1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD$");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96#include <sys/sysctl.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_var.h>
103#include <net/if_media.h>
104#include <net/if_types.h>
105#include <net/if_vlan_var.h>
106
107#include <net/bpf.h>
108
109#include <machine/bus.h>
110#include <machine/resource.h>
111#include <sys/bus.h>
112#include <sys/rman.h>
113
114#include <dev/mii/mii.h>
115#include <dev/mii/miivar.h>
116
117#include <dev/pci/pcireg.h>
118#include <dev/pci/pcivar.h>
119
120MODULE_DEPEND(vge, pci, 1, 1, 1);
121MODULE_DEPEND(vge, ether, 1, 1, 1);
122MODULE_DEPEND(vge, miibus, 1, 1, 1);
123
124/* "device miibus" required.  See GENERIC if you get errors here. */
125#include "miibus_if.h"
126
127#include <dev/vge/if_vgereg.h>
128#include <dev/vge/if_vgevar.h>
129
130#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
131
132/* Tunables */
133static int msi_disable = 0;
134TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
135
136/*
137 * The SQE error counter of MIB seems to report bogus value.
138 * Vendor's workaround does not seem to work on PCIe based
139 * controllers. Disable it until we find better workaround.
140 */
141#undef VGE_ENABLE_SQEERR
142
143/*
144 * Various supported device vendors/types and their names.
145 */
146static struct vge_type vge_devs[] = {
147	{ VIA_VENDORID, VIA_DEVICEID_61XX,
148		"VIA Networking Velocity Gigabit Ethernet" },
149	{ 0, 0, NULL }
150};
151
152static int	vge_attach(device_t);
153static int	vge_detach(device_t);
154static int	vge_probe(device_t);
155static int	vge_resume(device_t);
156static int	vge_shutdown(device_t);
157static int	vge_suspend(device_t);
158
159static void	vge_cam_clear(struct vge_softc *);
160static int	vge_cam_set(struct vge_softc *, uint8_t *);
161static void	vge_clrwol(struct vge_softc *);
162static void	vge_discard_rxbuf(struct vge_softc *, int);
163static int	vge_dma_alloc(struct vge_softc *);
164static void	vge_dma_free(struct vge_softc *);
165static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
166#ifdef VGE_EEPROM
167static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
168#endif
169static int	vge_encap(struct vge_softc *, struct mbuf **);
170#ifndef __NO_STRICT_ALIGNMENT
171static __inline void
172		vge_fixup_rx(struct mbuf *);
173#endif
174static void	vge_freebufs(struct vge_softc *);
175static void	vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
176static int	vge_ifmedia_upd(struct ifnet *);
177static int	vge_ifmedia_upd_locked(struct vge_softc *);
178static void	vge_init(void *);
179static void	vge_init_locked(struct vge_softc *);
180static void	vge_intr(void *);
181static void	vge_intr_holdoff(struct vge_softc *);
182static int	vge_ioctl(struct ifnet *, u_long, caddr_t);
183static void	vge_link_statchg(void *);
184static int	vge_miibus_readreg(device_t, int, int);
185static int	vge_miibus_writereg(device_t, int, int, int);
186static void	vge_miipoll_start(struct vge_softc *);
187static void	vge_miipoll_stop(struct vge_softc *);
188static int	vge_newbuf(struct vge_softc *, int);
189static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
190static void	vge_reset(struct vge_softc *);
191static int	vge_rx_list_init(struct vge_softc *);
192static int	vge_rxeof(struct vge_softc *, int);
193static void	vge_rxfilter(struct vge_softc *);
194static void	vge_setmedia(struct vge_softc *);
195static void	vge_setvlan(struct vge_softc *);
196static void	vge_setwol(struct vge_softc *);
197static void	vge_start(struct ifnet *);
198static void	vge_start_locked(struct ifnet *);
199static void	vge_stats_clear(struct vge_softc *);
200static void	vge_stats_update(struct vge_softc *);
201static void	vge_stop(struct vge_softc *);
202static void	vge_sysctl_node(struct vge_softc *);
203static int	vge_tx_list_init(struct vge_softc *);
204static void	vge_txeof(struct vge_softc *);
205static void	vge_watchdog(void *);
206
207static device_method_t vge_methods[] = {
208	/* Device interface */
209	DEVMETHOD(device_probe,		vge_probe),
210	DEVMETHOD(device_attach,	vge_attach),
211	DEVMETHOD(device_detach,	vge_detach),
212	DEVMETHOD(device_suspend,	vge_suspend),
213	DEVMETHOD(device_resume,	vge_resume),
214	DEVMETHOD(device_shutdown,	vge_shutdown),
215
216	/* MII interface */
217	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
218	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
219
220	DEVMETHOD_END
221};
222
223static driver_t vge_driver = {
224	"vge",
225	vge_methods,
226	sizeof(struct vge_softc)
227};
228
229static devclass_t vge_devclass;
230
231DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
232DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
233
234#ifdef VGE_EEPROM
235/*
236 * Read a word of data stored in the EEPROM at address 'addr.'
237 */
238static void
239vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
240{
241	int i;
242	uint16_t word = 0;
243
244	/*
245	 * Enter EEPROM embedded programming mode. In order to
246	 * access the EEPROM at all, we first have to set the
247	 * EELOAD bit in the CHIPCFG2 register.
248	 */
249	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
250	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
251
252	/* Select the address of the word we want to read */
253	CSR_WRITE_1(sc, VGE_EEADDR, addr);
254
255	/* Issue read command */
256	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
257
258	/* Wait for the done bit to be set. */
259	for (i = 0; i < VGE_TIMEOUT; i++) {
260		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
261			break;
262	}
263
264	if (i == VGE_TIMEOUT) {
265		device_printf(sc->vge_dev, "EEPROM read timed out\n");
266		*dest = 0;
267		return;
268	}
269
270	/* Read the result */
271	word = CSR_READ_2(sc, VGE_EERDDAT);
272
273	/* Turn off EEPROM access mode. */
274	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
275	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
276
277	*dest = word;
278}
279#endif
280
281/*
282 * Read a sequence of words from the EEPROM.
283 */
284static void
285vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
286{
287	int i;
288#ifdef VGE_EEPROM
289	uint16_t word = 0, *ptr;
290
291	for (i = 0; i < cnt; i++) {
292		vge_eeprom_getword(sc, off + i, &word);
293		ptr = (uint16_t *)(dest + (i * 2));
294		if (swap)
295			*ptr = ntohs(word);
296		else
297			*ptr = word;
298	}
299#else
300	for (i = 0; i < ETHER_ADDR_LEN; i++)
301		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
302#endif
303}
304
305static void
306vge_miipoll_stop(struct vge_softc *sc)
307{
308	int i;
309
310	CSR_WRITE_1(sc, VGE_MIICMD, 0);
311
312	for (i = 0; i < VGE_TIMEOUT; i++) {
313		DELAY(1);
314		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
315			break;
316	}
317
318	if (i == VGE_TIMEOUT)
319		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
320}
321
322static void
323vge_miipoll_start(struct vge_softc *sc)
324{
325	int i;
326
327	/* First, make sure we're idle. */
328
329	CSR_WRITE_1(sc, VGE_MIICMD, 0);
330	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
331
332	for (i = 0; i < VGE_TIMEOUT; i++) {
333		DELAY(1);
334		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
335			break;
336	}
337
338	if (i == VGE_TIMEOUT) {
339		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
340		return;
341	}
342
343	/* Now enable auto poll mode. */
344
345	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
346
347	/* And make sure it started. */
348
349	for (i = 0; i < VGE_TIMEOUT; i++) {
350		DELAY(1);
351		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
352			break;
353	}
354
355	if (i == VGE_TIMEOUT)
356		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
357}
358
359static int
360vge_miibus_readreg(device_t dev, int phy, int reg)
361{
362	struct vge_softc *sc;
363	int i;
364	uint16_t rval = 0;
365
366	sc = device_get_softc(dev);
367
368	vge_miipoll_stop(sc);
369
370	/* Specify the register we want to read. */
371	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
372
373	/* Issue read command. */
374	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
375
376	/* Wait for the read command bit to self-clear. */
377	for (i = 0; i < VGE_TIMEOUT; i++) {
378		DELAY(1);
379		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
380			break;
381	}
382
383	if (i == VGE_TIMEOUT)
384		device_printf(sc->vge_dev, "MII read timed out\n");
385	else
386		rval = CSR_READ_2(sc, VGE_MIIDATA);
387
388	vge_miipoll_start(sc);
389
390	return (rval);
391}
392
393static int
394vge_miibus_writereg(device_t dev, int phy, int reg, int data)
395{
396	struct vge_softc *sc;
397	int i, rval = 0;
398
399	sc = device_get_softc(dev);
400
401	vge_miipoll_stop(sc);
402
403	/* Specify the register we want to write. */
404	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
405
406	/* Specify the data we want to write. */
407	CSR_WRITE_2(sc, VGE_MIIDATA, data);
408
409	/* Issue write command. */
410	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
411
412	/* Wait for the write command bit to self-clear. */
413	for (i = 0; i < VGE_TIMEOUT; i++) {
414		DELAY(1);
415		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
416			break;
417	}
418
419	if (i == VGE_TIMEOUT) {
420		device_printf(sc->vge_dev, "MII write timed out\n");
421		rval = EIO;
422	}
423
424	vge_miipoll_start(sc);
425
426	return (rval);
427}
428
429static void
430vge_cam_clear(struct vge_softc *sc)
431{
432	int i;
433
434	/*
435	 * Turn off all the mask bits. This tells the chip
436	 * that none of the entries in the CAM filter are valid.
437	 * desired entries will be enabled as we fill the filter in.
