if_vge.c revision 257176
1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 257176 2013-10-26 17:58:36Z glebius $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96#include <sys/sysctl.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_var.h>
103#include <net/if_media.h>
104#include <net/if_types.h>
105#include <net/if_vlan_var.h>
106
107#include <net/bpf.h>
108
109#include <machine/bus.h>
110#include <machine/resource.h>
111#include <sys/bus.h>
112#include <sys/rman.h>
113
114#include <dev/mii/mii.h>
115#include <dev/mii/miivar.h>
116
117#include <dev/pci/pcireg.h>
118#include <dev/pci/pcivar.h>
119
120MODULE_DEPEND(vge, pci, 1, 1, 1);
121MODULE_DEPEND(vge, ether, 1, 1, 1);
122MODULE_DEPEND(vge, miibus, 1, 1, 1);
123
124/* "device miibus" required.  See GENERIC if you get errors here. */
125#include "miibus_if.h"
126
127#include <dev/vge/if_vgereg.h>
128#include <dev/vge/if_vgevar.h>
129
130#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
131
132/* Tunables */
133static int msi_disable = 0;
134TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
135
136/*
137 * The SQE error counter of MIB seems to report bogus value.
138 * Vendor's workaround does not seem to work on PCIe based
139 * controllers. Disable it until we find better workaround.
140 */
141#undef VGE_ENABLE_SQEERR
142
143/*
144 * Various supported device vendors/types and their names.
145 */
146static struct vge_type vge_devs[] = {
147	{ VIA_VENDORID, VIA_DEVICEID_61XX,
148		"VIA Networking Velocity Gigabit Ethernet" },
149	{ 0, 0, NULL }
150};
151
152static int	vge_attach(device_t);
153static int	vge_detach(device_t);
154static int	vge_probe(device_t);
155static int	vge_resume(device_t);
156static int	vge_shutdown(device_t);
157static int	vge_suspend(device_t);
158
159static void	vge_cam_clear(struct vge_softc *);
160static int	vge_cam_set(struct vge_softc *, uint8_t *);
161static void	vge_clrwol(struct vge_softc *);
162static void	vge_discard_rxbuf(struct vge_softc *, int);
163static int	vge_dma_alloc(struct vge_softc *);
164static void	vge_dma_free(struct vge_softc *);
165static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
166#ifdef VGE_EEPROM
167static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
168#endif
169static int	vge_encap(struct vge_softc *, struct mbuf **);
170#ifndef __NO_STRICT_ALIGNMENT
171static __inline void
172		vge_fixup_rx(struct mbuf *);
173#endif
174static void	vge_freebufs(struct vge_softc *);
175static void	vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
176static int	vge_ifmedia_upd(struct ifnet *);
177static int	vge_ifmedia_upd_locked(struct vge_softc *);
178static void	vge_init(void *);
179static void	vge_init_locked(struct vge_softc *);
180static void	vge_intr(void *);
181static void	vge_intr_holdoff(struct vge_softc *);
182static int	vge_ioctl(struct ifnet *, u_long, caddr_t);
183static void	vge_link_statchg(void *);
184static int	vge_miibus_readreg(device_t, int, int);
185static int	vge_miibus_writereg(device_t, int, int, int);
186static void	vge_miipoll_start(struct vge_softc *);
187static void	vge_miipoll_stop(struct vge_softc *);
188static int	vge_newbuf(struct vge_softc *, int);
189static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
190static void	vge_reset(struct vge_softc *);
191static int	vge_rx_list_init(struct vge_softc *);
192static int	vge_rxeof(struct vge_softc *, int);
193static void	vge_rxfilter(struct vge_softc *);
194static void	vge_setmedia(struct vge_softc *);
195static void	vge_setvlan(struct vge_softc *);
196static void	vge_setwol(struct vge_softc *);
197static void	vge_start(struct ifnet *);
198static void	vge_start_locked(struct ifnet *);
199static void	vge_stats_clear(struct vge_softc *);
200static void	vge_stats_update(struct vge_softc *);
201static void	vge_stop(struct vge_softc *);
202static void	vge_sysctl_node(struct vge_softc *);
203static int	vge_tx_list_init(struct vge_softc *);
204static void	vge_txeof(struct vge_softc *);
205static void	vge_watchdog(void *);
206
207static device_method_t vge_methods[] = {
208	/* Device interface */
209	DEVMETHOD(device_probe,		vge_probe),
210	DEVMETHOD(device_attach,	vge_attach),
211	DEVMETHOD(device_detach,	vge_detach),
212	DEVMETHOD(device_suspend,	vge_suspend),
213	DEVMETHOD(device_resume,	vge_resume),
214	DEVMETHOD(device_shutdown,	vge_shutdown),
215
216	/* MII interface */
217	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
218	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
219
220	DEVMETHOD_END
221};
222
223static driver_t vge_driver = {
224	"vge",
225	vge_methods,
226	sizeof(struct vge_softc)
227};
228
229static devclass_t vge_devclass;
230
231DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
232DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
233
234#ifdef VGE_EEPROM
235/*
236 * Read a word of data stored in the EEPROM at address 'addr.'
237 */
238static void
239vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
240{
241	int i;
242	uint16_t word = 0;
243
244	/*
245	 * Enter EEPROM embedded programming mode. In order to
246	 * access the EEPROM at all, we first have to set the
247	 * EELOAD bit in the CHIPCFG2 register.
248	 */
249	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
250	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
251
252	/* Select the address of the word we want to read */
253	CSR_WRITE_1(sc, VGE_EEADDR, addr);
254
255	/* Issue read command */
256	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
257
258	/* Wait for the done bit to be set. */
259	for (i = 0; i < VGE_TIMEOUT; i++) {
260		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
261			break;
262	}
263
264	if (i == VGE_TIMEOUT) {
265		device_printf(sc->vge_dev, "EEPROM read timed out\n");
266		*dest = 0;
267		return;
268	}
269
270	/* Read the result */
271	word = CSR_READ_2(sc, VGE_EERDDAT);
272
273	/* Turn off EEPROM access mode. */
274	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
275	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
276
277	*dest = word;
278}
279#endif
280
281/*
282 * Read a sequence of words from the EEPROM.
283 */
284static void
285vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
286{
287	int i;
288#ifdef VGE_EEPROM
289	uint16_t word = 0, *ptr;
290
291	for (i = 0; i < cnt; i++) {
292		vge_eeprom_getword(sc, off + i, &word);
293		ptr = (uint16_t *)(dest + (i * 2));
294		if (swap)
295			*ptr = ntohs(word);
296		else
297			*ptr = word;
298	}
299#else
300	for (i = 0; i < ETHER_ADDR_LEN; i++)
301		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
302#endif
303}
304
305static void
306vge_miipoll_stop(struct vge_softc *sc)
307{
308	int i;
309
310	CSR_WRITE_1(sc, VGE_MIICMD, 0);
311
312	for (i = 0; i < VGE_TIMEOUT; i++) {
313		DELAY(1);
314		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
315			break;
316	}
317
318	if (i == VGE_TIMEOUT)
319		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
320}
321
322static void
323vge_miipoll_start(struct vge_softc *sc)
324{
325	int i;
326
327	/* First, make sure we're idle. */
328
329	CSR_WRITE_1(sc, VGE_MIICMD, 0);
330	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
331
332	for (i = 0; i < VGE_TIMEOUT; i++) {
333		DELAY(1);
334		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
335			break;
336	}
337
338	if (i == VGE_TIMEOUT) {
339		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
340		return;
341	}
342
343	/* Now enable auto poll mode. */
344
345	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
346
347	/* And make sure it started. */
348
349	for (i = 0; i < VGE_TIMEOUT; i++) {
350		DELAY(1);
351		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
352			break;
353	}
354
355	if (i == VGE_TIMEOUT)
356		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
357}
358
359static int
360vge_miibus_readreg(device_t dev, int phy, int reg)
361{
362	struct vge_softc *sc;
363	int i;
364	uint16_t rval = 0;
365
366	sc = device_get_softc(dev);
367
368	vge_miipoll_stop(sc);
369
370	/* Specify the register we want to read. */
371	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
372
373	/* Issue read command. */
374	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
375
376	/* Wait for the read command bit to self-clear. */
377	for (i = 0; i < VGE_TIMEOUT; i++) {
378		DELAY(1);
379		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
380			break;
381	}
382
383	if (i == VGE_TIMEOUT)
384		device_printf(sc->vge_dev, "MII read timed out\n");
385	else
386		rval = CSR_READ_2(sc, VGE_MIIDATA);
387
388	vge_miipoll_start(sc);
389
390	return (rval);
391}
392
393static int
394vge_miibus_writereg(device_t dev, int phy, int reg, int data)
395{
396	struct vge_softc *sc;
397	int i, rval = 0;
398
399	sc = device_get_softc(dev);
400
401	vge_miipoll_stop(sc);
402
403	/* Specify the register we want to write. */
404	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
405
406	/* Specify the data we want to write. */
407	CSR_WRITE_2(sc, VGE_MIIDATA, data);
408
409	/* Issue write command. */
410	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
411
412	/* Wait for the write command bit to self-clear. */
413	for (i = 0; i < VGE_TIMEOUT; i++) {
414		DELAY(1);
415		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
416			break;
417	}
418
419	if (i == VGE_TIMEOUT) {
420		device_printf(sc->vge_dev, "MII write timed out\n");
421		rval = EIO;
422	}
423
424	vge_miipoll_start(sc);
425
426	return (rval);
427}
428
429static void
430vge_cam_clear(struct vge_softc *sc)
431{
432	int i;
433
434	/*
435	 * Turn off all the mask bits. This tells the chip
436	 * that none of the entries in the CAM filter are valid.
437	 * desired entries will be enabled as we fill the filter in.
