1119 *
1120 * \return  0 for success, errno codes for failure.
1121 */
1122static int
1123xnb_probe(device_t dev)
1124{
1125	 if (!strcmp(xenbus_get_type(dev), "vif")) {
1126		DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1127		    devclass_get_name(device_get_devclass(dev)));
1128		device_set_desc(dev, "Backend Virtual Network Device");
1129		device_quiet(dev);
1130		return (0);
1131	}
1132	return (ENXIO);
1133}
1134
1135/**
1136 * Setup sysctl variables to control various Network Back parameters.
1137 *
1138 * \param xnb  Xen Net Back softc.
1139 *
1140 */
1141static void
1142xnb_setup_sysctl(struct xnb_softc *xnb)
1143{
1144	struct sysctl_ctx_list *sysctl_ctx = NULL;
1145	struct sysctl_oid      *sysctl_tree = NULL;
1146
1147	sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1148	if (sysctl_ctx == NULL)
1149		return;
1150
1151	sysctl_tree = device_get_sysctl_tree(xnb->dev);
1152	if (sysctl_tree == NULL)
1153		return;
1154
1155#ifdef XNB_DEBUG
1156	SYSCTL_ADD_PROC(sysctl_ctx,
1157			SYSCTL_CHILDREN(sysctl_tree),
1158			OID_AUTO,
1159			"unit_test_results",
1160			CTLTYPE_STRING | CTLFLAG_RD,
1161			xnb,
1162			0,
1163			xnb_unit_test_main,
1164			"A",
1165			"Results of builtin unit tests");
1166
1167	SYSCTL_ADD_PROC(sysctl_ctx,
1168			SYSCTL_CHILDREN(sysctl_tree),
1169			OID_AUTO,
1170			"dump_rings",
1171			CTLTYPE_STRING | CTLFLAG_RD,
1172			xnb,
1173			0,
1174			xnb_dump_rings,
1175			"A",
1176			"Xennet Back Rings");
1177#endif /* XNB_DEBUG */
1178}
1179
1180/**
1181 * Create a network device.
1182 * @param handle device handle
1183 */
1184int
1185create_netdev(device_t dev)
1186{
1187	struct ifnet *ifp;
1188	struct xnb_softc *xnb;
1189	int err = 0;
1190	uint32_t handle;
1191
1192	xnb = device_get_softc(dev);
1193	mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1194	mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1195	mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1196
1197	xnb->dev = dev;
1198
1199	ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1200	ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1201	ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1202
1203	/*
1204	 * Set the MAC address to a dummy value (00:00:00:00:00),
1205	 * if the MAC address of the host-facing interface is set
1206	 * to the same as the guest-facing one (the value found in
1207	 * xenstore), the bridge would stop delivering packets to
1208	 * us because it would see that the destination address of
1209	 * the packet is the same as the interface, and so the bridge
1210	 * would expect the packet has already been delivered locally
1211	 * (and just drop it).
1212	 */
1213	bzero(&xnb->mac[0], sizeof(xnb->mac));
1214
1215	/* The interface will be named using the following nomenclature:
1216	 *
1217	 * xnb<domid>.<handle>
1218	 *
1219	 * Where handle is the oder of the interface referred to the guest.
1220	 */
1221	err = xs_scanf(XST_NIL, xenbus_get_node(xnb->dev), "handle", NULL,
1222		       "%" PRIu32, &handle);
1223	if (err != 0)
1224		return (err);
1225	snprintf(xnb->if_name, IFNAMSIZ, "xnb%" PRIu16 ".%" PRIu32,
1226	    xenbus_get_otherend_id(dev), handle);
1227
1228	if (err == 0) {
1229		/* Set up ifnet structure */
1230		ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1231		ifp->if_softc = xnb;
1232		if_initname(ifp, xnb->if_name,  IF_DUNIT_NONE);
1233		ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1234		ifp->if_ioctl = xnb_ioctl;
1235		ifp->if_start = xnb_start;
1236		ifp->if_init = xnb_ifinit;
1237		ifp->if_mtu = ETHERMTU;
1238		ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1;
1239
1240		ifp->if_hwassist = XNB_CSUM_FEATURES;
1241		ifp->if_capabilities = IFCAP_HWCSUM;
1242		ifp->if_capenable = IFCAP_HWCSUM;
1243
1244		ether_ifattach(ifp, xnb->mac);
1245		xnb->carrier = 0;
1246	}
1247
1248	return err;
1249}
1250
1251/**
1252 * Attach to a XenBus device that has been claimed by our probe routine.
1253 *
1254 * \param dev  NewBus device object representing this Xen Net Back instance.
1255 *
1256 * \return  0 for success, errno codes for failure.
1257 */
1258static int
1259xnb_attach(device_t dev)
1260{
1261	struct xnb_softc *xnb;
1262	int	error;
1263	xnb_ring_type_t	i;
1264
1265	error = create_netdev(dev);
1266	if (error != 0) {
1267		xenbus_dev_fatal(dev, error, "creating netdev");
1268		return (error);
1269	}
1270
1271	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1272
1273	/*
1274	 * Basic initialization.
1275	 * After this block it is safe to call xnb_detach()
1276	 * to clean up any allocated data for this instance.
1277	 */
1278	xnb = device_get_softc(dev);
1279	xnb->otherend_id = xenbus_get_otherend_id(dev);
1280	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1281		xnb->ring_configs[i].ring_pages = 1;
1282	}
1283
1284	/*
1285	 * Setup sysctl variables.
1286	 */
1287	xnb_setup_sysctl(xnb);
1288
1289	/* Update hot-plug status to satisfy xend. */
1290	error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1291			  "hotplug-status", "connected");
1292	if (error != 0) {
1293		xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1294				  xenbus_get_node(xnb->dev));
1295		return (error);
1296	}
1297
1298	if ((error = xnb_publish_backend_info(xnb)) != 0) {
1299		/*
1300		 * If we can't publish our data, we cannot participate
1301		 * in this connection, and waiting for a front-end state
1302		 * change will not help the situation.