438	 */
439
440	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
441	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
442	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
443	for (i = 0; i < 8; i++)
444		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
445
446	/* Clear the VLAN filter too. */
447
448	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
449	for (i = 0; i < 8; i++)
450		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
451
452	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
453	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
454	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
455
456	sc->vge_camidx = 0;
457}
458
459static int
460vge_cam_set(struct vge_softc *sc, uint8_t *addr)
461{
462	int i, error = 0;
463
464	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
465		return (ENOSPC);
466
467	/* Select the CAM data page. */
468	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
469	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
470
471	/* Set the filter entry we want to update and enable writing. */
472	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
473
474	/* Write the address to the CAM registers */
475	for (i = 0; i < ETHER_ADDR_LEN; i++)
476		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
477
478	/* Issue a write command. */
479	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
480
481	/* Wake for it to clear. */
482	for (i = 0; i < VGE_TIMEOUT; i++) {
483		DELAY(1);
484		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
485			break;
486	}
487
488	if (i == VGE_TIMEOUT) {
489		device_printf(sc->vge_dev, "setting CAM filter failed\n");
490		error = EIO;
491		goto fail;
492	}
493
494	/* Select the CAM mask page. */
495	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
496	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
497
498	/* Set the mask bit that enables this filter. */
499	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
500	    1<<(sc->vge_camidx & 7));
501
502	sc->vge_camidx++;
503
504fail:
505	/* Turn off access to CAM. */
506	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
507	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
508	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
509
510	return (error);
511}
512
513static void
514vge_setvlan(struct vge_softc *sc)
515{
516	struct ifnet *ifp;
517	uint8_t cfg;
518
519	VGE_LOCK_ASSERT(sc);
520
521	ifp = sc->vge_ifp;
522	cfg = CSR_READ_1(sc, VGE_RXCFG);
523	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
524		cfg |= VGE_VTAG_OPT2;
525	else
526		cfg &= ~VGE_VTAG_OPT2;
527	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
528}
529
530/*
531 * Program the multicast filter. We use the 64-entry CAM filter
532 * for perfect filtering. If there's more than 64 multicast addresses,
533 * we use the hash filter instead.
534 */
535static void
536vge_rxfilter(struct vge_softc *sc)
537{
538	struct ifnet *ifp;
539	struct ifmultiaddr *ifma;
540	uint32_t h, hashes[2];
541	uint8_t rxcfg;
542	int error = 0;
543
544	VGE_LOCK_ASSERT(sc);
545
546	/* First, zot all the multicast entries. */
547	hashes[0] = 0;
548	hashes[1] = 0;
549
550	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
551	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
552	    VGE_RXCTL_RX_PROMISC);
553	/*
554	 * Always allow VLAN oversized frames and frames for
555	 * this host.
556	 */
557	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
558
559	ifp = sc->vge_ifp;
560	if ((ifp->if_flags & IFF_BROADCAST) != 0)
561		rxcfg |= VGE_RXCTL_RX_BCAST;
562	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
563		if ((ifp->if_flags & IFF_PROMISC) != 0)
564			rxcfg |= VGE_RXCTL_RX_PROMISC;
565		if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
566			hashes[0] = 0xFFFFFFFF;
567			hashes[1] = 0xFFFFFFFF;
568		}
569		goto done;
570	}
571
572	vge_cam_clear(sc);
573	/* Now program new ones */
574	if_maddr_rlock(ifp);
575	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
576		if (ifma->ifma_addr->sa_family != AF_LINK)
577			continue;
578		error = vge_cam_set(sc,
579		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
580		if (error)
581			break;
582	}
583
584	/* If there were too many addresses, use the hash filter. */
585	if (error) {
586		vge_cam_clear(sc);
587
588		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
589			if (ifma->ifma_addr->sa_family != AF_LINK)
590				continue;
591			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
592			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
593			if (h < 32)
594				hashes[0] |= (1 << h);
595			else
596				hashes[1] |= (1 << (h - 32));
597		}
598	}
599	if_maddr_runlock(ifp);
600
601done:
602	if (hashes[0] != 0 || hashes[1] != 0)
603		rxcfg |= VGE_RXCTL_RX_MCAST;
604	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
605	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
606	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
607}
608
609static void
610vge_reset(struct vge_softc *sc)
611{
612	int i;
613
614	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
615
616	for (i = 0; i < VGE_TIMEOUT; i++) {
617		DELAY(5);
618		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
619			break;
620	}
621
622	if (i == VGE_TIMEOUT) {
623		device_printf(sc->vge_dev, "soft reset timed out\n");
624		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
625		DELAY(2000);
626	}
627
628	DELAY(5000);
629}
630
631/*
632 * Probe for a VIA gigabit chip. Check the PCI vendor and device
633 * IDs against our list and return a device name if we find a match.
634 */
635static int
636vge_probe(device_t dev)
637{
638	struct vge_type	*t;
639
640	t = vge_devs;
641
642	while (t->vge_name != NULL) {
643		if ((pci_get_vendor(dev) == t->vge_vid) &&
644		    (pci_get_device(dev) == t->vge_did)) {
645			device_set_desc(dev, t->vge_name);
646			return (BUS_PROBE_DEFAULT);
647		}
648		t++;
649	}
650
651	return (ENXIO);
652}
653
654/*
655 * Map a single buffer address.
656 */
657
658struct vge_dmamap_arg {
659	bus_addr_t	vge_busaddr;
660};
661
662static void
663vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
664{
665	struct vge_dmamap_arg *ctx;
666
667	if (error != 0)
668		return;
669
670	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
671
672	ctx = (struct vge_dmamap_arg *)arg;
673	ctx->vge_busaddr = segs[0].ds_addr;
674}
675
676static int
677vge_dma_alloc(struct vge_softc *sc)
678{
679	struct vge_dmamap_arg ctx;
680	struct vge_txdesc *txd;
681	struct vge_rxdesc *rxd;
682	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
683	int error, i;
684
685	/*
686	 * It seems old PCI controllers do not support DAC.  DAC
687	 * configuration can be enabled by accessing VGE_CHIPCFG3
688	 * register but honor EEPROM configuration instead of
689	 * blindly overriding DAC configuration.  PCIe based
690	 * controllers are supposed to support 64bit DMA so enable
691	 * 64bit DMA on these controllers.
692	 */
693	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
694		lowaddr = BUS_SPACE_MAXADDR;
695	else
696		lowaddr = BUS_SPACE_MAXADDR_32BIT;
697
698again:
699	/* Create parent ring tag. */
700	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
701	    1, 0,			/* algnmnt, boundary */
702	    lowaddr,			/* lowaddr */
703	    BUS_SPACE_MAXADDR,		/* highaddr */
704	    NULL, NULL,			/* filter, filterarg */
705	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
706	    0,				/* nsegments */
707	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
708	    0,				/* flags */
709	    NULL, NULL,			/* lockfunc, lockarg */
710	    &sc->vge_cdata.vge_ring_tag);
711	if (error != 0) {
712		device_printf(sc->vge_dev,
713		    "could not create parent DMA tag.\n");
714		goto fail;
715	}
716
717	/* Create tag for Tx ring. */
718	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
719	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
720	    BUS_SPACE_MAXADDR,		/* lowaddr */
721	    BUS_SPACE_MAXADDR,		/* highaddr */
722	    NULL, NULL,			/* filter, filterarg */
723	    VGE_TX_LIST_SZ,		/* maxsize */
724	    1,				/* nsegments */
725	    VGE_TX_LIST_SZ,		/* maxsegsize */
726	    0,				/* flags */
727	    NULL, NULL,			/* lockfunc, lockarg */
728	    &sc->vge_cdata.vge_tx_ring_tag);
729	if (error != 0) {
730		device_printf(sc->vge_dev,
731		    "could not allocate Tx ring DMA tag.\n");
732		goto fail;
733	}
734
735	/* Create tag for Rx ring. */
736	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
737	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
738	    BUS_SPACE_MAXADDR,		/* lowaddr */
739	    BUS_SPACE_MAXADDR,		/* highaddr */
740	    NULL, NULL,			/* filter, filterarg */
741	    VGE_RX_LIST_SZ,		/* maxsize */
742	    1,				/* nsegments */
743	    VGE_RX_LIST_SZ,		/* maxsegsize */
744	    0,				/* flags */
745	    NULL, NULL,			/* lockfunc, lockarg */
746	    &sc->vge_cdata.vge_rx_ring_tag);
747	if (error != 0) {
748		device_printf(sc->vge_dev,
749		    "could not allocate Rx ring DMA tag.\n");
750		goto fail;
751	}
752
753	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
754	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
755	    (void **)&sc->vge_rdata.vge_tx_ring,
756	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
757	    &sc->vge_cdata.vge_tx_ring_map);
758	if (error != 0) {
759		device_printf(sc->vge_dev,
760		    "could not allocate DMA'able memory for Tx ring.\n");
761		goto fail;
762	}
763
764	ctx.vge_busaddr = 0;
765	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
766	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
767	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
768	if (error != 0 || ctx.vge_busaddr == 0) {
769		device_printf(sc->vge_dev,
770		    "could not load DMA'able memory for Tx ring.\n");
771		goto fail;
772	}
773	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
774
775	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
776	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
777	    (void **)&sc->vge_rdata.vge_rx_ring,
778	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
779	    &sc->vge_cdata.vge_rx_ring_map);
780	if (error != 0) {
781		device_printf(sc->vge_dev,
782		    "could not allocate DMA'able memory for Rx ring.\n");
783		goto fail;
784	}
785
786	ctx.vge_busaddr = 0;
787	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
788	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
789	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
790	if (error != 0 || ctx.vge_busaddr == 0) {
791		device_printf(sc->vge_dev,
792		    "could not load DMA'able memory for Rx ring.\n");
793		goto fail;
794	}
795	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
796
797	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
798	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
