netback.c revision 254025
1/*-
2 * Copyright (c) 2009-2011 Spectra Logic Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions, and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    substantially similar to the "NO WARRANTY" disclaimer below
13 *    ("Disclaimer") and any redistribution must be conditioned upon
14 *    including a substantially similar Disclaimer requirement for further
15 *    binary redistribution.
16 *
17 * NO WARRANTY
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGES.
29 *
30 * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31 *          Alan Somers         (Spectra Logic Corporation)
32 *          John Suykerbuyk     (Spectra Logic Corporation)
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/dev/xen/netback/netback.c 254025 2013-08-07 06:21:20Z jeff $");
37
38/**
39 * \file netback.c
40 *
41 * \brief Device driver supporting the vending of network access
42 * 	  from this FreeBSD domain to other domains.
43 */
44#include "opt_inet.h"
45#include "opt_global.h"
46
47#include "opt_sctp.h"
48
49#include <sys/param.h>
50#include <sys/kernel.h>
51
52#include <sys/bus.h>
53#include <sys/module.h>
54#include <sys/rman.h>
55#include <sys/socket.h>
56#include <sys/sockio.h>
57#include <sys/sysctl.h>
58
59#include <net/if.h>
60#include <net/if_arp.h>
61#include <net/ethernet.h>
62#include <net/if_dl.h>
63#include <net/if_media.h>
64#include <net/if_types.h>
65
66#include <netinet/in.h>
67#include <netinet/ip.h>
68#include <netinet/if_ether.h>
69#if __FreeBSD_version >= 700000
70#include <netinet/tcp.h>
71#endif
72#include <netinet/ip_icmp.h>
73#include <netinet/udp.h>
74#include <machine/in_cksum.h>
75
76#include <vm/vm.h>
77#include <vm/pmap.h>
78#include <vm/vm_extern.h>
79#include <vm/vm_kern.h>
80
81#include <machine/_inttypes.h>
82#include <machine/xen/xen-os.h>
83#include <machine/xen/xenvar.h>
84
85#include <xen/evtchn.h>
86#include <xen/xen_intr.h>
87#include <xen/interface/io/netif.h>
88#include <xen/xenbus/xenbusvar.h>
89
90/*--------------------------- Compile-time Tunables --------------------------*/
91
92/*---------------------------------- Macros ----------------------------------*/
93/**
94 * Custom malloc type for all driver allocations.
95 */
96static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
97
98#define	XNB_SG	1	/* netback driver supports feature-sg */
99#define	XNB_GSO_TCPV4 1	/* netback driver supports feature-gso-tcpv4 */
100#define	XNB_RX_COPY 1	/* netback driver supports feature-rx-copy */
101#define	XNB_RX_FLIP 0	/* netback driver does not support feature-rx-flip */
102
103#undef XNB_DEBUG
104#define	XNB_DEBUG /* hardcode on during development */
105
106#ifdef XNB_DEBUG
107#define	DPRINTF(fmt, args...) \
108	printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
109#else
110#define	DPRINTF(fmt, args...) do {} while (0)
111#endif
112
113/* Default length for stack-allocated grant tables */
114#define	GNTTAB_LEN	(64)
115
116/* Features supported by all backends.  TSO and LRO can be negotiated */
117#define	XNB_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
118
119#define	NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
120#define	NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
121
122/**
123 * Two argument version of the standard macro.  Second argument is a tentative
124 * value of req_cons
125 */
126#define	RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({                     \
127	unsigned int req = (_r)->sring->req_prod - cons;          	\
128	unsigned int rsp = RING_SIZE(_r) -                              \
129	(cons - (_r)->rsp_prod_pvt);                          		\
130	req < rsp ? req : rsp;                                          \
131})
132
133#define	virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT)
134#define	virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
135
136/**
137 * Predefined array type of grant table copy descriptors.  Used to pass around
138 * statically allocated memory structures.
139 */
140typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
141
142/*--------------------------- Forward Declarations ---------------------------*/
143struct xnb_softc;
144struct xnb_pkt;
145
146static void	xnb_attach_failed(struct xnb_softc *xnb,
147				  int err, const char *fmt, ...)
148				  __printflike(3,4);
149static int	xnb_shutdown(struct xnb_softc *xnb);
150static int	create_netdev(device_t dev);
151static int	xnb_detach(device_t dev);
152static int	xen_net_read_mac(device_t dev, uint8_t mac[]);
153static int	xnb_ifmedia_upd(struct ifnet *ifp);
154static void	xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
155static void 	xnb_intr(void *arg);
156static int	xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
157			 const struct mbuf *mbufc, gnttab_copy_table gnttab);
158static int	xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
159			 struct mbuf **mbufc, struct ifnet *ifnet,
160			 gnttab_copy_table gnttab);
161static int	xnb_ring2pkt(struct xnb_pkt *pkt,
162			     const netif_tx_back_ring_t *tx_ring,
163			     RING_IDX start);
164static void	xnb_txpkt2rsp(const struct xnb_pkt *pkt,
165			      netif_tx_back_ring_t *ring, int error);
166static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp);
167static int	xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
168				 const struct mbuf *mbufc,
169				 gnttab_copy_table gnttab,
170				 const netif_tx_back_ring_t *txb,
171				 domid_t otherend_id);
172static void	xnb_update_mbufc(struct mbuf *mbufc,
173				 const gnttab_copy_table gnttab, int n_entries);
174static int	xnb_mbufc2pkt(const struct mbuf *mbufc,
175			      struct xnb_pkt *pkt,
176			      RING_IDX start, int space);
177static int	xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
178				 const struct mbuf *mbufc,
179				 gnttab_copy_table gnttab,
180				 const netif_rx_back_ring_t *rxb,
181				 domid_t otherend_id);
182static int	xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
183			      const gnttab_copy_table gnttab, int n_entries,
184			      netif_rx_back_ring_t *ring);
185static void	xnb_add_mbuf_cksum(struct mbuf *mbufc);
186static void	xnb_stop(struct xnb_softc*);
187static int	xnb_ioctl(struct ifnet*, u_long, caddr_t);
188static void	xnb_start_locked(struct ifnet*);
189static void	xnb_start(struct ifnet*);
190static void	xnb_ifinit_locked(struct xnb_softc*);
191static void	xnb_ifinit(void*);
192#ifdef XNB_DEBUG
193static int	xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
194static int	xnb_dump_rings(SYSCTL_HANDLER_ARGS);
195#endif
196/*------------------------------ Data Structures -----------------------------*/
197
198
199/**
200 * Representation of a xennet packet.  Simplified version of a packet as
201 * stored in the Xen tx ring.  Applicable to both RX and TX packets
202 */
203struct xnb_pkt{
204	/**
205	 * Array index of the first data-bearing (eg, not extra info) entry
206	 * for this packet
207	 */
208	RING_IDX	car;
209
210	/**
211	 * Array index of the second data-bearing entry for this packet.
212	 * Invalid if the packet has only one data-bearing entry.  If the
213	 * packet has more than two data-bearing entries, then the second
214	 * through the last will be sequential modulo the ring size
215	 */
216	RING_IDX	cdr;
217
218	/**
219	 * Optional extra info.  Only valid if flags contains
220	 * NETTXF_extra_info.  Note that extra.type will always be
221	 * XEN_NETIF_EXTRA_TYPE_GSO.  Currently, no known netfront or netback
222	 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
223	 */
224	netif_extra_info_t extra;
225
226	/** Size of entire packet in bytes.       */
227	uint16_t	size;
228
229	/** The size of the first entry's data in bytes */
230	uint16_t	car_size;
231
232	/**
233	 * Either NETTXF_ or NETRXF_ flags.  Note that the flag values are
234	 * not the same for TX and RX packets
235	 */
236	uint16_t	flags;
237
238	/**
239	 * The number of valid data-bearing entries (either netif_tx_request's
240	 * or netif_rx_response's) in the packet.  If this is 0, it means the
241	 * entire packet is invalid.
242	 */
243	uint16_t	list_len;
244
245	/** There was an error processing the packet */
246	uint8_t		error;
247};
248
249/** xnb_pkt method: initialize it */
250static inline void
251xnb_pkt_initialize(struct xnb_pkt *pxnb)
252{
253	bzero(pxnb, sizeof(*pxnb));
254}
255
256/** xnb_pkt method: mark the packet as valid */
257static inline void
258xnb_pkt_validate(struct xnb_pkt *pxnb)
259{
260	pxnb->error = 0;
261};
262
263/** xnb_pkt method: mark the packet as invalid */
264static inline void
265xnb_pkt_invalidate(struct xnb_pkt *pxnb)
266{
267	pxnb->error = 1;
268};
269
270/** xnb_pkt method: Check whether the packet is valid */
271static inline int
272xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
273{
274	return (! pxnb->error);
275}
276
277#ifdef XNB_DEBUG
278/** xnb_pkt method: print the packet's contents in human-readable format*/
279static void __unused
280xnb_dump_pkt(const struct xnb_pkt *pkt) {
281	if (pkt == NULL) {
282	  DPRINTF("Was passed a null pointer.\n");
283	  return;
284	}
285	DPRINTF("pkt address= %p\n", pkt);
286	DPRINTF("pkt->size=%d\n", pkt->size);
287	DPRINTF("pkt->car_size=%d\n", pkt->car_size);
288	DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
289	DPRINTF("pkt->list_len=%d\n", pkt->list_len);
290	/* DPRINTF("pkt->extra");	TODO */
291	DPRINTF("pkt->car=%d\n", pkt->car);
292	DPRINTF("pkt->cdr=%d\n", pkt->cdr);
293	DPRINTF("pkt->error=%d\n", pkt->error);
294}
295#endif /* XNB_DEBUG */
296
297static void
298xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
299{
300	if (txreq != NULL) {
301		DPRINTF("netif_tx_request index =%u\n", idx);
302		DPRINTF("netif_tx_request.gref  =%u\n", txreq->gref);
303		DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
304		DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
305		DPRINTF("netif_tx_request.id    =%hu\n", txreq->id);
306		DPRINTF("netif_tx_request.size  =%hu\n", txreq->size);
307	}
308}
309
310
311/**
312 * \brief Configuration data for a shared memory request ring
313 *        used to communicate with the front-end client of this
314 *        this driver.
