if_wi.c revision 77217
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for FreeBSD.
35 *
36 * Written by Bill Paul <wpaul@ctr.columbia.edu>
37 * Electrical Engineering Department
38 * Columbia University, New York City
39 */
40
41/*
42 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
43 * from Lucent. Unlike the older cards, the new ones are programmed
44 * entirely via a firmware-driven controller called the Hermes.
45 * Unfortunately, Lucent will not release the Hermes programming manual
46 * without an NDA (if at all). What they do release is an API library
47 * called the HCF (Hardware Control Functions) which is supposed to
48 * do the device-specific operations of a device driver for you. The
49 * publically available version of the HCF library (the 'HCF Light') is
50 * a) extremely gross, b) lacks certain features, particularly support
51 * for 802.11 frames, and c) is contaminated by the GNU Public License.
52 *
53 * This driver does not use the HCF or HCF Light at all. Instead, it
54 * programs the Hermes controller directly, using information gleaned
55 * from the HCF Light code and corresponding documentation.
56 *
57 * This driver supports both the PCMCIA and ISA versions of the
58 * WaveLAN/IEEE cards. Note however that the ISA card isn't really
59 * anything of the sort: it's actually a PCMCIA bridge adapter
60 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
61 * inserted. Consequently, you need to use the pccard support for
62 * both the ISA and PCMCIA adapters.
63 */
64
65#define WI_HERMES_AUTOINC_WAR	/* Work around data write autoinc bug. */
66#define WI_HERMES_STATS_WAR	/* Work around stats counter bug. */
67#define WICACHE			/* turn on signal strength cache code */
68
69#include <sys/param.h>
70#include <sys/systm.h>
71#include <sys/sockio.h>
72#include <sys/mbuf.h>
73#include <sys/kernel.h>
74#include <sys/socket.h>
75#include <sys/module.h>
76#include <sys/bus.h>
77#include <sys/syslog.h>
78#include <sys/sysctl.h>
79
80#include <machine/bus.h>
81#include <machine/resource.h>
82#include <machine/md_var.h>
83#include <machine/bus_pio.h>
84#include <sys/rman.h>
85
86#include <pci/pcireg.h>
87#include <pci/pcivar.h>
88
89#include <net/if.h>
90#include <net/if_arp.h>
91#include <net/ethernet.h>
92#include <net/if_dl.h>
93#include <net/if_media.h>
94#include <net/if_types.h>
95#include <net/if_ieee80211.h>
96
97#include <netinet/in.h>
98#include <netinet/in_systm.h>
99#include <netinet/in_var.h>
100#include <netinet/ip.h>
101#include <netinet/if_ether.h>
102
103#include <net/bpf.h>
104
105#include <dev/pccard/pccardvar.h>
106#include <dev/pccard/pccarddevs.h>
107
108#include <dev/wi/if_wavelan_ieee.h>
109#include <dev/wi/if_wireg.h>
110
111#include "card_if.h"
112
113#if !defined(lint)
114static const char rcsid[] =
115  "$FreeBSD: head/sys/dev/wi/if_wi.c 77217 2001-05-26 09:27:08Z phk $";
116#endif
117
118#ifdef foo
119static u_int8_t	wi_mcast_addr[6] = { 0x01, 0x60, 0x1D, 0x00, 0x01, 0x00 };
120#endif
121
122static void wi_intr		__P((void *));
123static void wi_reset		__P((struct wi_softc *));
124static int wi_ioctl		__P((struct ifnet *, u_long, caddr_t));
125static void wi_init		__P((void *));
126static void wi_start		__P((struct ifnet *));
127static void wi_stop		__P((struct wi_softc *));
128static void wi_watchdog		__P((struct ifnet *));
129static void wi_rxeof		__P((struct wi_softc *));
130static void wi_txeof		__P((struct wi_softc *, int));
131static void wi_update_stats	__P((struct wi_softc *));
132static void wi_setmulti		__P((struct wi_softc *));
133
134static int wi_cmd		__P((struct wi_softc *, int, int));
135static int wi_read_record	__P((struct wi_softc *, struct wi_ltv_gen *));
136static int wi_write_record	__P((struct wi_softc *, struct wi_ltv_gen *));
137static int wi_read_data		__P((struct wi_softc *, int,
138					int, caddr_t, int));
139static int wi_write_data	__P((struct wi_softc *, int,
140					int, caddr_t, int));
141static int wi_seek		__P((struct wi_softc *, int, int, int));
142static int wi_alloc_nicmem	__P((struct wi_softc *, int, int *));
143static void wi_inquire		__P((void *));
144static void wi_setdef		__P((struct wi_softc *, struct wi_req *));
145static int wi_mgmt_xmit		__P((struct wi_softc *, caddr_t, int));
146
147#ifdef WICACHE
148static
149void wi_cache_store __P((struct wi_softc *, struct ether_header *,
150	struct mbuf *, unsigned short));
151#endif
152
153static int wi_generic_attach	__P((device_t));
154static int wi_pccard_match	__P((device_t));
155static int wi_pccard_probe	__P((device_t));
156static int wi_pci_probe		__P((device_t));
157static int wi_pccard_attach	__P((device_t));
158static int wi_pci_attach	__P((device_t));
159static int wi_pccard_detach	__P((device_t));
160static void wi_shutdown		__P((device_t));
161
162static int wi_alloc		__P((device_t, int));
163static void wi_free		__P((device_t));
164
165static int wi_get_cur_ssid	__P((struct wi_softc *, char *, int *));
166static int wi_media_change	__P((struct ifnet *));
167static void wi_media_status	__P((struct ifnet *, struct ifmediareq *));
168
169static device_method_t wi_pccard_methods[] = {
170	/* Device interface */
171	DEVMETHOD(device_probe,		pccard_compat_probe),
172	DEVMETHOD(device_attach,	pccard_compat_attach),
173	DEVMETHOD(device_detach,	wi_pccard_detach),
174	DEVMETHOD(device_shutdown,	wi_shutdown),
175
176	/* Card interface */
177	DEVMETHOD(card_compat_match,	wi_pccard_match),
178	DEVMETHOD(card_compat_probe,	wi_pccard_probe),
179	DEVMETHOD(card_compat_attach,	wi_pccard_attach),
180
181	{ 0, 0 }
182};
183
184static device_method_t wi_pci_methods[] = {
185	/* Device interface */
186	DEVMETHOD(device_probe,		wi_pci_probe),
187	DEVMETHOD(device_attach,	wi_pci_attach),
188	DEVMETHOD(device_detach,	wi_pccard_detach),
189	DEVMETHOD(device_shutdown,	wi_shutdown),
190
191	{ 0, 0 }
192};
193
194static driver_t wi_pccard_driver = {
195	"wi",
196	wi_pccard_methods,
197	sizeof(struct wi_softc)
198};
199
200static driver_t wi_pci_driver = {
201	"wi",
202	wi_pci_methods,
203	sizeof(struct wi_softc)
204};
205
206static devclass_t wi_pccard_devclass;
207static devclass_t wi_pci_devclass;
208
209DRIVER_MODULE(if_wi, pccard, wi_pccard_driver, wi_pccard_devclass, 0, 0);
210DRIVER_MODULE(if_wi, pci, wi_pci_driver, wi_pci_devclass, 0, 0);
211
212static const struct pccard_product wi_pccard_products[] = {
213	{ PCCARD_STR_LUCENT_WAVELAN_IEEE,	PCCARD_VENDOR_LUCENT,
214	  PCCARD_PRODUCT_LUCENT_WAVELAN_IEEE,	0,
215	  PCCARD_CIS_LUCENT_WAVELAN_IEEE },
216};
217
218static char wi_device_desc[] = "WaveLAN/IEEE 802.11";
219
220static int wi_pccard_match(dev)
221	device_t	dev;
222{
223	const struct pccard_product *pp;
224
225	if ((pp = pccard_product_lookup(dev, wi_pccard_products,
226	    sizeof(wi_pccard_products[0]), NULL)) != NULL) {
227		device_set_desc(dev, pp->pp_name);
228		return 0;
229	}
230	return ENXIO;
231}
232
233static int wi_pccard_probe(dev)
234	device_t	dev;
235{
236	struct wi_softc	*sc;
237	int		error;
238
239	sc = device_get_softc(dev);
240	sc->wi_gone = 0;
241
242	error = wi_alloc(dev, 0);
243	if (error)
244		return (error);
245
246	wi_free(dev);
247
248	/* Make sure interrupts are disabled. */
249	CSR_WRITE_2(sc, WI_INT_EN, 0);
250	CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
251
252	return (0);
253}
254
255static int
256wi_pci_probe(dev)
257	device_t	dev;
258{
259	struct wi_softc		*sc;
260
261	sc = device_get_softc(dev);
262	if ((pci_get_vendor(dev) == WI_PCI_VENDOR_EUMITCOM) &&
263		(pci_get_device(dev) == WI_PCI_DEVICE_PRISM2STA)) {
264			sc->wi_prism2 = 1;
265			device_set_desc(dev,
266			    "PRISM2STA PCI WaveLAN/IEEE 802.11");
267			return (0);
268	}
269	return(ENXIO);
270}
271
272static int wi_pccard_detach(dev)
273	device_t		dev;
274{
275	struct wi_softc		*sc;
276	struct ifnet		*ifp;
277
278	sc = device_get_softc(dev);
279	WI_LOCK(sc);
280	ifp = &sc->arpcom.ac_if;
281
282	if (sc->wi_gone) {
283		device_printf(dev, "already unloaded\n");
284		WI_UNLOCK(sc);
285		return(ENODEV);
286	}
287
288	wi_stop(sc);
289
290	/* Delete all remaining media. */
291	ifmedia_removeall(&sc->ifmedia);
292
293	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
294	bus_teardown_intr(dev, sc->irq, sc->wi_intrhand);
295	wi_free(dev);
296	sc->wi_gone = 1;
297
298	WI_UNLOCK(sc);
299	mtx_destroy(&sc->wi_mtx);
300
301	return(0);
302}
303
304static int wi_pccard_attach(device_t dev)
305{
306	struct wi_softc		*sc;
307	int			error;
308	u_int32_t		flags;
309
310	sc = device_get_softc(dev);
311
312	/*
313	 *	XXX: quick hack to support Prism II chip.