438	 */
439
440	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
441	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
442	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
443	for (i = 0; i < 8; i++)
444		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
445
446	/* Clear the VLAN filter too. */
447
448	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
449	for (i = 0; i < 8; i++)
450		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
451
452	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
453	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
454	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
455
456	sc->vge_camidx = 0;
457}
458
459static int
460vge_cam_set(struct vge_softc *sc, uint8_t *addr)
461{
462	int i, error = 0;
463
464	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
465		return (ENOSPC);
466
467	/* Select the CAM data page. */
468	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
469	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
470
471	/* Set the filter entry we want to update and enable writing. */
472	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
473
474	/* Write the address to the CAM registers */
475	for (i = 0; i < ETHER_ADDR_LEN; i++)
476		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
477
478	/* Issue a write command. */
479	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
480
481	/* Wake for it to clear. */
482	for (i = 0; i < VGE_TIMEOUT; i++) {
483		DELAY(1);
484		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
485			break;
486	}
487
488	if (i == VGE_TIMEOUT) {
489		device_printf(sc->vge_dev, "setting CAM filter failed\n");
490		error = EIO;
491		goto fail;
492	}
493
494	/* Select the CAM mask page. */
495	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
496	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
497
498	/* Set the mask bit that enables this filter. */
499	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
500	    1<<(sc->vge_camidx & 7));
501
502	sc->vge_camidx++;
503
504fail:
505	/* Turn off access to CAM. */
506	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
507	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
508	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
509
510	return (error);
511}
512
513static void
514vge_setvlan(struct vge_softc *sc)
515{
516	struct ifnet *ifp;
517	uint8_t cfg;
518
519	VGE_LOCK_ASSERT(sc);
520
521	ifp = sc->vge_ifp;
522	cfg = CSR_READ_1(sc, VGE_RXCFG);
523	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
524		cfg |= VGE_VTAG_OPT2;
525	else
526		cfg &= ~VGE_VTAG_OPT2;
527	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
528}
529
530/*
531 * Program the multicast filter. We use the 64-entry CAM filter
532 * for perfect filtering. If there's more than 64 multicast addresses,
533 * we use the hash filter instead.
534 */
535static void
536vge_rxfilter(struct vge_softc *sc)
537{
538	struct ifnet *ifp;
539	struct ifmultiaddr *ifma;
540	uint32_t h, hashes[2];
541	uint8_t rxcfg;
542	int error = 0;
543
544	VGE_LOCK_ASSERT(sc);
545
546	/* First, zot all the multicast entries. */
547	hashes[0] = 0;
548	hashes[1] = 0;
549
550	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
551	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
552	    VGE_RXCTL_RX_PROMISC);
553	/*
554	 * Always allow VLAN oversized frames and frames for
555	 * this host.
556	 */
557	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
558
559	ifp = sc->vge_ifp;
560	if ((ifp->if_flags & IFF_BROADCAST) != 0)
561		rxcfg |= VGE_RXCTL_RX_BCAST;
562	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
563		if ((ifp->if_flags & IFF_PROMISC) != 0)
564			rxcfg |= VGE_RXCTL_RX_PROMISC;
565		if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
566			hashes[0] = 0xFFFFFFFF;
567			hashes[1] = 0xFFFFFFFF;
568		}
569		goto done;
570	}
571
572	vge_cam_clear(sc);
573	/* Now program new ones */
574	if_maddr_rlock(ifp);
575	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
576		if (ifma->ifma_addr->sa_family != AF_LINK)
577			continue;
578		error = vge_cam_set(sc,
579		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
580		if (error)
581			break;
582	}
583
584	/* If there were too many addresses, use the hash filter. */
585	if (error) {
586		vge_cam_clear(sc);
587
588		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
589			if (ifma->ifma_addr->sa_family != AF_LINK)
590				continue;
591			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
592			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
593			if (h < 32)
594				hashes[0] |= (1 << h);
595			else
596				hashes[1] |= (1 << (h - 32));
597		}
598	}
599	if_maddr_runlock(ifp);
600
601done:
602	if (hashes[0] != 0 || hashes[1] != 0)
603		rxcfg |= VGE_RXCTL_RX_MCAST;
604	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
605	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
606	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
607}
608
609static void
610vge_reset(struct vge_softc *sc)
611{
612	int i;
613
614	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
615
616	for (i = 0; i < VGE_TIMEOUT; i++) {
617		DELAY(5);
618		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
619			break;
620	}
621
622	if (i == VGE_TIMEOUT) {
623		device_printf(sc->vge_dev, "soft reset timed out\n");
624		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
625		DELAY(2000);
626	}
627
628	DELAY(5000);
629}
630
631/*
632 * Probe for a VIA gigabit chip. Check the PCI vendor and device
633 * IDs against our list and return a device name if we find a match.
634 */
635static int
636vge_probe(device_t dev)
637{
638	struct vge_type	*t;
639
640	t = vge_devs;
641
642	while (t->vge_name != NULL) {
643		if ((pci_get_vendor(dev) == t->vge_vid) &&
644		    (pci_get_device(dev) == t->vge_did)) {
645			device_set_desc(dev, t->vge_name);
646			return (BUS_PROBE_DEFAULT);
647		}
648		t++;
649	}
650
651	return (ENXIO);
652}
653
654/*
655 * Map a single buffer address.
656 */
657
658struct vge_dmamap_arg {
659	bus_addr_t	vge_busaddr;
660};
661
662static void
663vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
664{
665	struct vge_dmamap_arg *ctx;
666
667	if (error != 0)
668		return;
669
670	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
671
672	ctx = (struct vge_dmamap_arg *)arg;
673	ctx->vge_busaddr = segs[0].ds_addr;
674}
675
676static int
677vge_dma_alloc(struct vge_softc *sc)
678{
679	struct vge_dmamap_arg ctx;
680	struct vge_txdesc *txd;
681	struct vge_rxdesc *rxd;
682	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
683	int error, i;
684
685	/*
686	 * It seems old PCI controllers do not support DAC.  DAC
687	 * configuration can be enabled by accessing VGE_CHIPCFG3
688	 * register but honor EEPROM configuration instead of
689	 * blindly overriding DAC configuration.  PCIe based
690	 * controllers are supposed to support 64bit DMA so enable
691	 * 64bit DMA on these controllers.
692	 */
693	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
694		lowaddr = BUS_SPACE_MAXADDR;
695	else
696		lowaddr = BUS_SPACE_MAXADDR_32BIT;
697
698again:
699	/* Create parent ring tag. */
700	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
701	    1, 0,			/* algnmnt, boundary */
702	    lowaddr,			/* lowaddr */
703	    BUS_SPACE_MAXADDR,		/* highaddr */
704	    NULL, NULL,			/* filter, filterarg */
705	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
706	    0,				/* nsegments */
707	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
708	    0,				/* flags */
709	    NULL, NULL,			/* lockfunc, lockarg */
710	    &sc->vge_cdata.vge_ring_tag);
711	if (error != 0) {
712		device_printf(sc->vge_dev,
713		    "could not create parent DMA tag.\n");
714		goto fail;
715	}
716
717	/* Create tag for Tx ring. */
718	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
719	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
720	    BUS_SPACE_MAXADDR,		/* lowaddr */
721	    BUS_SPACE_MAXADDR,		/* highaddr */
722	    NULL, NULL,			/* filter, filterarg */
723	    VGE_TX_LIST_SZ,		/* maxsize */
724	    1,				/* nsegments */
725	    VGE_TX_LIST_SZ,		/* maxsegsize */
726	    0,				/* flags */
727	    NULL, NULL,			/* lockfunc, lockarg */
728	    &sc->vge_cdata.vge_tx_ring_tag);
729	if (error != 0) {
730		device_printf(sc->vge_dev,
731		    "could not allocate Tx ring DMA tag.\n");
732		goto fail;
733	}
734
735	/* Create tag for Rx ring. */
736	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
737	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
738	    BUS_SPACE_MAXADDR,		/* lowaddr */
739	    BUS_SPACE_MAXADDR,		/* highaddr */
740	    NULL, NULL,			/* filter, filterarg */
741	    VGE_RX_LIST_SZ,		/* maxsize */
742	    1,				/* nsegments */
743	    VGE_RX_LIST_SZ,		/* maxsegsize */
744	    0,				/* flags */
745	    NULL, NULL,			/* lockfunc, lockarg */
746	    &sc->vge_cdata.vge_rx_ring_tag);
747	if (error != 0) {
748		device_printf(sc->vge_dev,
749		    "could not allocate Rx ring DMA tag.\n");
750		goto fail;
751	}
752
753	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
754	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
755	    (void **)&sc->vge_rdata.vge_tx_ring,
756	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
757	    &sc->vge_cdata.vge_tx_ring_map);
758	if (error != 0) {
759		device_printf(sc->vge_dev,
760		    "could not allocate DMA'able memory for Tx ring.\n");
761		goto fail;
762	}
763
764	ctx.vge_busaddr = 0;
765	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
766	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
767	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
768	if (error != 0 || ctx.vge_busaddr == 0) {
769		device_printf(sc->vge_dev,
770		    "could not load DMA'able memory for Tx ring.\n");
771		goto fail;
772	}
773	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
774
775	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
776	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
777	    (void **)&sc->vge_rdata.vge_rx_ring,
778	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
779	    &sc->vge_cdata.vge_rx_ring_map);
780	if (error != 0) {
781		device_printf(sc->vge_dev,
782		    "could not allocate DMA'able memory for Rx ring.\n");
783		goto fail;
784	}
785
786	ctx.vge_busaddr = 0;
787	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
788	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
789	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
790	if (error != 0 || ctx.vge_busaddr == 0) {
791		device_printf(sc->vge_dev,
792		    "could not load DMA'able memory for Rx ring.\n");
793		goto fail;
794	}
795	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
796
797	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
798	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
799	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