315 */
316struct xnb_ring_config {
317	/**
318	 * Runtime structures for ring access.  Unfortunately, TX and RX rings
319	 * use different data structures, and that cannot be changed since it
320	 * is part of the interdomain protocol.
321	 */
322	union{
323		netif_rx_back_ring_t	  rx_ring;
324		netif_tx_back_ring_t	  tx_ring;
325	} back_ring;
326
327	/**
328	 * The device bus address returned by the hypervisor when
329	 * mapping the ring and required to unmap it when a connection
330	 * is torn down.
331	 */
332	uint64_t	bus_addr;
333
334	/** The pseudo-physical address where ring memory is mapped.*/
335	uint64_t	gnt_addr;
336
337	/** KVA address where ring memory is mapped. */
338	vm_offset_t	va;
339
340	/**
341	 * Grant table handles, one per-ring page, returned by the
342	 * hyperpervisor upon mapping of the ring and required to
343	 * unmap it when a connection is torn down.
344	 */
345	grant_handle_t	handle;
346
347	/** The number of ring pages mapped for the current connection. */
348	unsigned	ring_pages;
349
350	/**
351	 * The grant references, one per-ring page, supplied by the
352	 * front-end, allowing us to reference the ring pages in the
353	 * front-end's domain and to map these pages into our own domain.
354	 */
355	grant_ref_t	ring_ref;
356};
357
358/**
359 * Per-instance connection state flags.
360 */
361typedef enum
362{
363	/** Communication with the front-end has been established. */
364	XNBF_RING_CONNECTED    = 0x01,
365
366	/**
367	 * Front-end requests exist in the ring and are waiting for
368	 * xnb_xen_req objects to free up.
369	 */
370	XNBF_RESOURCE_SHORTAGE = 0x02,
371
372	/** Connection teardown has started. */
373	XNBF_SHUTDOWN          = 0x04,
374
375	/** A thread is already performing shutdown processing. */
376	XNBF_IN_SHUTDOWN       = 0x08
377} xnb_flag_t;
378
379/**
380 * Types of rings.  Used for array indices and to identify a ring's control
381 * data structure type
382 */
383typedef enum{
384	XNB_RING_TYPE_TX = 0,	/* ID of TX rings, used for array indices */
385	XNB_RING_TYPE_RX = 1,	/* ID of RX rings, used for array indices */
386	XNB_NUM_RING_TYPES
387} xnb_ring_type_t;
388
389/**
390 * Per-instance configuration data.
391 */
392struct xnb_softc {
393	/** NewBus device corresponding to this instance. */
394	device_t		dev;
395
396	/* Media related fields */
397
398	/** Generic network media state */
399	struct ifmedia		sc_media;
400
401	/** Media carrier info */
402	struct ifnet 		*xnb_ifp;
403
404	/** Our own private carrier state */
405	unsigned carrier;
406
407	/** Device MAC Address */
408	uint8_t			mac[ETHER_ADDR_LEN];
409
410	/* Xen related fields */
411
412	/**
413	 * \brief The netif protocol abi in effect.
414	 *
415	 * There are situations where the back and front ends can
416	 * have a different, native abi (e.g. intel x86_64 and
417	 * 32bit x86 domains on the same machine).  The back-end
418	 * always accomodates the front-end's native abi.  That
419	 * value is pulled from the XenStore and recorded here.
420	 */
421	int			abi;
422
423	/**
424	 * Name of the bridge to which this VIF is connected, if any
425	 * This field is dynamically allocated by xenbus and must be free()ed
426	 * when no longer needed
427	 */
428	char			*bridge;
429
430	/** The interrupt driven even channel used to signal ring events. */
431	evtchn_port_t		evtchn;
432
433	/** Xen device handle.*/
434	long 			handle;
435
436	/** IRQ mapping for the communication ring event channel. */
437	int			irq;
438
439	/**
440	 * \brief Cached value of the front-end's domain id.
441	 *
442	 * This value is used at once for each mapped page in
443	 * a transaction.  We cache it to avoid incuring the
444	 * cost of an ivar access every time this is needed.
445	 */
446	domid_t			otherend_id;
447
448	/**
449	 * Undocumented frontend feature.  Has something to do with
450	 * scatter/gather IO
451	 */
452	uint8_t			can_sg;
453	/** Undocumented frontend feature */
454	uint8_t			gso;
455	/** Undocumented frontend feature */
456	uint8_t			gso_prefix;
457	/** Can checksum TCP/UDP over IPv4 */
458	uint8_t			ip_csum;
459
460	/* Implementation related fields */
461	/**
462	 * Preallocated grant table copy descriptor for RX operations.
463	 * Access must be protected by rx_lock
464	 */
465	gnttab_copy_table	rx_gnttab;
466
467	/**
468	 * Preallocated grant table copy descriptor for TX operations.
469	 * Access must be protected by tx_lock
470	 */
471	gnttab_copy_table	tx_gnttab;
472
473#ifdef XENHVM
474	/**
475	 * Resource representing allocated physical address space
476	 * associated with our per-instance kva region.
477	 */
478	struct resource		*pseudo_phys_res;
479
480	/** Resource id for allocated physical address space. */
481	int			pseudo_phys_res_id;
482#endif
483
484	/** Ring mapping and interrupt configuration data. */
485	struct xnb_ring_config	ring_configs[XNB_NUM_RING_TYPES];
486
487	/**
488	 * Global pool of kva used for mapping remote domain ring
489	 * and I/O transaction data.
490	 */
491	vm_offset_t		kva;
492
493	/** Psuedo-physical address corresponding to kva. */
494	uint64_t		gnt_base_addr;
495
496	/** Various configuration and state bit flags. */
497	xnb_flag_t		flags;
498
499	/** Mutex protecting per-instance data in the receive path. */
500	struct mtx		rx_lock;
501
502	/** Mutex protecting per-instance data in the softc structure. */
503	struct mtx		sc_lock;
504
505	/** Mutex protecting per-instance data in the transmit path. */
506	struct mtx		tx_lock;
507
508	/** The size of the global kva pool. */
509	int			kva_size;
510};
511
512/*---------------------------- Debugging functions ---------------------------*/
513#ifdef XNB_DEBUG
514static void __unused
515xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
516{
517	if (entry == NULL) {
518		printf("NULL grant table pointer\n");
519		return;
520	}
521
522	if (entry->flags & GNTCOPY_dest_gref)
523		printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
524	else
525		printf("gnttab dest gmfn=\t%lu\n", entry->dest.u.gmfn);
526	printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
527	printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
528	if (entry->flags & GNTCOPY_source_gref)
529		printf("gnttab source ref=\t%u\n", entry->source.u.ref);
530	else
531		printf("gnttab source gmfn=\t%lu\n", entry->source.u.gmfn);
532	printf("gnttab source offset=\t%hu\n", entry->source.offset);
533	printf("gnttab source domid=\t%hu\n", entry->source.domid);
534	printf("gnttab len=\t%hu\n", entry->len);
535	printf("gnttab flags=\t%hu\n", entry->flags);
536	printf("gnttab status=\t%hd\n", entry->status);
537}
538
539static int
540xnb_dump_rings(SYSCTL_HANDLER_ARGS)
541{
542	static char results[720];
543	struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
544	netif_rx_back_ring_t const* rxb =
545		&xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
546	netif_tx_back_ring_t const* txb =
547		&xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
548
549	/* empty the result strings */
550	results[0] = 0;
551
552	if ( !txb || !txb->sring || !rxb || !rxb->sring )
553		return (SYSCTL_OUT(req, results, strnlen(results, 720)));
554
555	snprintf(results, 720,
556	    "\n\t%35s %18s\n"	/* TX, RX */
557	    "\t%16s %18d %18d\n"	/* req_cons */
558	    "\t%16s %18d %18d\n"	/* nr_ents */
559	    "\t%16s %18d %18d\n"	/* rsp_prod_pvt */
560	    "\t%16s %18p %18p\n"	/* sring */
561	    "\t%16s %18d %18d\n"	/* req_prod */
562	    "\t%16s %18d %18d\n"	/* req_event */
563	    "\t%16s %18d %18d\n"	/* rsp_prod */
564	    "\t%16s %18d %18d\n",	/* rsp_event */
565	    "TX", "RX",
566	    "req_cons", txb->req_cons, rxb->req_cons,
567	    "nr_ents", txb->nr_ents, rxb->nr_ents,
568	    "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
569	    "sring", txb->sring, rxb->sring,
570	    "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
571	    "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
572	    "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
573	    "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
574
575	return (SYSCTL_OUT(req, results, strnlen(results, 720)));
576}
577
578static void __unused
579xnb_dump_mbuf(const struct mbuf *m)
580{
581	int len;
582	uint8_t *d;
583	if (m == NULL)
584		return;
585
586	printf("xnb_dump_mbuf:\n");
587	if (m->m_flags & M_PKTHDR) {
588		printf("    flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
589		       "tso_segsz=%5hd\n",
590		       m->m_pkthdr.flowid, m->m_pkthdr.csum_flags,
591		       m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
592		printf("    rcvif=%16p,  header=%18p, len=%19d\n",
593		       m->m_pkthdr.rcvif, m->m_pkthdr.header, m->m_pkthdr.len);
594	}
595	printf("    m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
596	       m->m_next, m->m_nextpkt, m->m_data);
597	printf("    m_len=%17d, m_flags=%#15x, m_type=%18hd\n",
598	       m->m_len, m->m_flags, m->m_type);
599
600	len = m->m_len;
601	d = mtod(m, uint8_t*);
602	while (len > 0) {
603		int i;
604		printf("                ");
605		for (i = 0; (i < 16) && (len > 0); i++, len--) {
606			printf("%02hhx ", *(d++));
607		}
608		printf("\n");
609	}
610}
611#endif /* XNB_DEBUG */
612
613/*------------------------ Inter-Domain Communication ------------------------*/
614/**
615 * Free dynamically allocated KVA or pseudo-physical address allocations.
616 *
617 * \param xnb  Per-instance xnb configuration structure.