314	 *	Currently, we need to set a flags in pccard.conf to specify
315	 *	which type chip is used.
316	 *
317	 *	We need to replace this code in a future.
318	 *	It is better to use CIS than using a flag.
319	 */
320	flags = device_get_flags(dev);
321#define	WI_FLAGS_PRISM2	0x10000
322	if (flags & WI_FLAGS_PRISM2) {
323		sc->wi_prism2 = 1;
324		if (bootverbose) {
325			device_printf(dev, "found PrismII chip\n");
326		}
327	}
328	else {
329		sc->wi_prism2 = 0;
330		if (bootverbose) {
331			device_printf(dev, "found Lucent chip\n");
332		}
333	}
334
335	error = wi_alloc(dev, 0);
336	if (error) {
337		device_printf(dev, "wi_alloc() failed! (%d)\n", error);
338		return (error);
339	}
340	return (wi_generic_attach(dev));
341}
342
343static int
344wi_pci_attach(device_t dev)
345{
346	struct wi_softc		*sc;
347	u_int32_t		command, wanted;
348	u_int16_t		reg;
349	int			error;
350
351	sc = device_get_softc(dev);
352
353	command = pci_read_config(dev, PCIR_COMMAND, 4);
354	wanted = PCIM_CMD_PORTEN|PCIM_CMD_MEMEN;
355	command |= wanted;
356	pci_write_config(dev, PCIR_COMMAND, command, 4);
357	command = pci_read_config(dev, PCIR_COMMAND, 4);
358	if ((command & wanted) != wanted) {
359		device_printf(dev, "wi_pci_attach() failed to enable pci!\n");
360		return (ENXIO);
361	}
362
363	error = wi_alloc(dev, WI_PCI_IORES);
364	if (error)
365		return (error);
366
367	device_set_desc(dev, wi_device_desc);
368
369	/* Make sure interrupts are disabled. */
370	CSR_WRITE_2(sc, WI_INT_EN, 0);
371	CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
372
373	sc->mem_rid = WI_PCI_MEMRES;
374	sc->mem = bus_alloc_resource(dev, SYS_RES_MEMORY, &sc->mem_rid,
375				0, ~0, 1, RF_ACTIVE);
376	if (sc->mem == NULL) {
377		device_printf(dev, "couldn't allocate memory\n");
378		wi_free(dev);
379		return (ENXIO);
380	}
381	sc->wi_bmemtag = rman_get_bustag(sc->mem);
382	sc->wi_bmemhandle = rman_get_bushandle(sc->mem);
383
384	/*
385	 * From Linux driver:
386	 * Write COR to enable PC card
387	 * This is a subset of the protocol that the pccard bus code
388	 * would do.
389	 */
390	CSM_WRITE_1(sc, WI_COR_OFFSET, WI_COR_VALUE);
391	reg = CSM_READ_1(sc, WI_COR_OFFSET);
392
393	CSR_WRITE_2(sc, WI_HFA384X_SWSUPPORT0_OFF, WI_PRISM2STA_MAGIC);
394	reg = CSR_READ_2(sc, WI_HFA384X_SWSUPPORT0_OFF);
395	if (reg != WI_PRISM2STA_MAGIC) {
396		device_printf(dev,
397		    "CSR_READ_2(WI_HFA384X_SWSUPPORT0_OFF) "
398		    "wanted %d, got %d\n", WI_PRISM2STA_MAGIC, reg);
399		wi_free(dev);
400		return (ENXIO);
401	}
402
403	error = wi_generic_attach(dev);
404	if (error != 0)
405		return (error);
406
407	return (0);
408}
409
410static int
411wi_generic_attach(device_t dev)
412{
413	struct wi_softc		*sc;
414	struct wi_ltv_macaddr	mac;
415	struct wi_ltv_gen	gen;
416	struct ifnet		*ifp;
417	int			error;
418
419	sc = device_get_softc(dev);
420	ifp = &sc->arpcom.ac_if;
421
422	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
423	    wi_intr, sc, &sc->wi_intrhand);
424
425	if (error) {
426		device_printf(dev, "bus_setup_intr() failed! (%d)\n", error);
427		wi_free(dev);
428		return (error);
429	}
430
431	mtx_init(&sc->wi_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
432	WI_LOCK(sc);
433
434	/* Reset the NIC. */
435	wi_reset(sc);
436
437	/*
438	 * Read the station address.
439	 * And do it twice. I've seen PRISM-based cards that return
440	 * an error when trying to read it the first time, which causes
441	 * the probe to fail.
442	 */
443	mac.wi_type = WI_RID_MAC_NODE;
444	mac.wi_len = 4;
445	wi_read_record(sc, (struct wi_ltv_gen *)&mac);
446	if ((error = wi_read_record(sc, (struct wi_ltv_gen *)&mac)) != 0) {
447		device_printf(dev, "mac read failed %d\n", error);
448		wi_free(dev);
449		return (error);
450	}
451	bcopy((char *)&mac.wi_mac_addr,
452	   (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
453
454	device_printf(dev, "Ethernet address: %6D\n",
455	    sc->arpcom.ac_enaddr, ":");
456
457	ifp->if_softc = sc;
458	ifp->if_unit = sc->wi_unit;
459	ifp->if_name = "wi";
460	ifp->if_mtu = ETHERMTU;
461	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
462	ifp->if_ioctl = wi_ioctl;
463	ifp->if_output = ether_output;
464	ifp->if_start = wi_start;
465	ifp->if_watchdog = wi_watchdog;
466	ifp->if_init = wi_init;
467	ifp->if_baudrate = 10000000;
468	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
469
470	bzero(sc->wi_node_name, sizeof(sc->wi_node_name));
471	bcopy(WI_DEFAULT_NODENAME, sc->wi_node_name,
472	    sizeof(WI_DEFAULT_NODENAME) - 1);
473
474	bzero(sc->wi_net_name, sizeof(sc->wi_net_name));
475	bcopy(WI_DEFAULT_NETNAME, sc->wi_net_name,
476	    sizeof(WI_DEFAULT_NETNAME) - 1);
477
478	bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name));
479	bcopy(WI_DEFAULT_IBSS, sc->wi_ibss_name,
480	    sizeof(WI_DEFAULT_IBSS) - 1);
481
482	sc->wi_portnum = WI_DEFAULT_PORT;
483	sc->wi_ptype = WI_PORTTYPE_BSS;
484	sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
485	sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
486	sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
487	sc->wi_max_data_len = WI_DEFAULT_DATALEN;
488	sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
489	sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
490	sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
491
492	/*
493	 * Read the default channel from the NIC. This may vary
494	 * depending on the country where the NIC was purchased, so
495	 * we can't hard-code a default and expect it to work for
496	 * everyone.
497	 */
498	gen.wi_type = WI_RID_OWN_CHNL;
499	gen.wi_len = 2;
500	wi_read_record(sc, &gen);
501	sc->wi_channel = gen.wi_val;
502
503	/*
504	 * Find out if we support WEP on this card.
505	 */
506	gen.wi_type = WI_RID_WEP_AVAIL;
507	gen.wi_len = 2;
508	wi_read_record(sc, &gen);
509	sc->wi_has_wep = gen.wi_val;
510
511	if (bootverbose) {
512		device_printf(sc->dev,
513				__FUNCTION__ ":wi_has_wep = %d\n",
514				sc->wi_has_wep);
515	}
516
517	bzero((char *)&sc->wi_stats, sizeof(sc->wi_stats));
518
519	wi_init(sc);
520	wi_stop(sc);
521
522	ifmedia_init(&sc->ifmedia, 0, wi_media_change, wi_media_status);
523	/* XXX: Should read from card capabilities */
524#define ADD(m, c)       ifmedia_add(&sc->ifmedia, (m), (c), NULL)
525	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
526	    IFM_IEEE80211_ADHOC, 0), 0);
527	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
528	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
529	    IFM_IEEE80211_ADHOC, 0), 0);
530	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
531	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
532	    IFM_IEEE80211_ADHOC, 0), 0);
533	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
534	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
535	    IFM_IEEE80211_ADHOC, 0), 0);
536	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
537	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
538		IFM_IEEE80211_ADHOC, 0), 0);
539	ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
540#undef	ADD
541	ifmedia_set(&sc->ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
542	    0, 0));
543
544
545	/*
546	 * Call MI attach routine.