800	if ((VGE_ADDR_HI(tx_ring_end) !=
801	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
802	    (VGE_ADDR_HI(rx_ring_end) !=
803	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
804	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
805		device_printf(sc->vge_dev, "4GB boundary crossed, "
806		    "switching to 32bit DMA address mode.\n");
807		vge_dma_free(sc);
808		/* Limit DMA address space to 32bit and try again. */
809		lowaddr = BUS_SPACE_MAXADDR_32BIT;
810		goto again;
811	}
812
813	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
814		lowaddr = VGE_BUF_DMA_MAXADDR;
815	else
816		lowaddr = BUS_SPACE_MAXADDR_32BIT;
817	/* Create parent buffer tag. */
818	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
819	    1, 0,			/* algnmnt, boundary */
820	    lowaddr,			/* lowaddr */
821	    BUS_SPACE_MAXADDR,		/* highaddr */
822	    NULL, NULL,			/* filter, filterarg */
823	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
824	    0,				/* nsegments */
825	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
826	    0,				/* flags */
827	    NULL, NULL,			/* lockfunc, lockarg */
828	    &sc->vge_cdata.vge_buffer_tag);
829	if (error != 0) {
830		device_printf(sc->vge_dev,
831		    "could not create parent buffer DMA tag.\n");
832		goto fail;
833	}
834
835	/* Create tag for Tx buffers. */
836	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
837	    1, 0,			/* algnmnt, boundary */
838	    BUS_SPACE_MAXADDR,		/* lowaddr */
839	    BUS_SPACE_MAXADDR,		/* highaddr */
840	    NULL, NULL,			/* filter, filterarg */
841	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
842	    VGE_MAXTXSEGS,		/* nsegments */
843	    MCLBYTES,			/* maxsegsize */
844	    0,				/* flags */
845	    NULL, NULL,			/* lockfunc, lockarg */
846	    &sc->vge_cdata.vge_tx_tag);
847	if (error != 0) {
848		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
849		goto fail;
850	}
851
852	/* Create tag for Rx buffers. */
853	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
854	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
855	    BUS_SPACE_MAXADDR,		/* lowaddr */
856	    BUS_SPACE_MAXADDR,		/* highaddr */
857	    NULL, NULL,			/* filter, filterarg */
858	    MCLBYTES,			/* maxsize */
859	    1,				/* nsegments */
860	    MCLBYTES,			/* maxsegsize */
861	    0,				/* flags */
862	    NULL, NULL,			/* lockfunc, lockarg */
863	    &sc->vge_cdata.vge_rx_tag);
864	if (error != 0) {
865		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
866		goto fail;
867	}
868
869	/* Create DMA maps for Tx buffers. */
870	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
871		txd = &sc->vge_cdata.vge_txdesc[i];
872		txd->tx_m = NULL;
873		txd->tx_dmamap = NULL;
874		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
875		    &txd->tx_dmamap);
876		if (error != 0) {
877			device_printf(sc->vge_dev,
878			    "could not create Tx dmamap.\n");
879			goto fail;
880		}
881	}
882	/* Create DMA maps for Rx buffers. */
883	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
884	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
885		device_printf(sc->vge_dev,
886		    "could not create spare Rx dmamap.\n");
887		goto fail;
888	}
889	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
890		rxd = &sc->vge_cdata.vge_rxdesc[i];
891		rxd->rx_m = NULL;
892		rxd->rx_dmamap = NULL;
893		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
894		    &rxd->rx_dmamap);
895		if (error != 0) {
896			device_printf(sc->vge_dev,
897			    "could not create Rx dmamap.\n");
898			goto fail;
899		}
900	}
901
902fail:
903	return (error);
904}
905
906static void
907vge_dma_free(struct vge_softc *sc)
908{
909	struct vge_txdesc *txd;
910	struct vge_rxdesc *rxd;
911	int i;
912
913	/* Tx ring. */
914	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
915		if (sc->vge_cdata.vge_tx_ring_map)
916			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
917			    sc->vge_cdata.vge_tx_ring_map);
918		if (sc->vge_cdata.vge_tx_ring_map &&
919		    sc->vge_rdata.vge_tx_ring)
920			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
921			    sc->vge_rdata.vge_tx_ring,
922			    sc->vge_cdata.vge_tx_ring_map);
923		sc->vge_rdata.vge_tx_ring = NULL;
924		sc->vge_cdata.vge_tx_ring_map = NULL;
925		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
926		sc->vge_cdata.vge_tx_ring_tag = NULL;
927	}
928	/* Rx ring. */
929	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
930		if (sc->vge_cdata.vge_rx_ring_map)
931			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
932			    sc->vge_cdata.vge_rx_ring_map);
933		if (sc->vge_cdata.vge_rx_ring_map &&
934		    sc->vge_rdata.vge_rx_ring)
935			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
936			    sc->vge_rdata.vge_rx_ring,
937			    sc->vge_cdata.vge_rx_ring_map);
938		sc->vge_rdata.vge_rx_ring = NULL;
939		sc->vge_cdata.vge_rx_ring_map = NULL;
940		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
941		sc->vge_cdata.vge_rx_ring_tag = NULL;
942	}
943	/* Tx buffers. */
944	if (sc->vge_cdata.vge_tx_tag != NULL) {
945		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
946			txd = &sc->vge_cdata.vge_txdesc[i];
947			if (txd->tx_dmamap != NULL) {
948				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
949				    txd->tx_dmamap);
950				txd->tx_dmamap = NULL;
951			}
952		}
953		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
954		sc->vge_cdata.vge_tx_tag = NULL;
955	}
956	/* Rx buffers. */
957	if (sc->vge_cdata.vge_rx_tag != NULL) {
958		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
959			rxd = &sc->vge_cdata.vge_rxdesc[i];
960			if (rxd->rx_dmamap != NULL) {
961				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
962				    rxd->rx_dmamap);
963				rxd->rx_dmamap = NULL;
964			}
965		}
966		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
967			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
968			    sc->vge_cdata.vge_rx_sparemap);
969			sc->vge_cdata.vge_rx_sparemap = NULL;
970		}
971		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
972		sc->vge_cdata.vge_rx_tag = NULL;
973	}
974
975	if (sc->vge_cdata.vge_buffer_tag != NULL) {
976		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
977		sc->vge_cdata.vge_buffer_tag = NULL;
978	}
979	if (sc->vge_cdata.vge_ring_tag != NULL) {
980		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
981		sc->vge_cdata.vge_ring_tag = NULL;
982	}
983}
984
985/*
986 * Attach the interface. Allocate softc structures, do ifmedia
987 * setup and ethernet/BPF attach.
988 */
989static int
990vge_attach(device_t dev)
991{
992	u_char eaddr[ETHER_ADDR_LEN];
993	struct vge_softc *sc;
994	struct ifnet *ifp;
995	int error = 0, cap, i, msic, rid;
996
997	sc = device_get_softc(dev);
998	sc->vge_dev = dev;
999
1000	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1001	    MTX_DEF);
1002	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1003
1004	/*
1005	 * Map control/status registers.
1006	 */
1007	pci_enable_busmaster(dev);
1008
1009	rid = PCIR_BAR(1);
1010	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1011	    RF_ACTIVE);
1012
1013	if (sc->vge_res == NULL) {
1014		device_printf(dev, "couldn't map ports/memory\n");
1015		error = ENXIO;
1016		goto fail;
1017	}
1018
1019	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1020		sc->vge_flags |= VGE_FLAG_PCIE;
1021		sc->vge_expcap = cap;
1022	} else
1023		sc->vge_flags |= VGE_FLAG_JUMBO;
1024	if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1025		sc->vge_flags |= VGE_FLAG_PMCAP;
1026		sc->vge_pmcap = cap;
1027	}
1028	rid = 0;
1029	msic = pci_msi_count(dev);
1030	if (msi_disable == 0 && msic > 0) {
1031		msic = 1;
1032		if (pci_alloc_msi(dev, &msic) == 0) {
1033			if (msic == 1) {
1034				sc->vge_flags |= VGE_FLAG_MSI;
1035				device_printf(dev, "Using %d MSI message\n",
1036				    msic);
1037				rid = 1;
1038			} else
1039				pci_release_msi(dev);
1040		}
1041	}
1042
1043	/* Allocate interrupt */
1044	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1045	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1046	if (sc->vge_irq == NULL) {
1047		device_printf(dev, "couldn't map interrupt\n");
1048		error = ENXIO;
1049		goto fail;
1050	}
1051
1052	/* Reset the adapter. */
1053	vge_reset(sc);
1054	/* Reload EEPROM. */
1055	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1056	for (i = 0; i < VGE_TIMEOUT; i++) {
1057		DELAY(5);
1058		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1059			break;
1060	}
1061	if (i == VGE_TIMEOUT)
1062		device_printf(dev, "EEPROM reload timed out\n");
1063	/*
1064	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1065	 * MAC will receive magic packet which in turn confuses
1066	 * controller.
1067	 */
1068	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1069
1070	/*
1071	 * Get station address from the EEPROM.
1072	 */
1073	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1074	/*
1075	 * Save configured PHY address.
1076	 * It seems the PHY address of PCIe controllers just
1077	 * reflects media jump strapping status so we assume the
1078	 * internal PHY address of PCIe controller is at 1.
1079	 */
1080	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1081		sc->vge_phyaddr = 1;
1082	else
1083		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1084		    VGE_MIICFG_PHYADDR;
1085	/* Clear WOL and take hardware from powerdown. */
1086	vge_clrwol(sc);
1087	vge_sysctl_node(sc);
1088	error = vge_dma_alloc(sc);
1089	if (error)
1090		goto fail;
1091
1092	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1093	if (ifp == NULL) {
1094		device_printf(dev, "can not if_alloc()\n");
1095		error = ENOSPC;
1096		goto fail;
1097	}
1098
1099	vge_miipoll_start(sc);
1100	/* Do MII setup */
1101	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1102	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1103	    MIIF_DOPAUSE);
1104	if (error != 0) {
1105		device_printf(dev, "attaching PHYs failed\n");
1106		goto fail;
1107	}
1108
1109	ifp->if_softc = sc;
1110	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1111	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1112	ifp->if_ioctl = vge_ioctl;
1113	ifp->if_capabilities = IFCAP_VLAN_MTU;
1114	ifp->if_start = vge_start;
1115	ifp->if_hwassist = VGE_CSUM_FEATURES;
1116	ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1117	    IFCAP_VLAN_HWTAGGING;
1118	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1119		ifp->if_capabilities |= IFCAP_WOL;
1120	ifp->if_capenable = ifp->if_capabilities;
1121#ifdef DEVICE_POLLING
1122	ifp->if_capabilities |= IFCAP_POLLING;
1123#endif
1124	ifp->if_init = vge_init;
1125	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1126	ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1127	IFQ_SET_READY(&ifp->if_snd);
1128
1129	/*
1130	 * Call MI attach routine.