799	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
800	if ((VGE_ADDR_HI(tx_ring_end) !=
801	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
802	    (VGE_ADDR_HI(rx_ring_end) !=
803	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
804	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
805		device_printf(sc->vge_dev, "4GB boundary crossed, "
806		    "switching to 32bit DMA address mode.\n");
807		vge_dma_free(sc);
808		/* Limit DMA address space to 32bit and try again. */
809		lowaddr = BUS_SPACE_MAXADDR_32BIT;
810		goto again;
811	}
812
813	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
814		lowaddr = VGE_BUF_DMA_MAXADDR;
815	else
816		lowaddr = BUS_SPACE_MAXADDR_32BIT;
817	/* Create parent buffer tag. */
818	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
819	    1, 0,			/* algnmnt, boundary */
820	    lowaddr,			/* lowaddr */
821	    BUS_SPACE_MAXADDR,		/* highaddr */
822	    NULL, NULL,			/* filter, filterarg */
823	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
824	    0,				/* nsegments */
825	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
826	    0,				/* flags */
827	    NULL, NULL,			/* lockfunc, lockarg */
828	    &sc->vge_cdata.vge_buffer_tag);
829	if (error != 0) {
830		device_printf(sc->vge_dev,
831		    "could not create parent buffer DMA tag.\n");
832		goto fail;
833	}
834
835	/* Create tag for Tx buffers. */
836	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
837	    1, 0,			/* algnmnt, boundary */
838	    BUS_SPACE_MAXADDR,		/* lowaddr */
839	    BUS_SPACE_MAXADDR,		/* highaddr */
840	    NULL, NULL,			/* filter, filterarg */
841	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
842	    VGE_MAXTXSEGS,		/* nsegments */
843	    MCLBYTES,			/* maxsegsize */
844	    0,				/* flags */
845	    NULL, NULL,			/* lockfunc, lockarg */
846	    &sc->vge_cdata.vge_tx_tag);
847	if (error != 0) {
848		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
849		goto fail;
850	}
851
852	/* Create tag for Rx buffers. */
853	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
854	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
855	    BUS_SPACE_MAXADDR,		/* lowaddr */
856	    BUS_SPACE_MAXADDR,		/* highaddr */
857	    NULL, NULL,			/* filter, filterarg */
858	    MCLBYTES,			/* maxsize */
859	    1,				/* nsegments */
860	    MCLBYTES,			/* maxsegsize */
861	    0,				/* flags */
862	    NULL, NULL,			/* lockfunc, lockarg */
863	    &sc->vge_cdata.vge_rx_tag);
864	if (error != 0) {
865		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
866		goto fail;
867	}
868
869	/* Create DMA maps for Tx buffers. */
870	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
871		txd = &sc->vge_cdata.vge_txdesc[i];
872		txd->tx_m = NULL;
873		txd->tx_dmamap = NULL;
874		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
875		    &txd->tx_dmamap);
876		if (error != 0) {
877			device_printf(sc->vge_dev,
878			    "could not create Tx dmamap.\n");
879			goto fail;
880		}
881	}
882	/* Create DMA maps for Rx buffers. */
883	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
884	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
885		device_printf(sc->vge_dev,
886		    "could not create spare Rx dmamap.\n");
887		goto fail;
888	}
889	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
890		rxd = &sc->vge_cdata.vge_rxdesc[i];
891		rxd->rx_m = NULL;
892		rxd->rx_dmamap = NULL;
893		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
894		    &rxd->rx_dmamap);
895		if (error != 0) {
896			device_printf(sc->vge_dev,
897			    "could not create Rx dmamap.\n");
898			goto fail;
899		}
900	}
901
902fail:
903	return (error);
904}
905
906static void
907vge_dma_free(struct vge_softc *sc)
908{
909	struct vge_txdesc *txd;
910	struct vge_rxdesc *rxd;
911	int i;
912
913	/* Tx ring. */
914	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
915		if (sc->vge_rdata.vge_tx_ring_paddr)
916			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
917			    sc->vge_cdata.vge_tx_ring_map);
918		if (sc->vge_rdata.vge_tx_ring)
919			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
920			    sc->vge_rdata.vge_tx_ring,
921			    sc->vge_cdata.vge_tx_ring_map);
922		sc->vge_rdata.vge_tx_ring = NULL;
923		sc->vge_rdata.vge_tx_ring_paddr = 0;
924		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
925		sc->vge_cdata.vge_tx_ring_tag = NULL;
926	}
927	/* Rx ring. */
928	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
929		if (sc->vge_rdata.vge_rx_ring_paddr)
930			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
931			    sc->vge_cdata.vge_rx_ring_map);
932		if (sc->vge_rdata.vge_rx_ring)
933			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
934			    sc->vge_rdata.vge_rx_ring,
935			    sc->vge_cdata.vge_rx_ring_map);
936		sc->vge_rdata.vge_rx_ring = NULL;
937		sc->vge_rdata.vge_rx_ring_paddr = 0;
938		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
939		sc->vge_cdata.vge_rx_ring_tag = NULL;
940	}
941	/* Tx buffers. */
942	if (sc->vge_cdata.vge_tx_tag != NULL) {
943		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
944			txd = &sc->vge_cdata.vge_txdesc[i];
945			if (txd->tx_dmamap != NULL) {
946				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
947				    txd->tx_dmamap);
948				txd->tx_dmamap = NULL;
949			}
950		}
951		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
952		sc->vge_cdata.vge_tx_tag = NULL;
953	}
954	/* Rx buffers. */
955	if (sc->vge_cdata.vge_rx_tag != NULL) {
956		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
957			rxd = &sc->vge_cdata.vge_rxdesc[i];
958			if (rxd->rx_dmamap != NULL) {
959				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
960				    rxd->rx_dmamap);
961				rxd->rx_dmamap = NULL;
962			}
963		}
964		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
965			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
966			    sc->vge_cdata.vge_rx_sparemap);
967			sc->vge_cdata.vge_rx_sparemap = NULL;
968		}
969		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
970		sc->vge_cdata.vge_rx_tag = NULL;
971	}
972
973	if (sc->vge_cdata.vge_buffer_tag != NULL) {
974		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
975		sc->vge_cdata.vge_buffer_tag = NULL;
976	}
977	if (sc->vge_cdata.vge_ring_tag != NULL) {
978		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
979		sc->vge_cdata.vge_ring_tag = NULL;
980	}
981}
982
983/*
984 * Attach the interface. Allocate softc structures, do ifmedia
985 * setup and ethernet/BPF attach.
986 */
987static int
988vge_attach(device_t dev)
989{
990	u_char eaddr[ETHER_ADDR_LEN];
991	struct vge_softc *sc;
992	struct ifnet *ifp;
993	int error = 0, cap, i, msic, rid;
994
995	sc = device_get_softc(dev);
996	sc->vge_dev = dev;
997
998	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
999	    MTX_DEF);
1000	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1001
1002	/*
1003	 * Map control/status registers.
1004	 */
1005	pci_enable_busmaster(dev);
1006
1007	rid = PCIR_BAR(1);
1008	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1009	    RF_ACTIVE);
1010
1011	if (sc->vge_res == NULL) {
1012		device_printf(dev, "couldn't map ports/memory\n");
1013		error = ENXIO;
1014		goto fail;
1015	}
1016
1017	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1018		sc->vge_flags |= VGE_FLAG_PCIE;
1019		sc->vge_expcap = cap;
1020	} else
1021		sc->vge_flags |= VGE_FLAG_JUMBO;
1022	if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1023		sc->vge_flags |= VGE_FLAG_PMCAP;
1024		sc->vge_pmcap = cap;
1025	}
1026	rid = 0;
1027	msic = pci_msi_count(dev);
1028	if (msi_disable == 0 && msic > 0) {
1029		msic = 1;
1030		if (pci_alloc_msi(dev, &msic) == 0) {
1031			if (msic == 1) {
1032				sc->vge_flags |= VGE_FLAG_MSI;
1033				device_printf(dev, "Using %d MSI message\n",
1034				    msic);
1035				rid = 1;
1036			} else
1037				pci_release_msi(dev);
1038		}
1039	}
1040
1041	/* Allocate interrupt */
1042	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1043	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1044	if (sc->vge_irq == NULL) {
1045		device_printf(dev, "couldn't map interrupt\n");
1046		error = ENXIO;
1047		goto fail;
1048	}
1049
1050	/* Reset the adapter. */
1051	vge_reset(sc);
1052	/* Reload EEPROM. */
1053	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1054	for (i = 0; i < VGE_TIMEOUT; i++) {
1055		DELAY(5);
1056		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1057			break;
1058	}
1059	if (i == VGE_TIMEOUT)
1060		device_printf(dev, "EEPROM reload timed out\n");
1061	/*
1062	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1063	 * MAC will receive magic packet which in turn confuses
1064	 * controller.
1065	 */
1066	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1067
1068	/*
1069	 * Get station address from the EEPROM.
1070	 */
1071	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1072	/*
1073	 * Save configured PHY address.
1074	 * It seems the PHY address of PCIe controllers just
1075	 * reflects media jump strapping status so we assume the
1076	 * internal PHY address of PCIe controller is at 1.
1077	 */
1078	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1079		sc->vge_phyaddr = 1;
1080	else
1081		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1082		    VGE_MIICFG_PHYADDR;
1083	/* Clear WOL and take hardware from powerdown. */
1084	vge_clrwol(sc);
1085	vge_sysctl_node(sc);
1086	error = vge_dma_alloc(sc);
1087	if (error)
1088		goto fail;
1089
1090	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1091	if (ifp == NULL) {
1092		device_printf(dev, "can not if_alloc()\n");
1093		error = ENOSPC;
1094		goto fail;
1095	}
1096
1097	vge_miipoll_start(sc);
1098	/* Do MII setup */
1099	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1100	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1101	    MIIF_DOPAUSE);
1102	if (error != 0) {
1103		device_printf(dev, "attaching PHYs failed\n");
1104		goto fail;
1105	}
1106
1107	ifp->if_softc = sc;
1108	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1109	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1110	ifp->if_ioctl = vge_ioctl;
1111	ifp->if_capabilities = IFCAP_VLAN_MTU;
1112	ifp->if_start = vge_start;
1113	ifp->if_hwassist = VGE_CSUM_FEATURES;
1114	ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1115	    IFCAP_VLAN_HWTAGGING;
1116	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1117		ifp->if_capabilities |= IFCAP_WOL;
1118	ifp->if_capenable = ifp->if_capabilities;
1119#ifdef DEVICE_POLLING
1120	ifp->if_capabilities |= IFCAP_POLLING;
1121#endif
1122	ifp->if_init = vge_init;
1123	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1124	ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1125	IFQ_SET_READY(&ifp->if_snd);
1126
1127	/*
1128	 * Call MI attach routine.