1303		 */
1304		xnb_attach_failed(xnb, error,
1305		    "Publishing backend status for %s",
1306				  xenbus_get_node(xnb->dev));
1307		return error;
1308	}
1309
1310	/* Tell the front end that we are ready to connect. */
1311	xenbus_set_state(dev, XenbusStateInitWait);
1312
1313	return (0);
1314}
1315
1316/**
1317 * Detach from a net back device instance.
1318 *
1319 * \param dev  NewBus device object representing this Xen Net Back instance.
1320 *
1321 * \return  0 for success, errno codes for failure.
1322 *
1323 * \note A net back device may be detached at any time in its life-cycle,
1324 *       including part way through the attach process.  For this reason,
1325 *       initialization order and the initialization state checks in this
1326 *       routine must be carefully coupled so that attach time failures
1327 *       are gracefully handled.
1328 */
1329static int
1330xnb_detach(device_t dev)
1331{
1332	struct xnb_softc *xnb;
1333
1334	DPRINTF("\n");
1335
1336	xnb = device_get_softc(dev);
1337	mtx_lock(&xnb->sc_lock);
1338	while (xnb_shutdown(xnb) == EAGAIN) {
1339		msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1340		       "xnb_shutdown", 0);
1341	}
1342	mtx_unlock(&xnb->sc_lock);
1343	DPRINTF("\n");
1344
1345	mtx_destroy(&xnb->tx_lock);
1346	mtx_destroy(&xnb->rx_lock);
1347	mtx_destroy(&xnb->sc_lock);
1348	return (0);
1349}
1350
1351/**
1352 * Prepare this net back device for suspension of this VM.
1353 *
1354 * \param dev  NewBus device object representing this Xen net Back instance.
1355 *
1356 * \return  0 for success, errno codes for failure.
1357 */
1358static int
1359xnb_suspend(device_t dev)
1360{
1361	return (0);
1362}
1363
1364/**
1365 * Perform any processing required to recover from a suspended state.
1366 *
1367 * \param dev  NewBus device object representing this Xen Net Back instance.
1368 *
1369 * \return  0 for success, errno codes for failure.
1370 */
1371static int
1372xnb_resume(device_t dev)
1373{
1374	return (0);
1375}
1376
1377/**
1378 * Handle state changes expressed via the XenStore by our front-end peer.
1379 *
1380 * \param dev             NewBus device object representing this Xen
1381 *                        Net Back instance.
1382 * \param frontend_state  The new state of the front-end.
1383 *
1384 * \return  0 for success, errno codes for failure.
1385 */
1386static void
1387xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1388{
1389	struct xnb_softc *xnb;
1390
1391	xnb = device_get_softc(dev);
1392
1393	DPRINTF("frontend_state=%s, xnb_state=%s\n",
1394	        xenbus_strstate(frontend_state),
1395		xenbus_strstate(xenbus_get_state(xnb->dev)));
1396
1397	switch (frontend_state) {
1398	case XenbusStateInitialising:
1399		break;
1400	case XenbusStateInitialised:
1401	case XenbusStateConnected:
1402		xnb_connect(xnb);
1403		break;
1404	case XenbusStateClosing:
1405	case XenbusStateClosed:
1406		mtx_lock(&xnb->sc_lock);
1407		xnb_shutdown(xnb);
1408		mtx_unlock(&xnb->sc_lock);
1409		if (frontend_state == XenbusStateClosed)
1410			xenbus_set_state(xnb->dev, XenbusStateClosed);
1411		break;
1412	default:
1413		xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1414				 frontend_state);
1415		break;
1416	}
1417}
1418
1419
1420/*---------------------------- Request Processing ----------------------------*/
1421/**
1422 * Interrupt handler bound to the shared ring's event channel.
1423 * Entry point for the xennet transmit path in netback
1424 * Transfers packets from the Xen ring to the host's generic networking stack
1425 *
1426 * \param arg  Callback argument registerd during event channel
1427 *             binding - the xnb_softc for this instance.
1428 */
1429static void
1430xnb_intr(void *arg)
1431{
1432	struct xnb_softc *xnb;
1433	struct ifnet *ifp;
1434	netif_tx_back_ring_t *txb;
1435	RING_IDX req_prod_local;
1436
1437	xnb = (struct xnb_softc *)arg;
1438	ifp = xnb->xnb_ifp;
1439	txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1440
1441	mtx_lock(&xnb->tx_lock);
1442	do {
1443		int notify;
1444		req_prod_local = txb->sring->req_prod;
1445		xen_rmb();
1446
1447		for (;;) {
1448			struct mbuf *mbufc;
1449			int err;
1450
1451			err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1452			    	       xnb->tx_gnttab);
1453			if (err || (mbufc == NULL))
1454				break;
1455
1456			/* Send the packet to the generic network stack */
1457			(*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc);
1458		}
1459
1460		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1461		if (notify != 0)
1462			xen_intr_signal(xnb->xen_intr_handle);
1463
1464		txb->sring->req_event = txb->req_cons + 1;
1465		xen_mb();
1466	} while (txb->sring->req_prod != req_prod_local) ;
1467	mtx_unlock(&xnb->tx_lock);
1468
1469	xnb_start(ifp);
1470}
1471
1472
1473/**
1474 * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1475 * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1476 * \param[out]	pkt	The returned packet.  If there is an error building
1477 * 			the packet, pkt.list_len will be set to 0.