1131	 */
1132	ether_ifattach(ifp, eaddr);
1133
1134	/* Tell the upper layer(s) we support long frames. */
1135	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1136
1137	/* Hook interrupt last to avoid having to lock softc */
1138	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1139	    NULL, vge_intr, sc, &sc->vge_intrhand);
1140
1141	if (error) {
1142		device_printf(dev, "couldn't set up irq\n");
1143		ether_ifdetach(ifp);
1144		goto fail;
1145	}
1146
1147fail:
1148	if (error)
1149		vge_detach(dev);
1150
1151	return (error);
1152}
1153
1154/*
1155 * Shutdown hardware and free up resources. This can be called any
1156 * time after the mutex has been initialized. It is called in both
1157 * the error case in attach and the normal detach case so it needs
1158 * to be careful about only freeing resources that have actually been
1159 * allocated.
1160 */
1161static int
1162vge_detach(device_t dev)
1163{
1164	struct vge_softc *sc;
1165	struct ifnet *ifp;
1166
1167	sc = device_get_softc(dev);
1168	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1169	ifp = sc->vge_ifp;
1170
1171#ifdef DEVICE_POLLING
1172	if (ifp->if_capenable & IFCAP_POLLING)
1173		ether_poll_deregister(ifp);
1174#endif
1175
1176	/* These should only be active if attach succeeded */
1177	if (device_is_attached(dev)) {
1178		ether_ifdetach(ifp);
1179		VGE_LOCK(sc);
1180		vge_stop(sc);
1181		VGE_UNLOCK(sc);
1182		callout_drain(&sc->vge_watchdog);
1183	}
1184	if (sc->vge_miibus)
1185		device_delete_child(dev, sc->vge_miibus);
1186	bus_generic_detach(dev);
1187
1188	if (sc->vge_intrhand)
1189		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1190	if (sc->vge_irq)
1191		bus_release_resource(dev, SYS_RES_IRQ,
1192		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1193	if (sc->vge_flags & VGE_FLAG_MSI)
1194		pci_release_msi(dev);
1195	if (sc->vge_res)
1196		bus_release_resource(dev, SYS_RES_MEMORY,
1197		    PCIR_BAR(1), sc->vge_res);
1198	if (ifp)
1199		if_free(ifp);
1200
1201	vge_dma_free(sc);
1202	mtx_destroy(&sc->vge_mtx);
1203
1204	return (0);
1205}
1206
1207static void
1208vge_discard_rxbuf(struct vge_softc *sc, int prod)
1209{
1210	struct vge_rxdesc *rxd;
1211	int i;
1212
1213	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1214	rxd->rx_desc->vge_sts = 0;
1215	rxd->rx_desc->vge_ctl = 0;
1216
1217	/*
1218	 * Note: the manual fails to document the fact that for
1219	 * proper opration, the driver needs to replentish the RX
1220	 * DMA ring 4 descriptors at a time (rather than one at a
1221	 * time, like most chips). We can allocate the new buffers
1222	 * but we should not set the OWN bits until we're ready
1223	 * to hand back 4 of them in one shot.
1224	 */
1225	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1226		for (i = VGE_RXCHUNK; i > 0; i--) {
1227			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1228			rxd = rxd->rxd_prev;
1229		}
1230		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1231	}
1232}
1233
1234static int
1235vge_newbuf(struct vge_softc *sc, int prod)
1236{
1237	struct vge_rxdesc *rxd;
1238	struct mbuf *m;
1239	bus_dma_segment_t segs[1];
1240	bus_dmamap_t map;
1241	int i, nsegs;
1242
1243	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1244	if (m == NULL)
1245		return (ENOBUFS);
1246	/*
1247	 * This is part of an evil trick to deal with strict-alignment
1248	 * architectures. The VIA chip requires RX buffers to be aligned
1249	 * on 32-bit boundaries, but that will hose strict-alignment
1250	 * architectures. To get around this, we leave some empty space
1251	 * at the start of each buffer and for non-strict-alignment hosts,
1252	 * we copy the buffer back two bytes to achieve word alignment.
1253	 * This is slightly more efficient than allocating a new buffer,
1254	 * copying the contents, and discarding the old buffer.
1255	 */
1256	m->m_len = m->m_pkthdr.len = MCLBYTES;
1257	m_adj(m, VGE_RX_BUF_ALIGN);
1258
1259	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1260	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1261		m_freem(m);
1262		return (ENOBUFS);
1263	}
1264	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1265
1266	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1267	if (rxd->rx_m != NULL) {
1268		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1269		    BUS_DMASYNC_POSTREAD);
1270		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1271	}
1272	map = rxd->rx_dmamap;
1273	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1274	sc->vge_cdata.vge_rx_sparemap = map;
1275	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1276	    BUS_DMASYNC_PREREAD);
1277	rxd->rx_m = m;
1278
1279	rxd->rx_desc->vge_sts = 0;
1280	rxd->rx_desc->vge_ctl = 0;
1281	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1282	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1283	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1284
1285	/*
1286	 * Note: the manual fails to document the fact that for
1287	 * proper operation, the driver needs to replenish the RX
1288	 * DMA ring 4 descriptors at a time (rather than one at a
1289	 * time, like most chips). We can allocate the new buffers
1290	 * but we should not set the OWN bits until we're ready
1291	 * to hand back 4 of them in one shot.
1292	 */
1293	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1294		for (i = VGE_RXCHUNK; i > 0; i--) {
1295			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1296			rxd = rxd->rxd_prev;
1297		}
1298		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1299	}
1300
1301	return (0);
1302}
1303
1304static int
1305vge_tx_list_init(struct vge_softc *sc)
1306{
1307	struct vge_ring_data *rd;
1308	struct vge_txdesc *txd;
1309	int i;
1310
1311	VGE_LOCK_ASSERT(sc);
1312
1313	sc->vge_cdata.vge_tx_prodidx = 0;
1314	sc->vge_cdata.vge_tx_considx = 0;
1315	sc->vge_cdata.vge_tx_cnt = 0;
1316
1317	rd = &sc->vge_rdata;
1318	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1319	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1320		txd = &sc->vge_cdata.vge_txdesc[i];
1321		txd->tx_m = NULL;
1322		txd->tx_desc = &rd->vge_tx_ring[i];
1323	}
1324
1325	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1326	    sc->vge_cdata.vge_tx_ring_map,
1327	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1328
1329	return (0);
1330}
1331
1332static int
1333vge_rx_list_init(struct vge_softc *sc)
1334{
1335	struct vge_ring_data *rd;
1336	struct vge_rxdesc *rxd;
1337	int i;
1338
1339	VGE_LOCK_ASSERT(sc);
1340
1341	sc->vge_cdata.vge_rx_prodidx = 0;
1342	sc->vge_cdata.vge_head = NULL;
1343	sc->vge_cdata.vge_tail = NULL;
1344	sc->vge_cdata.vge_rx_commit = 0;
1345
1346	rd = &sc->vge_rdata;
1347	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1348	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1349		rxd = &sc->vge_cdata.vge_rxdesc[i];
1350		rxd->rx_m = NULL;
1351		rxd->rx_desc = &rd->vge_rx_ring[i];
1352		if (i == 0)
1353			rxd->rxd_prev =
1354			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1355		else
1356			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1357		if (vge_newbuf(sc, i) != 0)
1358			return (ENOBUFS);
1359	}
1360
1361	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1362	    sc->vge_cdata.vge_rx_ring_map,
1363	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1364
1365	sc->vge_cdata.vge_rx_commit = 0;
1366
1367	return (0);
1368}
1369
1370static void
1371vge_freebufs(struct vge_softc *sc)
1372{
1373	struct vge_txdesc *txd;
1374	struct vge_rxdesc *rxd;
1375	struct ifnet *ifp;
1376	int i;
1377
1378	VGE_LOCK_ASSERT(sc);
1379
1380	ifp = sc->vge_ifp;
1381	/*
1382	 * Free RX and TX mbufs still in the queues.
1383	 */
1384	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1385		rxd = &sc->vge_cdata.vge_rxdesc[i];
1386		if (rxd->rx_m != NULL) {
1387			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1388			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1389			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1390			    rxd->rx_dmamap);
1391			m_freem(rxd->rx_m);
1392			rxd->rx_m = NULL;
1393		}
1394	}
1395
1396	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1397		txd = &sc->vge_cdata.vge_txdesc[i];
1398		if (txd->tx_m != NULL) {
1399			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1400			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1401			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1402			    txd->tx_dmamap);
1403			m_freem(txd->tx_m);
1404			txd->tx_m = NULL;
1405			ifp->if_oerrors++;
1406		}
1407	}
1408}
1409
1410#ifndef	__NO_STRICT_ALIGNMENT
1411static __inline void
1412vge_fixup_rx(struct mbuf *m)
1413{
1414	int i;
1415	uint16_t *src, *dst;
1416
1417	src = mtod(m, uint16_t *);
1418	dst = src - 1;
1419
1420	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1421		*dst++ = *src++;
1422
1423	m->m_data -= ETHER_ALIGN;
1424}
1425#endif
1426
1427/*
1428 * RX handler. We support the reception of jumbo frames that have
1429 * been fragmented across multiple 2K mbuf cluster buffers.
1430 */
1431static int
1432vge_rxeof(struct vge_softc *sc, int count)
1433{
1434	struct mbuf *m;
1435	struct ifnet *ifp;
1436	int prod, prog, total_len;
1437	struct vge_rxdesc *rxd;
1438	struct vge_rx_desc *cur_rx;
1439	uint32_t rxstat, rxctl;
1440
1441	VGE_LOCK_ASSERT(sc);
1442
1443	ifp = sc->vge_ifp;
1444
1445	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1446	    sc->vge_cdata.vge_rx_ring_map,
1447	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1448
1449	prod = sc->vge_cdata.vge_rx_prodidx;
1450	for (prog = 0; count > 0 &&
1451	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1452	    VGE_RX_DESC_INC(prod)) {
1453		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1454		rxstat = le32toh(cur_rx->vge_sts);
1455		if ((rxstat & VGE_RDSTS_OWN) != 0)
1456			break;
1457		count--;
1458		prog++;
1459		rxctl = le32toh(cur_rx->vge_ctl);
1460		total_len = VGE_RXBYTES(rxstat);
1461		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1462		m = rxd->rx_m;
1463
1464		/*
1465		 * If the 'start of frame' bit is set, this indicates
1466		 * either the first fragment in a multi-fragment receive,
1467		 * or an intermediate fragment. Either way, we want to
1468		 * accumulate the buffers.