1129	 */
1130	ether_ifattach(ifp, eaddr);
1131
1132	/* Tell the upper layer(s) we support long frames. */
1133	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1134
1135	/* Hook interrupt last to avoid having to lock softc */
1136	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1137	    NULL, vge_intr, sc, &sc->vge_intrhand);
1138
1139	if (error) {
1140		device_printf(dev, "couldn't set up irq\n");
1141		ether_ifdetach(ifp);
1142		goto fail;
1143	}
1144
1145fail:
1146	if (error)
1147		vge_detach(dev);
1148
1149	return (error);
1150}
1151
1152/*
1153 * Shutdown hardware and free up resources. This can be called any
1154 * time after the mutex has been initialized. It is called in both
1155 * the error case in attach and the normal detach case so it needs
1156 * to be careful about only freeing resources that have actually been
1157 * allocated.
1158 */
1159static int
1160vge_detach(device_t dev)
1161{
1162	struct vge_softc *sc;
1163	struct ifnet *ifp;
1164
1165	sc = device_get_softc(dev);
1166	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1167	ifp = sc->vge_ifp;
1168
1169#ifdef DEVICE_POLLING
1170	if (ifp->if_capenable & IFCAP_POLLING)
1171		ether_poll_deregister(ifp);
1172#endif
1173
1174	/* These should only be active if attach succeeded */
1175	if (device_is_attached(dev)) {
1176		ether_ifdetach(ifp);
1177		VGE_LOCK(sc);
1178		vge_stop(sc);
1179		VGE_UNLOCK(sc);
1180		callout_drain(&sc->vge_watchdog);
1181	}
1182	if (sc->vge_miibus)
1183		device_delete_child(dev, sc->vge_miibus);
1184	bus_generic_detach(dev);
1185
1186	if (sc->vge_intrhand)
1187		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1188	if (sc->vge_irq)
1189		bus_release_resource(dev, SYS_RES_IRQ,
1190		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1191	if (sc->vge_flags & VGE_FLAG_MSI)
1192		pci_release_msi(dev);
1193	if (sc->vge_res)
1194		bus_release_resource(dev, SYS_RES_MEMORY,
1195		    PCIR_BAR(1), sc->vge_res);
1196	if (ifp)
1197		if_free(ifp);
1198
1199	vge_dma_free(sc);
1200	mtx_destroy(&sc->vge_mtx);
1201
1202	return (0);
1203}
1204
1205static void
1206vge_discard_rxbuf(struct vge_softc *sc, int prod)
1207{
1208	struct vge_rxdesc *rxd;
1209	int i;
1210
1211	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1212	rxd->rx_desc->vge_sts = 0;
1213	rxd->rx_desc->vge_ctl = 0;
1214
1215	/*
1216	 * Note: the manual fails to document the fact that for
1217	 * proper opration, the driver needs to replentish the RX
1218	 * DMA ring 4 descriptors at a time (rather than one at a
1219	 * time, like most chips). We can allocate the new buffers
1220	 * but we should not set the OWN bits until we're ready
1221	 * to hand back 4 of them in one shot.
1222	 */
1223	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1224		for (i = VGE_RXCHUNK; i > 0; i--) {
1225			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1226			rxd = rxd->rxd_prev;
1227		}
1228		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1229	}
1230}
1231
1232static int
1233vge_newbuf(struct vge_softc *sc, int prod)
1234{
1235	struct vge_rxdesc *rxd;
1236	struct mbuf *m;
1237	bus_dma_segment_t segs[1];
1238	bus_dmamap_t map;
1239	int i, nsegs;
1240
1241	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1242	if (m == NULL)
1243		return (ENOBUFS);
1244	/*
1245	 * This is part of an evil trick to deal with strict-alignment
1246	 * architectures. The VIA chip requires RX buffers to be aligned
1247	 * on 32-bit boundaries, but that will hose strict-alignment
1248	 * architectures. To get around this, we leave some empty space
1249	 * at the start of each buffer and for non-strict-alignment hosts,
1250	 * we copy the buffer back two bytes to achieve word alignment.
1251	 * This is slightly more efficient than allocating a new buffer,
1252	 * copying the contents, and discarding the old buffer.
1253	 */
1254	m->m_len = m->m_pkthdr.len = MCLBYTES;
1255	m_adj(m, VGE_RX_BUF_ALIGN);
1256
1257	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1258	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1259		m_freem(m);
1260		return (ENOBUFS);
1261	}
1262	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1263
1264	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1265	if (rxd->rx_m != NULL) {
1266		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1267		    BUS_DMASYNC_POSTREAD);
1268		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1269	}
1270	map = rxd->rx_dmamap;
1271	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1272	sc->vge_cdata.vge_rx_sparemap = map;
1273	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1274	    BUS_DMASYNC_PREREAD);
1275	rxd->rx_m = m;
1276
1277	rxd->rx_desc->vge_sts = 0;
1278	rxd->rx_desc->vge_ctl = 0;
1279	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1280	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1281	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1282
1283	/*
1284	 * Note: the manual fails to document the fact that for
1285	 * proper operation, the driver needs to replenish the RX
1286	 * DMA ring 4 descriptors at a time (rather than one at a
1287	 * time, like most chips). We can allocate the new buffers
1288	 * but we should not set the OWN bits until we're ready
1289	 * to hand back 4 of them in one shot.
1290	 */
1291	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1292		for (i = VGE_RXCHUNK; i > 0; i--) {
1293			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1294			rxd = rxd->rxd_prev;
1295		}
1296		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1297	}
1298
1299	return (0);
1300}
1301
1302static int
1303vge_tx_list_init(struct vge_softc *sc)
1304{
1305	struct vge_ring_data *rd;
1306	struct vge_txdesc *txd;
1307	int i;
1308
1309	VGE_LOCK_ASSERT(sc);
1310
1311	sc->vge_cdata.vge_tx_prodidx = 0;
1312	sc->vge_cdata.vge_tx_considx = 0;
1313	sc->vge_cdata.vge_tx_cnt = 0;
1314
1315	rd = &sc->vge_rdata;
1316	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1317	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1318		txd = &sc->vge_cdata.vge_txdesc[i];
1319		txd->tx_m = NULL;
1320		txd->tx_desc = &rd->vge_tx_ring[i];
1321	}
1322
1323	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1324	    sc->vge_cdata.vge_tx_ring_map,
1325	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1326
1327	return (0);
1328}
1329
1330static int
1331vge_rx_list_init(struct vge_softc *sc)
1332{
1333	struct vge_ring_data *rd;
1334	struct vge_rxdesc *rxd;
1335	int i;
1336
1337	VGE_LOCK_ASSERT(sc);
1338
1339	sc->vge_cdata.vge_rx_prodidx = 0;
1340	sc->vge_cdata.vge_head = NULL;
1341	sc->vge_cdata.vge_tail = NULL;
1342	sc->vge_cdata.vge_rx_commit = 0;
1343
1344	rd = &sc->vge_rdata;
1345	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1346	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1347		rxd = &sc->vge_cdata.vge_rxdesc[i];
1348		rxd->rx_m = NULL;
1349		rxd->rx_desc = &rd->vge_rx_ring[i];
1350		if (i == 0)
1351			rxd->rxd_prev =
1352			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1353		else
1354			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1355		if (vge_newbuf(sc, i) != 0)
1356			return (ENOBUFS);
1357	}
1358
1359	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1360	    sc->vge_cdata.vge_rx_ring_map,
1361	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1362
1363	sc->vge_cdata.vge_rx_commit = 0;
1364
1365	return (0);
1366}
1367
1368static void
1369vge_freebufs(struct vge_softc *sc)
1370{
1371	struct vge_txdesc *txd;
1372	struct vge_rxdesc *rxd;
1373	struct ifnet *ifp;
1374	int i;
1375
1376	VGE_LOCK_ASSERT(sc);
1377
1378	ifp = sc->vge_ifp;
1379	/*
1380	 * Free RX and TX mbufs still in the queues.
1381	 */
1382	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1383		rxd = &sc->vge_cdata.vge_rxdesc[i];
1384		if (rxd->rx_m != NULL) {
1385			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1386			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1387			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1388			    rxd->rx_dmamap);
1389			m_freem(rxd->rx_m);
1390			rxd->rx_m = NULL;
1391		}
1392	}
1393
1394	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1395		txd = &sc->vge_cdata.vge_txdesc[i];
1396		if (txd->tx_m != NULL) {
1397			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1398			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1399			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1400			    txd->tx_dmamap);
1401			m_freem(txd->tx_m);
1402			txd->tx_m = NULL;
1403			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1404		}
1405	}
1406}
1407
1408#ifndef	__NO_STRICT_ALIGNMENT
1409static __inline void
1410vge_fixup_rx(struct mbuf *m)
1411{
1412	int i;
1413	uint16_t *src, *dst;
1414
1415	src = mtod(m, uint16_t *);
1416	dst = src - 1;
1417
1418	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1419		*dst++ = *src++;
1420
1421	m->m_data -= ETHER_ALIGN;
1422}
1423#endif
1424
1425/*
1426 * RX handler. We support the reception of jumbo frames that have
1427 * been fragmented across multiple 2K mbuf cluster buffers.
1428 */
1429static int
1430vge_rxeof(struct vge_softc *sc, int count)
1431{
1432	struct mbuf *m;
1433	struct ifnet *ifp;
1434	int prod, prog, total_len;
1435	struct vge_rxdesc *rxd;
1436	struct vge_rx_desc *cur_rx;
1437	uint32_t rxstat, rxctl;
1438
1439	VGE_LOCK_ASSERT(sc);
1440
1441	ifp = sc->vge_ifp;
1442
1443	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1444	    sc->vge_cdata.vge_rx_ring_map,
1445	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1446
1447	prod = sc->vge_cdata.vge_rx_prodidx;
1448	for (prog = 0; count > 0 &&
1449	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1450	    VGE_RX_DESC_INC(prod)) {
1451		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1452		rxstat = le32toh(cur_rx->vge_sts);
1453		if ((rxstat & VGE_RDSTS_OWN) != 0)
1454			break;
1455		count--;
1456		prog++;
1457		rxctl = le32toh(cur_rx->vge_ctl);
1458		total_len = VGE_RXBYTES(rxstat);
1459		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1460		m = rxd->rx_m;
1461
1462		/*
1463		 * If the 'start of frame' bit is set, this indicates
1464		 * either the first fragment in a multi-fragment receive,
1465		 * or an intermediate fragment. Either way, we want to
1466		 * accumulate the buffers.