1478 * \param[in]	tx_ring	Pointer to the Ring that is the input to this function
1479 * \param[in]	start	The ring index of the first potential request
1480 * \return		The number of requests consumed to build this packet
1481 */
1482static int
1483xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1484	     RING_IDX start)
1485{
1486	/*
1487	 * Outline:
1488	 * 1) Initialize pkt
1489	 * 2) Read the first request of the packet
1490	 * 3) Read the extras
1491	 * 4) Set cdr
1492	 * 5) Loop on the remainder of the packet
1493	 * 6) Finalize pkt (stuff like car_size and list_len)
1494	 */
1495	int idx = start;
1496	int discard = 0;	/* whether to discard the packet */
1497	int more_data = 0;	/* there are more request past the last one */
1498	uint16_t cdr_size = 0;	/* accumulated size of requests 2 through n */
1499
1500	xnb_pkt_initialize(pkt);
1501
1502	/* Read the first request */
1503	if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1504		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1505		pkt->size = tx->size;
1506		pkt->flags = tx->flags & ~NETTXF_more_data;
1507		more_data = tx->flags & NETTXF_more_data;
1508		pkt->list_len++;
1509		pkt->car = idx;
1510		idx++;
1511	}
1512
1513	/* Read the extra info */
1514	if ((pkt->flags & NETTXF_extra_info) &&
1515	    RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1516		netif_extra_info_t *ext =
1517		    (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1518		pkt->extra.type = ext->type;
1519		switch (pkt->extra.type) {
1520			case XEN_NETIF_EXTRA_TYPE_GSO:
1521				pkt->extra.u.gso = ext->u.gso;
1522				break;
1523			default:
1524				/*
1525				 * The reference Linux netfront driver will
1526				 * never set any other extra.type.  So we don't
1527				 * know what to do with it.  Let's print an
1528				 * error, then consume and discard the packet
1529				 */
1530				printf("xnb(%s:%d): Unknown extra info type %d."
1531				       "  Discarding packet\n",
1532				       __func__, __LINE__, pkt->extra.type);
1533				xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1534				    start));
1535				xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1536				    idx));
1537				discard = 1;
1538				break;
1539		}
1540
1541		pkt->extra.flags = ext->flags;
1542		if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1543			/*
1544			 * The reference linux netfront driver never sets this
1545			 * flag (nor does any other known netfront).  So we
1546			 * will discard the packet.
1547			 */
1548			printf("xnb(%s:%d): Request sets "
1549			    "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1550			    "that\n", __func__, __LINE__);
1551			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1552			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1553			discard = 1;
1554		}
1555
1556		idx++;
1557	}
1558
1559	/* Set cdr.  If there is not more data, cdr is invalid */
1560	pkt->cdr = idx;
1561
1562	/* Loop on remainder of packet */
1563	while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1564		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1565		pkt->list_len++;
1566		cdr_size += tx->size;
1567		if (tx->flags & ~NETTXF_more_data) {
1568			/* There should be no other flags set at this point */
1569			printf("xnb(%s:%d): Request sets unknown flags %d "
1570			    "after the 1st request in the packet.\n",
1571			    __func__, __LINE__, tx->flags);
1572			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1573			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1574		}
1575
1576		more_data = tx->flags & NETTXF_more_data;
1577		idx++;
1578	}
1579
1580	/* Finalize packet */
1581	if (more_data != 0) {
1582		/* The ring ran out of requests before finishing the packet */
1583		xnb_pkt_invalidate(pkt);
1584		idx = start;	/* tell caller that we consumed no requests */
1585	} else {
1586		/* Calculate car_size */
1587		pkt->car_size = pkt->size - cdr_size;
1588	}
1589	if (discard != 0) {
1590		xnb_pkt_invalidate(pkt);
1591	}
1592
1593	return idx - start;
1594}
1595
1596
1597/**
1598 * Respond to all the requests that constituted pkt.  Builds the responses and
1599 * writes them to the ring, but doesn't push them to the shared ring.
1600 * \param[in] pkt	the packet that needs a response
1601 * \param[in] error	true if there was an error handling the packet, such
1602 * 			as in the hypervisor copy op or mbuf allocation
1603 * \param[out] ring	Responses go here
1604 */
1605static void
1606xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1607	      int error)
1608{
1609	/*
1610	 * Outline:
1611	 * 1) Respond to the first request
1612	 * 2) Respond to the extra info reques
1613	 * Loop through every remaining request in the packet, generating
1614	 * responses that copy those requests' ids and sets the status
1615	 * appropriately.
1616	 */
1617	netif_tx_request_t *tx;
1618	netif_tx_response_t *rsp;
1619	int i;
1620	uint16_t status;
1621
1622	status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1623		NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1624	KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1625	    ("Cannot respond to ring requests out of order"));
1626
1627	if (pkt->list_len >= 1) {
1628		uint16_t id;
1629		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1630		id = tx->id;
1631		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1632		rsp->id = id;
1633		rsp->status = status;
1634		ring->rsp_prod_pvt++;
1635
1636		if (pkt->flags & NETRXF_extra_info) {
1637			rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1638			rsp->status = NETIF_RSP_NULL;
1639			ring->rsp_prod_pvt++;
1640		}
1641	}
1642
1643	for (i=0; i < pkt->list_len - 1; i++) {
1644		uint16_t id;
1645		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1646		id = tx->id;
1647		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1648		rsp->id = id;
1649		rsp->status = status;
1650		ring->rsp_prod_pvt++;
1651	}
1652}
1653
1654/**
1655 * Create an mbuf chain to represent a packet.  Initializes all of the headers
1656 * in the mbuf chain, but does not copy the data.  The returned chain must be
1657 * free()'d when no longer needed
1658 * \param[in]	pkt	A packet to model the mbuf chain after
1659 * \return	A newly allocated mbuf chain, possibly with clusters attached.