618 */
619static void
620xnb_free_communication_mem(struct xnb_softc *xnb)
621{
622	if (xnb->kva != 0) {
623#ifndef XENHVM
624		kva_free(xnb->kva, xnb->kva_size);
625#else
626		if (xnb->pseudo_phys_res != NULL) {
627			bus_release_resource(xnb->dev, SYS_RES_MEMORY,
628			    xnb->pseudo_phys_res_id,
629			    xnb->pseudo_phys_res);
630			xnb->pseudo_phys_res = NULL;
631		}
632#endif /* XENHVM */
633	}
634	xnb->kva = 0;
635	xnb->gnt_base_addr = 0;
636}
637
638/**
639 * Cleanup all inter-domain communication mechanisms.
640 *
641 * \param xnb  Per-instance xnb configuration structure.
642 */
643static int
644xnb_disconnect(struct xnb_softc *xnb)
645{
646	struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
647	int error;
648	int i;
649
650	if (xnb->irq != 0) {
651		unbind_from_irqhandler(xnb->irq);
652		xnb->irq = 0;
653	}
654
655	/*
656	 * We may still have another thread currently processing requests.  We
657	 * must acquire the rx and tx locks to make sure those threads are done,
658	 * but we can release those locks as soon as we acquire them, because no
659	 * more interrupts will be arriving.
660	 */
661	mtx_lock(&xnb->tx_lock);
662	mtx_unlock(&xnb->tx_lock);
663	mtx_lock(&xnb->rx_lock);
664	mtx_unlock(&xnb->rx_lock);
665
666	/* Free malloc'd softc member variables */
667	if (xnb->bridge != NULL)
668		free(xnb->bridge, M_XENSTORE);
669
670	/* All request processing has stopped, so unmap the rings */
671	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
672		gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
673		gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
674		gnts[i].handle = xnb->ring_configs[i].handle;
675	}
676	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
677					  XNB_NUM_RING_TYPES);
678	KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
679
680	xnb_free_communication_mem(xnb);
681	/*
682	 * Zero the ring config structs because the pointers, handles, and
683	 * grant refs contained therein are no longer valid.
684	 */
685	bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
686	    sizeof(struct xnb_ring_config));
687	bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
688	    sizeof(struct xnb_ring_config));
689
690	xnb->flags &= ~XNBF_RING_CONNECTED;
691	return (0);
692}
693
694/**
695 * Map a single shared memory ring into domain local address space and
696 * initialize its control structure
697 *
698 * \param xnb	Per-instance xnb configuration structure
699 * \param ring_type	Array index of this ring in the xnb's array of rings
700 * \return 	An errno
701 */
702static int
703xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
704{
705	struct gnttab_map_grant_ref gnt;
706	struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
707	int error;
708
709	/* TX ring type = 0, RX =1 */
710	ring->va = xnb->kva + ring_type * PAGE_SIZE;
711	ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
712
713	gnt.host_addr = ring->gnt_addr;
714	gnt.flags     = GNTMAP_host_map;
715	gnt.ref       = ring->ring_ref;
716	gnt.dom       = xnb->otherend_id;
717
718	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
719	if (error != 0)
720		panic("netback: Ring page grant table op failed (%d)", error);
721
722	if (gnt.status != 0) {
723		ring->va = 0;
724		error = EACCES;
725		xenbus_dev_fatal(xnb->dev, error,
726				 "Ring shared page mapping failed. "
727				 "Status %d.", gnt.status);
728	} else {
729		ring->handle = gnt.handle;
730		ring->bus_addr = gnt.dev_bus_addr;
731
732		if (ring_type == XNB_RING_TYPE_TX) {
733			BACK_RING_INIT(&ring->back_ring.tx_ring,
734			    (netif_tx_sring_t*)ring->va,
735			    ring->ring_pages * PAGE_SIZE);
736		} else if (ring_type == XNB_RING_TYPE_RX) {
737			BACK_RING_INIT(&ring->back_ring.rx_ring,
738			    (netif_rx_sring_t*)ring->va,
739			    ring->ring_pages * PAGE_SIZE);
740		} else {
741			xenbus_dev_fatal(xnb->dev, error,
742				 "Unknown ring type %d", ring_type);
743		}
744	}
745
746	return error;
747}
748
749/**
750 * Setup the shared memory rings and bind an interrupt to the event channel
751 * used to notify us of ring changes.
752 *
753 * \param xnb  Per-instance xnb configuration structure.
754 */
755static int
756xnb_connect_comms(struct xnb_softc *xnb)
757{
758	int	error;
759	xnb_ring_type_t i;
760
761	if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
762		return (0);
763
764	/*
765	 * Kva for our rings are at the tail of the region of kva allocated
766	 * by xnb_alloc_communication_mem().
767	 */
768	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
769		error = xnb_connect_ring(xnb, i);
770		if (error != 0)
771	  		return error;
772	}
773
774	xnb->flags |= XNBF_RING_CONNECTED;
775
776	error =
777	    bind_interdomain_evtchn_to_irqhandler(xnb->otherend_id,
778						  xnb->evtchn,
779						  device_get_nameunit(xnb->dev),
780						  xnb_intr, /*arg*/xnb,
781						  INTR_TYPE_BIO | INTR_MPSAFE,
782						  &xnb->irq);
783	if (error != 0) {
784		(void)xnb_disconnect(xnb);
785		xenbus_dev_fatal(xnb->dev, error, "binding event channel");
786		return (error);
787	}
788
789	DPRINTF("rings connected!\n");
790
791	return (0);
792}
793
794/**
795 * Size KVA and pseudo-physical address allocations based on negotiated
796 * values for the size and number of I/O requests, and the size of our
797 * communication ring.
798 *
799 * \param xnb  Per-instance xnb configuration structure.
800 *
801 * These address spaces are used to dynamically map pages in the
802 * front-end's domain into our own.
803 */
804static int
805xnb_alloc_communication_mem(struct xnb_softc *xnb)
806{
807	xnb_ring_type_t i;
808
809	xnb->kva_size = 0;
810	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
811		xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
812	}
813#ifndef XENHVM
814	xnb->kva = kva_alloc(xnb->kva_size);
815	if (xnb->kva == 0)
816		return (ENOMEM);
817	xnb->gnt_base_addr = xnb->kva;
818#else /* defined XENHVM */
819	/*
820	 * Reserve a range of pseudo physical memory that we can map
821	 * into kva.  These pages will only be backed by machine
822	 * pages ("real memory") during the lifetime of front-end requests
823	 * via grant table operations.  We will map the netif tx and rx rings
824	 * into this space.
825	 */
826	xnb->pseudo_phys_res_id = 0;
827	xnb->pseudo_phys_res = bus_alloc_resource(xnb->dev, SYS_RES_MEMORY,
828						  &xnb->pseudo_phys_res_id,
829						  0, ~0, xnb->kva_size,
830						  RF_ACTIVE);
831	if (xnb->pseudo_phys_res == NULL) {
832		xnb->kva = 0;
833		return (ENOMEM);
834	}
835	xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
836	xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
837#endif /* !defined XENHVM */
838	return (0);
839}
840
841/**
842 * Collect information from the XenStore related to our device and its frontend
843 *
844 * \param xnb  Per-instance xnb configuration structure.
845 */
846static int
847xnb_collect_xenstore_info(struct xnb_softc *xnb)
848{
849	/**
850	 * \todo Linux collects the following info.  We should collect most
851	 * of this, too:
852	 * "feature-rx-notify"
853	 */
854	const char *otherend_path;
855	const char *our_path;
856	int err;
857	unsigned int rx_copy, bridge_len;
858	uint8_t no_csum_offload;
859
860	otherend_path = xenbus_get_otherend_path(xnb->dev);
861	our_path = xenbus_get_node(xnb->dev);
862
863	/* Collect the critical communication parameters */
864	err = xs_gather(XST_NIL, otherend_path,
865	    "tx-ring-ref", "%l" PRIu32,
866	    	&xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
867	    "rx-ring-ref", "%l" PRIu32,
868	    	&xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
869	    "event-channel", "%" PRIu32, &xnb->evtchn,
870	    NULL);
871	if (err != 0) {
872		xenbus_dev_fatal(xnb->dev, err,
873				 "Unable to retrieve ring information from "
874				 "frontend %s.  Unable to connect.",
875				 otherend_path);
876		return (err);
877	}
878
879	/* Collect the handle from xenstore */
880	err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
881	if (err != 0) {
882		xenbus_dev_fatal(xnb->dev, err,
883		    "Error reading handle from frontend %s.  "
884		    "Unable to connect.", otherend_path);
885	}
886
887	/*
888	 * Collect the bridgename, if any.  We do not need bridge_len; we just
889	 * throw it away
890	 */
891	err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
892		      (void**)&xnb->bridge);
893	if (err != 0)
894		xnb->bridge = NULL;
895
896	/*
897	 * Does the frontend request that we use rx copy?  If not, return an
898	 * error because this driver only supports rx copy.
899	 */
900	err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
901		       "%" PRIu32, &rx_copy);
902	if (err == ENOENT) {
903		err = 0;
904	 	rx_copy = 0;
905	}
906	if (err < 0) {
907		xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
908				 otherend_path);
909		return err;
910	}
911	/**
912	 * \todo: figure out the exact meaning of this feature, and when
913	 * the frontend will set it to true.  It should be set to true
914	 * at some point
915	 */
916/*        if (!rx_copy)*/
917/*          return EOPNOTSUPP;*/
918
919	/** \todo Collect the rx notify feature */
920
921	/*  Collect the feature-sg. */
922	if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
923		     "%hhu", &xnb->can_sg) < 0)
924		xnb->can_sg = 0;
925
926	/* Collect remaining frontend features */
927	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
928		     "%hhu", &xnb->gso) < 0)
929		xnb->gso = 0;
930
931	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
932		     "%hhu", &xnb->gso_prefix) < 0)
933		xnb->gso_prefix = 0;
934
935	if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
936		     "%hhu", &no_csum_offload) < 0)
937		no_csum_offload = 0;
938	xnb->ip_csum = (no_csum_offload == 0);
939
940	return (0);
941}
942
943/**
944 * Supply information about the physical device to the frontend
945 * via XenBus.
946 *
947 * \param xnb  Per-instance xnb configuration structure.