1467		 */
1468		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1469			if (vge_newbuf(sc, prod) != 0) {
1470				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1471				VGE_CHAIN_RESET(sc);
1472				vge_discard_rxbuf(sc, prod);
1473				continue;
1474			}
1475			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1476			if (sc->vge_cdata.vge_head == NULL) {
1477				sc->vge_cdata.vge_head = m;
1478				sc->vge_cdata.vge_tail = m;
1479			} else {
1480				m->m_flags &= ~M_PKTHDR;
1481				sc->vge_cdata.vge_tail->m_next = m;
1482				sc->vge_cdata.vge_tail = m;
1483			}
1484			continue;
1485		}
1486
1487		/*
1488		 * Bad/error frames will have the RXOK bit cleared.
1489		 * However, there's one error case we want to allow:
1490		 * if a VLAN tagged frame arrives and the chip can't
1491		 * match it against the CAM filter, it considers this
1492		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1493		 * We don't want to drop the frame though: our VLAN
1494		 * filtering is done in software.
1495		 * We also want to receive bad-checksummed frames and
1496		 * and frames with bad-length.
1497		 */
1498		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1499		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1500		    VGE_RDSTS_CSUMERR)) == 0) {
1501			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1502			/*
1503			 * If this is part of a multi-fragment packet,
1504			 * discard all the pieces.
1505			 */
1506			VGE_CHAIN_RESET(sc);
1507			vge_discard_rxbuf(sc, prod);
1508			continue;
1509		}
1510
1511		if (vge_newbuf(sc, prod) != 0) {
1512			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1513			VGE_CHAIN_RESET(sc);
1514			vge_discard_rxbuf(sc, prod);
1515			continue;
1516		}
1517
1518		/* Chain received mbufs. */
1519		if (sc->vge_cdata.vge_head != NULL) {
1520			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1521			/*
1522			 * Special case: if there's 4 bytes or less
1523			 * in this buffer, the mbuf can be discarded:
1524			 * the last 4 bytes is the CRC, which we don't
1525			 * care about anyway.
1526			 */
1527			if (m->m_len <= ETHER_CRC_LEN) {
1528				sc->vge_cdata.vge_tail->m_len -=
1529				    (ETHER_CRC_LEN - m->m_len);
1530				m_freem(m);
1531			} else {
1532				m->m_len -= ETHER_CRC_LEN;
1533				m->m_flags &= ~M_PKTHDR;
1534				sc->vge_cdata.vge_tail->m_next = m;
1535			}
1536			m = sc->vge_cdata.vge_head;
1537			m->m_flags |= M_PKTHDR;
1538			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1539		} else {
1540			m->m_flags |= M_PKTHDR;
1541			m->m_pkthdr.len = m->m_len =
1542			    (total_len - ETHER_CRC_LEN);
1543		}
1544
1545#ifndef	__NO_STRICT_ALIGNMENT
1546		vge_fixup_rx(m);
1547#endif
1548		m->m_pkthdr.rcvif = ifp;
1549
1550		/* Do RX checksumming if enabled */
1551		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1552		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1553			/* Check IP header checksum */
1554			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1555				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1556			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1557				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1558
1559			/* Check TCP/UDP checksum */
1560			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1561			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1562				m->m_pkthdr.csum_flags |=
1563				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1564				m->m_pkthdr.csum_data = 0xffff;
1565			}
1566		}
1567
1568		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1569			/*
1570			 * The 32-bit rxctl register is stored in little-endian.
1571			 * However, the 16-bit vlan tag is stored in big-endian,
1572			 * so we have to byte swap it.
1573			 */
1574			m->m_pkthdr.ether_vtag =
1575			    bswap16(rxctl & VGE_RDCTL_VLANID);
1576			m->m_flags |= M_VLANTAG;
1577		}
1578
1579		VGE_UNLOCK(sc);
1580		(*ifp->if_input)(ifp, m);
1581		VGE_LOCK(sc);
1582		sc->vge_cdata.vge_head = NULL;
1583		sc->vge_cdata.vge_tail = NULL;
1584	}
1585
1586	if (prog > 0) {
1587		sc->vge_cdata.vge_rx_prodidx = prod;
1588		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1589		    sc->vge_cdata.vge_rx_ring_map,
1590		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1591		/* Update residue counter. */
1592		if (sc->vge_cdata.vge_rx_commit != 0) {
1593			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1594			    sc->vge_cdata.vge_rx_commit);
1595			sc->vge_cdata.vge_rx_commit = 0;
1596		}
1597	}
1598	return (prog);
1599}
1600
1601static void
1602vge_txeof(struct vge_softc *sc)
1603{
1604	struct ifnet *ifp;
1605	struct vge_tx_desc *cur_tx;
1606	struct vge_txdesc *txd;
1607	uint32_t txstat;
1608	int cons, prod;
1609
1610	VGE_LOCK_ASSERT(sc);
1611
1612	ifp = sc->vge_ifp;
1613
1614	if (sc->vge_cdata.vge_tx_cnt == 0)
1615		return;
1616
1617	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1618	    sc->vge_cdata.vge_tx_ring_map,
1619	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1620
1621	/*
1622	 * Go through our tx list and free mbufs for those
1623	 * frames that have been transmitted.
1624	 */
1625	cons = sc->vge_cdata.vge_tx_considx;
1626	prod = sc->vge_cdata.vge_tx_prodidx;
1627	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1628		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1629		txstat = le32toh(cur_tx->vge_sts);
1630		if ((txstat & VGE_TDSTS_OWN) != 0)
1631			break;
1632		sc->vge_cdata.vge_tx_cnt--;
1633		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1634
1635		txd = &sc->vge_cdata.vge_txdesc[cons];
1636		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1637		    BUS_DMASYNC_POSTWRITE);
1638		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1639
1640		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1641		    __func__));
1642		m_freem(txd->tx_m);
1643		txd->tx_m = NULL;
1644		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1645	}
1646	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1647	    sc->vge_cdata.vge_tx_ring_map,
1648	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1649	sc->vge_cdata.vge_tx_considx = cons;
1650	if (sc->vge_cdata.vge_tx_cnt == 0)
1651		sc->vge_timer = 0;
1652}
1653
1654static void
1655vge_link_statchg(void *xsc)
1656{
1657	struct vge_softc *sc;
1658	struct ifnet *ifp;
1659	uint8_t physts;
1660
1661	sc = xsc;
1662	ifp = sc->vge_ifp;
1663	VGE_LOCK_ASSERT(sc);
1664
1665	physts = CSR_READ_1(sc, VGE_PHYSTS0);
1666	if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1667		if ((physts & VGE_PHYSTS_LINK) == 0) {
1668			sc->vge_flags &= ~VGE_FLAG_LINK;
1669			if_link_state_change(sc->vge_ifp,
1670			    LINK_STATE_DOWN);
1671		} else {
1672			sc->vge_flags |= VGE_FLAG_LINK;
1673			if_link_state_change(sc->vge_ifp,
1674			    LINK_STATE_UP);
1675			CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1676			    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1677			if ((physts & VGE_PHYSTS_FDX) != 0) {
1678				if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1679					CSR_WRITE_1(sc, VGE_CRS2,
1680					    VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1681				if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1682					CSR_WRITE_1(sc, VGE_CRS2,
1683					    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1684			}
1685			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1686				vge_start_locked(ifp);
1687		}
1688	}
1689	/*
1690	 * Restart MII auto-polling because link state change interrupt
1691	 * will disable it.
1692	 */
1693	vge_miipoll_start(sc);
1694}
1695
1696#ifdef DEVICE_POLLING
1697static int
1698vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1699{
1700	struct vge_softc *sc = ifp->if_softc;
1701	int rx_npkts = 0;
1702
1703	VGE_LOCK(sc);
1704	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1705		goto done;
1706
1707	rx_npkts = vge_rxeof(sc, count);
1708	vge_txeof(sc);
1709
1710	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1711		vge_start_locked(ifp);
1712
1713	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1714		uint32_t       status;
1715		status = CSR_READ_4(sc, VGE_ISR);
1716		if (status == 0xFFFFFFFF)
1717			goto done;
1718		if (status)
1719			CSR_WRITE_4(sc, VGE_ISR, status);
1720
1721		/*
1722		 * XXX check behaviour on receiver stalls.
1723		 */
1724
1725		if (status & VGE_ISR_TXDMA_STALL ||
1726		    status & VGE_ISR_RXDMA_STALL) {
1727			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1728			vge_init_locked(sc);
1729		}
1730
1731		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1732			vge_rxeof(sc, count);
1733			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1734			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1735		}
1736	}
1737done:
1738	VGE_UNLOCK(sc);
1739	return (rx_npkts);
1740}
1741#endif /* DEVICE_POLLING */
1742
1743static void
1744vge_intr(void *arg)
1745{
1746	struct vge_softc *sc;
1747	struct ifnet *ifp;
1748	uint32_t status;
1749
1750	sc = arg;
1751	VGE_LOCK(sc);
1752
1753	ifp = sc->vge_ifp;
1754	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1755	    (ifp->if_flags & IFF_UP) == 0) {
1756		VGE_UNLOCK(sc);
1757		return;
1758	}
1759
1760#ifdef DEVICE_POLLING
1761	if  (ifp->if_capenable & IFCAP_POLLING) {
1762		status = CSR_READ_4(sc, VGE_ISR);
1763		CSR_WRITE_4(sc, VGE_ISR, status);
1764		if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1765			vge_link_statchg(sc);
1766		VGE_UNLOCK(sc);
1767		return;
1768	}
1769#endif
1770
1771	/* Disable interrupts */
1772	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1773	status = CSR_READ_4(sc, VGE_ISR);
1774	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1775	/* If the card has gone away the read returns 0xffff. */
1776	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1777		goto done;
1778	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1779		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1780			vge_rxeof(sc, VGE_RX_DESC_CNT);
1781		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1782			vge_rxeof(sc, VGE_RX_DESC_CNT);
1783			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1784			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1785		}
1786
1787		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1788			vge_txeof(sc);
1789
1790		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1791			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1792			vge_init_locked(sc);
1793		}
1794
1795		if (status & VGE_ISR_LINKSTS)
1796			vge_link_statchg(sc);
1797	}
1798done:
1799	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1800		/* Re-enable interrupts */
1801		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1802
1803		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1804			vge_start_locked(ifp);
1805	}
1806	VGE_UNLOCK(sc);
1807}
1808
1809static int
1810vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1811{
1812	struct vge_txdesc *txd;
1813	struct vge_tx_frag *frag;
1814	struct mbuf *m;
1815	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1816	int error, i, nsegs, padlen;
1817	uint32_t cflags;
1818
1819	VGE_LOCK_ASSERT(sc);
1820
1821	M_ASSERTPKTHDR((*m_head));
1822
1823	/* Argh. This chip does not autopad short frames. */
1824	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1825		m = *m_head;
1826		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1827		if (M_WRITABLE(m) == 0) {
1828			/* Get a writable copy. */
1829			m = m_dup(*m_head, M_NOWAIT);
1830			m_freem(*m_head);
1831			if (m == NULL) {
1832				*m_head = NULL;
1833				return (ENOBUFS);
1834			}
1835			*m_head = m;
1836		}
1837		if (M_TRAILINGSPACE(m) < padlen) {
1838			m = m_defrag(m, M_NOWAIT);
1839			if (m == NULL) {
1840				m_freem(*m_head);
1841				*m_head = NULL;
1842				return (ENOBUFS);
1843			}
1844		}
1845		/*
1846		 * Manually pad short frames, and zero the pad space
1847		 * to avoid leaking data.