1660 * 		NULL on failure
1661 */
1662static struct mbuf*
1663xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp)
1664{
1665	/**
1666	 * \todo consider using a memory pool for mbufs instead of
1667	 * reallocating them for every packet
1668	 */
1669	/** \todo handle extra data */
1670	struct mbuf *m;
1671
1672	m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1673
1674	if (m != NULL) {
1675		m->m_pkthdr.rcvif = ifp;
1676		if (pkt->flags & NETTXF_data_validated) {
1677			/*
1678			 * We lie to the host OS and always tell it that the
1679			 * checksums are ok, because the packet is unlikely to
1680			 * get corrupted going across domains.
1681			 */
1682			m->m_pkthdr.csum_flags = (
1683				CSUM_IP_CHECKED |
1684				CSUM_IP_VALID   |
1685				CSUM_DATA_VALID |
1686				CSUM_PSEUDO_HDR
1687				);
1688			m->m_pkthdr.csum_data = 0xffff;
1689		}
1690	}
1691	return m;
1692}
1693
1694/**
1695 * Build a gnttab_copy table that can be used to copy data from a pkt
1696 * to an mbufc.  Does not actually perform the copy.  Always uses gref's on
1697 * the packet side.
1698 * \param[in]	pkt	pkt's associated requests form the src for
1699 * 			the copy operation
1700 * \param[in]	mbufc	mbufc's storage forms the dest for the copy operation
1701 * \param[out]  gnttab	Storage for the returned grant table
1702 * \param[in]	txb	Pointer to the backend ring structure
1703 * \param[in]	otherend_id	The domain ID of the other end of the copy
1704 * \return 		The number of gnttab entries filled
1705 */
1706static int
1707xnb_txpkt2gnttab(const struct xnb_pkt *pkt, struct mbuf *mbufc,
1708		 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1709		 domid_t otherend_id)
1710{
1711
1712	struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1713	int gnt_idx = 0;		/* index into grant table */
1714	RING_IDX r_idx = pkt->car;	/* index into tx ring buffer */
1715	int r_ofs = 0;	/* offset of next data within tx request's data area */
1716	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1717	/* size in bytes that still needs to be represented in the table */
1718	uint16_t size_remaining = pkt->size;
1719
1720	while (size_remaining > 0) {
1721		const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1722		const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1723		const size_t req_size =
1724			r_idx == pkt->car ? pkt->car_size : txq->size;
1725		const size_t pkt_space = req_size - r_ofs;
1726		/*
1727		 * space is the largest amount of data that can be copied in the
1728		 * grant table's next entry
1729		 */
1730		const size_t space = MIN(pkt_space, mbuf_space);
1731
1732		/* TODO: handle this error condition without panicking */
1733		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1734
1735		gnttab[gnt_idx].source.u.ref = txq->gref;
1736		gnttab[gnt_idx].source.domid = otherend_id;
1737		gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1738		gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1739		    mtod(mbuf, vm_offset_t) + m_ofs);
1740		gnttab[gnt_idx].dest.offset = virt_to_offset(
1741		    mtod(mbuf, vm_offset_t) + m_ofs);
1742		gnttab[gnt_idx].dest.domid = DOMID_SELF;
1743		gnttab[gnt_idx].len = space;
1744		gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1745
1746		gnt_idx++;
1747		r_ofs += space;
1748		m_ofs += space;
1749		size_remaining -= space;
1750		if (req_size - r_ofs <= 0) {
1751			/* Must move to the next tx request */
1752			r_ofs = 0;
1753			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1754		}
1755		if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1756			/* Must move to the next mbuf */
1757			m_ofs = 0;
1758			mbuf = mbuf->m_next;
1759		}
1760	}
1761
1762	return gnt_idx;
1763}
1764
1765/**
1766 * Check the status of the grant copy operations, and update mbufs various
1767 * non-data fields to reflect the data present.
1768 * \param[in,out] mbufc	mbuf chain to update.  The chain must be valid and of
1769 * 			the correct length, and data should already be present
1770 * \param[in] gnttab	A grant table for a just completed copy op
1771 * \param[in] n_entries The number of valid entries in the grant table
1772 */
1773static void
1774xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1775    		 int n_entries)
1776{
1777	struct mbuf *mbuf = mbufc;
1778	int i;
1779	size_t total_size = 0;
1780
1781	for (i = 0; i < n_entries; i++) {
1782		KASSERT(gnttab[i].status == GNTST_okay,
1783		    ("Some gnttab_copy entry had error status %hd\n",
1784		    gnttab[i].status));
1785
1786		mbuf->m_len += gnttab[i].len;
1787		total_size += gnttab[i].len;
1788		if (M_TRAILINGSPACE(mbuf) <= 0) {
1789			mbuf = mbuf->m_next;
1790		}
1791	}
1792	mbufc->m_pkthdr.len = total_size;
1793
1794#if defined(INET) || defined(INET6)
1795	xnb_add_mbuf_cksum(mbufc);
1796#endif
1797}
1798
1799/**
1800 * Dequeue at most one packet from the shared ring
1801 * \param[in,out] txb	Netif tx ring.  A packet will be removed from it, and
1802 * 			its private indices will be updated.  But the indices
1803 * 			will not be pushed to the shared ring.
1804 * \param[in] ifnet	Interface to which the packet will be sent
1805 * \param[in] otherend	Domain ID of the other end of the ring
1806 * \param[out] mbufc	The assembled mbuf chain, ready to send to the generic
1807 * 			networking stack
1808 * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
1809 * 			this a function parameter so that we will take less
1810 * 			stack space.