547	 */
548	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
549	callout_handle_init(&sc->wi_stat_ch);
550	WI_UNLOCK(sc);
551
552	return(0);
553}
554
555static void wi_rxeof(sc)
556	struct wi_softc		*sc;
557{
558	struct ifnet		*ifp;
559	struct ether_header	*eh;
560	struct wi_frame		rx_frame;
561	struct mbuf		*m;
562	int			id;
563
564	ifp = &sc->arpcom.ac_if;
565
566	id = CSR_READ_2(sc, WI_RX_FID);
567
568	/* First read in the frame header */
569	if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) {
570		ifp->if_ierrors++;
571		return;
572	}
573
574	if (rx_frame.wi_status & WI_STAT_ERRSTAT) {
575		ifp->if_ierrors++;
576		return;
577	}
578
579	MGETHDR(m, M_DONTWAIT, MT_DATA);
580	if (m == NULL) {
581		ifp->if_ierrors++;
582		return;
583	}
584	MCLGET(m, M_DONTWAIT);
585	if (!(m->m_flags & M_EXT)) {
586		m_freem(m);
587		ifp->if_ierrors++;
588		return;
589	}
590
591	eh = mtod(m, struct ether_header *);
592	m->m_pkthdr.rcvif = ifp;
593
594	if (rx_frame.wi_status == WI_STAT_1042 ||
595	    rx_frame.wi_status == WI_STAT_TUNNEL ||
596	    rx_frame.wi_status == WI_STAT_WMP_MSG) {
597		if((rx_frame.wi_dat_len + WI_SNAPHDR_LEN) > MCLBYTES) {
598			device_printf(sc->dev, "oversized packet received "
599			    "(wi_dat_len=%d, wi_status=0x%x)\n",
600			    rx_frame.wi_dat_len, rx_frame.wi_status);
601			m_freem(m);
602			ifp->if_ierrors++;
603			return;
604		}
605		m->m_pkthdr.len = m->m_len =
606		    rx_frame.wi_dat_len + WI_SNAPHDR_LEN;
607
608#if 0
609		bcopy((char *)&rx_frame.wi_addr1,
610		    (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
611		if (sc->wi_ptype == WI_PORTTYPE_ADHOC) {
612			bcopy((char *)&rx_frame.wi_addr2,
613			    (char *)&eh->ether_shost, ETHER_ADDR_LEN);
614		} else {
615			bcopy((char *)&rx_frame.wi_addr3,
616			    (char *)&eh->ether_shost, ETHER_ADDR_LEN);
617		}
618#else
619		bcopy((char *)&rx_frame.wi_dst_addr,
620			(char *)&eh->ether_dhost, ETHER_ADDR_LEN);
621		bcopy((char *)&rx_frame.wi_src_addr,
622			(char *)&eh->ether_shost, ETHER_ADDR_LEN);
623#endif
624
625		bcopy((char *)&rx_frame.wi_type,
626		    (char *)&eh->ether_type, ETHER_TYPE_LEN);
627
628		if (wi_read_data(sc, id, WI_802_11_OFFSET,
629		    mtod(m, caddr_t) + sizeof(struct ether_header),
630		    m->m_len + 2)) {
631			m_freem(m);
632			ifp->if_ierrors++;
633			return;
634		}
635	} else {
636		if((rx_frame.wi_dat_len +
637		    sizeof(struct ether_header)) > MCLBYTES) {
638			device_printf(sc->dev, "oversized packet received "
639			    "(wi_dat_len=%d, wi_status=0x%x)\n",
640			    rx_frame.wi_dat_len, rx_frame.wi_status);
641			m_freem(m);
642			ifp->if_ierrors++;
643			return;
644		}
645		m->m_pkthdr.len = m->m_len =
646		    rx_frame.wi_dat_len + sizeof(struct ether_header);
647
648		if (wi_read_data(sc, id, WI_802_3_OFFSET,
649		    mtod(m, caddr_t), m->m_len + 2)) {
650			m_freem(m);
651			ifp->if_ierrors++;
652			return;
653		}
654	}
655
656	ifp->if_ipackets++;
657
658	/* Receive packet. */
659	m_adj(m, sizeof(struct ether_header));
660#ifdef WICACHE
661	wi_cache_store(sc, eh, m, rx_frame.wi_q_info);
662#endif
663	ether_input(ifp, eh, m);
664}
665
666static void wi_txeof(sc, status)
667	struct wi_softc		*sc;
668	int			status;
669{
670	struct ifnet		*ifp;
671
672	ifp = &sc->arpcom.ac_if;
673
674	ifp->if_timer = 0;
675	ifp->if_flags &= ~IFF_OACTIVE;
676
677	if (status & WI_EV_TX_EXC)
678		ifp->if_oerrors++;
679	else
680		ifp->if_opackets++;
681
682	return;
683}
684
685void wi_inquire(xsc)
686	void			*xsc;
687{
688	struct wi_softc		*sc;
689	struct ifnet		*ifp;
690
691	sc = xsc;
692	ifp = &sc->arpcom.ac_if;
693
694	sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60);
695
696	/* Don't do this while we're transmitting */
697	if (ifp->if_flags & IFF_OACTIVE)
698		return;
699
700	wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS);
701
702	return;
703}
704
705void wi_update_stats(sc)
706	struct wi_softc		*sc;
707{
708	struct wi_ltv_gen	gen;
709	u_int16_t		id;
710	struct ifnet		*ifp;
711	u_int32_t		*ptr;
712	int			len, i;
713	u_int16_t		t;
714
715	ifp = &sc->arpcom.ac_if;
716
717	id = CSR_READ_2(sc, WI_INFO_FID);
718
719	wi_read_data(sc, id, 0, (char *)&gen, 4);
720
721	if (gen.wi_type != WI_INFO_COUNTERS)
722		return;
723
724	len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ?
725		gen.wi_len - 1 : sizeof(sc->wi_stats) / 4;
726	ptr = (u_int32_t *)&sc->wi_stats;
727
728	for (i = 0; i < len - 1; i++) {
729		t = CSR_READ_2(sc, WI_DATA1);
730#ifdef WI_HERMES_STATS_WAR
731		if (t > 0xF000)
732			t = ~t & 0xFFFF;
733#endif
734		ptr[i] += t;
735	}
736
737	ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
738	    sc->wi_stats.wi_tx_multi_retries +
739	    sc->wi_stats.wi_tx_retry_limit;
740
741	return;
742}
743
744static void wi_intr(xsc)
745	void		*xsc;
746{
747	struct wi_softc		*sc = xsc;
748	struct ifnet		*ifp;
749	u_int16_t		status;
750
751	WI_LOCK(sc);
752
753	ifp = &sc->arpcom.ac_if;
754
755	if (sc->wi_gone || !(ifp->if_flags & IFF_UP)) {
756		CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
757		CSR_WRITE_2(sc, WI_INT_EN, 0);
758		WI_UNLOCK(sc);
759		return;
760	}
761
762	/* Disable interrupts. */
763	CSR_WRITE_2(sc, WI_INT_EN, 0);
764
765	status = CSR_READ_2(sc, WI_EVENT_STAT);
766	CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
767
768	if (status & WI_EV_RX) {
769		wi_rxeof(sc);
770		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
771	}
772
773	if (status & WI_EV_TX) {
774		wi_txeof(sc, status);
775		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
776	}
777
778	if (status & WI_EV_ALLOC) {
779		int			id;
780
781		id = CSR_READ_2(sc, WI_ALLOC_FID);
782		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
783		if (id == sc->wi_tx_data_id)
784			wi_txeof(sc, status);
785	}
786
787	if (status & WI_EV_INFO) {
788		wi_update_stats(sc);
789		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
790	}
791
792	if (status & WI_EV_TX_EXC) {
793		wi_txeof(sc, status);
794		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
795	}
796
797	if (status & WI_EV_INFO_DROP) {
798		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
799	}
800
801	/* Re-enable interrupts. */
802	CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
803
804	if (ifp->if_snd.ifq_head != NULL) {
805		wi_start(ifp);
806	}
807
808	WI_UNLOCK(sc);
809
810	return;
811}
812
813static int wi_cmd(sc, cmd, val)
814	struct wi_softc		*sc;
815	int			cmd;
816	int			val;
817{
818	int			i, s = 0;
819
820	/* wait for the busy bit to clear */
821	for (i = 500; i > 0; i--) {	/* 5s */
822		if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY)) {
823			break;
824		}
825		DELAY(10*1000);	/* 10 m sec */
826	}
827	if (i == 0) {
828		return(ETIMEDOUT);
829	}
830
831	CSR_WRITE_2(sc, WI_PARAM0, val);
832	CSR_WRITE_2(sc, WI_PARAM1, 0);
833	CSR_WRITE_2(sc, WI_PARAM2, 0);
834	CSR_WRITE_2(sc, WI_COMMAND, cmd);
835
836	for (i = 0; i < WI_TIMEOUT; i++) {
837		/*
838		 * Wait for 'command complete' bit to be
839		 * set in the event status register.
840		 */
841		s = CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD;
842		if (s) {
843			/* Ack the event and read result code. */
844			s = CSR_READ_2(sc, WI_STATUS);
845			CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
846#ifdef foo
847			if ((s & WI_CMD_CODE_MASK) != (cmd & WI_CMD_CODE_MASK))
848				return(EIO);
849#endif
850			if (s & WI_STAT_CMD_RESULT)
851				return(EIO);
852			break;
853		}
854		if (cmd == WI_CMD_INI)
855			DELAY(100);
856	}
857
858	if (i == WI_TIMEOUT)
859		return(ETIMEDOUT);
860
861	return(0);
862}
863
864static void wi_reset(sc)
865	struct wi_softc		*sc;
866{
867#define WI_INIT_TRIES 5
868	int i;
869
870	for (i = 0; i < WI_INIT_TRIES; i++) {
871		if (wi_cmd(sc, WI_CMD_INI, 0) == 0)
872			break;
873		DELAY(50 * 1000);	/* 50ms */
874	}
875	if (i == WI_INIT_TRIES)
876		device_printf(sc->dev, "init failed\n");
877
878	CSR_WRITE_2(sc, WI_INT_EN, 0);
879	CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
880
881	/* Calibrate timer. */
882	WI_SETVAL(WI_RID_TICK_TIME, 8);
883
884	return;
885}
886
887/*
888 * Read an LTV record from the NIC.
889 */
890static int wi_read_record(sc, ltv)
891	struct wi_softc		*sc;
892	struct wi_ltv_gen	*ltv;
893{
894	u_int16_t		*ptr;
895	int			i, len, code;
896	struct wi_ltv_gen	*oltv, p2ltv;
897
898	oltv = ltv;
899	if (sc->wi_prism2) {
900		switch (ltv->wi_type) {
901		case WI_RID_ENCRYPTION:
902			p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
903			p2ltv.wi_len = 2;
904			ltv = &p2ltv;
905			break;
906		case WI_RID_TX_CRYPT_KEY:
907			p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
908			p2ltv.wi_len = 2;
909			ltv = &p2ltv;
910			break;
911		}
912	}
913
914	/* Tell the NIC to enter record read mode. */
915	if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type))
916		return(EIO);
917
918	/* Seek to the record. */
919	if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
920		return(EIO);
921
922	/*
923	 * Read the length and record type and make sure they
924	 * match what we expect (this verifies that we have enough
925	 * room to hold all of the returned data).
