if_vge.c revision 227835
1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 227835 2011-11-22 20:45:09Z yongari $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96#include <sys/sysctl.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103#include <net/if_types.h>
104#include <net/if_vlan_var.h>
105
106#include <net/bpf.h>
107
108#include <machine/bus.h>
109#include <machine/resource.h>
110#include <sys/bus.h>
111#include <sys/rman.h>
112
113#include <dev/mii/mii.h>
114#include <dev/mii/miivar.h>
115
116#include <dev/pci/pcireg.h>
117#include <dev/pci/pcivar.h>
118
119MODULE_DEPEND(vge, pci, 1, 1, 1);
120MODULE_DEPEND(vge, ether, 1, 1, 1);
121MODULE_DEPEND(vge, miibus, 1, 1, 1);
122
123/* "device miibus" required.  See GENERIC if you get errors here. */
124#include "miibus_if.h"
125
126#include <dev/vge/if_vgereg.h>
127#include <dev/vge/if_vgevar.h>
128
129#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130
131/* Tunables */
132static int msi_disable = 0;
133TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
134
135/*
136 * The SQE error counter of MIB seems to report bogus value.
137 * Vendor's workaround does not seem to work on PCIe based
138 * controllers. Disable it until we find better workaround.
139 */
140#undef VGE_ENABLE_SQEERR
141
142/*
143 * Various supported device vendors/types and their names.
144 */
145static struct vge_type vge_devs[] = {
146	{ VIA_VENDORID, VIA_DEVICEID_61XX,
147		"VIA Networking Velocity Gigabit Ethernet" },
148	{ 0, 0, NULL }
149};
150
151static int	vge_attach(device_t);
152static int	vge_detach(device_t);
153static int	vge_probe(device_t);
154static int	vge_resume(device_t);
155static int	vge_shutdown(device_t);
156static int	vge_suspend(device_t);
157
158static void	vge_cam_clear(struct vge_softc *);
159static int	vge_cam_set(struct vge_softc *, uint8_t *);
160static void	vge_clrwol(struct vge_softc *);
161static void	vge_discard_rxbuf(struct vge_softc *, int);
162static int	vge_dma_alloc(struct vge_softc *);
163static void	vge_dma_free(struct vge_softc *);
164static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
165#ifdef VGE_EEPROM
166static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
167#endif
168static int	vge_encap(struct vge_softc *, struct mbuf **);
169#ifndef __NO_STRICT_ALIGNMENT
170static __inline void
171		vge_fixup_rx(struct mbuf *);
172#endif
173static void	vge_freebufs(struct vge_softc *);
174static void	vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
175static int	vge_ifmedia_upd(struct ifnet *);
176static int	vge_ifmedia_upd_locked(struct vge_softc *);
177static void	vge_init(void *);
178static void	vge_init_locked(struct vge_softc *);
179static void	vge_intr(void *);
180static void	vge_intr_holdoff(struct vge_softc *);
181static int	vge_ioctl(struct ifnet *, u_long, caddr_t);
182static void	vge_link_statchg(void *);
183static int	vge_miibus_readreg(device_t, int, int);
184static int	vge_miibus_writereg(device_t, int, int, int);
185static void	vge_miipoll_start(struct vge_softc *);
186static void	vge_miipoll_stop(struct vge_softc *);
187static int	vge_newbuf(struct vge_softc *, int);
188static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
189static void	vge_reset(struct vge_softc *);
190static int	vge_rx_list_init(struct vge_softc *);
191static int	vge_rxeof(struct vge_softc *, int);
192static void	vge_rxfilter(struct vge_softc *);
193static void	vge_setmedia(struct vge_softc *);
194static void	vge_setvlan(struct vge_softc *);
195static void	vge_setwol(struct vge_softc *);
196static void	vge_start(struct ifnet *);
197static void	vge_start_locked(struct ifnet *);
198static void	vge_stats_clear(struct vge_softc *);
199static void	vge_stats_update(struct vge_softc *);
200static void	vge_stop(struct vge_softc *);
201static void	vge_sysctl_node(struct vge_softc *);
202static int	vge_tx_list_init(struct vge_softc *);
203static void	vge_txeof(struct vge_softc *);
204static void	vge_watchdog(void *);
205
206static device_method_t vge_methods[] = {
207	/* Device interface */
208	DEVMETHOD(device_probe,		vge_probe),
209	DEVMETHOD(device_attach,	vge_attach),
210	DEVMETHOD(device_detach,	vge_detach),
211	DEVMETHOD(device_suspend,	vge_suspend),
212	DEVMETHOD(device_resume,	vge_resume),
213	DEVMETHOD(device_shutdown,	vge_shutdown),
214
215	/* bus interface */
216	DEVMETHOD(bus_print_child,	bus_generic_print_child),
217	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
218
219	/* MII interface */
220	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
221	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
222
223	{ 0, 0 }
224};
225
226static driver_t vge_driver = {
227	"vge",
228	vge_methods,
229	sizeof(struct vge_softc)
230};
231
232static devclass_t vge_devclass;
233
234DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
235DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
236
237#ifdef VGE_EEPROM
238/*
239 * Read a word of data stored in the EEPROM at address 'addr.'
240 */
241static void
242vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
243{
244	int i;
245	uint16_t word = 0;
246
247	/*
248	 * Enter EEPROM embedded programming mode. In order to
249	 * access the EEPROM at all, we first have to set the
250	 * EELOAD bit in the CHIPCFG2 register.
251	 */
252	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
253	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
254
255	/* Select the address of the word we want to read */
256	CSR_WRITE_1(sc, VGE_EEADDR, addr);
257
258	/* Issue read command */
259	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
260
261	/* Wait for the done bit to be set. */
262	for (i = 0; i < VGE_TIMEOUT; i++) {
263		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
264			break;
265	}
266
267	if (i == VGE_TIMEOUT) {
268		device_printf(sc->vge_dev, "EEPROM read timed out\n");
269		*dest = 0;
270		return;
271	}
272
273	/* Read the result */
274	word = CSR_READ_2(sc, VGE_EERDDAT);
275
276	/* Turn off EEPROM access mode. */
277	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
278	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
279
280	*dest = word;
281}
282#endif
283
284/*
285 * Read a sequence of words from the EEPROM.
286 */
287static void
288vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
289{
290	int i;
291#ifdef VGE_EEPROM
292	uint16_t word = 0, *ptr;
293
294	for (i = 0; i < cnt; i++) {
295		vge_eeprom_getword(sc, off + i, &word);
296		ptr = (uint16_t *)(dest + (i * 2));
297		if (swap)
298			*ptr = ntohs(word);
299		else
300			*ptr = word;
301	}
302#else
303	for (i = 0; i < ETHER_ADDR_LEN; i++)
304		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
305#endif
306}
307
308static void
309vge_miipoll_stop(struct vge_softc *sc)
310{
311	int i;
312
313	CSR_WRITE_1(sc, VGE_MIICMD, 0);
314
315	for (i = 0; i < VGE_TIMEOUT; i++) {
316		DELAY(1);
317		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
318			break;
319	}
320
321	if (i == VGE_TIMEOUT)
322		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
323}
324
325static void
326vge_miipoll_start(struct vge_softc *sc)
327{
328	int i;
329
330	/* First, make sure we're idle. */
331
332	CSR_WRITE_1(sc, VGE_MIICMD, 0);
333	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
334
335	for (i = 0; i < VGE_TIMEOUT; i++) {
336		DELAY(1);
337		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
338			break;
339	}
340
341	if (i == VGE_TIMEOUT) {
342		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
343		return;
344	}
345
346	/* Now enable auto poll mode. */
347
348	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
349
350	/* And make sure it started. */
351
352	for (i = 0; i < VGE_TIMEOUT; i++) {
353		DELAY(1);
354		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
355			break;
356	}
357
358	if (i == VGE_TIMEOUT)
359		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
360}
361
362static int
363vge_miibus_readreg(device_t dev, int phy, int reg)
364{
365	struct vge_softc *sc;
366	int i;
367	uint16_t rval = 0;
368
369	sc = device_get_softc(dev);
370
371	vge_miipoll_stop(sc);
372
373	/* Specify the register we want to read. */
374	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
375
376	/* Issue read command. */
377	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
378
379	/* Wait for the read command bit to self-clear. */
380	for (i = 0; i < VGE_TIMEOUT; i++) {
381		DELAY(1);
382		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
383			break;
384	}
385
386	if (i == VGE_TIMEOUT)
387		device_printf(sc->vge_dev, "MII read timed out\n");
388	else
389		rval = CSR_READ_2(sc, VGE_MIIDATA);
390
391	vge_miipoll_start(sc);
392
393	return (rval);
394}
395
396static int
397vge_miibus_writereg(device_t dev, int phy, int reg, int data)
398{
399	struct vge_softc *sc;
400	int i, rval = 0;
401
402	sc = device_get_softc(dev);
403
404	vge_miipoll_stop(sc);
405
406	/* Specify the register we want to write. */
407	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
408
409	/* Specify the data we want to write. */
410	CSR_WRITE_2(sc, VGE_MIIDATA, data);
411
412	/* Issue write command. */
413	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
414
415	/* Wait for the write command bit to self-clear. */
416	for (i = 0; i < VGE_TIMEOUT; i++) {
417		DELAY(1);
418		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
419			break;
420	}
421
422	if (i == VGE_TIMEOUT) {
423		device_printf(sc->vge_dev, "MII write timed out\n");
424		rval = EIO;
425	}
426
427	vge_miipoll_start(sc);
428
429	return (rval);
430}
431
432static void
433vge_cam_clear(struct vge_softc *sc)
434{
435	int i;
436
437	/*
438	 * Turn off all the mask bits. This tells the chip
439	 * that none of the entries in the CAM filter are valid.
440	 * desired entries will be enabled as we fill the filter in.