948 */
949static int
950xnb_publish_backend_info(struct xnb_softc *xnb)
951{
952	struct xs_transaction xst;
953	const char *our_path;
954	int error;
955
956	our_path = xenbus_get_node(xnb->dev);
957
958	do {
959		error = xs_transaction_start(&xst);
960		if (error != 0) {
961			xenbus_dev_fatal(xnb->dev, error,
962					 "Error publishing backend info "
963					 "(start transaction)");
964			break;
965		}
966
967		error = xs_printf(xst, our_path, "feature-sg",
968				  "%d", XNB_SG);
969		if (error != 0)
970			break;
971
972		error = xs_printf(xst, our_path, "feature-gso-tcpv4",
973				  "%d", XNB_GSO_TCPV4);
974		if (error != 0)
975			break;
976
977		error = xs_printf(xst, our_path, "feature-rx-copy",
978				  "%d", XNB_RX_COPY);
979		if (error != 0)
980			break;
981
982		error = xs_printf(xst, our_path, "feature-rx-flip",
983				  "%d", XNB_RX_FLIP);
984		if (error != 0)
985			break;
986
987		error = xs_transaction_end(xst, 0);
988		if (error != 0 && error != EAGAIN) {
989			xenbus_dev_fatal(xnb->dev, error, "ending transaction");
990			break;
991		}
992
993	} while (error == EAGAIN);
994
995	return (error);
996}
997
998/**
999 * Connect to our netfront peer now that it has completed publishing
1000 * its configuration into the XenStore.
1001 *
1002 * \param xnb  Per-instance xnb configuration structure.
1003 */
1004static void
1005xnb_connect(struct xnb_softc *xnb)
1006{
1007	int	error;
1008
1009	if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
1010		return;
1011
1012	if (xnb_collect_xenstore_info(xnb) != 0)
1013		return;
1014
1015	xnb->flags &= ~XNBF_SHUTDOWN;
1016
1017	/* Read front end configuration. */
1018
1019	/* Allocate resources whose size depends on front-end configuration. */
1020	error = xnb_alloc_communication_mem(xnb);
1021	if (error != 0) {
1022		xenbus_dev_fatal(xnb->dev, error,
1023				 "Unable to allocate communication memory");
1024		return;
1025	}
1026
1027	/*
1028	 * Connect communication channel.
1029	 */
1030	error = xnb_connect_comms(xnb);
1031	if (error != 0) {
1032		/* Specific errors are reported by xnb_connect_comms(). */
1033		return;
1034	}
1035	xnb->carrier = 1;
1036
1037	/* Ready for I/O. */
1038	xenbus_set_state(xnb->dev, XenbusStateConnected);
1039}
1040
1041/*-------------------------- Device Teardown Support -------------------------*/
1042/**
1043 * Perform device shutdown functions.
1044 *
1045 * \param xnb  Per-instance xnb configuration structure.
1046 *
1047 * Mark this instance as shutting down, wait for any active requests
1048 * to drain, disconnect from the front-end, and notify any waiters (e.g.
1049 * a thread invoking our detach method) that detach can now proceed.
1050 */
1051static int
1052xnb_shutdown(struct xnb_softc *xnb)
1053{
1054	/*
1055	 * Due to the need to drop our mutex during some
1056	 * xenbus operations, it is possible for two threads
1057	 * to attempt to close out shutdown processing at
1058	 * the same time.  Tell the caller that hits this
1059	 * race to try back later.
1060	 */
1061	if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1062		return (EAGAIN);
1063
1064	xnb->flags |= XNBF_SHUTDOWN;
1065
1066	xnb->flags |= XNBF_IN_SHUTDOWN;
1067
1068	mtx_unlock(&xnb->sc_lock);
1069	/* Free the network interface */
1070	xnb->carrier = 0;
1071	if (xnb->xnb_ifp != NULL) {
1072		ether_ifdetach(xnb->xnb_ifp);
1073		if_free(xnb->xnb_ifp);
1074		xnb->xnb_ifp = NULL;
1075	}
1076	mtx_lock(&xnb->sc_lock);
1077
1078	xnb_disconnect(xnb);
1079
1080	mtx_unlock(&xnb->sc_lock);
1081	if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1082		xenbus_set_state(xnb->dev, XenbusStateClosing);
1083	mtx_lock(&xnb->sc_lock);
1084
1085	xnb->flags &= ~XNBF_IN_SHUTDOWN;
1086
1087
1088	/* Indicate to xnb_detach() that is it safe to proceed. */
1089	wakeup(xnb);
1090
1091	return (0);
1092}
1093
1094/**
1095 * Report an attach time error to the console and Xen, and cleanup
1096 * this instance by forcing immediate detach processing.
1097 *
1098 * \param xnb  Per-instance xnb configuration structure.
1099 * \param err  Errno describing the error.
1100 * \param fmt  Printf style format and arguments
1101 */
1102static void
1103xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1104{
1105	va_list ap;
1106	va_list ap_hotplug;
1107
1108	va_start(ap, fmt);
1109	va_copy(ap_hotplug, ap);
1110	xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1111		  "hotplug-error", fmt, ap_hotplug);
1112	va_end(ap_hotplug);
1113	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1114		  "hotplug-status", "error");
1115
1116	xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1117	va_end(ap);
1118
1119	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1120		  "online", "0");
1121	xnb_detach(xnb->dev);
1122}
1123
1124/*---------------------------- NewBus Entrypoints ----------------------------*/
1125/**
1126 * Inspect a XenBus device and claim it if is of the appropriate type.
1127 *
1128 * \param dev  NewBus device object representing a candidate XenBus device.
1129 *
1130 * \return  0 for success, errno codes for failure.
1131 */
1132static int
1133xnb_probe(device_t dev)
1134{
1135	 if (!strcmp(xenbus_get_type(dev), "vif")) {
1136		DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1137		    devclass_get_name(device_get_devclass(dev)));
1138		device_set_desc(dev, "Backend Virtual Network Device");
1139		device_quiet(dev);
1140		return (0);
1141	}
1142	return (ENXIO);
1143}
1144
1145/**
1146 * Setup sysctl variables to control various Network Back parameters.
1147 *
1148 * \param xnb  Xen Net Back softc.
1149 *
1150 */
1151static void
1152xnb_setup_sysctl(struct xnb_softc *xnb)
1153{
1154	struct sysctl_ctx_list *sysctl_ctx = NULL;
1155	struct sysctl_oid      *sysctl_tree = NULL;
1156
1157	sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1158	if (sysctl_ctx == NULL)
1159		return;
1160
1161	sysctl_tree = device_get_sysctl_tree(xnb->dev);
1162	if (sysctl_tree == NULL)
1163		return;
1164
1165#ifdef XNB_DEBUG
1166	SYSCTL_ADD_PROC(sysctl_ctx,
1167			SYSCTL_CHILDREN(sysctl_tree),
1168			OID_AUTO,
1169			"unit_test_results",
1170			CTLTYPE_STRING | CTLFLAG_RD,
1171			xnb,
1172			0,
1173			xnb_unit_test_main,
1174			"A",
1175			"Results of builtin unit tests");
1176
1177	SYSCTL_ADD_PROC(sysctl_ctx,
1178			SYSCTL_CHILDREN(sysctl_tree),
1179			OID_AUTO,
1180			"dump_rings",
1181			CTLTYPE_STRING | CTLFLAG_RD,
1182			xnb,
1183			0,
1184			xnb_dump_rings,
1185			"A",
1186			"Xennet Back Rings");
1187#endif /* XNB_DEBUG */
1188}
1189
1190/**
1191 * Create a network device.
1192 * @param handle device handle
1193 */
1194int
1195create_netdev(device_t dev)
1196{
1197	struct ifnet *ifp;
1198	struct xnb_softc *xnb;
1199	int err = 0;
1200
1201	xnb = device_get_softc(dev);
1202	mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1203	mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1204	mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1205
1206	xnb->dev = dev;
1207
1208	ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1209	ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1210	ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1211
1212	err = xen_net_read_mac(dev, xnb->mac);
1213	if (err == 0) {
1214		/* Set up ifnet structure */
1215		ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1216		ifp->if_softc = xnb;
1217		if_initname(ifp, "xnb",  device_get_unit(dev));
1218		ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1219		ifp->if_ioctl = xnb_ioctl;
1220		ifp->if_output = ether_output;
1221		ifp->if_start = xnb_start;
1222#ifdef notyet
1223		ifp->if_watchdog = xnb_watchdog;
1224#endif
1225		ifp->if_init = xnb_ifinit;
1226		ifp->if_mtu = ETHERMTU;
1227		ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1;
1228
1229		ifp->if_hwassist = XNB_CSUM_FEATURES;
1230		ifp->if_capabilities = IFCAP_HWCSUM;
1231		ifp->if_capenable = IFCAP_HWCSUM;
1232
1233		ether_ifattach(ifp, xnb->mac);
1234		xnb->carrier = 0;
1235	}
1236
1237	return err;
1238}
1239
1240/**
1241 * Attach to a XenBus device that has been claimed by our probe routine.
1242 *
1243 * \param dev  NewBus device object representing this Xen Net Back instance.
1244 *
1245 * \return  0 for success, errno codes for failure.
1246 */
1247static int
1248xnb_attach(device_t dev)
1249{
1250	struct xnb_softc *xnb;
1251	int	error;
1252	xnb_ring_type_t	i;
1253
1254	error = create_netdev(dev);
1255	if (error != 0) {
1256		xenbus_dev_fatal(dev, error, "creating netdev");
1257		return (error);
1258	}
1259
1260	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1261
1262	/*
1263	 * Basic initialization.
1264	 * After this block it is safe to call xnb_detach()
1265	 * to clean up any allocated data for this instance.
1266	 */
1267	xnb = device_get_softc(dev);
1268	xnb->otherend_id = xenbus_get_otherend_id(dev);
1269	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1270		xnb->ring_configs[i].ring_pages = 1;
1271	}
1272
1273	/*
1274	 * Setup sysctl variables.
1275	 */
1276	xnb_setup_sysctl(xnb);
1277
1278	/* Update hot-plug status to satisfy xend. */
1279	error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1280			  "hotplug-status", "connected");
1281	if (error != 0) {
1282		xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1283				  xenbus_get_node(xnb->dev));
1284		return (error);
1285	}
1286
1287	if ((error = xnb_publish_backend_info(xnb)) != 0) {
1288		/*
1289		 * If we can't publish our data, we cannot participate
1290		 * in this connection, and waiting for a front-end state
1291		 * change will not help the situation.