1469		 */
1470		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1471			if (vge_newbuf(sc, prod) != 0) {
1472				ifp->if_iqdrops++;
1473				VGE_CHAIN_RESET(sc);
1474				vge_discard_rxbuf(sc, prod);
1475				continue;
1476			}
1477			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1478			if (sc->vge_cdata.vge_head == NULL) {
1479				sc->vge_cdata.vge_head = m;
1480				sc->vge_cdata.vge_tail = m;
1481			} else {
1482				m->m_flags &= ~M_PKTHDR;
1483				sc->vge_cdata.vge_tail->m_next = m;
1484				sc->vge_cdata.vge_tail = m;
1485			}
1486			continue;
1487		}
1488
1489		/*
1490		 * Bad/error frames will have the RXOK bit cleared.
1491		 * However, there's one error case we want to allow:
1492		 * if a VLAN tagged frame arrives and the chip can't
1493		 * match it against the CAM filter, it considers this
1494		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1495		 * We don't want to drop the frame though: our VLAN
1496		 * filtering is done in software.
1497		 * We also want to receive bad-checksummed frames and
1498		 * and frames with bad-length.
1499		 */
1500		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1501		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1502		    VGE_RDSTS_CSUMERR)) == 0) {
1503			ifp->if_ierrors++;
1504			/*
1505			 * If this is part of a multi-fragment packet,
1506			 * discard all the pieces.
1507			 */
1508			VGE_CHAIN_RESET(sc);
1509			vge_discard_rxbuf(sc, prod);
1510			continue;
1511		}
1512
1513		if (vge_newbuf(sc, prod) != 0) {
1514			ifp->if_iqdrops++;
1515			VGE_CHAIN_RESET(sc);
1516			vge_discard_rxbuf(sc, prod);
1517			continue;
1518		}
1519
1520		/* Chain received mbufs. */
1521		if (sc->vge_cdata.vge_head != NULL) {
1522			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1523			/*
1524			 * Special case: if there's 4 bytes or less
1525			 * in this buffer, the mbuf can be discarded:
1526			 * the last 4 bytes is the CRC, which we don't
1527			 * care about anyway.
1528			 */
1529			if (m->m_len <= ETHER_CRC_LEN) {
1530				sc->vge_cdata.vge_tail->m_len -=
1531				    (ETHER_CRC_LEN - m->m_len);
1532				m_freem(m);
1533			} else {
1534				m->m_len -= ETHER_CRC_LEN;
1535				m->m_flags &= ~M_PKTHDR;
1536				sc->vge_cdata.vge_tail->m_next = m;
1537			}
1538			m = sc->vge_cdata.vge_head;
1539			m->m_flags |= M_PKTHDR;
1540			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1541		} else {
1542			m->m_flags |= M_PKTHDR;
1543			m->m_pkthdr.len = m->m_len =
1544			    (total_len - ETHER_CRC_LEN);
1545		}
1546
1547#ifndef	__NO_STRICT_ALIGNMENT
1548		vge_fixup_rx(m);
1549#endif
1550		m->m_pkthdr.rcvif = ifp;
1551
1552		/* Do RX checksumming if enabled */
1553		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1554		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1555			/* Check IP header checksum */
1556			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1557				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1558			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1559				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1560
1561			/* Check TCP/UDP checksum */
1562			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1563			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1564				m->m_pkthdr.csum_flags |=
1565				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1566				m->m_pkthdr.csum_data = 0xffff;
1567			}
1568		}
1569
1570		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1571			/*
1572			 * The 32-bit rxctl register is stored in little-endian.
1573			 * However, the 16-bit vlan tag is stored in big-endian,
1574			 * so we have to byte swap it.
1575			 */
1576			m->m_pkthdr.ether_vtag =
1577			    bswap16(rxctl & VGE_RDCTL_VLANID);
1578			m->m_flags |= M_VLANTAG;
1579		}
1580
1581		VGE_UNLOCK(sc);
1582		(*ifp->if_input)(ifp, m);
1583		VGE_LOCK(sc);
1584		sc->vge_cdata.vge_head = NULL;
1585		sc->vge_cdata.vge_tail = NULL;
1586	}
1587
1588	if (prog > 0) {
1589		sc->vge_cdata.vge_rx_prodidx = prod;
1590		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1591		    sc->vge_cdata.vge_rx_ring_map,
1592		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1593		/* Update residue counter. */
1594		if (sc->vge_cdata.vge_rx_commit != 0) {
1595			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1596			    sc->vge_cdata.vge_rx_commit);
1597			sc->vge_cdata.vge_rx_commit = 0;
1598		}
1599	}
1600	return (prog);
1601}
1602
1603static void
1604vge_txeof(struct vge_softc *sc)
1605{
1606	struct ifnet *ifp;
1607	struct vge_tx_desc *cur_tx;
1608	struct vge_txdesc *txd;
1609	uint32_t txstat;
1610	int cons, prod;
1611
1612	VGE_LOCK_ASSERT(sc);
1613
1614	ifp = sc->vge_ifp;
1615
1616	if (sc->vge_cdata.vge_tx_cnt == 0)
1617		return;
1618
1619	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1620	    sc->vge_cdata.vge_tx_ring_map,
1621	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1622
1623	/*
1624	 * Go through our tx list and free mbufs for those
1625	 * frames that have been transmitted.
1626	 */
1627	cons = sc->vge_cdata.vge_tx_considx;
1628	prod = sc->vge_cdata.vge_tx_prodidx;
1629	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1630		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1631		txstat = le32toh(cur_tx->vge_sts);
1632		if ((txstat & VGE_TDSTS_OWN) != 0)
1633			break;
1634		sc->vge_cdata.vge_tx_cnt--;
1635		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1636
1637		txd = &sc->vge_cdata.vge_txdesc[cons];
1638		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1639		    BUS_DMASYNC_POSTWRITE);
1640		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1641
1642		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1643		    __func__));
1644		m_freem(txd->tx_m);
1645		txd->tx_m = NULL;
1646		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1647	}
1648	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1649	    sc->vge_cdata.vge_tx_ring_map,
1650	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1651	sc->vge_cdata.vge_tx_considx = cons;
1652	if (sc->vge_cdata.vge_tx_cnt == 0)
1653		sc->vge_timer = 0;
1654}
1655
1656static void
1657vge_link_statchg(void *xsc)
1658{
1659	struct vge_softc *sc;
1660	struct ifnet *ifp;
1661	uint8_t physts;
1662
1663	sc = xsc;
1664	ifp = sc->vge_ifp;
1665	VGE_LOCK_ASSERT(sc);
1666
1667	physts = CSR_READ_1(sc, VGE_PHYSTS0);
1668	if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1669		if ((physts & VGE_PHYSTS_LINK) == 0) {
1670			sc->vge_flags &= ~VGE_FLAG_LINK;
1671			if_link_state_change(sc->vge_ifp,
1672			    LINK_STATE_DOWN);
1673		} else {
1674			sc->vge_flags |= VGE_FLAG_LINK;
1675			if_link_state_change(sc->vge_ifp,
1676			    LINK_STATE_UP);
1677			CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1678			    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1679			if ((physts & VGE_PHYSTS_FDX) != 0) {
1680				if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1681					CSR_WRITE_1(sc, VGE_CRS2,
1682					    VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1683				if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1684					CSR_WRITE_1(sc, VGE_CRS2,
1685					    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1686			}
1687			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1688				vge_start_locked(ifp);
1689		}
1690	}
1691	/*
1692	 * Restart MII auto-polling because link state change interrupt
1693	 * will disable it.
1694	 */
1695	vge_miipoll_start(sc);
1696}
1697
1698#ifdef DEVICE_POLLING
1699static int
1700vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1701{
1702	struct vge_softc *sc = ifp->if_softc;
1703	int rx_npkts = 0;
1704
1705	VGE_LOCK(sc);
1706	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1707		goto done;
1708
1709	rx_npkts = vge_rxeof(sc, count);
1710	vge_txeof(sc);
1711
1712	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1713		vge_start_locked(ifp);
1714
1715	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1716		uint32_t       status;
1717		status = CSR_READ_4(sc, VGE_ISR);
1718		if (status == 0xFFFFFFFF)
1719			goto done;
1720		if (status)
1721			CSR_WRITE_4(sc, VGE_ISR, status);
1722
1723		/*
1724		 * XXX check behaviour on receiver stalls.
1725		 */
1726
1727		if (status & VGE_ISR_TXDMA_STALL ||
1728		    status & VGE_ISR_RXDMA_STALL) {
1729			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1730			vge_init_locked(sc);
1731		}
1732
1733		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1734			vge_rxeof(sc, count);
1735			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1736			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1737		}
1738	}
1739done:
1740	VGE_UNLOCK(sc);
1741	return (rx_npkts);
1742}
1743#endif /* DEVICE_POLLING */
1744
1745static void
1746vge_intr(void *arg)
1747{
1748	struct vge_softc *sc;
1749	struct ifnet *ifp;
1750	uint32_t status;
1751
1752	sc = arg;
1753	VGE_LOCK(sc);
1754
1755	ifp = sc->vge_ifp;
1756	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1757	    (ifp->if_flags & IFF_UP) == 0) {
1758		VGE_UNLOCK(sc);
1759		return;
1760	}
1761
1762#ifdef DEVICE_POLLING
1763	if  (ifp->if_capenable & IFCAP_POLLING) {
1764		status = CSR_READ_4(sc, VGE_ISR);
1765		CSR_WRITE_4(sc, VGE_ISR, status);
1766		if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1767			vge_link_statchg(sc);
1768		VGE_UNLOCK(sc);
1769		return;
1770	}
1771#endif
1772
1773	/* Disable interrupts */
1774	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1775	status = CSR_READ_4(sc, VGE_ISR);
1776	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1777	/* If the card has gone away the read returns 0xffff. */
1778	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1779		goto done;
1780	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1781		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1782			vge_rxeof(sc, VGE_RX_DESC_CNT);
1783		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1784			vge_rxeof(sc, VGE_RX_DESC_CNT);
1785			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1786			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1787		}
1788
1789		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1790			vge_txeof(sc);
1791
1792		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1793			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1794			vge_init_locked(sc);
1795		}
1796
1797		if (status & VGE_ISR_LINKSTS)
1798			vge_link_statchg(sc);
1799	}
1800done:
1801	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1802		/* Re-enable interrupts */
1803		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1804
1805		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1806			vge_start_locked(ifp);
1807	}
1808	VGE_UNLOCK(sc);
1809}
1810
1811static int
1812vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1813{
1814	struct vge_txdesc *txd;
1815	struct vge_tx_frag *frag;
1816	struct mbuf *m;
1817	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1818	int error, i, nsegs, padlen;
1819	uint32_t cflags;
1820
1821	VGE_LOCK_ASSERT(sc);
1822
1823	M_ASSERTPKTHDR((*m_head));
1824
1825	/* Argh. This chip does not autopad short frames. */
1826	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1827		m = *m_head;
1828		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1829		if (M_WRITABLE(m) == 0) {
1830			/* Get a writable copy. */
1831			m = m_dup(*m_head, M_NOWAIT);
1832			m_freem(*m_head);
1833			if (m == NULL) {
1834				*m_head = NULL;
1835				return (ENOBUFS);
1836			}
1837			*m_head = m;
1838		}
1839		if (M_TRAILINGSPACE(m) < padlen) {
1840			m = m_defrag(m, M_NOWAIT);
1841			if (m == NULL) {
1842				m_freem(*m_head);
1843				*m_head = NULL;
1844				return (ENOBUFS);
1845			}
1846		}
1847		/*
1848		 * Manually pad short frames, and zero the pad space
1849		 * to avoid leaking data.