441	 */
442
443	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
444	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
445	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
446	for (i = 0; i < 8; i++)
447		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
448
449	/* Clear the VLAN filter too. */
450
451	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
452	for (i = 0; i < 8; i++)
453		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
454
455	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
456	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
457	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
458
459	sc->vge_camidx = 0;
460}
461
462static int
463vge_cam_set(struct vge_softc *sc, uint8_t *addr)
464{
465	int i, error = 0;
466
467	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
468		return (ENOSPC);
469
470	/* Select the CAM data page. */
471	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
472	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
473
474	/* Set the filter entry we want to update and enable writing. */
475	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
476
477	/* Write the address to the CAM registers */
478	for (i = 0; i < ETHER_ADDR_LEN; i++)
479		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
480
481	/* Issue a write command. */
482	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
483
484	/* Wake for it to clear. */
485	for (i = 0; i < VGE_TIMEOUT; i++) {
486		DELAY(1);
487		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
488			break;
489	}
490
491	if (i == VGE_TIMEOUT) {
492		device_printf(sc->vge_dev, "setting CAM filter failed\n");
493		error = EIO;
494		goto fail;
495	}
496
497	/* Select the CAM mask page. */
498	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
499	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
500
501	/* Set the mask bit that enables this filter. */
502	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
503	    1<<(sc->vge_camidx & 7));
504
505	sc->vge_camidx++;
506
507fail:
508	/* Turn off access to CAM. */
509	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
510	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
511	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
512
513	return (error);
514}
515
516static void
517vge_setvlan(struct vge_softc *sc)
518{
519	struct ifnet *ifp;
520	uint8_t cfg;
521
522	VGE_LOCK_ASSERT(sc);
523
524	ifp = sc->vge_ifp;
525	cfg = CSR_READ_1(sc, VGE_RXCFG);
526	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
527		cfg |= VGE_VTAG_OPT2;
528	else
529		cfg &= ~VGE_VTAG_OPT2;
530	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
531}
532
533/*
534 * Program the multicast filter. We use the 64-entry CAM filter
535 * for perfect filtering. If there's more than 64 multicast addresses,
536 * we use the hash filter instead.
537 */
538static void
539vge_rxfilter(struct vge_softc *sc)
540{
541	struct ifnet *ifp;
542	struct ifmultiaddr *ifma;
543	uint32_t h, hashes[2];
544	uint8_t rxcfg;
545	int error = 0;
546
547	VGE_LOCK_ASSERT(sc);
548
549	/* First, zot all the multicast entries. */
550	hashes[0] = 0;
551	hashes[1] = 0;
552
553	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
554	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
555	    VGE_RXCTL_RX_PROMISC);
556	/*
557	 * Always allow VLAN oversized frames and frames for
558	 * this host.
559	 */
560	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
561
562	ifp = sc->vge_ifp;
563	if ((ifp->if_flags & IFF_BROADCAST) != 0)
564		rxcfg |= VGE_RXCTL_RX_BCAST;
565	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
566		if ((ifp->if_flags & IFF_PROMISC) != 0)
567			rxcfg |= VGE_RXCTL_RX_PROMISC;
568		if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
569			hashes[0] = 0xFFFFFFFF;
570			hashes[1] = 0xFFFFFFFF;
571		}
572		goto done;
573	}
574
575	vge_cam_clear(sc);
576	/* Now program new ones */
577	if_maddr_rlock(ifp);
578	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
579		if (ifma->ifma_addr->sa_family != AF_LINK)
580			continue;
581		error = vge_cam_set(sc,
582		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
583		if (error)
584			break;
585	}
586
587	/* If there were too many addresses, use the hash filter. */
588	if (error) {
589		vge_cam_clear(sc);
590
591		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
592			if (ifma->ifma_addr->sa_family != AF_LINK)
593				continue;
594			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
595			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
596			if (h < 32)
597				hashes[0] |= (1 << h);
598			else
599				hashes[1] |= (1 << (h - 32));
600		}
601	}
602	if_maddr_runlock(ifp);
603
604done:
605	if (hashes[0] != 0 || hashes[1] != 0)
606		rxcfg |= VGE_RXCTL_RX_MCAST;
607	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
608	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
609	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
610}
611
612static void
613vge_reset(struct vge_softc *sc)
614{
615	int i;
616
617	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
618
619	for (i = 0; i < VGE_TIMEOUT; i++) {
620		DELAY(5);
621		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
622			break;
623	}
624
625	if (i == VGE_TIMEOUT) {
626		device_printf(sc->vge_dev, "soft reset timed out\n");
627		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
628		DELAY(2000);
629	}
630
631	DELAY(5000);
632}
633
634/*
635 * Probe for a VIA gigabit chip. Check the PCI vendor and device
636 * IDs against our list and return a device name if we find a match.
637 */
638static int
639vge_probe(device_t dev)
640{
641	struct vge_type	*t;
642
643	t = vge_devs;
644
645	while (t->vge_name != NULL) {
646		if ((pci_get_vendor(dev) == t->vge_vid) &&
647		    (pci_get_device(dev) == t->vge_did)) {
648			device_set_desc(dev, t->vge_name);
649			return (BUS_PROBE_DEFAULT);
650		}
651		t++;
652	}
653
654	return (ENXIO);
655}
656
657/*
658 * Map a single buffer address.
659 */
660
661struct vge_dmamap_arg {
662	bus_addr_t	vge_busaddr;
663};
664
665static void
666vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
667{
668	struct vge_dmamap_arg *ctx;
669
670	if (error != 0)
671		return;
672
673	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
674
675	ctx = (struct vge_dmamap_arg *)arg;
676	ctx->vge_busaddr = segs[0].ds_addr;
677}
678
679static int
680vge_dma_alloc(struct vge_softc *sc)
681{
682	struct vge_dmamap_arg ctx;
683	struct vge_txdesc *txd;
684	struct vge_rxdesc *rxd;
685	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
686	int error, i;
687
688	/*
689	 * It seems old PCI controllers do not support DAC.  DAC
690	 * configuration can be enabled by accessing VGE_CHIPCFG3
691	 * register but honor EEPROM configuration instead of
692	 * blindly overriding DAC configuration.  PCIe based
693	 * controllers are supposed to support 64bit DMA so enable
694	 * 64bit DMA on these controllers.
695	 */
696	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
697		lowaddr = BUS_SPACE_MAXADDR;
698	else
699		lowaddr = BUS_SPACE_MAXADDR_32BIT;
700
701again:
702	/* Create parent ring tag. */
703	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
704	    1, 0,			/* algnmnt, boundary */
705	    lowaddr,			/* lowaddr */
706	    BUS_SPACE_MAXADDR,		/* highaddr */
707	    NULL, NULL,			/* filter, filterarg */
708	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
709	    0,				/* nsegments */
710	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
711	    0,				/* flags */
712	    NULL, NULL,			/* lockfunc, lockarg */
713	    &sc->vge_cdata.vge_ring_tag);
714	if (error != 0) {
715		device_printf(sc->vge_dev,
716		    "could not create parent DMA tag.\n");
717		goto fail;
718	}
719
720	/* Create tag for Tx ring. */
721	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
722	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
723	    BUS_SPACE_MAXADDR,		/* lowaddr */
724	    BUS_SPACE_MAXADDR,		/* highaddr */
725	    NULL, NULL,			/* filter, filterarg */
726	    VGE_TX_LIST_SZ,		/* maxsize */
727	    1,				/* nsegments */
728	    VGE_TX_LIST_SZ,		/* maxsegsize */
729	    0,				/* flags */
730	    NULL, NULL,			/* lockfunc, lockarg */
731	    &sc->vge_cdata.vge_tx_ring_tag);
732	if (error != 0) {
733		device_printf(sc->vge_dev,
734		    "could not allocate Tx ring DMA tag.\n");
735		goto fail;
736	}
737
738	/* Create tag for Rx ring. */
739	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
740	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
741	    BUS_SPACE_MAXADDR,		/* lowaddr */
742	    BUS_SPACE_MAXADDR,		/* highaddr */
743	    NULL, NULL,			/* filter, filterarg */
744	    VGE_RX_LIST_SZ,		/* maxsize */
745	    1,				/* nsegments */
746	    VGE_RX_LIST_SZ,		/* maxsegsize */
747	    0,				/* flags */
748	    NULL, NULL,			/* lockfunc, lockarg */
749	    &sc->vge_cdata.vge_rx_ring_tag);
750	if (error != 0) {
751		device_printf(sc->vge_dev,
752		    "could not allocate Rx ring DMA tag.\n");
753		goto fail;
754	}
755
756	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
757	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
758	    (void **)&sc->vge_rdata.vge_tx_ring,
759	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
760	    &sc->vge_cdata.vge_tx_ring_map);
761	if (error != 0) {
762		device_printf(sc->vge_dev,
763		    "could not allocate DMA'able memory for Tx ring.\n");
764		goto fail;
765	}
766
767	ctx.vge_busaddr = 0;
768	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
769	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
770	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
771	if (error != 0 || ctx.vge_busaddr == 0) {
772		device_printf(sc->vge_dev,
773		    "could not load DMA'able memory for Tx ring.\n");
774		goto fail;
775	}
776	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
777
778	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
779	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