1292		 */
1293		xnb_attach_failed(xnb, error,
1294		    "Publishing backend status for %s",
1295				  xenbus_get_node(xnb->dev));
1296		return error;
1297	}
1298
1299	/* Tell the front end that we are ready to connect. */
1300	xenbus_set_state(dev, XenbusStateInitWait);
1301
1302	return (0);
1303}
1304
1305/**
1306 * Detach from a net back device instance.
1307 *
1308 * \param dev  NewBus device object representing this Xen Net Back instance.
1309 *
1310 * \return  0 for success, errno codes for failure.
1311 *
1312 * \note A net back device may be detached at any time in its life-cycle,
1313 *       including part way through the attach process.  For this reason,
1314 *       initialization order and the intialization state checks in this
1315 *       routine must be carefully coupled so that attach time failures
1316 *       are gracefully handled.
1317 */
1318static int
1319xnb_detach(device_t dev)
1320{
1321	struct xnb_softc *xnb;
1322
1323	DPRINTF("\n");
1324
1325	xnb = device_get_softc(dev);
1326	mtx_lock(&xnb->sc_lock);
1327	while (xnb_shutdown(xnb) == EAGAIN) {
1328		msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1329		       "xnb_shutdown", 0);
1330	}
1331	mtx_unlock(&xnb->sc_lock);
1332	DPRINTF("\n");
1333
1334	mtx_destroy(&xnb->tx_lock);
1335	mtx_destroy(&xnb->rx_lock);
1336	mtx_destroy(&xnb->sc_lock);
1337	return (0);
1338}
1339
1340/**
1341 * Prepare this net back device for suspension of this VM.
1342 *
1343 * \param dev  NewBus device object representing this Xen net Back instance.
1344 *
1345 * \return  0 for success, errno codes for failure.
1346 */
1347static int
1348xnb_suspend(device_t dev)
1349{
1350	return (0);
1351}
1352
1353/**
1354 * Perform any processing required to recover from a suspended state.
1355 *
1356 * \param dev  NewBus device object representing this Xen Net Back instance.
1357 *
1358 * \return  0 for success, errno codes for failure.
1359 */
1360static int
1361xnb_resume(device_t dev)
1362{
1363	return (0);
1364}
1365
1366/**
1367 * Handle state changes expressed via the XenStore by our front-end peer.
1368 *
1369 * \param dev             NewBus device object representing this Xen
1370 *                        Net Back instance.
1371 * \param frontend_state  The new state of the front-end.
1372 *
1373 * \return  0 for success, errno codes for failure.
1374 */
1375static void
1376xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1377{
1378	struct xnb_softc *xnb;
1379
1380	xnb = device_get_softc(dev);
1381
1382	DPRINTF("frontend_state=%s, xnb_state=%s\n",
1383	        xenbus_strstate(frontend_state),
1384		xenbus_strstate(xenbus_get_state(xnb->dev)));
1385
1386	switch (frontend_state) {
1387	case XenbusStateInitialising:
1388		break;
1389	case XenbusStateInitialised:
1390	case XenbusStateConnected:
1391		xnb_connect(xnb);
1392		break;
1393	case XenbusStateClosing:
1394	case XenbusStateClosed:
1395		mtx_lock(&xnb->sc_lock);
1396		xnb_shutdown(xnb);
1397		mtx_unlock(&xnb->sc_lock);
1398		if (frontend_state == XenbusStateClosed)
1399			xenbus_set_state(xnb->dev, XenbusStateClosed);
1400		break;
1401	default:
1402		xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1403				 frontend_state);
1404		break;
1405	}
1406}
1407
1408
1409/*---------------------------- Request Processing ----------------------------*/
1410/**
1411 * Interrupt handler bound to the shared ring's event channel.
1412 * Entry point for the xennet transmit path in netback
1413 * Transfers packets from the Xen ring to the host's generic networking stack
1414 *
1415 * \param arg  Callback argument registerd during event channel
1416 *             binding - the xnb_softc for this instance.
1417 */
1418static void
1419xnb_intr(void *arg)
1420{
1421	struct xnb_softc *xnb;
1422	struct ifnet *ifp;
1423	netif_tx_back_ring_t *txb;
1424	RING_IDX req_prod_local;
1425
1426	xnb = (struct xnb_softc *)arg;
1427	ifp = xnb->xnb_ifp;
1428	txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1429
1430	mtx_lock(&xnb->tx_lock);
1431	do {
1432		int notify;
1433		req_prod_local = txb->sring->req_prod;
1434		xen_rmb();
1435
1436		for (;;) {
1437			struct mbuf *mbufc;
1438			int err;
1439
1440			err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1441			    	       xnb->tx_gnttab);
1442			if (err || (mbufc == NULL))
1443				break;
1444
1445			/* Send the packet to the generic network stack */
1446			(*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc);
1447		}
1448
1449		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1450		if (notify != 0)
1451			notify_remote_via_irq(xnb->irq);
1452
1453		txb->sring->req_event = txb->req_cons + 1;
1454		xen_mb();
1455	} while (txb->sring->req_prod != req_prod_local) ;
1456	mtx_unlock(&xnb->tx_lock);
1457
1458	xnb_start(ifp);
1459}
1460
1461
1462/**
1463 * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1464 * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1465 * \param[out]	pkt	The returned packet.  If there is an error building
1466 * 			the packet, pkt.list_len will be set to 0.
1467 * \param[in]	tx_ring	Pointer to the Ring that is the input to this function
1468 * \param[in]	start	The ring index of the first potential request
1469 * \return		The number of requests consumed to build this packet
1470 */
1471static int
1472xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1473	     RING_IDX start)
1474{
1475	/*
1476	 * Outline:
1477	 * 1) Initialize pkt
1478	 * 2) Read the first request of the packet
1479	 * 3) Read the extras
1480	 * 4) Set cdr
1481	 * 5) Loop on the remainder of the packet
1482	 * 6) Finalize pkt (stuff like car_size and list_len)
1483	 */
1484	int idx = start;
1485	int discard = 0;	/* whether to discard the packet */
1486	int more_data = 0;	/* there are more request past the last one */
1487	uint16_t cdr_size = 0;	/* accumulated size of requests 2 through n */
1488
1489	xnb_pkt_initialize(pkt);
1490
1491	/* Read the first request */
1492	if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1493		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1494		pkt->size = tx->size;
1495		pkt->flags = tx->flags & ~NETTXF_more_data;
1496		more_data = tx->flags & NETTXF_more_data;
1497		pkt->list_len++;
1498		pkt->car = idx;
1499		idx++;
1500	}
1501
1502	/* Read the extra info */
1503	if ((pkt->flags & NETTXF_extra_info) &&
1504	    RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1505		netif_extra_info_t *ext =
1506		    (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1507		pkt->extra.type = ext->type;
1508		switch (pkt->extra.type) {
1509			case XEN_NETIF_EXTRA_TYPE_GSO:
1510				pkt->extra.u.gso = ext->u.gso;
1511				break;
1512			default:
1513				/*
1514				 * The reference Linux netfront driver will
1515				 * never set any other extra.type.  So we don't
1516				 * know what to do with it.  Let's print an
1517				 * error, then consume and discard the packet
1518				 */
1519				printf("xnb(%s:%d): Unknown extra info type %d."
1520				       "  Discarding packet\n",
1521				       __func__, __LINE__, pkt->extra.type);
1522				xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1523				    start));
1524				xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1525				    idx));
1526				discard = 1;
1527				break;
1528		}
1529
1530		pkt->extra.flags = ext->flags;
1531		if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1532			/*
1533			 * The reference linux netfront driver never sets this
1534			 * flag (nor does any other known netfront).  So we
1535			 * will discard the packet.
1536			 */
1537			printf("xnb(%s:%d): Request sets "
1538			    "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1539			    "that\n", __func__, __LINE__);
1540			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1541			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1542			discard = 1;
1543		}
1544
1545		idx++;
1546	}
1547
1548	/* Set cdr.  If there is not more data, cdr is invalid */
1549	pkt->cdr = idx;
1550
1551	/* Loop on remainder of packet */
1552	while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1553		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1554		pkt->list_len++;
1555		cdr_size += tx->size;
1556		if (tx->flags & ~NETTXF_more_data) {
1557			/* There should be no other flags set at this point */
1558			printf("xnb(%s:%d): Request sets unknown flags %d "
1559			    "after the 1st request in the packet.\n",
1560			    __func__, __LINE__, tx->flags);
1561			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1562			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1563		}
1564
1565		more_data = tx->flags & NETTXF_more_data;
1566		idx++;
1567	}
1568
1569	/* Finalize packet */
1570	if (more_data != 0) {
1571		/* The ring ran out of requests before finishing the packet */
1572		xnb_pkt_invalidate(pkt);
1573		idx = start;	/* tell caller that we consumed no requests */
1574	} else {
1575		/* Calculate car_size */
1576		pkt->car_size = pkt->size - cdr_size;
1577	}
1578	if (discard != 0) {
1579		xnb_pkt_invalidate(pkt);
1580	}
1581
1582	return idx - start;
1583}
1584
1585
1586/**
1587 * Respond to all the requests that constituted pkt.  Builds the responses and
1588 * writes them to the ring, but doesn't push them to the shared ring.
1589 * \param[in] pkt	the packet that needs a response
1590 * \param[in] error	true if there was an error handling the packet, such
1591 * 			as in the hypervisor copy op or mbuf allocation
1592 * \param[out] ring	Responses go here
1593 */
1594static void
1595xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1596	      int error)
1597{
1598	/*
1599	 * Outline:
1600	 * 1) Respond to the first request
1601	 * 2) Respond to the extra info reques
1602	 * Loop through every remaining request in the packet, generating
1603	 * responses that copy those requests' ids and sets the status
1604	 * appropriately.