1850		 */
1851		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1852		m->m_pkthdr.len += padlen;
1853		m->m_len = m->m_pkthdr.len;
1854		*m_head = m;
1855	}
1856
1857	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1858
1859	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1860	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1861	if (error == EFBIG) {
1862		m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1863		if (m == NULL) {
1864			m_freem(*m_head);
1865			*m_head = NULL;
1866			return (ENOMEM);
1867		}
1868		*m_head = m;
1869		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1870		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1871		if (error != 0) {
1872			m_freem(*m_head);
1873			*m_head = NULL;
1874			return (error);
1875		}
1876	} else if (error != 0)
1877		return (error);
1878	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1879	    BUS_DMASYNC_PREWRITE);
1880
1881	m = *m_head;
1882	cflags = 0;
1883
1884	/* Configure checksum offload. */
1885	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1886		cflags |= VGE_TDCTL_IPCSUM;
1887	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1888		cflags |= VGE_TDCTL_TCPCSUM;
1889	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1890		cflags |= VGE_TDCTL_UDPCSUM;
1891
1892	/* Configure VLAN. */
1893	if ((m->m_flags & M_VLANTAG) != 0)
1894		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1895	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1896	/*
1897	 * XXX
1898	 * Velocity family seems to support TSO but no information
1899	 * for MSS configuration is available. Also the number of
1900	 * fragments supported by a descriptor is too small to hold
1901	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1902	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1903	 * longer chain of buffers but no additional information is
1904	 * available.
1905	 *
1906	 * When telling the chip how many segments there are, we
1907	 * must use nsegs + 1 instead of just nsegs. Darned if I
1908	 * know why. This also means we can't use the last fragment
1909	 * field of Tx descriptor.
1910	 */
1911	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1912	    VGE_TD_LS_NORM);
1913	for (i = 0; i < nsegs; i++) {
1914		frag = &txd->tx_desc->vge_frag[i];
1915		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1916		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1917		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1918	}
1919
1920	sc->vge_cdata.vge_tx_cnt++;
1921	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1922
1923	/*
1924	 * Finally request interrupt and give the first descriptor
1925	 * ownership to hardware.
1926	 */
1927	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1928	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1929	txd->tx_m = m;
1930
1931	return (0);
1932}
1933
1934/*
1935 * Main transmit routine.
1936 */
1937
1938static void
1939vge_start(struct ifnet *ifp)
1940{
1941	struct vge_softc *sc;
1942
1943	sc = ifp->if_softc;
1944	VGE_LOCK(sc);
1945	vge_start_locked(ifp);
1946	VGE_UNLOCK(sc);
1947}
1948
1949
1950static void
1951vge_start_locked(struct ifnet *ifp)
1952{
1953	struct vge_softc *sc;
1954	struct vge_txdesc *txd;
1955	struct mbuf *m_head;
1956	int enq, idx;
1957
1958	sc = ifp->if_softc;
1959
1960	VGE_LOCK_ASSERT(sc);
1961
1962	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1963	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1964	    IFF_DRV_RUNNING)
1965		return;
1966
1967	idx = sc->vge_cdata.vge_tx_prodidx;
1968	VGE_TX_DESC_DEC(idx);
1969	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1970	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1971		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1972		if (m_head == NULL)
1973			break;
1974		/*
1975		 * Pack the data into the transmit ring. If we
1976		 * don't have room, set the OACTIVE flag and wait
1977		 * for the NIC to drain the ring.
1978		 */
1979		if (vge_encap(sc, &m_head)) {
1980			if (m_head == NULL)
1981				break;
1982			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1983			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1984			break;
1985		}
1986
1987		txd = &sc->vge_cdata.vge_txdesc[idx];
1988		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1989		VGE_TX_DESC_INC(idx);
1990
1991		enq++;
1992		/*
1993		 * If there's a BPF listener, bounce a copy of this frame
1994		 * to him.
1995		 */
1996		ETHER_BPF_MTAP(ifp, m_head);
1997	}
1998
1999	if (enq > 0) {
2000		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
2001		    sc->vge_cdata.vge_tx_ring_map,
2002		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2003		/* Issue a transmit command. */
2004		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2005		/*
2006		 * Set a timeout in case the chip goes out to lunch.
2007		 */
2008		sc->vge_timer = 5;
2009	}
2010}
2011
2012static void
2013vge_init(void *xsc)
2014{
2015	struct vge_softc *sc = xsc;
2016
2017	VGE_LOCK(sc);
2018	vge_init_locked(sc);
2019	VGE_UNLOCK(sc);
2020}
2021
2022static void
2023vge_init_locked(struct vge_softc *sc)
2024{
2025	struct ifnet *ifp = sc->vge_ifp;
2026	int error, i;
2027
2028	VGE_LOCK_ASSERT(sc);
2029
2030	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2031		return;
2032
2033	/*
2034	 * Cancel pending I/O and free all RX/TX buffers.
2035	 */
2036	vge_stop(sc);
2037	vge_reset(sc);
2038	vge_miipoll_start(sc);
2039
2040	/*
2041	 * Initialize the RX and TX descriptors and mbufs.
2042	 */
2043
2044	error = vge_rx_list_init(sc);
2045	if (error != 0) {
2046                device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2047                return;
2048	}
2049	vge_tx_list_init(sc);
2050	/* Clear MAC statistics. */
2051	vge_stats_clear(sc);
2052	/* Set our station address */
2053	for (i = 0; i < ETHER_ADDR_LEN; i++)
2054		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2055
2056	/*
2057	 * Set receive FIFO threshold. Also allow transmission and
2058	 * reception of VLAN tagged frames.
2059	 */
2060	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2061	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2062
2063	/* Set DMA burst length */
2064	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2065	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2066
2067	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2068
2069	/* Set collision backoff algorithm */
2070	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2071	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2072	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2073
2074	/* Disable LPSEL field in priority resolution */
2075	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2076
2077	/*
2078	 * Load the addresses of the DMA queues into the chip.
2079	 * Note that we only use one transmit queue.
2080	 */
2081
2082	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2083	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2084	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2085	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2086	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2087
2088	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2089	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2090	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2091	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2092
2093	/* Configure interrupt moderation. */
2094	vge_intr_holdoff(sc);
2095
2096	/* Enable and wake up the RX descriptor queue */
2097	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2098	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2099
2100	/* Enable the TX descriptor queue */
2101	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2102
2103	/* Init the cam filter. */
2104	vge_cam_clear(sc);
2105
2106	/* Set up receiver filter. */
2107	vge_rxfilter(sc);
2108	vge_setvlan(sc);
2109
2110	/* Initialize pause timer. */
2111	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2112	/*
2113	 * Initialize flow control parameters.
2114	 *  TX XON high threshold : 48
2115	 *  TX pause low threshold : 24
2116	 *  Disable hald-duplex flow control
2117	 */
2118	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2119	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2120
2121	/* Enable jumbo frame reception (if desired) */
2122
2123	/* Start the MAC. */
2124	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2125	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2126	CSR_WRITE_1(sc, VGE_CRS0,
2127	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2128
2129#ifdef DEVICE_POLLING
2130	/*
2131	 * Disable interrupts except link state change if we are polling.
2132	 */
2133	if (ifp->if_capenable & IFCAP_POLLING) {
2134		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2135	} else	/* otherwise ... */
2136#endif
2137	{
2138	/*
2139	 * Enable interrupts.
2140	 */
2141		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2142	}
2143	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2144	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2145
2146	sc->vge_flags &= ~VGE_FLAG_LINK;
2147	vge_ifmedia_upd_locked(sc);
2148
2149	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2150	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2151	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2152}
2153
2154/*
2155 * Set media options.
2156 */
2157static int
2158vge_ifmedia_upd(struct ifnet *ifp)
2159{
2160	struct vge_softc *sc;
2161	int error;
2162
2163	sc = ifp->if_softc;
2164	VGE_LOCK(sc);
2165	error = vge_ifmedia_upd_locked(sc);
2166	VGE_UNLOCK(sc);
2167
2168	return (error);
2169}
2170
2171static int
2172vge_ifmedia_upd_locked(struct vge_softc *sc)
2173{
2174	struct mii_data *mii;
2175	struct mii_softc *miisc;
2176	int error;
2177
2178	mii = device_get_softc(sc->vge_miibus);
2179	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2180		PHY_RESET(miisc);
2181	vge_setmedia(sc);
2182	error = mii_mediachg(mii);
2183
2184	return (error);
2185}
2186
2187/*
2188 * Report current media status.