780	    (void **)&sc->vge_rdata.vge_rx_ring,
781	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
782	    &sc->vge_cdata.vge_rx_ring_map);
783	if (error != 0) {
784		device_printf(sc->vge_dev,
785		    "could not allocate DMA'able memory for Rx ring.\n");
786		goto fail;
787	}
788
789	ctx.vge_busaddr = 0;
790	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
791	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
792	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
793	if (error != 0 || ctx.vge_busaddr == 0) {
794		device_printf(sc->vge_dev,
795		    "could not load DMA'able memory for Rx ring.\n");
796		goto fail;
797	}
798	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
799
800	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
801	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
802	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
803	if ((VGE_ADDR_HI(tx_ring_end) !=
804	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
805	    (VGE_ADDR_HI(rx_ring_end) !=
806	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
807	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
808		device_printf(sc->vge_dev, "4GB boundary crossed, "
809		    "switching to 32bit DMA address mode.\n");
810		vge_dma_free(sc);
811		/* Limit DMA address space to 32bit and try again. */
812		lowaddr = BUS_SPACE_MAXADDR_32BIT;
813		goto again;
814	}
815
816	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
817		lowaddr = VGE_BUF_DMA_MAXADDR;
818	else
819		lowaddr = BUS_SPACE_MAXADDR_32BIT;
820	/* Create parent buffer tag. */
821	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
822	    1, 0,			/* algnmnt, boundary */
823	    lowaddr,			/* lowaddr */
824	    BUS_SPACE_MAXADDR,		/* highaddr */
825	    NULL, NULL,			/* filter, filterarg */
826	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
827	    0,				/* nsegments */
828	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
829	    0,				/* flags */
830	    NULL, NULL,			/* lockfunc, lockarg */
831	    &sc->vge_cdata.vge_buffer_tag);
832	if (error != 0) {
833		device_printf(sc->vge_dev,
834		    "could not create parent buffer DMA tag.\n");
835		goto fail;
836	}
837
838	/* Create tag for Tx buffers. */
839	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
840	    1, 0,			/* algnmnt, boundary */
841	    BUS_SPACE_MAXADDR,		/* lowaddr */
842	    BUS_SPACE_MAXADDR,		/* highaddr */
843	    NULL, NULL,			/* filter, filterarg */
844	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
845	    VGE_MAXTXSEGS,		/* nsegments */
846	    MCLBYTES,			/* maxsegsize */
847	    0,				/* flags */
848	    NULL, NULL,			/* lockfunc, lockarg */
849	    &sc->vge_cdata.vge_tx_tag);
850	if (error != 0) {
851		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
852		goto fail;
853	}
854
855	/* Create tag for Rx buffers. */
856	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
857	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
858	    BUS_SPACE_MAXADDR,		/* lowaddr */
859	    BUS_SPACE_MAXADDR,		/* highaddr */
860	    NULL, NULL,			/* filter, filterarg */
861	    MCLBYTES,			/* maxsize */
862	    1,				/* nsegments */
863	    MCLBYTES,			/* maxsegsize */
864	    0,				/* flags */
865	    NULL, NULL,			/* lockfunc, lockarg */
866	    &sc->vge_cdata.vge_rx_tag);
867	if (error != 0) {
868		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
869		goto fail;
870	}
871
872	/* Create DMA maps for Tx buffers. */
873	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
874		txd = &sc->vge_cdata.vge_txdesc[i];
875		txd->tx_m = NULL;
876		txd->tx_dmamap = NULL;
877		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
878		    &txd->tx_dmamap);
879		if (error != 0) {
880			device_printf(sc->vge_dev,
881			    "could not create Tx dmamap.\n");
882			goto fail;
883		}
884	}
885	/* Create DMA maps for Rx buffers. */
886	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
887	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
888		device_printf(sc->vge_dev,
889		    "could not create spare Rx dmamap.\n");
890		goto fail;
891	}
892	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
893		rxd = &sc->vge_cdata.vge_rxdesc[i];
894		rxd->rx_m = NULL;
895		rxd->rx_dmamap = NULL;
896		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
897		    &rxd->rx_dmamap);
898		if (error != 0) {
899			device_printf(sc->vge_dev,
900			    "could not create Rx dmamap.\n");
901			goto fail;
902		}
903	}
904
905fail:
906	return (error);
907}
908
909static void
910vge_dma_free(struct vge_softc *sc)
911{
912	struct vge_txdesc *txd;
913	struct vge_rxdesc *rxd;
914	int i;
915
916	/* Tx ring. */
917	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
918		if (sc->vge_cdata.vge_tx_ring_map)
919			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
920			    sc->vge_cdata.vge_tx_ring_map);
921		if (sc->vge_cdata.vge_tx_ring_map &&
922		    sc->vge_rdata.vge_tx_ring)
923			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
924			    sc->vge_rdata.vge_tx_ring,
925			    sc->vge_cdata.vge_tx_ring_map);
926		sc->vge_rdata.vge_tx_ring = NULL;
927		sc->vge_cdata.vge_tx_ring_map = NULL;
928		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
929		sc->vge_cdata.vge_tx_ring_tag = NULL;
930	}
931	/* Rx ring. */
932	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
933		if (sc->vge_cdata.vge_rx_ring_map)
934			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
935			    sc->vge_cdata.vge_rx_ring_map);
936		if (sc->vge_cdata.vge_rx_ring_map &&
937		    sc->vge_rdata.vge_rx_ring)
938			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
939			    sc->vge_rdata.vge_rx_ring,
940			    sc->vge_cdata.vge_rx_ring_map);
941		sc->vge_rdata.vge_rx_ring = NULL;
942		sc->vge_cdata.vge_rx_ring_map = NULL;
943		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
944		sc->vge_cdata.vge_rx_ring_tag = NULL;
945	}
946	/* Tx buffers. */
947	if (sc->vge_cdata.vge_tx_tag != NULL) {
948		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
949			txd = &sc->vge_cdata.vge_txdesc[i];
950			if (txd->tx_dmamap != NULL) {
951				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
952				    txd->tx_dmamap);
953				txd->tx_dmamap = NULL;
954			}
955		}
956		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
957		sc->vge_cdata.vge_tx_tag = NULL;
958	}
959	/* Rx buffers. */
960	if (sc->vge_cdata.vge_rx_tag != NULL) {
961		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
962			rxd = &sc->vge_cdata.vge_rxdesc[i];
963			if (rxd->rx_dmamap != NULL) {
964				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
965				    rxd->rx_dmamap);
966				rxd->rx_dmamap = NULL;
967			}
968		}
969		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
970			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
971			    sc->vge_cdata.vge_rx_sparemap);
972			sc->vge_cdata.vge_rx_sparemap = NULL;
973		}
974		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
975		sc->vge_cdata.vge_rx_tag = NULL;
976	}
977
978	if (sc->vge_cdata.vge_buffer_tag != NULL) {
979		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
980		sc->vge_cdata.vge_buffer_tag = NULL;
981	}
982	if (sc->vge_cdata.vge_ring_tag != NULL) {
983		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
984		sc->vge_cdata.vge_ring_tag = NULL;
985	}
986}
987
988/*
989 * Attach the interface. Allocate softc structures, do ifmedia
990 * setup and ethernet/BPF attach.
991 */
992static int
993vge_attach(device_t dev)
994{
995	u_char eaddr[ETHER_ADDR_LEN];
996	struct vge_softc *sc;
997	struct ifnet *ifp;
998	int error = 0, cap, i, msic, rid;
999
1000	sc = device_get_softc(dev);
1001	sc->vge_dev = dev;
1002
1003	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1004	    MTX_DEF);
1005	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1006
1007	/*
1008	 * Map control/status registers.
1009	 */
1010	pci_enable_busmaster(dev);
1011
1012	rid = PCIR_BAR(1);
1013	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1014	    RF_ACTIVE);
1015
1016	if (sc->vge_res == NULL) {
1017		device_printf(dev, "couldn't map ports/memory\n");
1018		error = ENXIO;
1019		goto fail;
1020	}
1021
1022	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1023		sc->vge_flags |= VGE_FLAG_PCIE;
1024		sc->vge_expcap = cap;
1025	} else
1026		sc->vge_flags |= VGE_FLAG_JUMBO;
1027	if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1028		sc->vge_flags |= VGE_FLAG_PMCAP;
1029		sc->vge_pmcap = cap;
1030	}
1031	rid = 0;
1032	msic = pci_msi_count(dev);
1033	if (msi_disable == 0 && msic > 0) {
1034		msic = 1;
1035		if (pci_alloc_msi(dev, &msic) == 0) {
1036			if (msic == 1) {
1037				sc->vge_flags |= VGE_FLAG_MSI;
1038				device_printf(dev, "Using %d MSI message\n",
1039				    msic);
1040				rid = 1;
1041			} else
1042				pci_release_msi(dev);
1043		}
1044	}
1045
1046	/* Allocate interrupt */
1047	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1048	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1049	if (sc->vge_irq == NULL) {
1050		device_printf(dev, "couldn't map interrupt\n");
1051		error = ENXIO;
1052		goto fail;
1053	}
1054
1055	/* Reset the adapter. */
1056	vge_reset(sc);
1057	/* Reload EEPROM. */
1058	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1059	for (i = 0; i < VGE_TIMEOUT; i++) {
1060		DELAY(5);
1061		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1062			break;
1063	}
1064	if (i == VGE_TIMEOUT)
1065		device_printf(dev, "EEPROM reload timed out\n");
1066	/*
1067	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1068	 * MAC will receive magic packet which in turn confuses
1069	 * controller.
1070	 */
1071	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1072
1073	/*
1074	 * Get station address from the EEPROM.
1075	 */
1076	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1077	/*
1078	 * Save configured PHY address.
1079	 * It seems the PHY address of PCIe controllers just
1080	 * reflects media jump strapping status so we assume the
1081	 * internal PHY address of PCIe controller is at 1.