1605	 */
1606	netif_tx_request_t *tx;
1607	netif_tx_response_t *rsp;
1608	int i;
1609	uint16_t status;
1610
1611	status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1612		NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1613	KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1614	    ("Cannot respond to ring requests out of order"));
1615
1616	if (pkt->list_len >= 1) {
1617		uint16_t id;
1618		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1619		id = tx->id;
1620		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1621		rsp->id = id;
1622		rsp->status = status;
1623		ring->rsp_prod_pvt++;
1624
1625		if (pkt->flags & NETRXF_extra_info) {
1626			rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1627			rsp->status = NETIF_RSP_NULL;
1628			ring->rsp_prod_pvt++;
1629		}
1630	}
1631
1632	for (i=0; i < pkt->list_len - 1; i++) {
1633		uint16_t id;
1634		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1635		id = tx->id;
1636		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1637		rsp->id = id;
1638		rsp->status = status;
1639		ring->rsp_prod_pvt++;
1640	}
1641}
1642
1643/**
1644 * Create an mbuf chain to represent a packet.  Initializes all of the headers
1645 * in the mbuf chain, but does not copy the data.  The returned chain must be
1646 * free()'d when no longer needed
1647 * \param[in]	pkt	A packet to model the mbuf chain after
1648 * \return	A newly allocated mbuf chain, possibly with clusters attached.
1649 * 		NULL on failure
1650 */
1651static struct mbuf*
1652xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp)
1653{
1654	/**
1655	 * \todo consider using a memory pool for mbufs instead of
1656	 * reallocating them for every packet
1657	 */
1658	/** \todo handle extra data */
1659	struct mbuf *m;
1660
1661	m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1662
1663	if (m != NULL) {
1664		m->m_pkthdr.rcvif = ifp;
1665		if (pkt->flags & NETTXF_data_validated) {
1666			/*
1667			 * We lie to the host OS and always tell it that the
1668			 * checksums are ok, because the packet is unlikely to
1669			 * get corrupted going across domains.
1670			 */
1671			m->m_pkthdr.csum_flags = (
1672				CSUM_IP_CHECKED |
1673				CSUM_IP_VALID   |
1674				CSUM_DATA_VALID |
1675				CSUM_PSEUDO_HDR
1676				);
1677			m->m_pkthdr.csum_data = 0xffff;
1678		}
1679	}
1680	return m;
1681}
1682
1683/**
1684 * Build a gnttab_copy table that can be used to copy data from a pkt
1685 * to an mbufc.  Does not actually perform the copy.  Always uses gref's on
1686 * the packet side.
1687 * \param[in]	pkt	pkt's associated requests form the src for
1688 * 			the copy operation
1689 * \param[in]	mbufc	mbufc's storage forms the dest for the copy operation
1690 * \param[out]  gnttab	Storage for the returned grant table
1691 * \param[in]	txb	Pointer to the backend ring structure
1692 * \param[in]	otherend_id	The domain ID of the other end of the copy
1693 * \return 		The number of gnttab entries filled
1694 */
1695static int
1696xnb_txpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1697		 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1698		 domid_t otherend_id)
1699{
1700
1701	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1702	int gnt_idx = 0;		/* index into grant table */
1703	RING_IDX r_idx = pkt->car;	/* index into tx ring buffer */
1704	int r_ofs = 0;	/* offset of next data within tx request's data area */
1705	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1706	/* size in bytes that still needs to be represented in the table */
1707	uint16_t size_remaining = pkt->size;
1708
1709	while (size_remaining > 0) {
1710		const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1711		const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1712		const size_t req_size =
1713			r_idx == pkt->car ? pkt->car_size : txq->size;
1714		const size_t pkt_space = req_size - r_ofs;
1715		/*
1716		 * space is the largest amount of data that can be copied in the
1717		 * grant table's next entry
1718		 */
1719		const size_t space = MIN(pkt_space, mbuf_space);
1720
1721		/* TODO: handle this error condition without panicking */
1722		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1723
1724		gnttab[gnt_idx].source.u.ref = txq->gref;
1725		gnttab[gnt_idx].source.domid = otherend_id;
1726		gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1727		gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1728		    mtod(mbuf, vm_offset_t) + m_ofs);
1729		gnttab[gnt_idx].dest.offset = virt_to_offset(
1730		    mtod(mbuf, vm_offset_t) + m_ofs);
1731		gnttab[gnt_idx].dest.domid = DOMID_SELF;
1732		gnttab[gnt_idx].len = space;
1733		gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1734
1735		gnt_idx++;
1736		r_ofs += space;
1737		m_ofs += space;
1738		size_remaining -= space;
1739		if (req_size - r_ofs <= 0) {
1740			/* Must move to the next tx request */
1741			r_ofs = 0;
1742			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1743		}
1744		if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1745			/* Must move to the next mbuf */
1746			m_ofs = 0;
1747			mbuf = mbuf->m_next;
1748		}
1749	}
1750
1751	return gnt_idx;
1752}
1753
1754/**
1755 * Check the status of the grant copy operations, and update mbufs various
1756 * non-data fields to reflect the data present.
1757 * \param[in,out] mbufc	mbuf chain to update.  The chain must be valid and of
1758 * 			the correct length, and data should already be present
1759 * \param[in] gnttab	A grant table for a just completed copy op
1760 * \param[in] n_entries The number of valid entries in the grant table
1761 */
1762static void
1763xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1764    		 int n_entries)
1765{
1766	struct mbuf *mbuf = mbufc;
1767	int i;
1768	size_t total_size = 0;
1769
1770	for (i = 0; i < n_entries; i++) {
1771		KASSERT(gnttab[i].status == GNTST_okay,
1772		    ("Some gnttab_copy entry had error status %hd\n",
1773		    gnttab[i].status));
1774
1775		mbuf->m_len += gnttab[i].len;
1776		total_size += gnttab[i].len;
1777		if (M_TRAILINGSPACE(mbuf) <= 0) {
1778			mbuf = mbuf->m_next;
1779		}
1780	}
1781	mbufc->m_pkthdr.len = total_size;
1782
1783	xnb_add_mbuf_cksum(mbufc);
1784}
1785
1786/**
1787 * Dequeue at most one packet from the shared ring
1788 * \param[in,out] txb	Netif tx ring.  A packet will be removed from it, and
1789 * 			its private indices will be updated.  But the indices
1790 * 			will not be pushed to the shared ring.
1791 * \param[in] ifnet	Interface to which the packet will be sent
1792 * \param[in] otherend	Domain ID of the other end of the ring
1793 * \param[out] mbufc	The assembled mbuf chain, ready to send to the generic
1794 * 			networking stack
1795 * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
1796 * 			this a function parameter so that we will take less
1797 * 			stack space.
1798 * \return		An error code
1799 */
1800static int
1801xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1802	 struct ifnet *ifnet, gnttab_copy_table gnttab)
1803{
1804	struct xnb_pkt pkt;
1805	/* number of tx requests consumed to build the last packet */
1806	int num_consumed;
1807	int nr_ents;
1808
1809	*mbufc = NULL;
1810	num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1811	if (num_consumed == 0)
1812		return 0;	/* Nothing to receive */
1813
1814	/* update statistics independent of errors */
1815	ifnet->if_ipackets++;
1816
1817	/*
1818	 * if we got here, then 1 or more requests was consumed, but the packet
1819	 * is not necessarily valid.
1820	 */
1821	if (xnb_pkt_is_valid(&pkt) == 0) {
1822		/* got a garbage packet, respond and drop it */
1823		xnb_txpkt2rsp(&pkt, txb, 1);
1824		txb->req_cons += num_consumed;
1825		DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1826				num_consumed);
1827		ifnet->if_ierrors++;
1828		return EINVAL;
1829	}
1830
1831	*mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1832
1833	if (*mbufc == NULL) {
1834		/*
1835		 * Couldn't allocate mbufs.  Respond and drop the packet.  Do
1836		 * not consume the requests
1837		 */
1838		xnb_txpkt2rsp(&pkt, txb, 1);
1839		DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1840		    num_consumed);
1841		ifnet->if_iqdrops++;
1842		return ENOMEM;
1843	}
1844
1845	nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1846
1847	if (nr_ents > 0) {
1848		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1849		    gnttab, nr_ents);
1850		KASSERT(hv_ret == 0,
1851		    ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1852		xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1853	}
1854
1855	xnb_txpkt2rsp(&pkt, txb, 0);
1856	txb->req_cons += num_consumed;
1857	return 0;
1858}
1859
1860/**
1861 * Create an xnb_pkt based on the contents of an mbuf chain.
1862 * \param[in] mbufc	mbuf chain to transform into a packet
1863 * \param[out] pkt	Storage for the newly generated xnb_pkt
1864 * \param[in] start	The ring index of the first available slot in the rx
1865 * 			ring
1866 * \param[in] space	The number of free slots in the rx ring
1867 * \retval 0		Success
1868 * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
1869 * \retval EAGAIN	There was not enough space in the ring to queue the
1870 * 			packet
1871 */
1872static int
1873xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1874	      RING_IDX start, int space)
1875{
1876
1877	int retval = 0;
1878
1879	if ((mbufc == NULL) ||
1880	     ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1881	     (mbufc->m_pkthdr.len == 0)) {
1882		xnb_pkt_invalidate(pkt);
1883		retval = EINVAL;
1884	} else {
1885		int slots_required;
1886
1887		xnb_pkt_validate(pkt);
1888		pkt->flags = 0;
1889		pkt->size = mbufc->m_pkthdr.len;
1890		pkt->car = start;
1891		pkt->car_size = mbufc->m_len;
1892
1893		if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1894			pkt->flags |= NETRXF_extra_info;
1895			pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1896			pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1897			pkt->extra.u.gso.pad = 0;
1898			pkt->extra.u.gso.features = 0;
1899			pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1900			pkt->extra.flags = 0;
1901			pkt->cdr = start + 2;
1902		} else {
1903			pkt->cdr = start + 1;
1904		}
1905		if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1906			pkt->flags |=
1907			    (NETRXF_csum_blank | NETRXF_data_validated);
1908		}
1909
1910		/*
1911		 * Each ring response can have up to PAGE_SIZE of data.
1912		 * Assume that we can defragment the mbuf chain efficiently
1913		 * into responses so that each response but the last uses all
1914		 * PAGE_SIZE bytes.