1811 * \return		An error code
1812 */
1813static int
1814xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1815	 struct ifnet *ifnet, gnttab_copy_table gnttab)
1816{
1817	struct xnb_pkt pkt;
1818	/* number of tx requests consumed to build the last packet */
1819	int num_consumed;
1820	int nr_ents;
1821
1822	*mbufc = NULL;
1823	num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1824	if (num_consumed == 0)
1825		return 0;	/* Nothing to receive */
1826
1827	/* update statistics independent of errors */
1828	if_inc_counter(ifnet, IFCOUNTER_IPACKETS, 1);
1829
1830	/*
1831	 * if we got here, then 1 or more requests was consumed, but the packet
1832	 * is not necessarily valid.
1833	 */
1834	if (xnb_pkt_is_valid(&pkt) == 0) {
1835		/* got a garbage packet, respond and drop it */
1836		xnb_txpkt2rsp(&pkt, txb, 1);
1837		txb->req_cons += num_consumed;
1838		DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1839				num_consumed);
1840		if_inc_counter(ifnet, IFCOUNTER_IERRORS, 1);
1841		return EINVAL;
1842	}
1843
1844	*mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1845
1846	if (*mbufc == NULL) {
1847		/*
1848		 * Couldn't allocate mbufs.  Respond and drop the packet.  Do
1849		 * not consume the requests
1850		 */
1851		xnb_txpkt2rsp(&pkt, txb, 1);
1852		DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1853		    num_consumed);
1854		if_inc_counter(ifnet, IFCOUNTER_IQDROPS, 1);
1855		return ENOMEM;
1856	}
1857
1858	nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1859
1860	if (nr_ents > 0) {
1861		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1862		    gnttab, nr_ents);
1863		KASSERT(hv_ret == 0,
1864		    ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1865		xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1866	}
1867
1868	xnb_txpkt2rsp(&pkt, txb, 0);
1869	txb->req_cons += num_consumed;
1870	return 0;
1871}
1872
1873/**
1874 * Create an xnb_pkt based on the contents of an mbuf chain.
1875 * \param[in] mbufc	mbuf chain to transform into a packet
1876 * \param[out] pkt	Storage for the newly generated xnb_pkt
1877 * \param[in] start	The ring index of the first available slot in the rx
1878 * 			ring
1879 * \param[in] space	The number of free slots in the rx ring
1880 * \retval 0		Success
1881 * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
1882 * \retval EAGAIN	There was not enough space in the ring to queue the
1883 * 			packet
1884 */
1885static int
1886xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1887	      RING_IDX start, int space)
1888{
1889
1890	int retval = 0;
1891
1892	if ((mbufc == NULL) ||
1893	     ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1894	     (mbufc->m_pkthdr.len == 0)) {
1895		xnb_pkt_invalidate(pkt);
1896		retval = EINVAL;
1897	} else {
1898		int slots_required;
1899
1900		xnb_pkt_validate(pkt);
1901		pkt->flags = 0;
1902		pkt->size = mbufc->m_pkthdr.len;
1903		pkt->car = start;
1904		pkt->car_size = mbufc->m_len;
1905
1906		if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1907			pkt->flags |= NETRXF_extra_info;
1908			pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1909			pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1910			pkt->extra.u.gso.pad = 0;
1911			pkt->extra.u.gso.features = 0;
1912			pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1913			pkt->extra.flags = 0;
1914			pkt->cdr = start + 2;
1915		} else {
1916			pkt->cdr = start + 1;
1917		}
1918		if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1919			pkt->flags |=
1920			    (NETRXF_csum_blank | NETRXF_data_validated);
1921		}
1922
1923		/*
1924		 * Each ring response can have up to PAGE_SIZE of data.
1925		 * Assume that we can defragment the mbuf chain efficiently
1926		 * into responses so that each response but the last uses all
1927		 * PAGE_SIZE bytes.
1928		 */
1929		pkt->list_len = howmany(pkt->size, PAGE_SIZE);
1930
1931		if (pkt->list_len > 1) {
1932			pkt->flags |= NETRXF_more_data;
1933		}
1934
1935		slots_required = pkt->list_len +
1936			(pkt->flags & NETRXF_extra_info ? 1 : 0);
1937		if (slots_required > space) {
1938			xnb_pkt_invalidate(pkt);
1939			retval = EAGAIN;
1940		}
1941	}
1942
1943	return retval;
1944}
1945
1946/**
1947 * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1948 * to the frontend's shared buffers.  Does not actually perform the copy.
1949 * Always uses gref's on the other end's side.
1950 * \param[in]	pkt	pkt's associated responses form the dest for the copy
1951 * 			operatoin
1952 * \param[in]	mbufc	The source for the copy operation
1953 * \param[out]	gnttab	Storage for the returned grant table
1954 * \param[in]	rxb	Pointer to the backend ring structure
1955 * \param[in]	otherend_id	The domain ID of the other end of the copy
1956 * \return 		The number of gnttab entries filled
1957 */
1958static int
1959xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1960		 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1961		 domid_t otherend_id)
1962{
1963
1964	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1965	int gnt_idx = 0;		/* index into grant table */
1966	RING_IDX r_idx = pkt->car;	/* index into rx ring buffer */
1967	int r_ofs = 0;	/* offset of next data within rx request's data area */
1968	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1969	/* size in bytes that still needs to be represented in the table */
1970	uint16_t size_remaining;
1971
1972	size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1973
1974	while (size_remaining > 0) {
1975		const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1976		const size_t mbuf_space = mbuf->m_len - m_ofs;
1977		/* Xen shared pages have an implied size of PAGE_SIZE */
1978		const size_t req_size = PAGE_SIZE;
1979		const size_t pkt_space = req_size - r_ofs;
1980		/*
1981		 * space is the largest amount of data that can be copied in the
1982		 * grant table's next entry
1983		 */
1984		const size_t space = MIN(pkt_space, mbuf_space);
1985
1986		/* TODO: handle this error condition without panicing */
1987		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1988
1989		gnttab[gnt_idx].dest.u.ref = rxq->gref;
1990		gnttab[gnt_idx].dest.domid = otherend_id;
1991		gnttab[gnt_idx].dest.offset = r_ofs;
1992		gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
1993		    mtod(mbuf, vm_offset_t) + m_ofs);
1994		gnttab[gnt_idx].source.offset = virt_to_offset(
1995		    mtod(mbuf, vm_offset_t) + m_ofs);
1996		gnttab[gnt_idx].source.domid = DOMID_SELF;
1997		gnttab[gnt_idx].len = space;
1998		gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
1999
2000		gnt_idx++;
2001
2002		r_ofs += space;
2003		m_ofs += space;
2004		size_remaining -= space;
2005		if (req_size - r_ofs <= 0) {
2006			/* Must move to the next rx request */
2007			r_ofs = 0;
2008			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
2009		}
2010		if (mbuf->m_len - m_ofs <= 0) {
2011			/* Must move to the next mbuf */
2012			m_ofs = 0;
2013			mbuf = mbuf->m_next;
2014		}
2015	}
2016
2017	return gnt_idx;
2018}
2019
2020/**
2021 * Generates responses for all the requests that constituted pkt.  Builds
2022 * responses and writes them to the ring, but doesn't push the shared ring
2023 * indices.