1082	 */
1083	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1084		sc->vge_phyaddr = 1;
1085	else
1086		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1087		    VGE_MIICFG_PHYADDR;
1088	/* Clear WOL and take hardware from powerdown. */
1089	vge_clrwol(sc);
1090	vge_sysctl_node(sc);
1091	error = vge_dma_alloc(sc);
1092	if (error)
1093		goto fail;
1094
1095	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1096	if (ifp == NULL) {
1097		device_printf(dev, "can not if_alloc()\n");
1098		error = ENOSPC;
1099		goto fail;
1100	}
1101
1102	vge_miipoll_start(sc);
1103	/* Do MII setup */
1104	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1105	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1106	    0);
1107	if (error != 0) {
1108		device_printf(dev, "attaching PHYs failed\n");
1109		goto fail;
1110	}
1111
1112	ifp->if_softc = sc;
1113	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1114	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1115	ifp->if_ioctl = vge_ioctl;
1116	ifp->if_capabilities = IFCAP_VLAN_MTU;
1117	ifp->if_start = vge_start;
1118	ifp->if_hwassist = VGE_CSUM_FEATURES;
1119	ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1120	    IFCAP_VLAN_HWTAGGING;
1121	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1122		ifp->if_capabilities |= IFCAP_WOL;
1123	ifp->if_capenable = ifp->if_capabilities;
1124#ifdef DEVICE_POLLING
1125	ifp->if_capabilities |= IFCAP_POLLING;
1126#endif
1127	ifp->if_init = vge_init;
1128	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1129	ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1130	IFQ_SET_READY(&ifp->if_snd);
1131
1132	/*
1133	 * Call MI attach routine.
1134	 */
1135	ether_ifattach(ifp, eaddr);
1136
1137	/* Tell the upper layer(s) we support long frames. */
1138	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1139
1140	/* Hook interrupt last to avoid having to lock softc */
1141	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1142	    NULL, vge_intr, sc, &sc->vge_intrhand);
1143
1144	if (error) {
1145		device_printf(dev, "couldn't set up irq\n");
1146		ether_ifdetach(ifp);
1147		goto fail;
1148	}
1149
1150fail:
1151	if (error)
1152		vge_detach(dev);
1153
1154	return (error);
1155}
1156
1157/*
1158 * Shutdown hardware and free up resources. This can be called any
1159 * time after the mutex has been initialized. It is called in both
1160 * the error case in attach and the normal detach case so it needs
1161 * to be careful about only freeing resources that have actually been
1162 * allocated.
1163 */
1164static int
1165vge_detach(device_t dev)
1166{
1167	struct vge_softc *sc;
1168	struct ifnet *ifp;
1169
1170	sc = device_get_softc(dev);
1171	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1172	ifp = sc->vge_ifp;
1173
1174#ifdef DEVICE_POLLING
1175	if (ifp->if_capenable & IFCAP_POLLING)
1176		ether_poll_deregister(ifp);
1177#endif
1178
1179	/* These should only be active if attach succeeded */
1180	if (device_is_attached(dev)) {
1181		ether_ifdetach(ifp);
1182		VGE_LOCK(sc);
1183		vge_stop(sc);
1184		VGE_UNLOCK(sc);
1185		callout_drain(&sc->vge_watchdog);
1186	}
1187	if (sc->vge_miibus)
1188		device_delete_child(dev, sc->vge_miibus);
1189	bus_generic_detach(dev);
1190
1191	if (sc->vge_intrhand)
1192		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1193	if (sc->vge_irq)
1194		bus_release_resource(dev, SYS_RES_IRQ,
1195		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1196	if (sc->vge_flags & VGE_FLAG_MSI)
1197		pci_release_msi(dev);
1198	if (sc->vge_res)
1199		bus_release_resource(dev, SYS_RES_MEMORY,
1200		    PCIR_BAR(1), sc->vge_res);
1201	if (ifp)
1202		if_free(ifp);
1203
1204	vge_dma_free(sc);
1205	mtx_destroy(&sc->vge_mtx);
1206
1207	return (0);
1208}
1209
1210static void
1211vge_discard_rxbuf(struct vge_softc *sc, int prod)
1212{
1213	struct vge_rxdesc *rxd;
1214	int i;
1215
1216	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1217	rxd->rx_desc->vge_sts = 0;
1218	rxd->rx_desc->vge_ctl = 0;
1219
1220	/*
1221	 * Note: the manual fails to document the fact that for
1222	 * proper opration, the driver needs to replentish the RX
1223	 * DMA ring 4 descriptors at a time (rather than one at a
1224	 * time, like most chips). We can allocate the new buffers
1225	 * but we should not set the OWN bits until we're ready
1226	 * to hand back 4 of them in one shot.
1227	 */
1228	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1229		for (i = VGE_RXCHUNK; i > 0; i--) {
1230			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1231			rxd = rxd->rxd_prev;
1232		}
1233		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1234	}
1235}
1236
1237static int
1238vge_newbuf(struct vge_softc *sc, int prod)
1239{
1240	struct vge_rxdesc *rxd;
1241	struct mbuf *m;
1242	bus_dma_segment_t segs[1];
1243	bus_dmamap_t map;
1244	int i, nsegs;
1245
1246	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1247	if (m == NULL)
1248		return (ENOBUFS);
1249	/*
1250	 * This is part of an evil trick to deal with strict-alignment
1251	 * architectures. The VIA chip requires RX buffers to be aligned
1252	 * on 32-bit boundaries, but that will hose strict-alignment
1253	 * architectures. To get around this, we leave some empty space
1254	 * at the start of each buffer and for non-strict-alignment hosts,
1255	 * we copy the buffer back two bytes to achieve word alignment.
1256	 * This is slightly more efficient than allocating a new buffer,
1257	 * copying the contents, and discarding the old buffer.
1258	 */
1259	m->m_len = m->m_pkthdr.len = MCLBYTES;
1260	m_adj(m, VGE_RX_BUF_ALIGN);
1261
1262	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1263	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1264		m_freem(m);
1265		return (ENOBUFS);
1266	}
1267	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1268
1269	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1270	if (rxd->rx_m != NULL) {
1271		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1272		    BUS_DMASYNC_POSTREAD);
1273		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1274	}
1275	map = rxd->rx_dmamap;
1276	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1277	sc->vge_cdata.vge_rx_sparemap = map;
1278	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1279	    BUS_DMASYNC_PREREAD);
1280	rxd->rx_m = m;
1281
1282	rxd->rx_desc->vge_sts = 0;
1283	rxd->rx_desc->vge_ctl = 0;
1284	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1285	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1286	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1287
1288	/*
1289	 * Note: the manual fails to document the fact that for
1290	 * proper operation, the driver needs to replenish the RX
1291	 * DMA ring 4 descriptors at a time (rather than one at a
1292	 * time, like most chips). We can allocate the new buffers
1293	 * but we should not set the OWN bits until we're ready
1294	 * to hand back 4 of them in one shot.
1295	 */
1296	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1297		for (i = VGE_RXCHUNK; i > 0; i--) {
1298			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1299			rxd = rxd->rxd_prev;
1300		}
1301		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1302	}
1303
1304	return (0);
1305}
1306
1307static int
1308vge_tx_list_init(struct vge_softc *sc)
1309{
1310	struct vge_ring_data *rd;
1311	struct vge_txdesc *txd;
1312	int i;
1313
1314	VGE_LOCK_ASSERT(sc);
1315
1316	sc->vge_cdata.vge_tx_prodidx = 0;
1317	sc->vge_cdata.vge_tx_considx = 0;
1318	sc->vge_cdata.vge_tx_cnt = 0;
1319
1320	rd = &sc->vge_rdata;
1321	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1322	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1323		txd = &sc->vge_cdata.vge_txdesc[i];
1324		txd->tx_m = NULL;
1325		txd->tx_desc = &rd->vge_tx_ring[i];
1326	}
1327
1328	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1329	    sc->vge_cdata.vge_tx_ring_map,
1330	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1331
1332	return (0);
1333}
1334
1335static int
1336vge_rx_list_init(struct vge_softc *sc)
1337{
1338	struct vge_ring_data *rd;
1339	struct vge_rxdesc *rxd;
1340	int i;
1341
1342	VGE_LOCK_ASSERT(sc);
1343
1344	sc->vge_cdata.vge_rx_prodidx = 0;
1345	sc->vge_cdata.vge_head = NULL;
1346	sc->vge_cdata.vge_tail = NULL;
1347	sc->vge_cdata.vge_rx_commit = 0;
1348
1349	rd = &sc->vge_rdata;
1350	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1351	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1352		rxd = &sc->vge_cdata.vge_rxdesc[i];
1353		rxd->rx_m = NULL;
1354		rxd->rx_desc = &rd->vge_rx_ring[i];
1355		if (i == 0)
1356			rxd->rxd_prev =
1357			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1358		else
1359			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1360		if (vge_newbuf(sc, i) != 0)
1361			return (ENOBUFS);
1362	}
1363
1364	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1365	    sc->vge_cdata.vge_rx_ring_map,
1366	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1367
1368	sc->vge_cdata.vge_rx_commit = 0;
1369
1370	return (0);
1371}
1372
1373static void
1374vge_freebufs(struct vge_softc *sc)
1375{
1376	struct vge_txdesc *txd;
1377	struct vge_rxdesc *rxd;
1378	struct ifnet *ifp;
1379	int i;
1380
1381	VGE_LOCK_ASSERT(sc);
1382
1383	ifp = sc->vge_ifp;
1384	/*
1385	 * Free RX and TX mbufs still in the queues.
1386	 */
1387	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1388		rxd = &sc->vge_cdata.vge_rxdesc[i];
1389		if (rxd->rx_m != NULL) {
1390			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1391			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1392			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1393			    rxd->rx_dmamap);
1394			m_freem(rxd->rx_m);
1395			rxd->rx_m = NULL;
1396		}
1397	}
1398
1399	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1400		txd = &sc->vge_cdata.vge_txdesc[i];
1401		if (txd->tx_m != NULL) {
1402			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1403			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1404			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1405			    txd->tx_dmamap);
1406			m_freem(txd->tx_m);
1407			txd->tx_m = NULL;
1408			ifp->if_oerrors++;
1409		}
1410	}
1411}
1412
1413#ifndef	__NO_STRICT_ALIGNMENT
1414static __inline void
1415vge_fixup_rx(struct mbuf *m)
1416{
1417	int i;
1418	uint16_t *src, *dst;
1419
1420	src = mtod(m, uint16_t *);
1421	dst = src - 1;
1422
1423	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1424		*dst++ = *src++;
1425
1426	m->m_data -= ETHER_ALIGN;
1427}
1428#endif
1429
1430/*
1431 * RX handler. We support the reception of jumbo frames that have
1432 * been fragmented across multiple 2K mbuf cluster buffers.