1915		 */
1916		pkt->list_len = (pkt->size + PAGE_SIZE - 1) / PAGE_SIZE;
1917
1918		if (pkt->list_len > 1) {
1919			pkt->flags |= NETRXF_more_data;
1920		}
1921
1922		slots_required = pkt->list_len +
1923			(pkt->flags & NETRXF_extra_info ? 1 : 0);
1924		if (slots_required > space) {
1925			xnb_pkt_invalidate(pkt);
1926			retval = EAGAIN;
1927		}
1928	}
1929
1930	return retval;
1931}
1932
1933/**
1934 * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1935 * to the frontend's shared buffers.  Does not actually perform the copy.
1936 * Always uses gref's on the other end's side.
1937 * \param[in]	pkt	pkt's associated responses form the dest for the copy
1938 * 			operatoin
1939 * \param[in]	mbufc	The source for the copy operation
1940 * \param[out]	gnttab	Storage for the returned grant table
1941 * \param[in]	rxb	Pointer to the backend ring structure
1942 * \param[in]	otherend_id	The domain ID of the other end of the copy
1943 * \return 		The number of gnttab entries filled
1944 */
1945static int
1946xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1947		 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1948		 domid_t otherend_id)
1949{
1950
1951	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1952	int gnt_idx = 0;		/* index into grant table */
1953	RING_IDX r_idx = pkt->car;	/* index into rx ring buffer */
1954	int r_ofs = 0;	/* offset of next data within rx request's data area */
1955	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1956	/* size in bytes that still needs to be represented in the table */
1957	uint16_t size_remaining;
1958
1959	size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1960
1961	while (size_remaining > 0) {
1962		const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1963		const size_t mbuf_space = mbuf->m_len - m_ofs;
1964		/* Xen shared pages have an implied size of PAGE_SIZE */
1965		const size_t req_size = PAGE_SIZE;
1966		const size_t pkt_space = req_size - r_ofs;
1967		/*
1968		 * space is the largest amount of data that can be copied in the
1969		 * grant table's next entry
1970		 */
1971		const size_t space = MIN(pkt_space, mbuf_space);
1972
1973		/* TODO: handle this error condition without panicing */
1974		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1975
1976		gnttab[gnt_idx].dest.u.ref = rxq->gref;
1977		gnttab[gnt_idx].dest.domid = otherend_id;
1978		gnttab[gnt_idx].dest.offset = r_ofs;
1979		gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
1980		    mtod(mbuf, vm_offset_t) + m_ofs);
1981		gnttab[gnt_idx].source.offset = virt_to_offset(
1982		    mtod(mbuf, vm_offset_t) + m_ofs);
1983		gnttab[gnt_idx].source.domid = DOMID_SELF;
1984		gnttab[gnt_idx].len = space;
1985		gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
1986
1987		gnt_idx++;
1988
1989		r_ofs += space;
1990		m_ofs += space;
1991		size_remaining -= space;
1992		if (req_size - r_ofs <= 0) {
1993			/* Must move to the next rx request */
1994			r_ofs = 0;
1995			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1996		}
1997		if (mbuf->m_len - m_ofs <= 0) {
1998			/* Must move to the next mbuf */
1999			m_ofs = 0;
2000			mbuf = mbuf->m_next;
2001		}
2002	}
2003
2004	return gnt_idx;
2005}
2006
2007/**
2008 * Generates responses for all the requests that constituted pkt.  Builds
2009 * responses and writes them to the ring, but doesn't push the shared ring
2010 * indices.
2011 * \param[in] pkt	the packet that needs a response
2012 * \param[in] gnttab	The grant copy table corresponding to this packet.
2013 * 			Used to determine how many rsp->netif_rx_response_t's to
2014 * 			generate.
2015 * \param[in] n_entries	Number of relevant entries in the grant table
2016 * \param[out] ring	Responses go here
2017 * \return		The number of RX requests that were consumed to generate
2018 * 			the responses
2019 */
2020static int
2021xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2022    	      int n_entries, netif_rx_back_ring_t *ring)
2023{
2024	/*
2025	 * This code makes the following assumptions:
2026	 *	* All entries in gnttab set GNTCOPY_dest_gref
2027	 *	* The entries in gnttab are grouped by their grefs: any two
2028	 *	   entries with the same gref must be adjacent
2029	 */
2030	int error = 0;
2031	int gnt_idx, i;
2032	int n_responses = 0;
2033	grant_ref_t last_gref = GRANT_REF_INVALID;
2034	RING_IDX r_idx;
2035
2036	KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2037
2038	/*
2039	 * In the event of an error, we only need to send one response to the
2040	 * netfront.  In that case, we musn't write any data to the responses
2041	 * after the one we send.  So we must loop all the way through gnttab
2042	 * looking for errors before we generate any responses
2043	 *
2044	 * Since we're looping through the grant table anyway, we'll count the
2045	 * number of different gref's in it, which will tell us how many
2046	 * responses to generate
2047	 */
2048	for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2049		int16_t status = gnttab[gnt_idx].status;
2050		if (status != GNTST_okay) {
2051			DPRINTF(
2052			    "Got error %d for hypervisor gnttab_copy status\n",
2053			    status);
2054			error = 1;
2055			break;
2056		}
2057		if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2058			n_responses++;
2059			last_gref = gnttab[gnt_idx].dest.u.ref;
2060		}
2061	}
2062
2063	if (error != 0) {
2064		uint16_t id;
2065		netif_rx_response_t *rsp;
2066
2067		id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2068		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2069		rsp->id = id;
2070		rsp->status = NETIF_RSP_ERROR;
2071		n_responses = 1;
2072	} else {
2073		gnt_idx = 0;
2074		const int has_extra = pkt->flags & NETRXF_extra_info;
2075		if (has_extra != 0)
2076			n_responses++;
2077
2078		for (i = 0; i < n_responses; i++) {
2079			netif_rx_request_t rxq;
2080			netif_rx_response_t *rsp;
2081
2082			r_idx = ring->rsp_prod_pvt + i;
2083			/*
2084			 * We copy the structure of rxq instead of making a
2085			 * pointer because it shares the same memory as rsp.
2086			 */
2087			rxq = *(RING_GET_REQUEST(ring, r_idx));
2088			rsp = RING_GET_RESPONSE(ring, r_idx);
2089			if (has_extra && (i == 1)) {
2090				netif_extra_info_t *ext =
2091					(netif_extra_info_t*)rsp;
2092				ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2093				ext->flags = 0;
2094				ext->u.gso.size = pkt->extra.u.gso.size;
2095				ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2096				ext->u.gso.pad = 0;
2097				ext->u.gso.features = 0;
2098			} else {
2099				rsp->id = rxq.id;
2100				rsp->status = GNTST_okay;
2101				rsp->offset = 0;
2102				rsp->flags = 0;
2103				if (i < pkt->list_len - 1)
2104					rsp->flags |= NETRXF_more_data;
2105				if ((i == 0) && has_extra)
2106					rsp->flags |= NETRXF_extra_info;
2107				if ((i == 0) &&
2108					(pkt->flags & NETRXF_data_validated)) {
2109					rsp->flags |= NETRXF_data_validated;
2110					rsp->flags |= NETRXF_csum_blank;
2111				}
2112				rsp->status = 0;
2113				for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2114				    gnt_idx++) {
2115					rsp->status += gnttab[gnt_idx].len;
2116				}
2117			}
2118		}
2119	}
2120
2121	ring->req_cons += n_responses;
2122	ring->rsp_prod_pvt += n_responses;
2123	return n_responses;
2124}
2125
2126/**
2127 * Add IP, TCP, and/or UDP checksums to every mbuf in a chain.  The first mbuf
2128 * in the chain must start with a struct ether_header.
2129 *
2130 * XXX This function will perform incorrectly on UDP packets that are split up
2131 * into multiple ethernet frames.