1848		 */
1849		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1850		m->m_pkthdr.len += padlen;
1851		m->m_len = m->m_pkthdr.len;
1852		*m_head = m;
1853	}
1854
1855	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1856
1857	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1858	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1859	if (error == EFBIG) {
1860		m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1861		if (m == NULL) {
1862			m_freem(*m_head);
1863			*m_head = NULL;
1864			return (ENOMEM);
1865		}
1866		*m_head = m;
1867		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1868		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1869		if (error != 0) {
1870			m_freem(*m_head);
1871			*m_head = NULL;
1872			return (error);
1873		}
1874	} else if (error != 0)
1875		return (error);
1876	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1877	    BUS_DMASYNC_PREWRITE);
1878
1879	m = *m_head;
1880	cflags = 0;
1881
1882	/* Configure checksum offload. */
1883	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1884		cflags |= VGE_TDCTL_IPCSUM;
1885	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1886		cflags |= VGE_TDCTL_TCPCSUM;
1887	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1888		cflags |= VGE_TDCTL_UDPCSUM;
1889
1890	/* Configure VLAN. */
1891	if ((m->m_flags & M_VLANTAG) != 0)
1892		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1893	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1894	/*
1895	 * XXX
1896	 * Velocity family seems to support TSO but no information
1897	 * for MSS configuration is available. Also the number of
1898	 * fragments supported by a descriptor is too small to hold
1899	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1900	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1901	 * longer chain of buffers but no additional information is
1902	 * available.
1903	 *
1904	 * When telling the chip how many segments there are, we
1905	 * must use nsegs + 1 instead of just nsegs. Darned if I
1906	 * know why. This also means we can't use the last fragment
1907	 * field of Tx descriptor.
1908	 */
1909	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1910	    VGE_TD_LS_NORM);
1911	for (i = 0; i < nsegs; i++) {
1912		frag = &txd->tx_desc->vge_frag[i];
1913		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1914		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1915		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1916	}
1917
1918	sc->vge_cdata.vge_tx_cnt++;
1919	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1920
1921	/*
1922	 * Finally request interrupt and give the first descriptor
1923	 * ownership to hardware.
1924	 */
1925	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1926	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1927	txd->tx_m = m;
1928
1929	return (0);
1930}
1931
1932/*
1933 * Main transmit routine.
1934 */
1935
1936static void
1937vge_start(struct ifnet *ifp)
1938{
1939	struct vge_softc *sc;
1940
1941	sc = ifp->if_softc;
1942	VGE_LOCK(sc);
1943	vge_start_locked(ifp);
1944	VGE_UNLOCK(sc);
1945}
1946
1947
1948static void
1949vge_start_locked(struct ifnet *ifp)
1950{
1951	struct vge_softc *sc;
1952	struct vge_txdesc *txd;
1953	struct mbuf *m_head;
1954	int enq, idx;
1955
1956	sc = ifp->if_softc;
1957
1958	VGE_LOCK_ASSERT(sc);
1959
1960	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1961	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1962	    IFF_DRV_RUNNING)
1963		return;
1964
1965	idx = sc->vge_cdata.vge_tx_prodidx;
1966	VGE_TX_DESC_DEC(idx);
1967	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1968	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1969		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1970		if (m_head == NULL)
1971			break;
1972		/*
1973		 * Pack the data into the transmit ring. If we
1974		 * don't have room, set the OACTIVE flag and wait
1975		 * for the NIC to drain the ring.
1976		 */
1977		if (vge_encap(sc, &m_head)) {
1978			if (m_head == NULL)
1979				break;
1980			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1981			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1982			break;
1983		}
1984
1985		txd = &sc->vge_cdata.vge_txdesc[idx];
1986		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1987		VGE_TX_DESC_INC(idx);
1988
1989		enq++;
1990		/*
1991		 * If there's a BPF listener, bounce a copy of this frame
1992		 * to him.
1993		 */
1994		ETHER_BPF_MTAP(ifp, m_head);
1995	}
1996
1997	if (enq > 0) {
1998		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1999		    sc->vge_cdata.vge_tx_ring_map,
2000		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2001		/* Issue a transmit command. */
2002		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2003		/*
2004		 * Set a timeout in case the chip goes out to lunch.
2005		 */
2006		sc->vge_timer = 5;
2007	}
2008}
2009
2010static void
2011vge_init(void *xsc)
2012{
2013	struct vge_softc *sc = xsc;
2014
2015	VGE_LOCK(sc);
2016	vge_init_locked(sc);
2017	VGE_UNLOCK(sc);
2018}
2019
2020static void
2021vge_init_locked(struct vge_softc *sc)
2022{
2023	struct ifnet *ifp = sc->vge_ifp;
2024	int error, i;
2025
2026	VGE_LOCK_ASSERT(sc);
2027
2028	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2029		return;
2030
2031	/*
2032	 * Cancel pending I/O and free all RX/TX buffers.
2033	 */
2034	vge_stop(sc);
2035	vge_reset(sc);
2036	vge_miipoll_start(sc);
2037
2038	/*
2039	 * Initialize the RX and TX descriptors and mbufs.
2040	 */
2041
2042	error = vge_rx_list_init(sc);
2043	if (error != 0) {
2044                device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2045                return;
2046	}
2047	vge_tx_list_init(sc);
2048	/* Clear MAC statistics. */
2049	vge_stats_clear(sc);
2050	/* Set our station address */
2051	for (i = 0; i < ETHER_ADDR_LEN; i++)
2052		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2053
2054	/*
2055	 * Set receive FIFO threshold. Also allow transmission and
2056	 * reception of VLAN tagged frames.
2057	 */
2058	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2059	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2060
2061	/* Set DMA burst length */
2062	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2063	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2064
2065	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2066
2067	/* Set collision backoff algorithm */
2068	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2069	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2070	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2071
2072	/* Disable LPSEL field in priority resolution */
2073	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2074
2075	/*
2076	 * Load the addresses of the DMA queues into the chip.
2077	 * Note that we only use one transmit queue.
2078	 */
2079
2080	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2081	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2082	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2083	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2084	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2085
2086	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2087	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2088	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2089	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2090
2091	/* Configure interrupt moderation. */
2092	vge_intr_holdoff(sc);
2093
2094	/* Enable and wake up the RX descriptor queue */
2095	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2096	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2097
2098	/* Enable the TX descriptor queue */
2099	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2100
2101	/* Init the cam filter. */
2102	vge_cam_clear(sc);
2103
2104	/* Set up receiver filter. */
2105	vge_rxfilter(sc);
2106	vge_setvlan(sc);
2107
2108	/* Initialize pause timer. */
2109	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2110	/*
2111	 * Initialize flow control parameters.
2112	 *  TX XON high threshold : 48
2113	 *  TX pause low threshold : 24
2114	 *  Disable hald-duplex flow control
2115	 */
2116	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2117	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2118
2119	/* Enable jumbo frame reception (if desired) */
2120
2121	/* Start the MAC. */
2122	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2123	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2124	CSR_WRITE_1(sc, VGE_CRS0,
2125	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2126
2127#ifdef DEVICE_POLLING
2128	/*
2129	 * Disable interrupts except link state change if we are polling.
2130	 */
2131	if (ifp->if_capenable & IFCAP_POLLING) {
2132		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2133	} else	/* otherwise ... */
2134#endif
2135	{
2136	/*
2137	 * Enable interrupts.
2138	 */
2139		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2140	}
2141	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2142	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2143
2144	sc->vge_flags &= ~VGE_FLAG_LINK;
2145	vge_ifmedia_upd_locked(sc);
2146
2147	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2148	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2149	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2150}
2151
2152/*
2153 * Set media options.
2154 */
2155static int
2156vge_ifmedia_upd(struct ifnet *ifp)
2157{
2158	struct vge_softc *sc;
2159	int error;
2160
2161	sc = ifp->if_softc;
2162	VGE_LOCK(sc);
2163	error = vge_ifmedia_upd_locked(sc);
2164	VGE_UNLOCK(sc);
2165
2166	return (error);
2167}
2168
2169static int
2170vge_ifmedia_upd_locked(struct vge_softc *sc)
2171{
2172	struct mii_data *mii;
2173	struct mii_softc *miisc;
2174	int error;
2175
2176	mii = device_get_softc(sc->vge_miibus);
2177	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2178		PHY_RESET(miisc);
2179	vge_setmedia(sc);
2180	error = mii_mediachg(mii);
2181
2182	return (error);
2183}
2184
2185/*
2186 * Report current media status.