2024 * \param[in] pkt	the packet that needs a response
2025 * \param[in] gnttab	The grant copy table corresponding to this packet.
2026 * 			Used to determine how many rsp->netif_rx_response_t's to
2027 * 			generate.
2028 * \param[in] n_entries	Number of relevant entries in the grant table
2029 * \param[out] ring	Responses go here
2030 * \return		The number of RX requests that were consumed to generate
2031 * 			the responses
2032 */
2033static int
2034xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2035    	      int n_entries, netif_rx_back_ring_t *ring)
2036{
2037	/*
2038	 * This code makes the following assumptions:
2039	 *	* All entries in gnttab set GNTCOPY_dest_gref
2040	 *	* The entries in gnttab are grouped by their grefs: any two
2041	 *	   entries with the same gref must be adjacent
2042	 */
2043	int error = 0;
2044	int gnt_idx, i;
2045	int n_responses = 0;
2046	grant_ref_t last_gref = GRANT_REF_INVALID;
2047	RING_IDX r_idx;
2048
2049	KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2050
2051	/*
2052	 * In the event of an error, we only need to send one response to the
2053	 * netfront.  In that case, we musn't write any data to the responses
2054	 * after the one we send.  So we must loop all the way through gnttab
2055	 * looking for errors before we generate any responses
2056	 *
2057	 * Since we're looping through the grant table anyway, we'll count the
2058	 * number of different gref's in it, which will tell us how many
2059	 * responses to generate
2060	 */
2061	for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2062		int16_t status = gnttab[gnt_idx].status;
2063		if (status != GNTST_okay) {
2064			DPRINTF(
2065			    "Got error %d for hypervisor gnttab_copy status\n",
2066			    status);
2067			error = 1;
2068			break;
2069		}
2070		if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2071			n_responses++;
2072			last_gref = gnttab[gnt_idx].dest.u.ref;
2073		}
2074	}
2075
2076	if (error != 0) {
2077		uint16_t id;
2078		netif_rx_response_t *rsp;
2079
2080		id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2081		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2082		rsp->id = id;
2083		rsp->status = NETIF_RSP_ERROR;
2084		n_responses = 1;
2085	} else {
2086		gnt_idx = 0;
2087		const int has_extra = pkt->flags & NETRXF_extra_info;
2088		if (has_extra != 0)
2089			n_responses++;
2090
2091		for (i = 0; i < n_responses; i++) {
2092			netif_rx_request_t rxq;
2093			netif_rx_response_t *rsp;
2094
2095			r_idx = ring->rsp_prod_pvt + i;
2096			/*
2097			 * We copy the structure of rxq instead of making a
2098			 * pointer because it shares the same memory as rsp.
2099			 */
2100			rxq = *(RING_GET_REQUEST(ring, r_idx));
2101			rsp = RING_GET_RESPONSE(ring, r_idx);
2102			if (has_extra && (i == 1)) {
2103				netif_extra_info_t *ext =
2104					(netif_extra_info_t*)rsp;
2105				ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2106				ext->flags = 0;
2107				ext->u.gso.size = pkt->extra.u.gso.size;
2108				ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2109				ext->u.gso.pad = 0;
2110				ext->u.gso.features = 0;
2111			} else {
2112				rsp->id = rxq.id;
2113				rsp->status = GNTST_okay;
2114				rsp->offset = 0;
2115				rsp->flags = 0;
2116				if (i < pkt->list_len - 1)
2117					rsp->flags |= NETRXF_more_data;
2118				if ((i == 0) && has_extra)
2119					rsp->flags |= NETRXF_extra_info;
2120				if ((i == 0) &&
2121					(pkt->flags & NETRXF_data_validated)) {
2122					rsp->flags |= NETRXF_data_validated;
2123					rsp->flags |= NETRXF_csum_blank;
2124				}
2125				rsp->status = 0;
2126				for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2127				    gnt_idx++) {
2128					rsp->status += gnttab[gnt_idx].len;
2129				}
2130			}
2131		}
2132	}
2133
2134	ring->req_cons += n_responses;
2135	ring->rsp_prod_pvt += n_responses;
2136	return n_responses;
2137}
2138
2139#if defined(INET) || defined(INET6)
2140/**
2141 * Add IP, TCP, and/or UDP checksums to every mbuf in a chain.  The first mbuf
2142 * in the chain must start with a struct ether_header.
2143 *
2144 * XXX This function will perform incorrectly on UDP packets that are split up
2145 * into multiple ethernet frames.