1433 */
1434static int
1435vge_rxeof(struct vge_softc *sc, int count)
1436{
1437	struct mbuf *m;
1438	struct ifnet *ifp;
1439	int prod, prog, total_len;
1440	struct vge_rxdesc *rxd;
1441	struct vge_rx_desc *cur_rx;
1442	uint32_t rxstat, rxctl;
1443
1444	VGE_LOCK_ASSERT(sc);
1445
1446	ifp = sc->vge_ifp;
1447
1448	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1449	    sc->vge_cdata.vge_rx_ring_map,
1450	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1451
1452	prod = sc->vge_cdata.vge_rx_prodidx;
1453	for (prog = 0; count > 0 &&
1454	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1455	    VGE_RX_DESC_INC(prod)) {
1456		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1457		rxstat = le32toh(cur_rx->vge_sts);
1458		if ((rxstat & VGE_RDSTS_OWN) != 0)
1459			break;
1460		count--;
1461		prog++;
1462		rxctl = le32toh(cur_rx->vge_ctl);
1463		total_len = VGE_RXBYTES(rxstat);
1464		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1465		m = rxd->rx_m;
1466
1467		/*
1468		 * If the 'start of frame' bit is set, this indicates
1469		 * either the first fragment in a multi-fragment receive,
1470		 * or an intermediate fragment. Either way, we want to
1471		 * accumulate the buffers.
1472		 */
1473		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1474			if (vge_newbuf(sc, prod) != 0) {
1475				ifp->if_iqdrops++;
1476				VGE_CHAIN_RESET(sc);
1477				vge_discard_rxbuf(sc, prod);
1478				continue;
1479			}
1480			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1481			if (sc->vge_cdata.vge_head == NULL) {
1482				sc->vge_cdata.vge_head = m;
1483				sc->vge_cdata.vge_tail = m;
1484			} else {
1485				m->m_flags &= ~M_PKTHDR;
1486				sc->vge_cdata.vge_tail->m_next = m;
1487				sc->vge_cdata.vge_tail = m;
1488			}
1489			continue;
1490		}
1491
1492		/*
1493		 * Bad/error frames will have the RXOK bit cleared.
1494		 * However, there's one error case we want to allow:
1495		 * if a VLAN tagged frame arrives and the chip can't
1496		 * match it against the CAM filter, it considers this
1497		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1498		 * We don't want to drop the frame though: our VLAN
1499		 * filtering is done in software.
1500		 * We also want to receive bad-checksummed frames and
1501		 * and frames with bad-length.
1502		 */
1503		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1504		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1505		    VGE_RDSTS_CSUMERR)) == 0) {
1506			ifp->if_ierrors++;
1507			/*
1508			 * If this is part of a multi-fragment packet,
1509			 * discard all the pieces.
1510			 */
1511			VGE_CHAIN_RESET(sc);
1512			vge_discard_rxbuf(sc, prod);
1513			continue;
1514		}
1515
1516		if (vge_newbuf(sc, prod) != 0) {
1517			ifp->if_iqdrops++;
1518			VGE_CHAIN_RESET(sc);
1519			vge_discard_rxbuf(sc, prod);
1520			continue;
1521		}
1522
1523		/* Chain received mbufs. */
1524		if (sc->vge_cdata.vge_head != NULL) {
1525			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1526			/*
1527			 * Special case: if there's 4 bytes or less
1528			 * in this buffer, the mbuf can be discarded:
1529			 * the last 4 bytes is the CRC, which we don't
1530			 * care about anyway.
1531			 */
1532			if (m->m_len <= ETHER_CRC_LEN) {
1533				sc->vge_cdata.vge_tail->m_len -=
1534				    (ETHER_CRC_LEN - m->m_len);
1535				m_freem(m);
1536			} else {
1537				m->m_len -= ETHER_CRC_LEN;
1538				m->m_flags &= ~M_PKTHDR;
1539				sc->vge_cdata.vge_tail->m_next = m;
1540			}
1541			m = sc->vge_cdata.vge_head;
1542			m->m_flags |= M_PKTHDR;
1543			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1544		} else {
1545			m->m_flags |= M_PKTHDR;
1546			m->m_pkthdr.len = m->m_len =
1547			    (total_len - ETHER_CRC_LEN);
1548		}
1549
1550#ifndef	__NO_STRICT_ALIGNMENT
1551		vge_fixup_rx(m);
1552#endif
1553		m->m_pkthdr.rcvif = ifp;
1554
1555		/* Do RX checksumming if enabled */
1556		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1557		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1558			/* Check IP header checksum */
1559			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1560				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1561			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1562				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1563
1564			/* Check TCP/UDP checksum */
1565			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1566			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1567				m->m_pkthdr.csum_flags |=
1568				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1569				m->m_pkthdr.csum_data = 0xffff;
1570			}
1571		}
1572
1573		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1574			/*
1575			 * The 32-bit rxctl register is stored in little-endian.
1576			 * However, the 16-bit vlan tag is stored in big-endian,
1577			 * so we have to byte swap it.
1578			 */
1579			m->m_pkthdr.ether_vtag =
1580			    bswap16(rxctl & VGE_RDCTL_VLANID);
1581			m->m_flags |= M_VLANTAG;
1582		}
1583
1584		VGE_UNLOCK(sc);
1585		(*ifp->if_input)(ifp, m);
1586		VGE_LOCK(sc);
1587		sc->vge_cdata.vge_head = NULL;
1588		sc->vge_cdata.vge_tail = NULL;
1589	}
1590
1591	if (prog > 0) {
1592		sc->vge_cdata.vge_rx_prodidx = prod;
1593		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1594		    sc->vge_cdata.vge_rx_ring_map,
1595		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1596		/* Update residue counter. */
1597		if (sc->vge_cdata.vge_rx_commit != 0) {
1598			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1599			    sc->vge_cdata.vge_rx_commit);
1600			sc->vge_cdata.vge_rx_commit = 0;
1601		}
1602	}
1603	return (prog);
1604}
1605
1606static void
1607vge_txeof(struct vge_softc *sc)
1608{
1609	struct ifnet *ifp;
1610	struct vge_tx_desc *cur_tx;
1611	struct vge_txdesc *txd;
1612	uint32_t txstat;
1613	int cons, prod;
1614
1615	VGE_LOCK_ASSERT(sc);
1616
1617	ifp = sc->vge_ifp;
1618
1619	if (sc->vge_cdata.vge_tx_cnt == 0)
1620		return;
1621
1622	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1623	    sc->vge_cdata.vge_tx_ring_map,
1624	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1625
1626	/*
1627	 * Go through our tx list and free mbufs for those
1628	 * frames that have been transmitted.
1629	 */
1630	cons = sc->vge_cdata.vge_tx_considx;
1631	prod = sc->vge_cdata.vge_tx_prodidx;
1632	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1633		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1634		txstat = le32toh(cur_tx->vge_sts);
1635		if ((txstat & VGE_TDSTS_OWN) != 0)
1636			break;
1637		sc->vge_cdata.vge_tx_cnt--;
1638		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1639
1640		txd = &sc->vge_cdata.vge_txdesc[cons];
1641		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1642		    BUS_DMASYNC_POSTWRITE);
1643		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1644
1645		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1646		    __func__));
1647		m_freem(txd->tx_m);
1648		txd->tx_m = NULL;
1649		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1650	}
1651	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1652	    sc->vge_cdata.vge_tx_ring_map,
1653	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1654	sc->vge_cdata.vge_tx_considx = cons;
1655	if (sc->vge_cdata.vge_tx_cnt == 0)
1656		sc->vge_timer = 0;
1657}
1658
1659static void
1660vge_link_statchg(void *xsc)
1661{
1662	struct vge_softc *sc;
1663	struct ifnet *ifp;
1664	uint8_t physts;
1665
1666	sc = xsc;
1667	ifp = sc->vge_ifp;
1668	VGE_LOCK_ASSERT(sc);
1669
1670	physts = CSR_READ_1(sc, VGE_PHYSTS0);
1671	if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1672		if ((physts & VGE_PHYSTS_LINK) == 0) {
1673			sc->vge_flags &= ~VGE_FLAG_LINK;
1674			if_link_state_change(sc->vge_ifp,
1675			    LINK_STATE_DOWN);
1676		} else {
1677			sc->vge_flags |= VGE_FLAG_LINK;
1678			if_link_state_change(sc->vge_ifp,
1679			    LINK_STATE_UP);
1680			CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1681			    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1682			if ((physts & VGE_PHYSTS_FDX) != 0) {
1683				if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1684					CSR_WRITE_1(sc, VGE_CRS2,
1685					    VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1686				if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1687					CSR_WRITE_1(sc, VGE_CRS2,
1688					    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1689			}
1690			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1691				vge_start_locked(ifp);
1692		}
1693	}
1694	/*
1695	 * Restart MII auto-polling because link state change interrupt
1696	 * will disable it.
1697	 */
1698	vge_miipoll_start(sc);
1699}
1700
1701#ifdef DEVICE_POLLING
1702static int
1703vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1704{
1705	struct vge_softc *sc = ifp->if_softc;
1706	int rx_npkts = 0;
1707
1708	VGE_LOCK(sc);
1709	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1710		goto done;
1711
1712	rx_npkts = vge_rxeof(sc, count);
1713	vge_txeof(sc);
1714
1715	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1716		vge_start_locked(ifp);
1717
1718	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1719		uint32_t       status;
1720		status = CSR_READ_4(sc, VGE_ISR);
1721		if (status == 0xFFFFFFFF)
1722			goto done;
1723		if (status)
1724			CSR_WRITE_4(sc, VGE_ISR, status);
1725
1726		/*
1727		 * XXX check behaviour on receiver stalls.