926	 */
927	len = CSR_READ_2(sc, WI_DATA1);
928	if (len > ltv->wi_len)
929		return(ENOSPC);
930	code = CSR_READ_2(sc, WI_DATA1);
931	if (code != ltv->wi_type)
932		return(EIO);
933
934	ltv->wi_len = len;
935	ltv->wi_type = code;
936
937	/* Now read the data. */
938	ptr = &ltv->wi_val;
939	for (i = 0; i < ltv->wi_len - 1; i++)
940		ptr[i] = CSR_READ_2(sc, WI_DATA1);
941
942	if (sc->wi_prism2) {
943		switch (oltv->wi_type) {
944		case WI_RID_TX_RATE:
945		case WI_RID_CUR_TX_RATE:
946			switch (ltv->wi_val) {
947			case 1: oltv->wi_val = 1; break;
948			case 2: oltv->wi_val = 2; break;
949			case 3:	oltv->wi_val = 6; break;
950			case 4: oltv->wi_val = 5; break;
951			case 7: oltv->wi_val = 7; break;
952			case 8: oltv->wi_val = 11; break;
953			case 15: oltv->wi_val = 3; break;
954			default: oltv->wi_val = 0x100 + ltv->wi_val; break;
955			}
956			break;
957		case WI_RID_ENCRYPTION:
958			oltv->wi_len = 2;
959			if (ltv->wi_val & 0x01)
960				oltv->wi_val = 1;
961			else
962				oltv->wi_val = 0;
963			break;
964		case WI_RID_TX_CRYPT_KEY:
965			oltv->wi_len = 2;
966			oltv->wi_val = ltv->wi_val;
967			break;
968		}
969	}
970
971	return(0);
972}
973
974/*
975 * Same as read, except we inject data instead of reading it.
976 */
977static int wi_write_record(sc, ltv)
978	struct wi_softc		*sc;
979	struct wi_ltv_gen	*ltv;
980{
981	u_int16_t		*ptr;
982	int			i;
983	struct wi_ltv_gen	p2ltv;
984
985	if (sc->wi_prism2) {
986		switch (ltv->wi_type) {
987		case WI_RID_TX_RATE:
988			p2ltv.wi_type = WI_RID_TX_RATE;
989			p2ltv.wi_len = 2;
990			switch (ltv->wi_val) {
991			case 1: p2ltv.wi_val = 1; break;
992			case 2: p2ltv.wi_val = 2; break;
993			case 3:	p2ltv.wi_val = 15; break;
994			case 5: p2ltv.wi_val = 4; break;
995			case 6: p2ltv.wi_val = 3; break;
996			case 7: p2ltv.wi_val = 7; break;
997			case 11: p2ltv.wi_val = 8; break;
998			default: return EINVAL;
999			}
1000			ltv = &p2ltv;
1001			break;
1002		case WI_RID_ENCRYPTION:
1003			p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
1004			p2ltv.wi_len = 2;
1005			if (ltv->wi_val)
1006				p2ltv.wi_val = 0x03;
1007			else
1008				p2ltv.wi_val = 0x90;
1009			ltv = &p2ltv;
1010			break;
1011		case WI_RID_TX_CRYPT_KEY:
1012			p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
1013			p2ltv.wi_len = 2;
1014			p2ltv.wi_val = ltv->wi_val;
1015			ltv = &p2ltv;
1016			break;
1017		case WI_RID_DEFLT_CRYPT_KEYS:
1018		    {
1019			int error;
1020			struct wi_ltv_str	ws;
1021			struct wi_ltv_keys	*wk =
1022			    (struct wi_ltv_keys *)ltv;
1023
1024			for (i = 0; i < 4; i++) {
1025				ws.wi_len = 4;
1026				ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
1027				memcpy(ws.wi_str,
1028				    &wk->wi_keys[i].wi_keydat, 5);
1029				ws.wi_str[5] = '\0';
1030				error = wi_write_record(sc,
1031				    (struct wi_ltv_gen *)&ws);
1032				if (error)
1033					return error;
1034			}
1035			return 0;
1036		    }
1037		}
1038	}
1039
1040	if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
1041		return(EIO);
1042
1043	CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
1044	CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
1045
1046	ptr = &ltv->wi_val;
1047	for (i = 0; i < ltv->wi_len - 1; i++)
1048		CSR_WRITE_2(sc, WI_DATA1, ptr[i]);
1049
1050	if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type))
1051		return(EIO);
1052
1053	return(0);
1054}
1055
1056static int wi_seek(sc, id, off, chan)
1057	struct wi_softc		*sc;
1058	int			id, off, chan;
1059{
1060	int			i;
1061	int			selreg, offreg;
1062	int			status;
1063
1064	switch (chan) {
1065	case WI_BAP0:
1066		selreg = WI_SEL0;
1067		offreg = WI_OFF0;
1068		break;
1069	case WI_BAP1:
1070		selreg = WI_SEL1;
1071		offreg = WI_OFF1;
1072		break;
1073	default:
1074		device_printf(sc->dev, "invalid data path: %x\n", chan);
1075		return(EIO);
1076	}
1077
1078	CSR_WRITE_2(sc, selreg, id);
1079	CSR_WRITE_2(sc, offreg, off);
1080
1081	for (i = 0; i < WI_TIMEOUT; i++) {
1082		status = CSR_READ_2(sc, offreg);
1083		if (!(status & (WI_OFF_BUSY|WI_OFF_ERR)))
1084			break;
1085	}
1086
1087	if (i == WI_TIMEOUT) {
1088		device_printf(sc->dev, "timeout in wi_seek to %x/%x; last status %x\n",
1089			id, off, status);
1090		return(ETIMEDOUT);
1091	}
1092
1093	return(0);
1094}
1095
1096static int wi_read_data(sc, id, off, buf, len)
1097	struct wi_softc		*sc;
1098	int			id, off;
1099	caddr_t			buf;
1100	int			len;
1101{
1102	int			i;
1103	u_int16_t		*ptr;
1104
1105	if (wi_seek(sc, id, off, WI_BAP1))
1106		return(EIO);
1107
1108	ptr = (u_int16_t *)buf;
1109	for (i = 0; i < len / 2; i++)
1110		ptr[i] = CSR_READ_2(sc, WI_DATA1);
1111
1112	return(0);
1113}
1114
1115/*
1116 * According to the comments in the HCF Light code, there is a bug in
1117 * the Hermes (or possibly in certain Hermes firmware revisions) where
1118 * the chip's internal autoincrement counter gets thrown off during
1119 * data writes: the autoincrement is missed, causing one data word to
1120 * be overwritten and subsequent words to be written to the wrong memory
1121 * locations. The end result is that we could end up transmitting bogus
1122 * frames without realizing it. The workaround for this is to write a
1123 * couple of extra guard words after the end of the transfer, then
1124 * attempt to read then back. If we fail to locate the guard words where
1125 * we expect them, we preform the transfer over again.
1126 */
1127static int wi_write_data(sc, id, off, buf, len)
1128	struct wi_softc		*sc;
1129	int			id, off;
1130	caddr_t			buf;
1131	int			len;
1132{
1133	int			i;
1134	u_int16_t		*ptr;
1135#ifdef WI_HERMES_AUTOINC_WAR
1136	int			retries;
1137
1138	retries = 512;
1139again:
1140#endif
1141
1142	if (wi_seek(sc, id, off, WI_BAP0))
1143		return(EIO);
1144
1145	ptr = (u_int16_t *)buf;
1146	for (i = 0; i < (len / 2); i++)
1147		CSR_WRITE_2(sc, WI_DATA0, ptr[i]);
1148
1149#ifdef WI_HERMES_AUTOINC_WAR
1150	CSR_WRITE_2(sc, WI_DATA0, 0x1234);
1151	CSR_WRITE_2(sc, WI_DATA0, 0x5678);
1152
1153	if (wi_seek(sc, id, off + len, WI_BAP0))
1154		return(EIO);
1155
1156	if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
1157	    CSR_READ_2(sc, WI_DATA0) != 0x5678) {
1158		if (--retries >= 0)
1159			goto again;
1160		device_printf(sc->dev, "wi_write_data device timeout\n");
1161		return (EIO);
1162	}
1163#endif
1164
1165	return(0);
1166}
1167
1168/*
1169 * Allocate a region of memory inside the NIC and zero
1170 * it out.