2187 */
2188static void
2189vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2190{
2191	struct vge_softc *sc;
2192	struct mii_data *mii;
2193
2194	sc = ifp->if_softc;
2195	mii = device_get_softc(sc->vge_miibus);
2196
2197	VGE_LOCK(sc);
2198	if ((ifp->if_flags & IFF_UP) == 0) {
2199		VGE_UNLOCK(sc);
2200		return;
2201	}
2202	mii_pollstat(mii);
2203	ifmr->ifm_active = mii->mii_media_active;
2204	ifmr->ifm_status = mii->mii_media_status;
2205	VGE_UNLOCK(sc);
2206}
2207
2208static void
2209vge_setmedia(struct vge_softc *sc)
2210{
2211	struct mii_data *mii;
2212	struct ifmedia_entry *ife;
2213
2214	mii = device_get_softc(sc->vge_miibus);
2215	ife = mii->mii_media.ifm_cur;
2216
2217	/*
2218	 * If the user manually selects a media mode, we need to turn
2219	 * on the forced MAC mode bit in the DIAGCTL register. If the
2220	 * user happens to choose a full duplex mode, we also need to
2221	 * set the 'force full duplex' bit. This applies only to
2222	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2223	 * mode is disabled, and in 1000baseT mode, full duplex is
2224	 * always implied, so we turn on the forced mode bit but leave
2225	 * the FDX bit cleared.
2226	 */
2227
2228	switch (IFM_SUBTYPE(ife->ifm_media)) {
2229	case IFM_AUTO:
2230		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2231		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2232		break;
2233	case IFM_1000_T:
2234		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2235		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2236		break;
2237	case IFM_100_TX:
2238	case IFM_10_T:
2239		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2240		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2241			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2242		} else {
2243			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2244		}
2245		break;
2246	default:
2247		device_printf(sc->vge_dev, "unknown media type: %x\n",
2248		    IFM_SUBTYPE(ife->ifm_media));
2249		break;
2250	}
2251}
2252
2253static int
2254vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2255{
2256	struct vge_softc *sc = ifp->if_softc;
2257	struct ifreq *ifr = (struct ifreq *) data;
2258	struct mii_data *mii;
2259	int error = 0, mask;
2260
2261	switch (command) {
2262	case SIOCSIFMTU:
2263		VGE_LOCK(sc);
2264		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2265			error = EINVAL;
2266		else if (ifp->if_mtu != ifr->ifr_mtu) {
2267			if (ifr->ifr_mtu > ETHERMTU &&
2268			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2269				error = EINVAL;
2270			else
2271				ifp->if_mtu = ifr->ifr_mtu;
2272		}
2273		VGE_UNLOCK(sc);
2274		break;
2275	case SIOCSIFFLAGS:
2276		VGE_LOCK(sc);
2277		if ((ifp->if_flags & IFF_UP) != 0) {
2278			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2279			    ((ifp->if_flags ^ sc->vge_if_flags) &
2280			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2281				vge_rxfilter(sc);
2282			else
2283				vge_init_locked(sc);
2284		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2285			vge_stop(sc);
2286		sc->vge_if_flags = ifp->if_flags;
2287		VGE_UNLOCK(sc);
2288		break;
2289	case SIOCADDMULTI:
2290	case SIOCDELMULTI:
2291		VGE_LOCK(sc);
2292		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2293			vge_rxfilter(sc);
2294		VGE_UNLOCK(sc);
2295		break;
2296	case SIOCGIFMEDIA:
2297	case SIOCSIFMEDIA:
2298		mii = device_get_softc(sc->vge_miibus);
2299		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2300		break;
2301	case SIOCSIFCAP:
2302		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2303#ifdef DEVICE_POLLING
2304		if (mask & IFCAP_POLLING) {
2305			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2306				error = ether_poll_register(vge_poll, ifp);
2307				if (error)
2308					return (error);
2309				VGE_LOCK(sc);
2310					/* Disable interrupts */
2311				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2312				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2313				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2314				ifp->if_capenable |= IFCAP_POLLING;
2315				VGE_UNLOCK(sc);
2316			} else {
2317				error = ether_poll_deregister(ifp);
2318				/* Enable interrupts. */
2319				VGE_LOCK(sc);
2320				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2321				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2322				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2323				ifp->if_capenable &= ~IFCAP_POLLING;
2324				VGE_UNLOCK(sc);
2325			}
2326		}
2327#endif /* DEVICE_POLLING */
2328		VGE_LOCK(sc);
2329		if ((mask & IFCAP_TXCSUM) != 0 &&
2330		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2331			ifp->if_capenable ^= IFCAP_TXCSUM;
2332			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2333				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2334			else
2335				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2336		}
2337		if ((mask & IFCAP_RXCSUM) != 0 &&
2338		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2339			ifp->if_capenable ^= IFCAP_RXCSUM;
2340		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2341		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2342			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2343		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2344		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2345			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2346		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2347		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2348			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2349		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2350		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2351			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2352		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2353		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2354			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2355			vge_setvlan(sc);
2356		}
2357		VGE_UNLOCK(sc);
2358		VLAN_CAPABILITIES(ifp);
2359		break;
2360	default:
2361		error = ether_ioctl(ifp, command, data);
2362		break;
2363	}
2364
2365	return (error);
2366}
2367
2368static void
2369vge_watchdog(void *arg)
2370{
2371	struct vge_softc *sc;
2372	struct ifnet *ifp;
2373
2374	sc = arg;
2375	VGE_LOCK_ASSERT(sc);
2376	vge_stats_update(sc);
2377	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2378	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2379		return;
2380
2381	ifp = sc->vge_ifp;
2382	if_printf(ifp, "watchdog timeout\n");
2383	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2384
2385	vge_txeof(sc);
2386	vge_rxeof(sc, VGE_RX_DESC_CNT);
2387
2388	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2389	vge_init_locked(sc);
2390}
2391
2392/*
2393 * Stop the adapter and free any mbufs allocated to the
2394 * RX and TX lists.
2395 */
2396static void
2397vge_stop(struct vge_softc *sc)
2398{
2399	struct ifnet *ifp;
2400
2401	VGE_LOCK_ASSERT(sc);
2402	ifp = sc->vge_ifp;
2403	sc->vge_timer = 0;
2404	callout_stop(&sc->vge_watchdog);
2405
2406	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2407
2408	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2409	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2410	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2411	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2412	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2413	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2414
2415	vge_stats_update(sc);
2416	VGE_CHAIN_RESET(sc);
2417	vge_txeof(sc);
2418	vge_freebufs(sc);
2419}
2420
2421/*
2422 * Device suspend routine.  Stop the interface and save some PCI
2423 * settings in case the BIOS doesn't restore them properly on
2424 * resume.
2425 */
2426static int
2427vge_suspend(device_t dev)
2428{
2429	struct vge_softc *sc;
2430
2431	sc = device_get_softc(dev);
2432
2433	VGE_LOCK(sc);
2434	vge_stop(sc);
2435	vge_setwol(sc);
2436	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2437	VGE_UNLOCK(sc);
2438
2439	return (0);
2440}
2441
2442/*
2443 * Device resume routine.  Restore some PCI settings in case the BIOS
2444 * doesn't, re-enable busmastering, and restart the interface if
2445 * appropriate.
2446 */
2447static int
2448vge_resume(device_t dev)
2449{
2450	struct vge_softc *sc;
2451	struct ifnet *ifp;
2452	uint16_t pmstat;
2453
2454	sc = device_get_softc(dev);
2455	VGE_LOCK(sc);
2456	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2457		/* Disable PME and clear PME status. */
2458		pmstat = pci_read_config(sc->vge_dev,
2459		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2460		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2461			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2462			pci_write_config(sc->vge_dev,
2463			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2464		}
2465	}
2466	vge_clrwol(sc);
2467	/* Restart MII auto-polling. */
2468	vge_miipoll_start(sc);
2469	ifp = sc->vge_ifp;
2470	/* Reinitialize interface if necessary. */
2471	if ((ifp->if_flags & IFF_UP) != 0) {
2472		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2473		vge_init_locked(sc);
2474	}
2475	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2476	VGE_UNLOCK(sc);
2477
2478	return (0);
2479}
2480
2481/*
2482 * Stop all chip I/O so that the kernel's probe routines don't
2483 * get confused by errant DMAs when rebooting.