1728		 */
1729
1730		if (status & VGE_ISR_TXDMA_STALL ||
1731		    status & VGE_ISR_RXDMA_STALL) {
1732			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1733			vge_init_locked(sc);
1734		}
1735
1736		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1737			vge_rxeof(sc, count);
1738			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1739			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1740		}
1741	}
1742done:
1743	VGE_UNLOCK(sc);
1744	return (rx_npkts);
1745}
1746#endif /* DEVICE_POLLING */
1747
1748static void
1749vge_intr(void *arg)
1750{
1751	struct vge_softc *sc;
1752	struct ifnet *ifp;
1753	uint32_t status;
1754
1755	sc = arg;
1756	VGE_LOCK(sc);
1757
1758	ifp = sc->vge_ifp;
1759	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1760	    (ifp->if_flags & IFF_UP) == 0) {
1761		VGE_UNLOCK(sc);
1762		return;
1763	}
1764
1765#ifdef DEVICE_POLLING
1766	if  (ifp->if_capenable & IFCAP_POLLING) {
1767		status = CSR_READ_4(sc, VGE_ISR);
1768		CSR_WRITE_4(sc, VGE_ISR, status);
1769		if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1770			vge_link_statchg(sc);
1771		VGE_UNLOCK(sc);
1772		return;
1773	}
1774#endif
1775
1776	/* Disable interrupts */
1777	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1778	status = CSR_READ_4(sc, VGE_ISR);
1779	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1780	/* If the card has gone away the read returns 0xffff. */
1781	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1782		goto done;
1783	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1784		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1785			vge_rxeof(sc, VGE_RX_DESC_CNT);
1786		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1787			vge_rxeof(sc, VGE_RX_DESC_CNT);
1788			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1789			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1790		}
1791
1792		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1793			vge_txeof(sc);
1794
1795		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1796			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1797			vge_init_locked(sc);
1798		}
1799
1800		if (status & VGE_ISR_LINKSTS)
1801			vge_link_statchg(sc);
1802	}
1803done:
1804	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1805		/* Re-enable interrupts */
1806		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1807
1808		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1809			vge_start_locked(ifp);
1810	}
1811	VGE_UNLOCK(sc);
1812}
1813
1814static int
1815vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1816{
1817	struct vge_txdesc *txd;
1818	struct vge_tx_frag *frag;
1819	struct mbuf *m;
1820	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1821	int error, i, nsegs, padlen;
1822	uint32_t cflags;
1823
1824	VGE_LOCK_ASSERT(sc);
1825
1826	M_ASSERTPKTHDR((*m_head));
1827
1828	/* Argh. This chip does not autopad short frames. */
1829	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1830		m = *m_head;
1831		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1832		if (M_WRITABLE(m) == 0) {
1833			/* Get a writable copy. */
1834			m = m_dup(*m_head, M_DONTWAIT);
1835			m_freem(*m_head);
1836			if (m == NULL) {
1837				*m_head = NULL;
1838				return (ENOBUFS);
1839			}
1840			*m_head = m;
1841		}
1842		if (M_TRAILINGSPACE(m) < padlen) {
1843			m = m_defrag(m, M_DONTWAIT);
1844			if (m == NULL) {
1845				m_freem(*m_head);
1846				*m_head = NULL;
1847				return (ENOBUFS);
1848			}
1849		}
1850		/*
1851		 * Manually pad short frames, and zero the pad space
1852		 * to avoid leaking data.
1853		 */
1854		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1855		m->m_pkthdr.len += padlen;
1856		m->m_len = m->m_pkthdr.len;
1857		*m_head = m;
1858	}
1859
1860	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1861
1862	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1863	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1864	if (error == EFBIG) {
1865		m = m_collapse(*m_head, M_DONTWAIT, VGE_MAXTXSEGS);
1866		if (m == NULL) {
1867			m_freem(*m_head);
1868			*m_head = NULL;
1869			return (ENOMEM);
1870		}
1871		*m_head = m;
1872		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1873		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1874		if (error != 0) {
1875			m_freem(*m_head);
1876			*m_head = NULL;
1877			return (error);
1878		}
1879	} else if (error != 0)
1880		return (error);
1881	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1882	    BUS_DMASYNC_PREWRITE);
1883
1884	m = *m_head;
1885	cflags = 0;
1886
1887	/* Configure checksum offload. */
1888	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1889		cflags |= VGE_TDCTL_IPCSUM;
1890	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1891		cflags |= VGE_TDCTL_TCPCSUM;
1892	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1893		cflags |= VGE_TDCTL_UDPCSUM;
1894
1895	/* Configure VLAN. */
1896	if ((m->m_flags & M_VLANTAG) != 0)
1897		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1898	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1899	/*
1900	 * XXX
1901	 * Velocity family seems to support TSO but no information
1902	 * for MSS configuration is available. Also the number of
1903	 * fragments supported by a descriptor is too small to hold
1904	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1905	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1906	 * longer chain of buffers but no additional information is
1907	 * available.
1908	 *
1909	 * When telling the chip how many segments there are, we
1910	 * must use nsegs + 1 instead of just nsegs. Darned if I
1911	 * know why. This also means we can't use the last fragment
1912	 * field of Tx descriptor.
1913	 */
1914	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1915	    VGE_TD_LS_NORM);
1916	for (i = 0; i < nsegs; i++) {
1917		frag = &txd->tx_desc->vge_frag[i];
1918		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1919		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1920		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1921	}
1922
1923	sc->vge_cdata.vge_tx_cnt++;
1924	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1925
1926	/*
1927	 * Finally request interrupt and give the first descriptor
1928	 * ownership to hardware.
1929	 */
1930	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1931	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1932	txd->tx_m = m;
1933
1934	return (0);
1935}
1936
1937/*
1938 * Main transmit routine.
1939 */
1940
1941static void
1942vge_start(struct ifnet *ifp)
1943{
1944	struct vge_softc *sc;
1945
1946	sc = ifp->if_softc;
1947	VGE_LOCK(sc);
1948	vge_start_locked(ifp);
1949	VGE_UNLOCK(sc);
1950}
1951
1952
1953static void
1954vge_start_locked(struct ifnet *ifp)
1955{
1956	struct vge_softc *sc;
1957	struct vge_txdesc *txd;
1958	struct mbuf *m_head;
1959	int enq, idx;
1960
1961	sc = ifp->if_softc;
1962
1963	VGE_LOCK_ASSERT(sc);
1964
1965	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1966	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1967	    IFF_DRV_RUNNING)
1968		return;
1969
1970	idx = sc->vge_cdata.vge_tx_prodidx;
1971	VGE_TX_DESC_DEC(idx);
1972	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1973	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1974		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1975		if (m_head == NULL)
1976			break;
1977		/*
1978		 * Pack the data into the transmit ring. If we
1979		 * don't have room, set the OACTIVE flag and wait
1980		 * for the NIC to drain the ring.
1981		 */
1982		if (vge_encap(sc, &m_head)) {
1983			if (m_head == NULL)
1984				break;
1985			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1986			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1987			break;
1988		}
1989
1990		txd = &sc->vge_cdata.vge_txdesc[idx];
1991		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1992		VGE_TX_DESC_INC(idx);
1993
1994		enq++;
1995		/*
1996		 * If there's a BPF listener, bounce a copy of this frame
1997		 * to him.
1998		 */
1999		ETHER_BPF_MTAP(ifp, m_head);
2000	}
2001
2002	if (enq > 0) {
2003		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
2004		    sc->vge_cdata.vge_tx_ring_map,
2005		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2006		/* Issue a transmit command. */
2007		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2008		/*
2009		 * Set a timeout in case the chip goes out to lunch.
2010		 */
2011		sc->vge_timer = 5;
2012	}
2013}
2014
2015static void
2016vge_init(void *xsc)
2017{
2018	struct vge_softc *sc = xsc;
2019
2020	VGE_LOCK(sc);
2021	vge_init_locked(sc);
2022	VGE_UNLOCK(sc);
2023}
2024
2025static void
2026vge_init_locked(struct vge_softc *sc)
2027{
2028	struct ifnet *ifp = sc->vge_ifp;
2029	struct mii_data *mii;
2030	int error, i;
2031
2032	VGE_LOCK_ASSERT(sc);
2033	mii = device_get_softc(sc->vge_miibus);
2034
2035	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2036		return;
2037
2038	/*
2039	 * Cancel pending I/O and free all RX/TX buffers.
2040	 */
2041	vge_stop(sc);
2042	vge_reset(sc);
2043	vge_miipoll_start(sc);
2044
2045	/*
2046	 * Initialize the RX and TX descriptors and mbufs.
2047	 */
2048
2049	error = vge_rx_list_init(sc);
2050	if (error != 0) {
2051                device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2052                return;
2053	}
2054	vge_tx_list_init(sc);
2055	/* Clear MAC statistics. */
2056	vge_stats_clear(sc);
2057	/* Set our station address */
2058	for (i = 0; i < ETHER_ADDR_LEN; i++)
2059		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2060
2061	/*
2062	 * Set receive FIFO threshold. Also allow transmission and
2063	 * reception of VLAN tagged frames.
2064	 */
2065	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2066	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2067
2068	/* Set DMA burst length */
2069	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2070	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2071
2072	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2073
2074	/* Set collision backoff algorithm */
2075	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2076	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2077	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2078
2079	/* Disable LPSEL field in priority resolution */
2080	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2081
2082	/*
2083	 * Load the addresses of the DMA queues into the chip.
2084	 * Note that we only use one transmit queue.