1171 */
1172static int wi_alloc_nicmem(sc, len, id)
1173	struct wi_softc		*sc;
1174	int			len;
1175	int			*id;
1176{
1177	int			i;
1178
1179	if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) {
1180		device_printf(sc->dev,
1181		    "failed to allocate %d bytes on NIC\n", len);
1182		return(ENOMEM);
1183	}
1184
1185	for (i = 0; i < WI_TIMEOUT; i++) {
1186		if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
1187			break;
1188	}
1189
1190	if (i == WI_TIMEOUT) {
1191		device_printf(sc->dev, "time out allocating memory on card\n");
1192		return(ETIMEDOUT);
1193	}
1194
1195	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1196	*id = CSR_READ_2(sc, WI_ALLOC_FID);
1197
1198	if (wi_seek(sc, *id, 0, WI_BAP0)) {
1199		device_printf(sc->dev, "seek failed while allocating memory on card\n");
1200		return(EIO);
1201	}
1202
1203	for (i = 0; i < len / 2; i++)
1204		CSR_WRITE_2(sc, WI_DATA0, 0);
1205
1206	return(0);
1207}
1208
1209static void wi_setmulti(sc)
1210	struct wi_softc		*sc;
1211{
1212	struct ifnet		*ifp;
1213	int			i = 0;
1214	struct ifmultiaddr	*ifma;
1215	struct wi_ltv_mcast	mcast;
1216
1217	ifp = &sc->arpcom.ac_if;
1218
1219	bzero((char *)&mcast, sizeof(mcast));
1220
1221	mcast.wi_type = WI_RID_MCAST;
1222	mcast.wi_len = (3 * 16) + 1;
1223
1224	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1225		wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1226		return;
1227	}
1228
1229	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1230		if (ifma->ifma_addr->sa_family != AF_LINK)
1231			continue;
1232		if (i < 16) {
1233			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1234			    (char *)&mcast.wi_mcast[i], ETHER_ADDR_LEN);
1235			i++;
1236		} else {
1237			bzero((char *)&mcast, sizeof(mcast));
1238			break;
1239		}
1240	}
1241
1242	mcast.wi_len = (i * 3) + 1;
1243	wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
1244
1245	return;
1246}
1247
1248static void wi_setdef(sc, wreq)
1249	struct wi_softc		*sc;
1250	struct wi_req		*wreq;
1251{
1252	struct sockaddr_dl	*sdl;
1253	struct ifaddr		*ifa;
1254	struct ifnet		*ifp;
1255
1256	ifp = &sc->arpcom.ac_if;
1257
1258	switch(wreq->wi_type) {
1259	case WI_RID_MAC_NODE:
1260		ifa = ifnet_addrs[ifp->if_index - 1];
1261		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1262		bcopy((char *)&wreq->wi_val, (char *)&sc->arpcom.ac_enaddr,
1263		   ETHER_ADDR_LEN);
1264		bcopy((char *)&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN);
1265		break;
1266	case WI_RID_PORTTYPE:
1267		sc->wi_ptype = wreq->wi_val[0];
1268		break;
1269	case WI_RID_TX_RATE:
1270		sc->wi_tx_rate = wreq->wi_val[0];
1271		break;
1272	case WI_RID_MAX_DATALEN:
1273		sc->wi_max_data_len = wreq->wi_val[0];
1274		break;
1275	case WI_RID_RTS_THRESH:
1276		sc->wi_rts_thresh = wreq->wi_val[0];
1277		break;
1278	case WI_RID_SYSTEM_SCALE:
1279		sc->wi_ap_density = wreq->wi_val[0];
1280		break;
1281	case WI_RID_CREATE_IBSS:
1282		sc->wi_create_ibss = wreq->wi_val[0];
1283		break;
1284	case WI_RID_OWN_CHNL:
1285		sc->wi_channel = wreq->wi_val[0];
1286		break;
1287	case WI_RID_NODENAME:
1288		bzero(sc->wi_node_name, sizeof(sc->wi_node_name));
1289		bcopy((char *)&wreq->wi_val[1], sc->wi_node_name, 30);
1290		break;
1291	case WI_RID_DESIRED_SSID:
1292		bzero(sc->wi_net_name, sizeof(sc->wi_net_name));
1293		bcopy((char *)&wreq->wi_val[1], sc->wi_net_name, 30);
1294		break;
1295	case WI_RID_OWN_SSID:
1296		bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name));
1297		bcopy((char *)&wreq->wi_val[1], sc->wi_ibss_name, 30);
1298		break;
1299	case WI_RID_PM_ENABLED:
1300		sc->wi_pm_enabled = wreq->wi_val[0];
1301		break;
1302	case WI_RID_MAX_SLEEP:
1303		sc->wi_max_sleep = wreq->wi_val[0];
1304		break;
1305	case WI_RID_ENCRYPTION:
1306		sc->wi_use_wep = wreq->wi_val[0];
1307		break;
1308	case WI_RID_TX_CRYPT_KEY:
1309		sc->wi_tx_key = wreq->wi_val[0];
1310		break;
1311	case WI_RID_DEFLT_CRYPT_KEYS:
1312		bcopy((char *)wreq, (char *)&sc->wi_keys,
1313		    sizeof(struct wi_ltv_keys));
1314		break;
1315	default:
1316		break;
1317	}
1318
1319	/* Reinitialize WaveLAN. */
1320	wi_init(sc);
1321
1322	return;
1323}
1324
1325static int wi_ioctl(ifp, command, data)
1326	struct ifnet		*ifp;
1327	u_long			command;
1328	caddr_t			data;
1329{
1330	int			error = 0;
1331	int			len;
1332	u_int8_t		tmpkey[14];
1333	char			tmpssid[IEEE80211_NWID_LEN];
1334	struct wi_softc		*sc;
1335	struct wi_req		wreq;
1336	struct ifreq		*ifr;
1337	struct ieee80211req	*ireq;
1338	struct proc		*p = curproc;
1339
1340	sc = ifp->if_softc;
1341	WI_LOCK(sc);
1342	ifr = (struct ifreq *)data;
1343	ireq = (struct ieee80211req *)data;
1344
1345	if (sc->wi_gone) {
1346		error = ENODEV;
1347		goto out;
1348	}
1349
1350	switch(command) {
1351	case SIOCSIFADDR:
1352	case SIOCGIFADDR:
1353	case SIOCSIFMTU:
1354		error = ether_ioctl(ifp, command, data);
1355		break;
1356	case SIOCSIFFLAGS:
1357		if (ifp->if_flags & IFF_UP) {
1358			if (ifp->if_flags & IFF_RUNNING &&
1359			    ifp->if_flags & IFF_PROMISC &&
1360			    !(sc->wi_if_flags & IFF_PROMISC)) {
1361				WI_SETVAL(WI_RID_PROMISC, 1);
1362			} else if (ifp->if_flags & IFF_RUNNING &&
1363			    !(ifp->if_flags & IFF_PROMISC) &&
1364			    sc->wi_if_flags & IFF_PROMISC) {
1365				WI_SETVAL(WI_RID_PROMISC, 0);
1366			} else
1367				wi_init(sc);
1368		} else {
1369			if (ifp->if_flags & IFF_RUNNING) {
1370				wi_stop(sc);
1371			}
1372		}
1373		sc->wi_if_flags = ifp->if_flags;
1374		error = 0;
1375		break;
1376	case SIOCSIFMEDIA:
1377	case SIOCGIFMEDIA:
1378		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1379		break;
1380	case SIOCADDMULTI:
1381	case SIOCDELMULTI:
1382		wi_setmulti(sc);
1383		error = 0;
1384		break;
1385	case SIOCGWAVELAN:
1386		error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1387		if (error)
1388			break;
1389		/* Don't show WEP keys to non-root users. */
1390		if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS && suser(p))
1391			break;
1392		if (wreq.wi_type == WI_RID_IFACE_STATS) {
1393			bcopy((char *)&sc->wi_stats, (char *)&wreq.wi_val,
1394			    sizeof(sc->wi_stats));
1395			wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1;
1396		} else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) {
1397			bcopy((char *)&sc->wi_keys, (char *)&wreq,
1398			    sizeof(struct wi_ltv_keys));
1399		}
1400#ifdef WICACHE
1401		else if (wreq.wi_type == WI_RID_ZERO_CACHE) {
1402			sc->wi_sigitems = sc->wi_nextitem = 0;
1403		} else if (wreq.wi_type == WI_RID_READ_CACHE) {
1404			char *pt = (char *)&wreq.wi_val;
1405			bcopy((char *)&sc->wi_sigitems,
1406			    (char *)pt, sizeof(int));
1407			pt += (sizeof (int));
1408			wreq.wi_len = sizeof(int) / 2;
1409			bcopy((char *)&sc->wi_sigcache, (char *)pt,
1410			    sizeof(struct wi_sigcache) * sc->wi_sigitems);
1411			wreq.wi_len += ((sizeof(struct wi_sigcache) *
1412			    sc->wi_sigitems) / 2) + 1;
1413		}
1414#endif
1415		else {
1416			if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq)) {
1417				error = EINVAL;
1418				break;
1419			}
1420		}
1421		error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1422		break;
1423	case SIOCSWAVELAN:
1424		if ((error = suser(p)))
1425			goto out;
1426		error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1427		if (error)
1428			break;
1429		if (wreq.wi_type == WI_RID_IFACE_STATS) {
1430			error = EINVAL;
1431			break;
1432		} else if (wreq.wi_type == WI_RID_MGMT_XMIT) {
1433			error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val,
1434			    wreq.wi_len);
1435		} else {
1436			error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
1437			if (!error)
1438				wi_setdef(sc, &wreq);
1439		}
1440		break;
1441	case SIOCG80211:
1442		switch(ireq->i_type) {
1443		case IEEE80211_IOC_SSID:
1444			if(ireq->i_val == -1) {
1445				bzero(tmpssid, IEEE80211_NWID_LEN);
1446				error = wi_get_cur_ssid(sc, tmpssid, &len);
1447				if (error != 0)
1448					break;
1449				error = copyout(tmpssid, ireq->i_data,
1450					IEEE80211_NWID_LEN);
1451				ireq->i_len = len;
1452			} else if (ireq->i_val == 0) {
1453				error = copyout(sc->wi_net_name,
1454				    ireq->i_data,
1455				    IEEE80211_NWID_LEN);
1456				ireq->i_len = IEEE80211_NWID_LEN;
1457			} else
1458				error = EINVAL;
1459			break;
1460		case IEEE80211_IOC_NUMSSIDS:
1461			ireq->i_val = 1;
1462			break;
1463		case IEEE80211_IOC_WEP:
1464			if(!sc->wi_has_wep) {
1465				ireq->i_val = IEEE80211_WEP_NOSUP;
1466			} else {
1467				if(sc->wi_use_wep) {
1468					ireq->i_val =
1469					    IEEE80211_WEP_MIXED;
1470				} else {
1471					ireq->i_val =
1472					    IEEE80211_WEP_OFF;
1473				}
1474			}
1475			break;
1476		case IEEE80211_IOC_WEPKEY:
1477			if(!sc->wi_has_wep ||
1478			    ireq->i_val < 0 || ireq->i_val > 3) {
1479				error = EINVAL;
1480				break;
1481			}
1482			len = sc->wi_keys.wi_keys[ireq->i_val].wi_keylen;
1483			if (suser(p))
1484				bcopy(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat,
1485				    tmpkey, len);
1486			else
1487				bzero(tmpkey, len);
1488
1489			ireq->i_len = len;
1490			error = copyout(tmpkey, ireq->i_data, len);
1491
1492			break;
1493		case IEEE80211_IOC_NUMWEPKEYS:
1494			if(!sc->wi_has_wep)
1495				error = EINVAL;
1496			else
1497				ireq->i_val = 4;
1498			break;
1499		case IEEE80211_IOC_WEPTXKEY:
1500			if(!sc->wi_has_wep)
1501				error = EINVAL;
1502			else
1503				ireq->i_val = sc->wi_tx_key;
1504			break;
1505		case IEEE80211_IOC_AUTHMODE:
1506			ireq->i_val = IEEE80211_AUTH_NONE;
1507			break;
1508		case IEEE80211_IOC_STATIONNAME:
1509			error = copyout(sc->wi_node_name,
1510			    ireq->i_data, IEEE80211_NWID_LEN);
1511			ireq->i_len = IEEE80211_NWID_LEN;
1512			break;
1513		case IEEE80211_IOC_CHANNEL:
1514			wreq.wi_type = WI_RID_CURRENT_CHAN;
1515			wreq.wi_len = WI_MAX_DATALEN;
1516			if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq))
1517				error = EINVAL;
1518			else {
1519				ireq->i_val = wreq.wi_val[0];
1520			}
1521			break;
1522		case IEEE80211_IOC_POWERSAVE:
1523			if(sc->wi_pm_enabled)
1524				ireq->i_val = IEEE80211_POWERSAVE_ON;
1525			else
1526				ireq->i_val = IEEE80211_POWERSAVE_OFF;
1527			break;
1528		case IEEE80211_IOC_POWERSAVESLEEP:
1529			ireq->i_val = sc->wi_max_sleep;
1530			break;
1531		default:
1532			error = EINVAL;
1533		}
1534		break;
1535	case SIOCS80211:
1536		if ((error = suser(p)))
1537			goto out;
1538		switch(ireq->i_type) {
1539		case IEEE80211_IOC_SSID:
1540			if (ireq->i_val != 0 ||
1541			    ireq->i_len > IEEE80211_NWID_LEN) {
1542				error = EINVAL;
1543				break;
1544			}
1545			/* We set both of them */
1546			bzero(sc->wi_net_name, IEEE80211_NWID_LEN);
1547			error = copyin(ireq->i_data,
1548			    sc->wi_net_name, ireq->i_len);
1549			bcopy(sc->wi_net_name, sc->wi_ibss_name, IEEE80211_NWID_LEN);
1550			break;
1551		case IEEE80211_IOC_WEP:
1552			/*
1553			 * These cards only support one mode so
1554			 * we just turn wep on what ever is
1555			 * passed in if it's not OFF.