2146 */
2147static void
2148xnb_add_mbuf_cksum(struct mbuf *mbufc)
2149{
2150	struct ether_header *eh;
2151	struct ip *iph;
2152	uint16_t ether_type;
2153
2154	eh = mtod(mbufc, struct ether_header*);
2155	ether_type = ntohs(eh->ether_type);
2156	if (ether_type != ETHERTYPE_IP) {
2157		/* Nothing to calculate */
2158		return;
2159	}
2160
2161	iph = (struct ip*)(eh + 1);
2162	if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2163		iph->ip_sum = 0;
2164		iph->ip_sum = in_cksum_hdr(iph);
2165	}
2166
2167	switch (iph->ip_p) {
2168	case IPPROTO_TCP:
2169		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2170			size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2171			struct tcphdr *th = (struct tcphdr*)(iph + 1);
2172			th->th_sum = in_pseudo(iph->ip_src.s_addr,
2173			    iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2174			th->th_sum = in_cksum_skip(mbufc,
2175			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2176			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2177		}
2178		break;
2179	case IPPROTO_UDP:
2180		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2181			size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2182			struct udphdr *uh = (struct udphdr*)(iph + 1);
2183			uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2184			    iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2185			uh->uh_sum = in_cksum_skip(mbufc,
2186			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2187			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2188		}
2189		break;
2190	default:
2191		break;
2192	}
2193}
2194#endif /* INET || INET6 */
2195
2196static void
2197xnb_stop(struct xnb_softc *xnb)
2198{
2199	struct ifnet *ifp;
2200
2201	mtx_assert(&xnb->sc_lock, MA_OWNED);
2202	ifp = xnb->xnb_ifp;
2203	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2204	if_link_state_change(ifp, LINK_STATE_DOWN);
2205}
2206
2207static int
2208xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2209{
2210	struct xnb_softc *xnb = ifp->if_softc;
2211	struct ifreq *ifr = (struct ifreq*) data;
2212#ifdef INET
2213	struct ifaddr *ifa = (struct ifaddr*)data;
2214#endif
2215	int error = 0;
2216
2217	switch (cmd) {
2218		case SIOCSIFFLAGS:
2219			mtx_lock(&xnb->sc_lock);
2220			if (ifp->if_flags & IFF_UP) {
2221				xnb_ifinit_locked(xnb);
2222			} else {
2223				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2224					xnb_stop(xnb);
2225				}
2226			}
2227			/*
2228			 * Note: netfront sets a variable named xn_if_flags
2229			 * here, but that variable is never read
2230			 */
2231			mtx_unlock(&xnb->sc_lock);
2232			break;
2233		case SIOCSIFADDR:
2234#ifdef INET
2235			mtx_lock(&xnb->sc_lock);
2236			if (ifa->ifa_addr->sa_family == AF_INET) {
2237				ifp->if_flags |= IFF_UP;
2238				if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2239					ifp->if_drv_flags &= ~(IFF_DRV_RUNNING |
2240							IFF_DRV_OACTIVE);
2241					if_link_state_change(ifp,
2242							LINK_STATE_DOWN);
2243					ifp->if_drv_flags |= IFF_DRV_RUNNING;
2244					ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2245					if_link_state_change(ifp,
2246					    LINK_STATE_UP);
2247				}
2248				arp_ifinit(ifp, ifa);
2249				mtx_unlock(&xnb->sc_lock);
2250			} else {
2251				mtx_unlock(&xnb->sc_lock);
2252#endif
2253				error = ether_ioctl(ifp, cmd, data);
2254#ifdef INET
2255			}
2256#endif
2257			break;
2258		case SIOCSIFCAP:
2259			mtx_lock(&xnb->sc_lock);
2260			if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2261				ifp->if_capenable |= IFCAP_TXCSUM;
2262				ifp->if_hwassist |= XNB_CSUM_FEATURES;
2263			} else {
2264				ifp->if_capenable &= ~(IFCAP_TXCSUM);
2265				ifp->if_hwassist &= ~(XNB_CSUM_FEATURES);
2266			}
2267			if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2268				ifp->if_capenable |= IFCAP_RXCSUM;
2269			} else {
2270				ifp->if_capenable &= ~(IFCAP_RXCSUM);
2271			}
2272			/*
2273			 * TODO enable TSO4 and LRO once we no longer need
2274			 * to calculate checksums in software
2275			 */
2276#if 0
2277			if (ifr->if_reqcap |= IFCAP_TSO4) {
2278				if (IFCAP_TXCSUM & ifp->if_capenable) {
2279					printf("xnb: Xen netif requires that "
2280						"TXCSUM be enabled in order "
2281						"to use TSO4\n");
2282					error = EINVAL;
2283				} else {
2284					ifp->if_capenable |= IFCAP_TSO4;
2285					ifp->if_hwassist |= CSUM_TSO;
2286				}
2287			} else {
2288				ifp->if_capenable &= ~(IFCAP_TSO4);
2289				ifp->if_hwassist &= ~(CSUM_TSO);
2290			}
2291			if (ifr->ifreqcap |= IFCAP_LRO) {
2292				ifp->if_capenable |= IFCAP_LRO;
2293			} else {
2294				ifp->if_capenable &= ~(IFCAP_LRO);
2295			}
2296#endif
2297			mtx_unlock(&xnb->sc_lock);
2298			break;
2299		case SIOCSIFMTU:
2300			ifp->if_mtu = ifr->ifr_mtu;
2301			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2302			xnb_ifinit(xnb);
2303			break;
2304		case SIOCADDMULTI:
2305		case SIOCDELMULTI:
2306		case SIOCSIFMEDIA:
2307		case SIOCGIFMEDIA:
2308			error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2309			break;
2310		default:
2311			error = ether_ioctl(ifp, cmd, data);
2312			break;
2313	}
2314	return (error);
2315}
2316
2317static void
2318xnb_start_locked(struct ifnet *ifp)
2319{
2320	netif_rx_back_ring_t *rxb;
2321	struct xnb_softc *xnb;
2322	struct mbuf *mbufc;
2323	RING_IDX req_prod_local;
2324
2325	xnb = ifp->if_softc;
2326	rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2327
2328	if (!xnb->carrier)
2329		return;
2330
2331	do {
2332		int out_of_space = 0;
2333		int notify;
2334		req_prod_local = rxb->sring->req_prod;
2335		xen_rmb();
2336		for (;;) {
2337			int error;
2338
2339			IF_DEQUEUE(&ifp->if_snd, mbufc);
2340			if (mbufc == NULL)
2341				break;
2342			error = xnb_send(rxb, xnb->otherend_id, mbufc,
2343			    		 xnb->rx_gnttab);
2344			switch (error) {
2345				case EAGAIN:
2346					/*
2347					 * Insufficient space in the ring.