2085	 */
2086
2087	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2088	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2089	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2090	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2091	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2092
2093	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2094	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2095	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2096	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2097
2098	/* Configure interrupt moderation. */
2099	vge_intr_holdoff(sc);
2100
2101	/* Enable and wake up the RX descriptor queue */
2102	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2103	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2104
2105	/* Enable the TX descriptor queue */
2106	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2107
2108	/* Init the cam filter. */
2109	vge_cam_clear(sc);
2110
2111	/* Set up receiver filter. */
2112	vge_rxfilter(sc);
2113	vge_setvlan(sc);
2114
2115	/* Enable flow control */
2116
2117	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2118
2119	/* Enable jumbo frame reception (if desired) */
2120
2121	/* Start the MAC. */
2122	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2123	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2124	CSR_WRITE_1(sc, VGE_CRS0,
2125	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2126
2127#ifdef DEVICE_POLLING
2128	/*
2129	 * Disable interrupts except link state change if we are polling.
2130	 */
2131	if (ifp->if_capenable & IFCAP_POLLING) {
2132		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2133	} else	/* otherwise ... */
2134#endif
2135	{
2136	/*
2137	 * Enable interrupts.
2138	 */
2139		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2140	}
2141	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2142	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2143
2144	sc->vge_flags &= ~VGE_FLAG_LINK;
2145	vge_ifmedia_upd_locked(sc);
2146
2147	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2148	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2149	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2150}
2151
2152/*
2153 * Set media options.
2154 */
2155static int
2156vge_ifmedia_upd(struct ifnet *ifp)
2157{
2158	struct vge_softc *sc;
2159	int error;
2160
2161	sc = ifp->if_softc;
2162	VGE_LOCK(sc);
2163	error = vge_ifmedia_upd_locked(sc);
2164	VGE_UNLOCK(sc);
2165
2166	return (error);
2167}
2168
2169static int
2170vge_ifmedia_upd_locked(struct vge_softc *sc)
2171{
2172	struct mii_data *mii;
2173	struct mii_softc *miisc;
2174	int error;
2175
2176	mii = device_get_softc(sc->vge_miibus);
2177	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2178		PHY_RESET(miisc);
2179	vge_setmedia(sc);
2180	error = mii_mediachg(mii);
2181
2182	return (error);
2183}
2184
2185/*
2186 * Report current media status.
2187 */
2188static void
2189vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2190{
2191	struct vge_softc *sc;
2192	struct mii_data *mii;
2193
2194	sc = ifp->if_softc;
2195	mii = device_get_softc(sc->vge_miibus);
2196
2197	VGE_LOCK(sc);
2198	if ((ifp->if_flags & IFF_UP) == 0) {
2199		VGE_UNLOCK(sc);
2200		return;
2201	}
2202	mii_pollstat(mii);
2203	ifmr->ifm_active = mii->mii_media_active;
2204	ifmr->ifm_status = mii->mii_media_status;
2205	VGE_UNLOCK(sc);
2206}
2207
2208static void
2209vge_setmedia(struct vge_softc *sc)
2210{
2211	struct mii_data *mii;
2212	struct ifmedia_entry *ife;
2213
2214	mii = device_get_softc(sc->vge_miibus);
2215	ife = mii->mii_media.ifm_cur;
2216
2217	/*
2218	 * If the user manually selects a media mode, we need to turn
2219	 * on the forced MAC mode bit in the DIAGCTL register. If the
2220	 * user happens to choose a full duplex mode, we also need to
2221	 * set the 'force full duplex' bit. This applies only to
2222	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2223	 * mode is disabled, and in 1000baseT mode, full duplex is
2224	 * always implied, so we turn on the forced mode bit but leave
2225	 * the FDX bit cleared.
2226	 */
2227
2228	switch (IFM_SUBTYPE(ife->ifm_media)) {
2229	case IFM_AUTO:
2230		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2231		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2232		break;
2233	case IFM_1000_T:
2234		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2235		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2236		break;
2237	case IFM_100_TX:
2238	case IFM_10_T:
2239		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2240		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2241			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2242		} else {
2243			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2244		}
2245		break;
2246	default:
2247		device_printf(sc->vge_dev, "unknown media type: %x\n",
2248		    IFM_SUBTYPE(ife->ifm_media));
2249		break;
2250	}
2251}
2252
2253static int
2254vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2255{
2256	struct vge_softc *sc = ifp->if_softc;
2257	struct ifreq *ifr = (struct ifreq *) data;
2258	struct mii_data *mii;
2259	int error = 0, mask;
2260
2261	switch (command) {
2262	case SIOCSIFMTU:
2263		VGE_LOCK(sc);
2264		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2265			error = EINVAL;
2266		else if (ifp->if_mtu != ifr->ifr_mtu) {
2267			if (ifr->ifr_mtu > ETHERMTU &&
2268			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2269				error = EINVAL;
2270			else
2271				ifp->if_mtu = ifr->ifr_mtu;
2272		}
2273		VGE_UNLOCK(sc);
2274		break;
2275	case SIOCSIFFLAGS:
2276		VGE_LOCK(sc);
2277		if ((ifp->if_flags & IFF_UP) != 0) {
2278			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2279			    ((ifp->if_flags ^ sc->vge_if_flags) &
2280			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2281				vge_rxfilter(sc);
2282			else
2283				vge_init_locked(sc);
2284		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2285			vge_stop(sc);
2286		sc->vge_if_flags = ifp->if_flags;
2287		VGE_UNLOCK(sc);
2288		break;
2289	case SIOCADDMULTI:
2290	case SIOCDELMULTI:
2291		VGE_LOCK(sc);
2292		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2293			vge_rxfilter(sc);
2294		VGE_UNLOCK(sc);
2295		break;
2296	case SIOCGIFMEDIA:
2297	case SIOCSIFMEDIA:
2298		mii = device_get_softc(sc->vge_miibus);
2299		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2300		break;
2301	case SIOCSIFCAP:
2302		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2303#ifdef DEVICE_POLLING
2304		if (mask & IFCAP_POLLING) {
2305			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2306				error = ether_poll_register(vge_poll, ifp);
2307				if (error)
2308					return (error);
2309				VGE_LOCK(sc);
2310					/* Disable interrupts */
2311				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2312				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2313				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2314				ifp->if_capenable |= IFCAP_POLLING;
2315				VGE_UNLOCK(sc);
2316			} else {
2317				error = ether_poll_deregister(ifp);
2318				/* Enable interrupts. */
2319				VGE_LOCK(sc);
2320				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2321				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2322				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2323				ifp->if_capenable &= ~IFCAP_POLLING;
2324				VGE_UNLOCK(sc);
2325			}
2326		}
2327#endif /* DEVICE_POLLING */
2328		VGE_LOCK(sc);
2329		if ((mask & IFCAP_TXCSUM) != 0 &&
2330		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2331			ifp->if_capenable ^= IFCAP_TXCSUM;
2332			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2333				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2334			else
2335				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2336		}
2337		if ((mask & IFCAP_RXCSUM) != 0 &&
2338		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2339			ifp->if_capenable ^= IFCAP_RXCSUM;
2340		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2341		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2342			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2343		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2344		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2345			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2346		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2347		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2348			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2349		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2350		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2351			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2352		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2353		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2354			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2355			vge_setvlan(sc);
2356		}
2357		VGE_UNLOCK(sc);
2358		VLAN_CAPABILITIES(ifp);
2359		break;
2360	default:
2361		error = ether_ioctl(ifp, command, data);
2362		break;
2363	}
2364
2365	return (error);
2366}
2367
2368static void
2369vge_watchdog(void *arg)
2370{
2371	struct vge_softc *sc;
2372	struct ifnet *ifp;
2373
2374	sc = arg;
2375	VGE_LOCK_ASSERT(sc);
2376	vge_stats_update(sc);
2377	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2378	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2379		return;
2380
2381	ifp = sc->vge_ifp;
2382	if_printf(ifp, "watchdog timeout\n");
2383	ifp->if_oerrors++;
2384
2385	vge_txeof(sc);
2386	vge_rxeof(sc, VGE_RX_DESC_CNT);
2387
2388	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2389	vge_init_locked(sc);
2390}
2391
2392/*
2393 * Stop the adapter and free any mbufs allocated to the
2394 * RX and TX lists.
2395 */
2396static void
2397vge_stop(struct vge_softc *sc)
2398{
2399	struct ifnet *ifp;
2400
2401	VGE_LOCK_ASSERT(sc);
2402	ifp = sc->vge_ifp;
2403	sc->vge_timer = 0;
2404	callout_stop(&sc->vge_watchdog);
2405
2406	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2407
2408	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2409	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2410	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2411	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2412	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2413	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2414
2415	vge_stats_update(sc);
2416	VGE_CHAIN_RESET(sc);
2417	vge_txeof(sc);
2418	vge_freebufs(sc);
2419}
2420
2421/*
2422 * Device suspend routine.  Stop the interface and save some PCI
2423 * settings in case the BIOS doesn't restore them properly on
2424 * resume.
2425 */
2426static int
2427vge_suspend(device_t dev)
2428{
2429	struct vge_softc *sc;
2430
2431	sc = device_get_softc(dev);
2432
2433	VGE_LOCK(sc);
2434	vge_stop(sc);
2435	vge_setwol(sc);
2436	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2437	VGE_UNLOCK(sc);
2438
2439	return (0);
2440}
2441
2442/*
2443 * Device resume routine.  Restore some PCI settings in case the BIOS
2444 * doesn't, re-enable busmastering, and restart the interface if
2445 * appropriate.