2132 */
2133static void
2134xnb_add_mbuf_cksum(struct mbuf *mbufc)
2135{
2136	struct ether_header *eh;
2137	struct ip *iph;
2138	uint16_t ether_type;
2139
2140	eh = mtod(mbufc, struct ether_header*);
2141	ether_type = ntohs(eh->ether_type);
2142	if (ether_type != ETHERTYPE_IP) {
2143		/* Nothing to calculate */
2144		return;
2145	}
2146
2147	iph = (struct ip*)(eh + 1);
2148	if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2149		iph->ip_sum = 0;
2150		iph->ip_sum = in_cksum_hdr(iph);
2151	}
2152
2153	switch (iph->ip_p) {
2154	case IPPROTO_TCP:
2155		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2156			size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2157			struct tcphdr *th = (struct tcphdr*)(iph + 1);
2158			th->th_sum = in_pseudo(iph->ip_src.s_addr,
2159			    iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2160			th->th_sum = in_cksum_skip(mbufc,
2161			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2162			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2163		}
2164		break;
2165	case IPPROTO_UDP:
2166		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2167			size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2168			struct udphdr *uh = (struct udphdr*)(iph + 1);
2169			uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2170			    iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2171			uh->uh_sum = in_cksum_skip(mbufc,
2172			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2173			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2174		}
2175		break;
2176	default:
2177		break;
2178	}
2179}
2180
2181static void
2182xnb_stop(struct xnb_softc *xnb)
2183{
2184	struct ifnet *ifp;
2185
2186	mtx_assert(&xnb->sc_lock, MA_OWNED);
2187	ifp = xnb->xnb_ifp;
2188	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2189	if_link_state_change(ifp, LINK_STATE_DOWN);
2190}
2191
2192static int
2193xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2194{
2195	struct xnb_softc *xnb = ifp->if_softc;
2196#ifdef INET
2197	struct ifreq *ifr = (struct ifreq*) data;
2198	struct ifaddr *ifa = (struct ifaddr*)data;
2199#endif
2200	int error = 0;
2201
2202	switch (cmd) {
2203		case SIOCSIFFLAGS:
2204			mtx_lock(&xnb->sc_lock);
2205			if (ifp->if_flags & IFF_UP) {
2206				xnb_ifinit_locked(xnb);
2207			} else {
2208				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2209					xnb_stop(xnb);
2210				}
2211			}
2212			/*
2213			 * Note: netfront sets a variable named xn_if_flags
2214			 * here, but that variable is never read
2215			 */
2216			mtx_unlock(&xnb->sc_lock);
2217			break;
2218		case SIOCSIFADDR:
2219		case SIOCGIFADDR:
2220#ifdef INET
2221			mtx_lock(&xnb->sc_lock);
2222			if (ifa->ifa_addr->sa_family == AF_INET) {
2223				ifp->if_flags |= IFF_UP;
2224				if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2225					ifp->if_drv_flags &= ~(IFF_DRV_RUNNING |
2226							IFF_DRV_OACTIVE);
2227					if_link_state_change(ifp,
2228							LINK_STATE_DOWN);
2229					ifp->if_drv_flags |= IFF_DRV_RUNNING;
2230					ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2231					if_link_state_change(ifp,
2232					    LINK_STATE_UP);
2233				}
2234				arp_ifinit(ifp, ifa);
2235				mtx_unlock(&xnb->sc_lock);
2236			} else {
2237				mtx_unlock(&xnb->sc_lock);
2238#endif
2239				error = ether_ioctl(ifp, cmd, data);
2240#ifdef INET
2241			}
2242#endif
2243			break;
2244		case SIOCSIFCAP:
2245			mtx_lock(&xnb->sc_lock);
2246			if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2247				ifp->if_capenable |= IFCAP_TXCSUM;
2248				ifp->if_hwassist |= XNB_CSUM_FEATURES;
2249			} else {
2250				ifp->if_capenable &= ~(IFCAP_TXCSUM);
2251				ifp->if_hwassist &= ~(XNB_CSUM_FEATURES);
2252			}
2253			if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2254				ifp->if_capenable |= IFCAP_RXCSUM;
2255			} else {
2256				ifp->if_capenable &= ~(IFCAP_RXCSUM);
2257			}
2258			/*
2259			 * TODO enable TSO4 and LRO once we no longer need
2260			 * to calculate checksums in software
2261			 */
2262#if 0
2263			if (ifr->if_reqcap |= IFCAP_TSO4) {
2264				if (IFCAP_TXCSUM & ifp->if_capenable) {
2265					printf("xnb: Xen netif requires that "
2266						"TXCSUM be enabled in order "
2267						"to use TSO4\n");
2268					error = EINVAL;
2269				} else {
2270					ifp->if_capenable |= IFCAP_TSO4;
2271					ifp->if_hwassist |= CSUM_TSO;
2272				}
2273			} else {
2274				ifp->if_capenable &= ~(IFCAP_TSO4);
2275				ifp->if_hwassist &= ~(CSUM_TSO);
2276			}
2277			if (ifr->ifreqcap |= IFCAP_LRO) {
2278				ifp->if_capenable |= IFCAP_LRO;
2279			} else {
2280				ifp->if_capenable &= ~(IFCAP_LRO);
2281			}
2282#endif
2283			mtx_unlock(&xnb->sc_lock);
2284			break;
2285		case SIOCSIFMTU:
2286			ifp->if_mtu = ifr->ifr_mtu;
2287			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2288			xnb_ifinit(xnb);
2289			break;
2290		case SIOCADDMULTI:
2291		case SIOCDELMULTI:
2292		case SIOCSIFMEDIA:
2293		case SIOCGIFMEDIA:
2294			error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2295			break;
2296		default:
2297			error = ether_ioctl(ifp, cmd, data);
2298			break;
2299	}
2300	return (error);
2301}
2302
2303static void
2304xnb_start_locked(struct ifnet *ifp)
2305{
2306	netif_rx_back_ring_t *rxb;
2307	struct xnb_softc *xnb;
2308	struct mbuf *mbufc;
2309	RING_IDX req_prod_local;
2310
2311	xnb = ifp->if_softc;
2312	rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2313
2314	if (!xnb->carrier)
2315		return;
2316
2317	do {
2318		int out_of_space = 0;
2319		int notify;
2320		req_prod_local = rxb->sring->req_prod;
2321		xen_rmb();
2322		for (;;) {
2323			int error;
2324
2325			IF_DEQUEUE(&ifp->if_snd, mbufc);
2326			if (mbufc == NULL)
2327				break;
2328			error = xnb_send(rxb, xnb->otherend_id, mbufc,
2329			    		 xnb->rx_gnttab);
2330			switch (error) {
2331				case EAGAIN:
2332					/*
2333					 * Insufficient space in the ring.
2334					 * Requeue pkt and send when space is
2335					 * available.
2336					 */
2337					IF_PREPEND(&ifp->if_snd, mbufc);
2338					/*
2339					 * Perhaps the frontend missed an IRQ
2340					 * and went to sleep.  Notify it to wake
2341					 * it up.
2342					 */
2343					out_of_space = 1;
2344					break;
2345
2346				case EINVAL:
2347					/* OS gave a corrupt packet.  Drop it.*/
2348					ifp->if_oerrors++;
2349					/* FALLTHROUGH */
2350				default:
2351					/* Send succeeded, or packet had error.
2352					 * Free the packet */
2353					ifp->if_opackets++;
2354					if (mbufc)
2355						m_freem(mbufc);
2356					break;
2357			}
2358			if (out_of_space != 0)
2359				break;
2360		}
2361
2362		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2363		if ((notify != 0) || (out_of_space != 0))
2364			notify_remote_via_irq(xnb->irq);
2365		rxb->sring->req_event = req_prod_local + 1;
2366		xen_mb();
2367	} while (rxb->sring->req_prod != req_prod_local) ;
2368}
2369
2370/**
2371 * Sends one packet to the ring.  Blocks until the packet is on the ring
2372 * \param[in]	mbufc	Contains one packet to send.  Caller must free
2373 * \param[in,out] rxb	The packet will be pushed onto this ring, but the
2374 * 			otherend will not be notified.
2375 * \param[in]	otherend The domain ID of the other end of the connection
2376 * \retval	EAGAIN	The ring did not have enough space for the packet.
2377 * 			The ring has not been modified
2378 * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
2379 * 			this a function parameter so that we will take less
2380 * 			stack space.
2381 * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
2382 */
2383static int
2384xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2385	 gnttab_copy_table gnttab)
2386{
2387	struct xnb_pkt pkt;
2388	int error, n_entries, n_reqs;
2389	RING_IDX space;
2390
2391	space = ring->sring->req_prod - ring->req_cons;
2392	error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2393	if (error != 0)
2394		return error;
2395	n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2396	if (n_entries != 0) {
2397		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2398		    gnttab, n_entries);
2399		KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2400		    hv_ret));
2401	}
2402
2403	n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2404
2405	return 0;
2406}
2407
2408static void
2409xnb_start(struct ifnet *ifp)
2410{
2411	struct xnb_softc *xnb;
2412
2413	xnb = ifp->if_softc;
2414	mtx_lock(&xnb->rx_lock);
2415	xnb_start_locked(ifp);
2416	mtx_unlock(&xnb->rx_lock);
2417}
2418
2419/* equivalent of network_open() in Linux */
2420static void
2421xnb_ifinit_locked(struct xnb_softc *xnb)
2422{
2423	struct ifnet *ifp;
2424
2425	ifp = xnb->xnb_ifp;
2426
2427	mtx_assert(&xnb->sc_lock, MA_OWNED);
2428
2429	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2430		return;
2431
2432	xnb_stop(xnb);
2433
2434	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2435	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2436	if_link_state_change(ifp, LINK_STATE_UP);
2437}
2438
2439
2440static void
2441xnb_ifinit(void *xsc)
2442{
2443	struct xnb_softc *xnb = xsc;
2444
2445	mtx_lock(&xnb->sc_lock);
2446	xnb_ifinit_locked(xnb);
2447	mtx_unlock(&xnb->sc_lock);
2448}
2449
2450
2451/**
2452 * Read the 'mac' node at the given device's node in the store, and parse that
2453 * as colon-separated octets, placing result the given mac array.  mac must be
2454 * a preallocated array of length ETHER_ADDR_LEN ETH_ALEN (as declared in
2455 * net/ethernet.h).
2456 * Return 0 on success, or errno on error.
2457 */
2458static int
2459xen_net_read_mac(device_t dev, uint8_t mac[])
2460{
2461	char *s, *e, *macstr;
2462	const char *path;
2463	int error = 0;
2464	int i;
2465
2466	path = xenbus_get_node(dev);
2467	error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
2468	if (error != 0) {
2469		xenbus_dev_fatal(dev, error, "parsing %s/mac", path);
2470	} else {
2471	        s = macstr;
2472	        for (i = 0; i < ETHER_ADDR_LEN; i++) {
2473		        mac[i] = strtoul(s, &e, 16);
2474		        if (s == e || (e[0] != ':' && e[0] != 0)) {
2475				error = ENOENT;
2476				break;
2477		        }
2478		        s = &e[1];
2479	        }
2480	        free(macstr, M_XENBUS);
2481	}
2482	return error;
2483}
2484
2485
2486/**
2487 * Callback used by the generic networking code to tell us when our carrier
2488 * state has changed.  Since we don't have a physical carrier, we don't care
2489 */
2490static int
2491xnb_ifmedia_upd(struct ifnet *ifp)
2492{
2493	return (0);
2494}
2495
2496/**
2497 * Callback used by the generic networking code to ask us what our carrier
2498 * state is.  Since we don't have a physical carrier, this is very simple
2499 */
2500static void
2501xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2502{
2503	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2504	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2505}
2506
2507
2508/*---------------------------- NewBus Registration ---------------------------*/
2509static device_method_t xnb_methods[] = {
2510	/* Device interface */
2511	DEVMETHOD(device_probe,		xnb_probe),
2512	DEVMETHOD(device_attach,	xnb_attach),
2513	DEVMETHOD(device_detach,	xnb_detach),
2514	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2515	DEVMETHOD(device_suspend,	xnb_suspend),
2516	DEVMETHOD(device_resume,	xnb_resume),
2517
2518	/* Xenbus interface */
2519	DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2520
2521	{ 0, 0 }
2522};
2523
2524static driver_t xnb_driver = {
2525	"xnb",
2526	xnb_methods,
2527	sizeof(struct xnb_softc),
2528};
2529devclass_t xnb_devclass;
2530
2531DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0);
2532
2533
2534/*-------------------------- Unit Tests -------------------------------------*/
2535#ifdef XNB_DEBUG
2536#include "netback_unit_tests.c"
2537#endif
2538