2189 */
2190static void
2191vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2192{
2193	struct vge_softc *sc;
2194	struct mii_data *mii;
2195
2196	sc = ifp->if_softc;
2197	mii = device_get_softc(sc->vge_miibus);
2198
2199	VGE_LOCK(sc);
2200	if ((ifp->if_flags & IFF_UP) == 0) {
2201		VGE_UNLOCK(sc);
2202		return;
2203	}
2204	mii_pollstat(mii);
2205	ifmr->ifm_active = mii->mii_media_active;
2206	ifmr->ifm_status = mii->mii_media_status;
2207	VGE_UNLOCK(sc);
2208}
2209
2210static void
2211vge_setmedia(struct vge_softc *sc)
2212{
2213	struct mii_data *mii;
2214	struct ifmedia_entry *ife;
2215
2216	mii = device_get_softc(sc->vge_miibus);
2217	ife = mii->mii_media.ifm_cur;
2218
2219	/*
2220	 * If the user manually selects a media mode, we need to turn
2221	 * on the forced MAC mode bit in the DIAGCTL register. If the
2222	 * user happens to choose a full duplex mode, we also need to
2223	 * set the 'force full duplex' bit. This applies only to
2224	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2225	 * mode is disabled, and in 1000baseT mode, full duplex is
2226	 * always implied, so we turn on the forced mode bit but leave
2227	 * the FDX bit cleared.
2228	 */
2229
2230	switch (IFM_SUBTYPE(ife->ifm_media)) {
2231	case IFM_AUTO:
2232		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2233		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2234		break;
2235	case IFM_1000_T:
2236		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2237		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2238		break;
2239	case IFM_100_TX:
2240	case IFM_10_T:
2241		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2242		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2243			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2244		} else {
2245			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2246		}
2247		break;
2248	default:
2249		device_printf(sc->vge_dev, "unknown media type: %x\n",
2250		    IFM_SUBTYPE(ife->ifm_media));
2251		break;
2252	}
2253}
2254
2255static int
2256vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2257{
2258	struct vge_softc *sc = ifp->if_softc;
2259	struct ifreq *ifr = (struct ifreq *) data;
2260	struct mii_data *mii;
2261	int error = 0, mask;
2262
2263	switch (command) {
2264	case SIOCSIFMTU:
2265		VGE_LOCK(sc);
2266		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2267			error = EINVAL;
2268		else if (ifp->if_mtu != ifr->ifr_mtu) {
2269			if (ifr->ifr_mtu > ETHERMTU &&
2270			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2271				error = EINVAL;
2272			else
2273				ifp->if_mtu = ifr->ifr_mtu;
2274		}
2275		VGE_UNLOCK(sc);
2276		break;
2277	case SIOCSIFFLAGS:
2278		VGE_LOCK(sc);
2279		if ((ifp->if_flags & IFF_UP) != 0) {
2280			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2281			    ((ifp->if_flags ^ sc->vge_if_flags) &
2282			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2283				vge_rxfilter(sc);
2284			else
2285				vge_init_locked(sc);
2286		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2287			vge_stop(sc);
2288		sc->vge_if_flags = ifp->if_flags;
2289		VGE_UNLOCK(sc);
2290		break;
2291	case SIOCADDMULTI:
2292	case SIOCDELMULTI:
2293		VGE_LOCK(sc);
2294		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2295			vge_rxfilter(sc);
2296		VGE_UNLOCK(sc);
2297		break;
2298	case SIOCGIFMEDIA:
2299	case SIOCSIFMEDIA:
2300		mii = device_get_softc(sc->vge_miibus);
2301		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2302		break;
2303	case SIOCSIFCAP:
2304		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2305#ifdef DEVICE_POLLING
2306		if (mask & IFCAP_POLLING) {
2307			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2308				error = ether_poll_register(vge_poll, ifp);
2309				if (error)
2310					return (error);
2311				VGE_LOCK(sc);
2312					/* Disable interrupts */
2313				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2314				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2315				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2316				ifp->if_capenable |= IFCAP_POLLING;
2317				VGE_UNLOCK(sc);
2318			} else {
2319				error = ether_poll_deregister(ifp);
2320				/* Enable interrupts. */
2321				VGE_LOCK(sc);
2322				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2323				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2324				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2325				ifp->if_capenable &= ~IFCAP_POLLING;
2326				VGE_UNLOCK(sc);
2327			}
2328		}
2329#endif /* DEVICE_POLLING */
2330		VGE_LOCK(sc);
2331		if ((mask & IFCAP_TXCSUM) != 0 &&
2332		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2333			ifp->if_capenable ^= IFCAP_TXCSUM;
2334			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2335				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2336			else
2337				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2338		}
2339		if ((mask & IFCAP_RXCSUM) != 0 &&
2340		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2341			ifp->if_capenable ^= IFCAP_RXCSUM;
2342		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2343		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2344			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2345		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2346		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2347			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2348		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2349		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2350			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2351		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2352		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2353			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2354		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2355		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2356			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2357			vge_setvlan(sc);
2358		}
2359		VGE_UNLOCK(sc);
2360		VLAN_CAPABILITIES(ifp);
2361		break;
2362	default:
2363		error = ether_ioctl(ifp, command, data);
2364		break;
2365	}
2366
2367	return (error);
2368}
2369
2370static void
2371vge_watchdog(void *arg)
2372{
2373	struct vge_softc *sc;
2374	struct ifnet *ifp;
2375
2376	sc = arg;
2377	VGE_LOCK_ASSERT(sc);
2378	vge_stats_update(sc);
2379	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2380	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2381		return;
2382
2383	ifp = sc->vge_ifp;
2384	if_printf(ifp, "watchdog timeout\n");
2385	ifp->if_oerrors++;
2386
2387	vge_txeof(sc);
2388	vge_rxeof(sc, VGE_RX_DESC_CNT);
2389
2390	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2391	vge_init_locked(sc);
2392}
2393
2394/*
2395 * Stop the adapter and free any mbufs allocated to the
2396 * RX and TX lists.
2397 */
2398static void
2399vge_stop(struct vge_softc *sc)
2400{
2401	struct ifnet *ifp;
2402
2403	VGE_LOCK_ASSERT(sc);
2404	ifp = sc->vge_ifp;
2405	sc->vge_timer = 0;
2406	callout_stop(&sc->vge_watchdog);
2407
2408	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2409
2410	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2411	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2412	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2413	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2414	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2415	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2416
2417	vge_stats_update(sc);
2418	VGE_CHAIN_RESET(sc);
2419	vge_txeof(sc);
2420	vge_freebufs(sc);
2421}
2422
2423/*
2424 * Device suspend routine.  Stop the interface and save some PCI
2425 * settings in case the BIOS doesn't restore them properly on
2426 * resume.
2427 */
2428static int
2429vge_suspend(device_t dev)
2430{
2431	struct vge_softc *sc;
2432
2433	sc = device_get_softc(dev);
2434
2435	VGE_LOCK(sc);
2436	vge_stop(sc);
2437	vge_setwol(sc);
2438	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2439	VGE_UNLOCK(sc);
2440
2441	return (0);
2442}
2443
2444/*
2445 * Device resume routine.  Restore some PCI settings in case the BIOS
2446 * doesn't, re-enable busmastering, and restart the interface if
2447 * appropriate.
2448 */
2449static int
2450vge_resume(device_t dev)
2451{
2452	struct vge_softc *sc;
2453	struct ifnet *ifp;
2454	uint16_t pmstat;
2455
2456	sc = device_get_softc(dev);
2457	VGE_LOCK(sc);
2458	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2459		/* Disable PME and clear PME status. */
2460		pmstat = pci_read_config(sc->vge_dev,
2461		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2462		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2463			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2464			pci_write_config(sc->vge_dev,
2465			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2466		}
2467	}
2468	vge_clrwol(sc);
2469	/* Restart MII auto-polling. */
2470	vge_miipoll_start(sc);
2471	ifp = sc->vge_ifp;
2472	/* Reinitialize interface if necessary. */
2473	if ((ifp->if_flags & IFF_UP) != 0) {
2474		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2475		vge_init_locked(sc);
2476	}
2477	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2478	VGE_UNLOCK(sc);
2479
2480	return (0);
2481}
2482
2483/*
2484 * Stop all chip I/O so that the kernel's probe routines don't
2485 * get confused by errant DMAs when rebooting.