1556			 */
1557			if (ireq->i_val == IEEE80211_WEP_OFF) {
1558				sc->wi_use_wep = 0;
1559			} else {
1560				sc->wi_use_wep = 1;
1561			}
1562			break;
1563		case IEEE80211_IOC_WEPKEY:
1564			if (ireq->i_val < 0 || ireq->i_val > 3 ||
1565				ireq->i_len > 13) {
1566				error = EINVAL;
1567				break;
1568			}
1569			bzero(sc->wi_keys.wi_keys[ireq->i_val].wi_keydat, 13);
1570			error = copyin(ireq->i_data,
1571			    sc->wi_keys.wi_keys[ireq->i_val].wi_keydat,
1572			    ireq->i_len);
1573			if(error)
1574				break;
1575			sc->wi_keys.wi_keys[ireq->i_val].wi_keylen =
1576				    ireq->i_len;
1577			break;
1578		case IEEE80211_IOC_WEPTXKEY:
1579			if (ireq->i_val < 0 || ireq->i_val > 3) {
1580				error = EINVAL;
1581				break;
1582			}
1583			sc->wi_tx_key = ireq->i_val;
1584			break;
1585		case IEEE80211_IOC_AUTHMODE:
1586			error = EINVAL;
1587			break;
1588		case IEEE80211_IOC_STATIONNAME:
1589			if (ireq->i_len > 32) {
1590				error = EINVAL;
1591				break;
1592			}
1593			bzero(sc->wi_node_name, 32);
1594			error = copyin(ireq->i_data,
1595			    sc->wi_node_name, ireq->i_len);
1596			break;
1597		case IEEE80211_IOC_CHANNEL:
1598			/*
1599			 * The actual range is 1-14, but if you
1600			 * set it to 0 you get the default. So
1601			 * we let that work too.
1602			 */
1603			if (ireq->i_val < 0 || ireq->i_val > 14) {
1604				error = EINVAL;
1605				break;
1606			}
1607			sc->wi_channel = ireq->i_val;
1608			break;
1609		case IEEE80211_IOC_POWERSAVE:
1610			switch (ireq->i_val) {
1611			case IEEE80211_POWERSAVE_OFF:
1612				sc->wi_pm_enabled = 0;
1613				break;
1614			case IEEE80211_POWERSAVE_ON:
1615				sc->wi_pm_enabled = 1;
1616				break;
1617			default:
1618				error = EINVAL;
1619				break;
1620			}
1621			break;
1622		case IEEE80211_IOC_POWERSAVESLEEP:
1623			if (ireq->i_val < 0) {
1624				error = EINVAL;
1625				break;
1626			}
1627			sc->wi_max_sleep = ireq->i_val;
1628			break;
1629		default:
1630			error = EINVAL;
1631			break;
1632		}
1633
1634		/* Reinitialize WaveLAN. */
1635		wi_init(sc);
1636
1637		break;
1638	default:
1639		error = EINVAL;
1640		break;
1641	}
1642out:
1643	WI_UNLOCK(sc);
1644
1645	return(error);
1646}
1647
1648static void wi_init(xsc)
1649	void			*xsc;
1650{
1651	struct wi_softc		*sc = xsc;
1652	struct ifnet		*ifp = &sc->arpcom.ac_if;
1653	struct wi_ltv_macaddr	mac;
1654	int			id = 0;
1655
1656	WI_LOCK(sc);
1657
1658	if (sc->wi_gone) {
1659		WI_UNLOCK(sc);
1660		return;
1661	}
1662
1663	if (ifp->if_flags & IFF_RUNNING)
1664		wi_stop(sc);
1665
1666	wi_reset(sc);
1667
1668	/* Program max data length. */
1669	WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
1670
1671	/* Enable/disable IBSS creation. */
1672	WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
1673
1674	/* Set the port type. */
1675	WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
1676
1677	/* Program the RTS/CTS threshold. */
1678	WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
1679
1680	/* Program the TX rate */
1681	WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
1682
1683	/* Access point density */
1684	WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
1685
1686	/* Power Management Enabled */
1687	WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
1688
1689	/* Power Managment Max Sleep */
1690	WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
1691
1692	/* Specify the IBSS name */
1693	WI_SETSTR(WI_RID_OWN_SSID, sc->wi_ibss_name);
1694
1695	/* Specify the network name */
1696	WI_SETSTR(WI_RID_DESIRED_SSID, sc->wi_net_name);
1697
1698	/* Specify the frequency to use */
1699	WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
1700
1701	/* Program the nodename. */
1702	WI_SETSTR(WI_RID_NODENAME, sc->wi_node_name);
1703
1704	/* Set our MAC address. */
1705	mac.wi_len = 4;
1706	mac.wi_type = WI_RID_MAC_NODE;
1707	bcopy((char *)&sc->arpcom.ac_enaddr,
1708	   (char *)&mac.wi_mac_addr, ETHER_ADDR_LEN);
1709	wi_write_record(sc, (struct wi_ltv_gen *)&mac);
1710
1711	/* Configure WEP. */
1712	if (sc->wi_has_wep) {
1713		WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
1714		WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
1715		sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
1716		sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
1717		wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
1718	}
1719
1720	/* Initialize promisc mode. */
1721	if (ifp->if_flags & IFF_PROMISC) {
1722		WI_SETVAL(WI_RID_PROMISC, 1);
1723	} else {
1724		WI_SETVAL(WI_RID_PROMISC, 0);
1725	}
1726
1727	/* Set multicast filter. */
1728	wi_setmulti(sc);
1729
1730	/* Enable desired port */
1731	wi_cmd(sc, WI_CMD_ENABLE|sc->wi_portnum, 0);
1732
1733	if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
1734		device_printf(sc->dev, "tx buffer allocation failed\n");
1735	sc->wi_tx_data_id = id;
1736
1737	if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
1738		device_printf(sc->dev, "mgmt. buffer allocation failed\n");
1739	sc->wi_tx_mgmt_id = id;
1740
1741	/* enable interrupts */
1742	CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
1743
1744	ifp->if_flags |= IFF_RUNNING;
1745	ifp->if_flags &= ~IFF_OACTIVE;
1746
1747	sc->wi_stat_ch = timeout(wi_inquire, sc, hz * 60);
1748	WI_UNLOCK(sc);
1749
1750	return;
1751}
1752
1753static void wi_start(ifp)
1754	struct ifnet		*ifp;
1755{
1756	struct wi_softc		*sc;
1757	struct mbuf		*m0;
1758	struct wi_frame		tx_frame;
1759	struct ether_header	*eh;
1760	int			id;
1761
1762	sc = ifp->if_softc;
1763	WI_LOCK(sc);
1764
1765	if (sc->wi_gone) {
1766		WI_UNLOCK(sc);
1767		return;
1768	}
1769
1770	if (ifp->if_flags & IFF_OACTIVE) {
1771		WI_UNLOCK(sc);
1772		return;
1773	}
1774
1775	IF_DEQUEUE(&ifp->if_snd, m0);
1776	if (m0 == NULL) {
1777		WI_UNLOCK(sc);
1778		return;
1779	}
1780
1781	bzero((char *)&tx_frame, sizeof(tx_frame));
1782	id = sc->wi_tx_data_id;
1783	eh = mtod(m0, struct ether_header *);
1784
1785	/*
1786	 * Use RFC1042 encoding for IP and ARP datagrams,
1787	 * 802.3 for anything else.