2348					 * Requeue pkt and send when space is
2349					 * available.
2350					 */
2351					IF_PREPEND(&ifp->if_snd, mbufc);
2352					/*
2353					 * Perhaps the frontend missed an IRQ
2354					 * and went to sleep.  Notify it to wake
2355					 * it up.
2356					 */
2357					out_of_space = 1;
2358					break;
2359
2360				case EINVAL:
2361					/* OS gave a corrupt packet.  Drop it.*/
2362					if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2363					/* FALLTHROUGH */
2364				default:
2365					/* Send succeeded, or packet had error.
2366					 * Free the packet */
2367					if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2368					if (mbufc)
2369						m_freem(mbufc);
2370					break;
2371			}
2372			if (out_of_space != 0)
2373				break;
2374		}
2375
2376		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2377		if ((notify != 0) || (out_of_space != 0))
2378			xen_intr_signal(xnb->xen_intr_handle);
2379		rxb->sring->req_event = req_prod_local + 1;
2380		xen_mb();
2381	} while (rxb->sring->req_prod != req_prod_local) ;
2382}
2383
2384/**
2385 * Sends one packet to the ring.  Blocks until the packet is on the ring
2386 * \param[in]	mbufc	Contains one packet to send.  Caller must free
2387 * \param[in,out] rxb	The packet will be pushed onto this ring, but the
2388 * 			otherend will not be notified.
2389 * \param[in]	otherend The domain ID of the other end of the connection
2390 * \retval	EAGAIN	The ring did not have enough space for the packet.
2391 * 			The ring has not been modified
2392 * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
2393 * 			this a function parameter so that we will take less
2394 * 			stack space.
2395 * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
2396 */
2397static int
2398xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2399	 gnttab_copy_table gnttab)
2400{
2401	struct xnb_pkt pkt;
2402	int error, n_entries, n_reqs;
2403	RING_IDX space;
2404
2405	space = ring->sring->req_prod - ring->req_cons;
2406	error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2407	if (error != 0)
2408		return error;
2409	n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2410	if (n_entries != 0) {
2411		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2412		    gnttab, n_entries);
2413		KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2414		    hv_ret));
2415	}
2416
2417	n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2418
2419	return 0;
2420}
2421
2422static void
2423xnb_start(struct ifnet *ifp)
2424{
2425	struct xnb_softc *xnb;
2426
2427	xnb = ifp->if_softc;
2428	mtx_lock(&xnb->rx_lock);
2429	xnb_start_locked(ifp);
2430	mtx_unlock(&xnb->rx_lock);
2431}
2432
2433/* equivalent of network_open() in Linux */
2434static void
2435xnb_ifinit_locked(struct xnb_softc *xnb)
2436{
2437	struct ifnet *ifp;
2438
2439	ifp = xnb->xnb_ifp;
2440
2441	mtx_assert(&xnb->sc_lock, MA_OWNED);
2442
2443	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2444		return;
2445
2446	xnb_stop(xnb);
2447
2448	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2449	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2450	if_link_state_change(ifp, LINK_STATE_UP);
2451}
2452
2453
2454static void
2455xnb_ifinit(void *xsc)
2456{
2457	struct xnb_softc *xnb = xsc;
2458
2459	mtx_lock(&xnb->sc_lock);
2460	xnb_ifinit_locked(xnb);
2461	mtx_unlock(&xnb->sc_lock);
2462}
2463
2464/**
2465 * Callback used by the generic networking code to tell us when our carrier
2466 * state has changed.  Since we don't have a physical carrier, we don't care
2467 */
2468static int
2469xnb_ifmedia_upd(struct ifnet *ifp)
2470{
2471	return (0);
2472}
2473
2474/**
2475 * Callback used by the generic networking code to ask us what our carrier
2476 * state is.  Since we don't have a physical carrier, this is very simple
2477 */
2478static void
2479xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2480{
2481	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2482	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2483}
2484
2485
2486/*---------------------------- NewBus Registration ---------------------------*/
2487static device_method_t xnb_methods[] = {
2488	/* Device interface */
2489	DEVMETHOD(device_probe,		xnb_probe),
2490	DEVMETHOD(device_attach,	xnb_attach),
2491	DEVMETHOD(device_detach,	xnb_detach),
2492	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2493	DEVMETHOD(device_suspend,	xnb_suspend),
2494	DEVMETHOD(device_resume,	xnb_resume),
2495
2496	/* Xenbus interface */
2497	DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2498
2499	{ 0, 0 }
2500};
2501
2502static driver_t xnb_driver = {
2503	"xnb",
2504	xnb_methods,
2505	sizeof(struct xnb_softc),
2506};
2507devclass_t xnb_devclass;
2508
2509DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0);
2510
2511
2512/*-------------------------- Unit Tests -------------------------------------*/
2513#ifdef XNB_DEBUG
2514#include "netback_unit_tests.c"
2515#endif
2516