2486 */
2487static int
2488vge_shutdown(device_t dev)
2489{
2490
2491	return (vge_suspend(dev));
2492}
2493
2494#define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2495	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2496
2497static void
2498vge_sysctl_node(struct vge_softc *sc)
2499{
2500	struct sysctl_ctx_list *ctx;
2501	struct sysctl_oid_list *child, *parent;
2502	struct sysctl_oid *tree;
2503	struct vge_hw_stats *stats;
2504
2505	stats = &sc->vge_stats;
2506	ctx = device_get_sysctl_ctx(sc->vge_dev);
2507	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2508
2509	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2510	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2511	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2512	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2513	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2514	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2515
2516	/* Pull in device tunables. */
2517	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2518	resource_int_value(device_get_name(sc->vge_dev),
2519	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2520	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2521	resource_int_value(device_get_name(sc->vge_dev),
2522	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2523	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2524	resource_int_value(device_get_name(sc->vge_dev),
2525	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2526
2527	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2528	    NULL, "VGE statistics");
2529	parent = SYSCTL_CHILDREN(tree);
2530
2531	/* Rx statistics. */
2532	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2533	    NULL, "RX MAC statistics");
2534	child = SYSCTL_CHILDREN(tree);
2535	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2536	    &stats->rx_frames, "frames");
2537	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2538	    &stats->rx_good_frames, "Good frames");
2539	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2540	    &stats->rx_fifo_oflows, "FIFO overflows");
2541	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2542	    &stats->rx_runts, "Too short frames");
2543	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2544	    &stats->rx_runts_errs, "Too short frames with errors");
2545	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2546	    &stats->rx_pkts_64, "64 bytes frames");
2547	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2548	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2549	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2550	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2551	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2552	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2553	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2554	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2555	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2556	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2557	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2558	    &stats->rx_pkts_1519_max, "1519 to max frames");
2559	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2560	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2561	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2562	    &stats->rx_jumbos, "Jumbo frames");
2563	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2564	    &stats->rx_crcerrs, "CRC errors");
2565	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2566	    &stats->rx_pause_frames, "CRC errors");
2567	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2568	    &stats->rx_alignerrs, "Alignment errors");
2569	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2570	    &stats->rx_nobufs, "Frames with no buffer event");
2571	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2572	    &stats->rx_symerrs, "Frames with symbol errors");
2573	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2574	    &stats->rx_lenerrs, "Frames with length mismatched");
2575
2576	/* Tx statistics. */
2577	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2578	    NULL, "TX MAC statistics");
2579	child = SYSCTL_CHILDREN(tree);
2580	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2581	    &stats->tx_good_frames, "Good frames");
2582	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2583	    &stats->tx_pkts_64, "64 bytes frames");
2584	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2585	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2586	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2587	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2588	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2589	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2590	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2591	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2592	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2593	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2594	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2595	    &stats->tx_jumbos, "Jumbo frames");
2596	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2597	    &stats->tx_colls, "Collisions");
2598	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2599	    &stats->tx_latecolls, "Late collisions");
2600	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2601	    &stats->tx_pause, "Pause frames");
2602#ifdef VGE_ENABLE_SQEERR
2603	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2604	    &stats->tx_sqeerrs, "SQE errors");
2605#endif
2606	/* Clear MAC statistics. */
2607	vge_stats_clear(sc);
2608}
2609
2610#undef	VGE_SYSCTL_STAT_ADD32
2611
2612static void
2613vge_stats_clear(struct vge_softc *sc)
2614{
2615	int i;
2616
2617	CSR_WRITE_1(sc, VGE_MIBCSR,
2618	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2619	CSR_WRITE_1(sc, VGE_MIBCSR,
2620	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2621	for (i = VGE_TIMEOUT; i > 0; i--) {
2622		DELAY(1);
2623		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2624			break;
2625	}
2626	if (i == 0)
2627		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2628	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2629	    ~VGE_MIBCSR_FREEZE);
2630}
2631
2632static void
2633vge_stats_update(struct vge_softc *sc)
2634{
2635	struct vge_hw_stats *stats;
2636	struct ifnet *ifp;
2637	uint32_t mib[VGE_MIB_CNT], val;
2638	int i;
2639
2640	VGE_LOCK_ASSERT(sc);
2641
2642	stats = &sc->vge_stats;
2643	ifp = sc->vge_ifp;
2644
2645	CSR_WRITE_1(sc, VGE_MIBCSR,
2646	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2647	for (i = VGE_TIMEOUT; i > 0; i--) {
2648		DELAY(1);
2649		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2650			break;
2651	}
2652	if (i == 0) {
2653		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2654		vge_stats_clear(sc);
2655		return;
2656	}
2657
2658	bzero(mib, sizeof(mib));
2659reset_idx:
2660	/* Set MIB read index to 0. */
2661	CSR_WRITE_1(sc, VGE_MIBCSR,
2662	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2663	for (i = 0; i < VGE_MIB_CNT; i++) {
2664		val = CSR_READ_4(sc, VGE_MIBDATA);
2665		if (i != VGE_MIB_DATA_IDX(val)) {
2666			/* Reading interrupted. */
2667			goto reset_idx;
2668		}
2669		mib[i] = val & VGE_MIB_DATA_MASK;
2670	}
2671
2672	/* Rx stats. */
2673	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2674	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2675	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2676	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2677	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2678	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2679	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2680	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2681	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2682	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2683	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2684	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2685	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2686	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2687	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2688	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2689	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2690	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2691	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2692	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2693
2694	/* Tx stats. */
2695	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2696	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2697	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2698	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2699	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2700	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2701	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2702	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2703	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2704	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2705#ifdef VGE_ENABLE_SQEERR
2706	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2707#endif
2708	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2709
2710	/* Update counters in ifnet. */
2711	ifp->if_opackets += mib[VGE_MIB_TX_GOOD_FRAMES];
2712
2713	ifp->if_collisions += mib[VGE_MIB_TX_COLLS] +
2714	    mib[VGE_MIB_TX_LATECOLLS];
2715
2716	ifp->if_oerrors += mib[VGE_MIB_TX_COLLS] +
2717	    mib[VGE_MIB_TX_LATECOLLS];
2718
2719	ifp->if_ipackets += mib[VGE_MIB_RX_GOOD_FRAMES];
2720
2721	ifp->if_ierrors += mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2722	    mib[VGE_MIB_RX_RUNTS] +
2723	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2724	    mib[VGE_MIB_RX_CRCERRS] +
2725	    mib[VGE_MIB_RX_ALIGNERRS] +
2726	    mib[VGE_MIB_RX_NOBUFS] +
2727	    mib[VGE_MIB_RX_SYMERRS] +
2728	    mib[VGE_MIB_RX_LENERRS];
2729}
2730
2731static void
2732vge_intr_holdoff(struct vge_softc *sc)
2733{
2734	uint8_t intctl;
2735
2736	VGE_LOCK_ASSERT(sc);
2737
2738	/*
2739	 * Set Tx interrupt supression threshold.
2740	 * It's possible to use single-shot timer in VGE_CRS1 register
2741	 * in Tx path such that driver can remove most of Tx completion
2742	 * interrupts. However this requires additional access to
2743	 * VGE_CRS1 register to reload the timer in addintion to
2744	 * activating Tx kick command. Another downside is we don't know
2745	 * what single-shot timer value should be used in advance so
2746	 * reclaiming transmitted mbufs could be delayed a lot which in
2747	 * turn slows down Tx operation.
2748	 */
2749	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2750	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2751
2752	/* Set Rx interrupt suppresion threshold. */
2753	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2754	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2755
2756	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2757	intctl &= ~VGE_INTCTL_SC_RELOAD;
2758	intctl |= VGE_INTCTL_HC_RELOAD;
2759	if (sc->vge_tx_coal_pkt <= 0)
2760		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2761	else
2762		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2763	if (sc->vge_rx_coal_pkt <= 0)
2764		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2765	else
2766		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2767	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2768	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2769	if (sc->vge_int_holdoff > 0) {
2770		/* Set interrupt holdoff timer. */
2771		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2772		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2773		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2774		/* Enable holdoff timer. */
2775		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2776	}
2777}
2778
2779static void
2780vge_setlinkspeed(struct vge_softc *sc)
2781{
2782	struct mii_data *mii;
2783	int aneg, i;
2784
2785	VGE_LOCK_ASSERT(sc);
2786
2787	mii = device_get_softc(sc->vge_miibus);
2788	mii_pollstat(mii);
2789	aneg = 0;
2790	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2791	    (IFM_ACTIVE | IFM_AVALID)) {
2792		switch IFM_SUBTYPE(mii->mii_media_active) {
2793		case IFM_10_T:
2794		case IFM_100_TX:
2795			return;
2796		case IFM_1000_T:
2797			aneg++;
2798		default:
2799			break;
2800		}
2801	}
2802	/* Clear forced MAC speed/duplex configuration. */
2803	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2804	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2805	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2806	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2807	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2808	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2809	    BMCR_AUTOEN | BMCR_STARTNEG);
2810	DELAY(1000);
2811	if (aneg != 0) {
2812		/* Poll link state until vge(4) get a 10/100 link. */
2813		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2814			mii_pollstat(mii);
2815			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2816			    == (IFM_ACTIVE | IFM_AVALID)) {
2817				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2818				case IFM_10_T:
2819				case IFM_100_TX:
2820					return;
2821				default:
2822					break;
2823				}
2824			}
2825			VGE_UNLOCK(sc);
2826			pause("vgelnk", hz);
2827			VGE_LOCK(sc);
2828		}
2829		if (i == MII_ANEGTICKS_GIGE)
2830			device_printf(sc->vge_dev, "establishing link failed, "
2831			    "WOL may not work!");
2832	}
2833	/*
2834	 * No link, force MAC to have 100Mbps, full-duplex link.
2835	 * This is the last resort and may/may not work.
2836	 */
2837	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2838	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2839}
2840
2841static void
2842vge_setwol(struct vge_softc *sc)
2843{
2844	struct ifnet *ifp;
2845	uint16_t pmstat;
2846	uint8_t val;
2847
2848	VGE_LOCK_ASSERT(sc);
2849
2850	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2851		/* No PME capability, PHY power down. */
2852		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2853		    BMCR_PDOWN);
2854		vge_miipoll_stop(sc);
2855		return;
2856	}
2857
2858	ifp = sc->vge_ifp;
2859
2860	/* Clear WOL on pattern match. */
2861	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2862	/* Disable WOL on magic/unicast packet. */
2863	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2864	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2865	    VGE_WOLCFG_PMEOVR);
2866	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2867		vge_setlinkspeed(sc);
2868		val = 0;
2869		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2870			val |= VGE_WOLCR1_UCAST;
2871		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2872			val |= VGE_WOLCR1_MAGIC;
2873		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2874		val = 0;
2875		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2876			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2877		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2878		/* Disable MII auto-polling. */
2879		vge_miipoll_stop(sc);
2880	}
2881	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2882	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2883	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2884
2885	/* Clear WOL status on pattern match. */
2886	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2887	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2888
2889	val = CSR_READ_1(sc, VGE_PWRSTAT);
2890	val |= VGE_STICKHW_SWPTAG;
2891	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2892	/* Put hardware into sleep. */
2893	val = CSR_READ_1(sc, VGE_PWRSTAT);
2894	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2895	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2896	/* Request PME if WOL is requested. */
2897	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2898	    PCIR_POWER_STATUS, 2);
2899	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2900	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2901		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2902	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2903	    pmstat, 2);
2904}
2905
2906static void
2907vge_clrwol(struct vge_softc *sc)
2908{
2909	uint8_t val;
2910
2911	val = CSR_READ_1(sc, VGE_PWRSTAT);
2912	val &= ~VGE_STICKHW_SWPTAG;
2913	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2914	/* Disable WOL and clear power state indicator. */
2915	val = CSR_READ_1(sc, VGE_PWRSTAT);
2916	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2917	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2918
2919	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2920	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2921
2922	/* Clear WOL on pattern match. */
2923	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2924	/* Disable WOL on magic/unicast packet. */
2925	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2926	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2927	    VGE_WOLCFG_PMEOVR);
2928	/* Clear WOL status on pattern match. */
2929	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2930	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2931}
2932