1788	 */
1789	if (ntohs(eh->ether_type) > ETHER_MAX_LEN) {
1790		bcopy((char *)&eh->ether_dhost,
1791		    (char *)&tx_frame.wi_addr1, ETHER_ADDR_LEN);
1792		bcopy((char *)&eh->ether_shost,
1793		    (char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN);
1794		bcopy((char *)&eh->ether_dhost,
1795		    (char *)&tx_frame.wi_dst_addr, ETHER_ADDR_LEN);
1796		bcopy((char *)&eh->ether_shost,
1797		    (char *)&tx_frame.wi_src_addr, ETHER_ADDR_LEN);
1798
1799		tx_frame.wi_dat_len = m0->m_pkthdr.len - WI_SNAPHDR_LEN;
1800		tx_frame.wi_frame_ctl = WI_FTYPE_DATA;
1801		tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
1802		tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
1803		tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1804		tx_frame.wi_type = eh->ether_type;
1805
1806		m_copydata(m0, sizeof(struct ether_header),
1807		    m0->m_pkthdr.len - sizeof(struct ether_header),
1808		    (caddr_t)&sc->wi_txbuf);
1809
1810		wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1811		    sizeof(struct wi_frame));
1812		wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf,
1813		    (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2);
1814	} else {
1815		tx_frame.wi_dat_len = m0->m_pkthdr.len;
1816
1817		eh->ether_type = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
1818		m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf);
1819
1820		wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
1821		    sizeof(struct wi_frame));
1822		wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf,
1823		    m0->m_pkthdr.len + 2);
1824	}
1825
1826	/*
1827	 * If there's a BPF listner, bounce a copy of
1828	 * this frame to him.
1829	 */
1830	if (ifp->if_bpf)
1831		bpf_mtap(ifp, m0);
1832
1833	m_freem(m0);
1834
1835	if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id))
1836		device_printf(sc->dev, "xmit failed\n");
1837
1838	ifp->if_flags |= IFF_OACTIVE;
1839
1840	/*
1841	 * Set a timeout in case the chip goes out to lunch.
1842	 */
1843	ifp->if_timer = 5;
1844
1845	WI_UNLOCK(sc);
1846	return;
1847}
1848
1849static int wi_mgmt_xmit(sc, data, len)
1850	struct wi_softc		*sc;
1851	caddr_t			data;
1852	int			len;
1853{
1854	struct wi_frame		tx_frame;
1855	int			id;
1856	struct wi_80211_hdr	*hdr;
1857	caddr_t			dptr;
1858
1859	if (sc->wi_gone)
1860		return(ENODEV);
1861
1862	hdr = (struct wi_80211_hdr *)data;
1863	dptr = data + sizeof(struct wi_80211_hdr);
1864
1865	bzero((char *)&tx_frame, sizeof(tx_frame));
1866	id = sc->wi_tx_mgmt_id;
1867
1868	bcopy((char *)hdr, (char *)&tx_frame.wi_frame_ctl,
1869	   sizeof(struct wi_80211_hdr));
1870
1871	tx_frame.wi_dat_len = len - WI_SNAPHDR_LEN;
1872	tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN);
1873
1874	wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
1875	wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
1876	    (len - sizeof(struct wi_80211_hdr)) + 2);
1877
1878	if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) {
1879		device_printf(sc->dev, "xmit failed\n");
1880		return(EIO);
1881	}
1882
1883	return(0);
1884}
1885
1886static void wi_stop(sc)
1887	struct wi_softc		*sc;
1888{
1889	struct ifnet		*ifp;
1890
1891	WI_LOCK(sc);
1892
1893	if (sc->wi_gone) {
1894		WI_UNLOCK(sc);
1895		return;
1896	}
1897
1898	ifp = &sc->arpcom.ac_if;
1899
1900	/*
1901	 * If the card is gone and the memory port isn't mapped, we will
1902	 * (hopefully) get 0xffff back from the status read, which is not
1903	 * a valid status value.
1904	 */
1905	if (CSR_READ_2(sc, WI_STATUS) != 0xffff) {
1906		CSR_WRITE_2(sc, WI_INT_EN, 0);
1907		wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0);
1908	}
1909
1910	untimeout(wi_inquire, sc, sc->wi_stat_ch);
1911
1912	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1913
1914	WI_UNLOCK(sc);
1915	return;
1916}
1917
1918static void wi_watchdog(ifp)
1919	struct ifnet		*ifp;
1920{
1921	struct wi_softc		*sc;
1922
1923	sc = ifp->if_softc;
1924
1925	device_printf(sc->dev, "watchdog timeout\n");
1926
1927	wi_init(sc);
1928
1929	ifp->if_oerrors++;
1930
1931	return;
1932}
1933
1934static int
1935wi_alloc(dev, io_rid)
1936	device_t		dev;
1937	int				io_rid;
1938{
1939	struct wi_softc		*sc = device_get_softc(dev);
1940
1941	sc->iobase_rid = io_rid;
1942	sc->iobase = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->iobase_rid,
1943				0, ~0, (1 << 6),
1944				rman_make_alignment_flags(1 << 6) | RF_ACTIVE);
1945	if (!sc->iobase) {
1946		device_printf(dev, "No I/O space?!\n");
1947		return (ENXIO);
1948	}
1949
1950	sc->irq_rid = 0;
1951	sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irq_rid,
1952				     0, ~0, 1, RF_ACTIVE);
1953	if (!sc->irq) {
1954		wi_free(dev);
1955		device_printf(dev, "No irq?!\n");
1956		return (ENXIO);
1957	}
1958
1959	sc->dev = dev;
1960	sc->wi_unit = device_get_unit(dev);
1961	sc->wi_io_addr = rman_get_start(sc->iobase);
1962	sc->wi_btag = rman_get_bustag(sc->iobase);
1963	sc->wi_bhandle = rman_get_bushandle(sc->iobase);
1964
1965	return (0);
1966}
1967
1968static void wi_free(dev)
1969	device_t		dev;
1970{
1971	struct wi_softc		*sc = device_get_softc(dev);
1972
1973	if (sc->iobase != NULL) {
1974		bus_release_resource(dev, SYS_RES_IOPORT, sc->iobase_rid, sc->iobase);
1975		sc->iobase = NULL;
1976	}
1977	if (sc->irq != NULL) {
1978		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
1979		sc->irq = NULL;
1980	}
1981	if (sc->mem != NULL) {
1982		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
1983		sc->mem = NULL;
1984	}
1985
1986	return;
1987}
1988
1989static void wi_shutdown(dev)
1990	device_t		dev;
1991{
1992	struct wi_softc		*sc;
1993
1994	sc = device_get_softc(dev);
1995	wi_stop(sc);
1996
1997	return;
1998}
1999
2000#ifdef WICACHE
2001/* wavelan signal strength cache code.
2002 * store signal/noise/quality on per MAC src basis in
2003 * a small fixed cache.  The cache wraps if > MAX slots
2004 * used.  The cache may be zeroed out to start over.
2005 * Two simple filters exist to reduce computation:
2006 * 1. ip only (literally 0x800) which may be used
2007 * to ignore some packets.  It defaults to ip only.
2008 * it could be used to focus on broadcast, non-IP 802.11 beacons.
2009 * 2. multicast/broadcast only.  This may be used to
2010 * ignore unicast packets and only cache signal strength
2011 * for multicast/broadcast packets (beacons); e.g., Mobile-IP
2012 * beacons and not unicast traffic.
2013 *
2014 * The cache stores (MAC src(index), IP src (major clue), signal,
2015 *	quality, noise)
2016 *
2017 * No apologies for storing IP src here.  It's easy and saves much
2018 * trouble elsewhere.  The cache is assumed to be INET dependent,
2019 * although it need not be.
2020 */
2021
2022#ifdef documentation
2023
2024int wi_sigitems;                                /* number of cached entries */
2025struct wi_sigcache wi_sigcache[MAXWICACHE];  /*  array of cache entries */
2026int wi_nextitem;                                /*  index/# of entries */
2027
2028
2029#endif
2030
2031/* control variables for cache filtering.  Basic idea is
2032 * to reduce cost (e.g., to only Mobile-IP agent beacons
2033 * which are broadcast or multicast).  Still you might
2034 * want to measure signal strength with unicast ping packets
2035 * on a pt. to pt. ant. setup.
2036 */
2037/* set true if you want to limit cache items to broadcast/mcast
2038 * only packets (not unicast).  Useful for mobile-ip beacons which
2039 * are broadcast/multicast at network layer.  Default is all packets
2040 * so ping/unicast will work say with pt. to pt. antennae setup.
2041 */
2042static int wi_cache_mcastonly = 0;
2043SYSCTL_INT(_machdep, OID_AUTO, wi_cache_mcastonly, CTLFLAG_RW,
2044	&wi_cache_mcastonly, 0, "");
2045
2046/* set true if you want to limit cache items to IP packets only
2047*/
2048static int wi_cache_iponly = 1;
2049SYSCTL_INT(_machdep, OID_AUTO, wi_cache_iponly, CTLFLAG_RW,
2050	&wi_cache_iponly, 0, "");
2051
2052/*
2053 * Original comments:
2054 * -----------------
2055 * wi_cache_store, per rx packet store signal
2056 * strength in MAC (src) indexed cache.
2057 *
2058 * follows linux driver in how signal strength is computed.
2059 * In ad hoc mode, we use the rx_quality field.
2060 * signal and noise are trimmed to fit in the range from 47..138.
2061 * rx_quality field MSB is signal strength.
2062 * rx_quality field LSB is noise.
2063 * "quality" is (signal - noise) as is log value.
2064 * note: quality CAN be negative.
2065 *
2066 * In BSS mode, we use the RID for communication quality.
2067 * TBD:  BSS mode is currently untested.