2484 */
2485static int
2486vge_shutdown(device_t dev)
2487{
2488
2489	return (vge_suspend(dev));
2490}
2491
2492#define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2493	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2494
2495static void
2496vge_sysctl_node(struct vge_softc *sc)
2497{
2498	struct sysctl_ctx_list *ctx;
2499	struct sysctl_oid_list *child, *parent;
2500	struct sysctl_oid *tree;
2501	struct vge_hw_stats *stats;
2502
2503	stats = &sc->vge_stats;
2504	ctx = device_get_sysctl_ctx(sc->vge_dev);
2505	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2506
2507	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2508	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2509	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2510	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2511	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2512	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2513
2514	/* Pull in device tunables. */
2515	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2516	resource_int_value(device_get_name(sc->vge_dev),
2517	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2518	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2519	resource_int_value(device_get_name(sc->vge_dev),
2520	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2521	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2522	resource_int_value(device_get_name(sc->vge_dev),
2523	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2524
2525	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2526	    NULL, "VGE statistics");
2527	parent = SYSCTL_CHILDREN(tree);
2528
2529	/* Rx statistics. */
2530	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2531	    NULL, "RX MAC statistics");
2532	child = SYSCTL_CHILDREN(tree);
2533	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2534	    &stats->rx_frames, "frames");
2535	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2536	    &stats->rx_good_frames, "Good frames");
2537	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2538	    &stats->rx_fifo_oflows, "FIFO overflows");
2539	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2540	    &stats->rx_runts, "Too short frames");
2541	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2542	    &stats->rx_runts_errs, "Too short frames with errors");
2543	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2544	    &stats->rx_pkts_64, "64 bytes frames");
2545	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2546	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2547	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2548	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2549	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2550	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2551	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2552	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2553	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2554	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2555	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2556	    &stats->rx_pkts_1519_max, "1519 to max frames");
2557	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2558	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2559	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2560	    &stats->rx_jumbos, "Jumbo frames");
2561	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2562	    &stats->rx_crcerrs, "CRC errors");
2563	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2564	    &stats->rx_pause_frames, "CRC errors");
2565	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2566	    &stats->rx_alignerrs, "Alignment errors");
2567	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2568	    &stats->rx_nobufs, "Frames with no buffer event");
2569	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2570	    &stats->rx_symerrs, "Frames with symbol errors");
2571	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2572	    &stats->rx_lenerrs, "Frames with length mismatched");
2573
2574	/* Tx statistics. */
2575	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2576	    NULL, "TX MAC statistics");
2577	child = SYSCTL_CHILDREN(tree);
2578	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2579	    &stats->tx_good_frames, "Good frames");
2580	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2581	    &stats->tx_pkts_64, "64 bytes frames");
2582	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2583	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2584	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2585	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2586	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2587	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2588	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2589	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2590	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2591	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2592	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2593	    &stats->tx_jumbos, "Jumbo frames");
2594	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2595	    &stats->tx_colls, "Collisions");
2596	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2597	    &stats->tx_latecolls, "Late collisions");
2598	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2599	    &stats->tx_pause, "Pause frames");
2600#ifdef VGE_ENABLE_SQEERR
2601	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2602	    &stats->tx_sqeerrs, "SQE errors");
2603#endif
2604	/* Clear MAC statistics. */
2605	vge_stats_clear(sc);
2606}
2607
2608#undef	VGE_SYSCTL_STAT_ADD32
2609
2610static void
2611vge_stats_clear(struct vge_softc *sc)
2612{
2613	int i;
2614
2615	CSR_WRITE_1(sc, VGE_MIBCSR,
2616	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2617	CSR_WRITE_1(sc, VGE_MIBCSR,
2618	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2619	for (i = VGE_TIMEOUT; i > 0; i--) {
2620		DELAY(1);
2621		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2622			break;
2623	}
2624	if (i == 0)
2625		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2626	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2627	    ~VGE_MIBCSR_FREEZE);
2628}
2629
2630static void
2631vge_stats_update(struct vge_softc *sc)
2632{
2633	struct vge_hw_stats *stats;
2634	struct ifnet *ifp;
2635	uint32_t mib[VGE_MIB_CNT], val;
2636	int i;
2637
2638	VGE_LOCK_ASSERT(sc);
2639
2640	stats = &sc->vge_stats;
2641	ifp = sc->vge_ifp;
2642
2643	CSR_WRITE_1(sc, VGE_MIBCSR,
2644	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2645	for (i = VGE_TIMEOUT; i > 0; i--) {
2646		DELAY(1);
2647		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2648			break;
2649	}
2650	if (i == 0) {
2651		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2652		vge_stats_clear(sc);
2653		return;
2654	}
2655
2656	bzero(mib, sizeof(mib));
2657reset_idx:
2658	/* Set MIB read index to 0. */
2659	CSR_WRITE_1(sc, VGE_MIBCSR,
2660	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2661	for (i = 0; i < VGE_MIB_CNT; i++) {
2662		val = CSR_READ_4(sc, VGE_MIBDATA);
2663		if (i != VGE_MIB_DATA_IDX(val)) {
2664			/* Reading interrupted. */
2665			goto reset_idx;
2666		}
2667		mib[i] = val & VGE_MIB_DATA_MASK;
2668	}
2669
2670	/* Rx stats. */
2671	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2672	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2673	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2674	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2675	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2676	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2677	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2678	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2679	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2680	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2681	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2682	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2683	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2684	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2685	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2686	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2687	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2688	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2689	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2690	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2691
2692	/* Tx stats. */
2693	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2694	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2695	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2696	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2697	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2698	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2699	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2700	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2701	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2702	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2703#ifdef VGE_ENABLE_SQEERR
2704	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2705#endif
2706	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2707
2708	/* Update counters in ifnet. */
2709	if_inc_counter(ifp, IFCOUNTER_OPACKETS, mib[VGE_MIB_TX_GOOD_FRAMES]);
2710
2711	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2712	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2713
2714	if_inc_counter(ifp, IFCOUNTER_OERRORS,
2715	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2716
2717	if_inc_counter(ifp, IFCOUNTER_IPACKETS, mib[VGE_MIB_RX_GOOD_FRAMES]);
2718
2719	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2720	    mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2721	    mib[VGE_MIB_RX_RUNTS] +
2722	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2723	    mib[VGE_MIB_RX_CRCERRS] +
2724	    mib[VGE_MIB_RX_ALIGNERRS] +
2725	    mib[VGE_MIB_RX_NOBUFS] +
2726	    mib[VGE_MIB_RX_SYMERRS] +
2727	    mib[VGE_MIB_RX_LENERRS]);
2728}
2729
2730static void
2731vge_intr_holdoff(struct vge_softc *sc)
2732{
2733	uint8_t intctl;
2734
2735	VGE_LOCK_ASSERT(sc);
2736
2737	/*
2738	 * Set Tx interrupt supression threshold.
2739	 * It's possible to use single-shot timer in VGE_CRS1 register
2740	 * in Tx path such that driver can remove most of Tx completion
2741	 * interrupts. However this requires additional access to
2742	 * VGE_CRS1 register to reload the timer in addintion to
2743	 * activating Tx kick command. Another downside is we don't know
2744	 * what single-shot timer value should be used in advance so
2745	 * reclaiming transmitted mbufs could be delayed a lot which in
2746	 * turn slows down Tx operation.
2747	 */
2748	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2749	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2750
2751	/* Set Rx interrupt suppresion threshold. */
2752	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2753	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2754
2755	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2756	intctl &= ~VGE_INTCTL_SC_RELOAD;
2757	intctl |= VGE_INTCTL_HC_RELOAD;
2758	if (sc->vge_tx_coal_pkt <= 0)
2759		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2760	else
2761		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2762	if (sc->vge_rx_coal_pkt <= 0)
2763		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2764	else
2765		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2766	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2767	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2768	if (sc->vge_int_holdoff > 0) {
2769		/* Set interrupt holdoff timer. */
2770		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2771		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2772		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2773		/* Enable holdoff timer. */
2774		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2775	}
2776}
2777
2778static void
2779vge_setlinkspeed(struct vge_softc *sc)
2780{
2781	struct mii_data *mii;
2782	int aneg, i;
2783
2784	VGE_LOCK_ASSERT(sc);
2785
2786	mii = device_get_softc(sc->vge_miibus);
2787	mii_pollstat(mii);
2788	aneg = 0;
2789	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2790	    (IFM_ACTIVE | IFM_AVALID)) {
2791		switch IFM_SUBTYPE(mii->mii_media_active) {
2792		case IFM_10_T:
2793		case IFM_100_TX:
2794			return;
2795		case IFM_1000_T:
2796			aneg++;
2797		default:
2798			break;
2799		}
2800	}
2801	/* Clear forced MAC speed/duplex configuration. */
2802	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2803	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2804	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2805	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2806	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2807	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2808	    BMCR_AUTOEN | BMCR_STARTNEG);
2809	DELAY(1000);
2810	if (aneg != 0) {
2811		/* Poll link state until vge(4) get a 10/100 link. */
2812		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2813			mii_pollstat(mii);
2814			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2815			    == (IFM_ACTIVE | IFM_AVALID)) {
2816				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2817				case IFM_10_T:
2818				case IFM_100_TX:
2819					return;
2820				default:
2821					break;
2822				}
2823			}
2824			VGE_UNLOCK(sc);
2825			pause("vgelnk", hz);
2826			VGE_LOCK(sc);
2827		}
2828		if (i == MII_ANEGTICKS_GIGE)
2829			device_printf(sc->vge_dev, "establishing link failed, "
2830			    "WOL may not work!");
2831	}
2832	/*
2833	 * No link, force MAC to have 100Mbps, full-duplex link.
2834	 * This is the last resort and may/may not work.
2835	 */
2836	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2837	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2838}
2839
2840static void
2841vge_setwol(struct vge_softc *sc)
2842{
2843	struct ifnet *ifp;
2844	uint16_t pmstat;
2845	uint8_t val;
2846
2847	VGE_LOCK_ASSERT(sc);
2848
2849	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2850		/* No PME capability, PHY power down. */
2851		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2852		    BMCR_PDOWN);
2853		vge_miipoll_stop(sc);
2854		return;
2855	}
2856
2857	ifp = sc->vge_ifp;
2858
2859	/* Clear WOL on pattern match. */
2860	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2861	/* Disable WOL on magic/unicast packet. */
2862	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2863	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2864	    VGE_WOLCFG_PMEOVR);
2865	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2866		vge_setlinkspeed(sc);
2867		val = 0;
2868		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2869			val |= VGE_WOLCR1_UCAST;
2870		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2871			val |= VGE_WOLCR1_MAGIC;
2872		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2873		val = 0;
2874		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2875			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2876		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2877		/* Disable MII auto-polling. */
2878		vge_miipoll_stop(sc);
2879	}
2880	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2881	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2882	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2883
2884	/* Clear WOL status on pattern match. */
2885	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2886	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2887
2888	val = CSR_READ_1(sc, VGE_PWRSTAT);
2889	val |= VGE_STICKHW_SWPTAG;
2890	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2891	/* Put hardware into sleep. */
2892	val = CSR_READ_1(sc, VGE_PWRSTAT);
2893	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2894	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2895	/* Request PME if WOL is requested. */
2896	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2897	    PCIR_POWER_STATUS, 2);
2898	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2899	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2900		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2901	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2902	    pmstat, 2);
2903}
2904
2905static void
2906vge_clrwol(struct vge_softc *sc)
2907{
2908	uint8_t val;
2909
2910	val = CSR_READ_1(sc, VGE_PWRSTAT);
2911	val &= ~VGE_STICKHW_SWPTAG;
2912	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2913	/* Disable WOL and clear power state indicator. */
2914	val = CSR_READ_1(sc, VGE_PWRSTAT);
2915	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2916	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2917
2918	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2919	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2920
2921	/* Clear WOL on pattern match. */
2922	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2923	/* Disable WOL on magic/unicast packet. */
2924	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2925	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2926	    VGE_WOLCFG_PMEOVR);
2927	/* Clear WOL status on pattern match. */
2928	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2929	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2930}
2931