2068 *
2069 * Bill's comments:
2070 * ---------------
2071 * Actually, we use the rx_quality field all the time for both "ad-hoc"
2072 * and BSS modes. Why? Because reading an RID is really, really expensive:
2073 * there's a bunch of PIO operations that have to be done to read a record
2074 * from the NIC, and reading the comms quality RID each time a packet is
2075 * received can really hurt performance. We don't have to do this anyway:
2076 * the comms quality field only reflects the values in the rx_quality field
2077 * anyway. The comms quality RID is only meaningful in infrastructure mode,
2078 * but the values it contains are updated based on the rx_quality from
2079 * frames received from the access point.
2080 *
2081 * Also, according to Lucent, the signal strength and noise level values
2082 * can be converted to dBms by subtracting 149, so I've modified the code
2083 * to do that instead of the scaling it did originally.
2084 */
2085static
2086void wi_cache_store (struct wi_softc *sc, struct ether_header *eh,
2087                     struct mbuf *m, unsigned short rx_quality)
2088{
2089	struct ip *ip = 0;
2090	int i;
2091	static int cache_slot = 0; 	/* use this cache entry */
2092	static int wrapindex = 0;       /* next "free" cache entry */
2093	int sig, noise;
2094	int sawip=0;
2095
2096	/* filters:
2097	 * 1. ip only
2098	 * 2. configurable filter to throw out unicast packets,
2099	 * keep multicast only.
2100	 */
2101
2102	if ((ntohs(eh->ether_type) == ETHERTYPE_IP)) {
2103		sawip = 1;
2104	}
2105
2106	/* filter for ip packets only
2107	*/
2108	if (wi_cache_iponly && !sawip) {
2109		return;
2110	}
2111
2112	/* filter for broadcast/multicast only
2113	 */
2114	if (wi_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
2115		return;
2116	}
2117
2118#ifdef SIGDEBUG
2119	printf("wi%d: q value %x (MSB=0x%x, LSB=0x%x) \n", sc->wi_unit,
2120	    rx_quality & 0xffff, rx_quality >> 8, rx_quality & 0xff);
2121#endif
2122
2123	/* find the ip header.  we want to store the ip_src
2124	 * address.
2125	 */
2126	if (sawip) {
2127		ip = mtod(m, struct ip *);
2128	}
2129
2130	/* do a linear search for a matching MAC address
2131	 * in the cache table
2132	 * . MAC address is 6 bytes,
2133	 * . var w_nextitem holds total number of entries already cached
2134	 */
2135	for(i = 0; i < sc->wi_nextitem; i++) {
2136		if (! bcmp(eh->ether_shost , sc->wi_sigcache[i].macsrc,  6 )) {
2137			/* Match!,
2138			 * so we already have this entry,
2139			 * update the data
2140			 */
2141			break;
2142		}
2143	}
2144
2145	/* did we find a matching mac address?
2146	 * if yes, then overwrite a previously existing cache entry
2147	 */
2148	if (i < sc->wi_nextitem )   {
2149		cache_slot = i;
2150	}
2151	/* else, have a new address entry,so
2152	 * add this new entry,
2153	 * if table full, then we need to replace LRU entry
2154	 */
2155	else    {
2156
2157		/* check for space in cache table
2158		 * note: wi_nextitem also holds number of entries
2159		 * added in the cache table
2160		 */
2161		if ( sc->wi_nextitem < MAXWICACHE ) {
2162			cache_slot = sc->wi_nextitem;
2163			sc->wi_nextitem++;
2164			sc->wi_sigitems = sc->wi_nextitem;
2165		}
2166        	/* no space found, so simply wrap with wrap index
2167		 * and "zap" the next entry
2168		 */
2169		else {
2170			if (wrapindex == MAXWICACHE) {
2171				wrapindex = 0;
2172			}
2173			cache_slot = wrapindex++;
2174		}
2175	}
2176
2177	/* invariant: cache_slot now points at some slot
2178	 * in cache.
2179	 */
2180	if (cache_slot < 0 || cache_slot >= MAXWICACHE) {
2181		log(LOG_ERR, "wi_cache_store, bad index: %d of "
2182		    "[0..%d], gross cache error\n",
2183		    cache_slot, MAXWICACHE);
2184		return;
2185	}
2186
2187	/*  store items in cache
2188	 *  .ip source address
2189	 *  .mac src
2190	 *  .signal, etc.
2191	 */
2192	if (sawip) {
2193		sc->wi_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
2194	}
2195	bcopy( eh->ether_shost, sc->wi_sigcache[cache_slot].macsrc,  6);
2196
2197	sig = (rx_quality >> 8) & 0xFF;
2198	noise = rx_quality & 0xFF;
2199	sc->wi_sigcache[cache_slot].signal = sig - 149;
2200	sc->wi_sigcache[cache_slot].noise = noise - 149;
2201	sc->wi_sigcache[cache_slot].quality = sig - noise;
2202
2203	return;
2204}
2205#endif
2206
2207static int wi_get_cur_ssid(sc, ssid, len)
2208	struct wi_softc		*sc;
2209	char			*ssid;
2210	int			*len;
2211{
2212	int			error = 0;
2213	struct wi_req		wreq;
2214
2215	wreq.wi_len = WI_MAX_DATALEN;
2216	switch (sc->wi_ptype) {
2217	case WI_PORTTYPE_ADHOC:
2218		wreq.wi_type = WI_RID_CURRENT_SSID;
2219		error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
2220		if (error != 0)
2221			break;
2222		if (wreq.wi_val[0] > IEEE80211_NWID_LEN) {
2223			error = EINVAL;
2224			break;
2225		}
2226		*len = wreq.wi_val[0];
2227		bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN);
2228		break;
2229	case WI_PORTTYPE_BSS:
2230		wreq.wi_type = WI_RID_COMMQUAL;
2231		error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
2232		if (error != 0)
2233			break;
2234		if (wreq.wi_val[0] != 0) /* associated */ {
2235			wreq.wi_type = WI_RID_CURRENT_SSID;
2236			wreq.wi_len = WI_MAX_DATALEN;
2237			error = wi_read_record(sc, (struct wi_ltv_gen *)&wreq);
2238			if (error != 0)
2239				break;
2240			if (wreq.wi_val[0] > IEEE80211_NWID_LEN) {
2241				error = EINVAL;
2242				break;
2243			}
2244			*len = wreq.wi_val[0];
2245			bcopy(&wreq.wi_val[1], ssid, IEEE80211_NWID_LEN);
2246		} else {
2247			*len = IEEE80211_NWID_LEN;
2248			bcopy(sc->wi_net_name, ssid, IEEE80211_NWID_LEN);
2249		}
2250		break;
2251	default:
2252		error = EINVAL;
2253		break;
2254	}
2255
2256	return error;
2257}
2258
2259static int wi_media_change(ifp)
2260	struct ifnet		*ifp;
2261{
2262	struct wi_softc		*sc = ifp->if_softc;
2263	int			otype = sc->wi_ptype;
2264	int			orate = sc->wi_tx_rate;
2265
2266	if ((sc->ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
2267		sc->wi_ptype = WI_PORTTYPE_ADHOC;
2268	else
2269		sc->wi_ptype = WI_PORTTYPE_BSS;
2270
2271	switch (IFM_SUBTYPE(sc->ifmedia.ifm_cur->ifm_media)) {
2272	case IFM_IEEE80211_DS1:
2273		sc->wi_tx_rate = 1;
2274		break;
2275	case IFM_IEEE80211_DS2:
2276		sc->wi_tx_rate = 2;
2277		break;
2278	case IFM_IEEE80211_DS5:
2279		sc->wi_tx_rate = 5;
2280		break;
2281	case IFM_IEEE80211_DS11:
2282		sc->wi_tx_rate = 11;
2283		break;
2284	case IFM_AUTO:
2285		sc->wi_tx_rate = 3;
2286		break;
2287	}
2288
2289	if (otype != sc->wi_ptype ||
2290	    orate != sc->wi_tx_rate)
2291		wi_init(sc);
2292
2293	return(0);
2294}
2295
2296static void wi_media_status(ifp, imr)
2297	struct ifnet		*ifp;
2298	struct ifmediareq	*imr;
2299{
2300	struct wi_req		wreq;
2301	struct wi_softc		*sc = ifp->if_softc;
2302
2303	if (sc->wi_tx_rate == 3) {
2304		imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
2305		if (sc->wi_ptype == WI_PORTTYPE_ADHOC)
2306			imr->ifm_active |= IFM_IEEE80211_ADHOC;
2307		wreq.wi_type = WI_RID_CUR_TX_RATE;
2308		wreq.wi_len = WI_MAX_DATALEN;
2309		if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0) {
2310			switch(wreq.wi_val[0]) {
2311			case 1:
2312				imr->ifm_active |= IFM_IEEE80211_DS1;
2313				break;
2314			case 2:
2315				imr->ifm_active |= IFM_IEEE80211_DS2;
2316				break;
2317			case 6:
2318				imr->ifm_active |= IFM_IEEE80211_DS5;
2319				break;
2320			case 11:
2321				imr->ifm_active |= IFM_IEEE80211_DS11;
2322				break;
2323				}
2324		}
2325	} else {
2326		imr->ifm_active = sc->ifmedia.ifm_cur->ifm_media;
2327	}
2328
2329	imr->ifm_status = IFM_AVALID;
2330	if (sc->wi_ptype == WI_PORTTYPE_ADHOC)
2331		/*
2332		 * XXX: It would be nice if we could give some actually
2333		 * useful status like whether we joined another IBSS or
2334		 * created one ourselves.
2335		 */
2336		imr->ifm_status |= IFM_ACTIVE;
2337	else {
2338		wreq.wi_type = WI_RID_COMMQUAL;
2339		wreq.wi_len = WI_MAX_DATALEN;
2340		if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0 &&
2341		    wreq.wi_val[0] != 0)
2342			imr->ifm_status |= IFM_ACTIVE;
2343	}
2344}
2345