2446 */
2447static int
2448vge_resume(device_t dev)
2449{
2450	struct vge_softc *sc;
2451	struct ifnet *ifp;
2452	uint16_t pmstat;
2453
2454	sc = device_get_softc(dev);
2455	VGE_LOCK(sc);
2456	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2457		/* Disable PME and clear PME status. */
2458		pmstat = pci_read_config(sc->vge_dev,
2459		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2460		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2461			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2462			pci_write_config(sc->vge_dev,
2463			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2464		}
2465	}
2466	vge_clrwol(sc);
2467	/* Restart MII auto-polling. */
2468	vge_miipoll_start(sc);
2469	ifp = sc->vge_ifp;
2470	/* Reinitialize interface if necessary. */
2471	if ((ifp->if_flags & IFF_UP) != 0) {
2472		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2473		vge_init_locked(sc);
2474	}
2475	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2476	VGE_UNLOCK(sc);
2477
2478	return (0);
2479}
2480
2481/*
2482 * Stop all chip I/O so that the kernel's probe routines don't
2483 * get confused by errant DMAs when rebooting.
2484 */
2485static int
2486vge_shutdown(device_t dev)
2487{
2488
2489	return (vge_suspend(dev));
2490}
2491
2492#define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2493	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2494
2495static void
2496vge_sysctl_node(struct vge_softc *sc)
2497{
2498	struct sysctl_ctx_list *ctx;
2499	struct sysctl_oid_list *child, *parent;
2500	struct sysctl_oid *tree;
2501	struct vge_hw_stats *stats;
2502
2503	stats = &sc->vge_stats;
2504	ctx = device_get_sysctl_ctx(sc->vge_dev);
2505	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2506
2507	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2508	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2509	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2510	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2511	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2512	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2513
2514	/* Pull in device tunables. */
2515	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2516	resource_int_value(device_get_name(sc->vge_dev),
2517	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2518	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2519	resource_int_value(device_get_name(sc->vge_dev),
2520	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2521	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2522	resource_int_value(device_get_name(sc->vge_dev),
2523	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2524
2525	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2526	    NULL, "VGE statistics");
2527	parent = SYSCTL_CHILDREN(tree);
2528
2529	/* Rx statistics. */
2530	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2531	    NULL, "RX MAC statistics");
2532	child = SYSCTL_CHILDREN(tree);
2533	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2534	    &stats->rx_frames, "frames");
2535	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2536	    &stats->rx_good_frames, "Good frames");
2537	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2538	    &stats->rx_fifo_oflows, "FIFO overflows");
2539	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2540	    &stats->rx_runts, "Too short frames");
2541	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2542	    &stats->rx_runts_errs, "Too short frames with errors");
2543	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2544	    &stats->rx_pkts_64, "64 bytes frames");
2545	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2546	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2547	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2548	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2549	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2550	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2551	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2552	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2553	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2554	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2555	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2556	    &stats->rx_pkts_1519_max, "1519 to max frames");
2557	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2558	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2559	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2560	    &stats->rx_jumbos, "Jumbo frames");
2561	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2562	    &stats->rx_crcerrs, "CRC errors");
2563	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2564	    &stats->rx_pause_frames, "CRC errors");
2565	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2566	    &stats->rx_alignerrs, "Alignment errors");
2567	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2568	    &stats->rx_nobufs, "Frames with no buffer event");
2569	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2570	    &stats->rx_symerrs, "Frames with symbol errors");
2571	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2572	    &stats->rx_lenerrs, "Frames with length mismatched");
2573
2574	/* Tx statistics. */
2575	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2576	    NULL, "TX MAC statistics");
2577	child = SYSCTL_CHILDREN(tree);
2578	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2579	    &stats->tx_good_frames, "Good frames");
2580	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2581	    &stats->tx_pkts_64, "64 bytes frames");
2582	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2583	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2584	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2585	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2586	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2587	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2588	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2589	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2590	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2591	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2592	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2593	    &stats->tx_jumbos, "Jumbo frames");
2594	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2595	    &stats->tx_colls, "Collisions");
2596	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2597	    &stats->tx_latecolls, "Late collisions");
2598	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2599	    &stats->tx_pause, "Pause frames");
2600#ifdef VGE_ENABLE_SQEERR
2601	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2602	    &stats->tx_sqeerrs, "SQE errors");
2603#endif
2604	/* Clear MAC statistics. */
2605	vge_stats_clear(sc);
2606}
2607
2608#undef	VGE_SYSCTL_STAT_ADD32
2609
2610static void
2611vge_stats_clear(struct vge_softc *sc)
2612{
2613	int i;
2614
2615	CSR_WRITE_1(sc, VGE_MIBCSR,
2616	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2617	CSR_WRITE_1(sc, VGE_MIBCSR,
2618	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2619	for (i = VGE_TIMEOUT; i > 0; i--) {
2620		DELAY(1);
2621		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2622			break;
2623	}
2624	if (i == 0)
2625		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2626	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2627	    ~VGE_MIBCSR_FREEZE);
2628}
2629
2630static void
2631vge_stats_update(struct vge_softc *sc)
2632{
2633	struct vge_hw_stats *stats;
2634	struct ifnet *ifp;
2635	uint32_t mib[VGE_MIB_CNT], val;
2636	int i;
2637
2638	VGE_LOCK_ASSERT(sc);
2639
2640	stats = &sc->vge_stats;
2641	ifp = sc->vge_ifp;
2642
2643	CSR_WRITE_1(sc, VGE_MIBCSR,
2644	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2645	for (i = VGE_TIMEOUT; i > 0; i--) {
2646		DELAY(1);
2647		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2648			break;
2649	}
2650	if (i == 0) {
2651		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2652		vge_stats_clear(sc);
2653		return;
2654	}
2655
2656	bzero(mib, sizeof(mib));
2657reset_idx:
2658	/* Set MIB read index to 0. */
2659	CSR_WRITE_1(sc, VGE_MIBCSR,
2660	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2661	for (i = 0; i < VGE_MIB_CNT; i++) {
2662		val = CSR_READ_4(sc, VGE_MIBDATA);
2663		if (i != VGE_MIB_DATA_IDX(val)) {
2664			/* Reading interrupted. */
2665			goto reset_idx;
2666		}
2667		mib[i] = val & VGE_MIB_DATA_MASK;
2668	}
2669
2670	/* Rx stats. */
2671	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2672	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2673	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2674	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2675	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2676	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2677	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2678	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2679	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2680	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2681	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2682	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2683	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2684	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2685	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2686	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2687	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2688	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2689	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2690	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2691
2692	/* Tx stats. */
2693	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2694	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2695	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2696	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2697	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2698	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2699	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2700	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2701	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2702	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2703#ifdef VGE_ENABLE_SQEERR
2704	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2705#endif
2706	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2707
2708	/* Update counters in ifnet. */
2709	ifp->if_opackets += mib[VGE_MIB_TX_GOOD_FRAMES];
2710
2711	ifp->if_collisions += mib[VGE_MIB_TX_COLLS] +
2712	    mib[VGE_MIB_TX_LATECOLLS];
2713
2714	ifp->if_oerrors += mib[VGE_MIB_TX_COLLS] +
2715	    mib[VGE_MIB_TX_LATECOLLS];
2716
2717	ifp->if_ipackets += mib[VGE_MIB_RX_GOOD_FRAMES];
2718
2719	ifp->if_ierrors += mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2720	    mib[VGE_MIB_RX_RUNTS] +
2721	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2722	    mib[VGE_MIB_RX_CRCERRS] +
2723	    mib[VGE_MIB_RX_ALIGNERRS] +
2724	    mib[VGE_MIB_RX_NOBUFS] +
2725	    mib[VGE_MIB_RX_SYMERRS] +
2726	    mib[VGE_MIB_RX_LENERRS];
2727}
2728
2729static void
2730vge_intr_holdoff(struct vge_softc *sc)
2731{
2732	uint8_t intctl;
2733
2734	VGE_LOCK_ASSERT(sc);
2735
2736	/*
2737	 * Set Tx interrupt supression threshold.
2738	 * It's possible to use single-shot timer in VGE_CRS1 register
2739	 * in Tx path such that driver can remove most of Tx completion
2740	 * interrupts. However this requires additional access to
2741	 * VGE_CRS1 register to reload the timer in addintion to
2742	 * activating Tx kick command. Another downside is we don't know
2743	 * what single-shot timer value should be used in advance so
2744	 * reclaiming transmitted mbufs could be delayed a lot which in
2745	 * turn slows down Tx operation.
2746	 */
2747	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2748	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2749
2750	/* Set Rx interrupt suppresion threshold. */
2751	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2752	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2753
2754	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2755	intctl &= ~VGE_INTCTL_SC_RELOAD;
2756	intctl |= VGE_INTCTL_HC_RELOAD;
2757	if (sc->vge_tx_coal_pkt <= 0)
2758		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2759	else
2760		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2761	if (sc->vge_rx_coal_pkt <= 0)
2762		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2763	else
2764		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2765	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2766	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2767	if (sc->vge_int_holdoff > 0) {
2768		/* Set interrupt holdoff timer. */
2769		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2770		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2771		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2772		/* Enable holdoff timer. */
2773		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2774	}
2775}
2776
2777static void
2778vge_setlinkspeed(struct vge_softc *sc)
2779{
2780	struct mii_data *mii;
2781	int aneg, i;
2782
2783	VGE_LOCK_ASSERT(sc);
2784
2785	mii = device_get_softc(sc->vge_miibus);
2786	mii_pollstat(mii);
2787	aneg = 0;
2788	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2789	    (IFM_ACTIVE | IFM_AVALID)) {
2790		switch IFM_SUBTYPE(mii->mii_media_active) {
2791		case IFM_10_T:
2792		case IFM_100_TX:
2793			return;
2794		case IFM_1000_T:
2795			aneg++;
2796		default:
2797			break;
2798		}
2799	}
2800	/* Clear forced MAC speed/duplex configuration. */
2801	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2802	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2803	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2804	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2805	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2806	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2807	    BMCR_AUTOEN | BMCR_STARTNEG);
2808	DELAY(1000);
2809	if (aneg != 0) {
2810		/* Poll link state until vge(4) get a 10/100 link. */
2811		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2812			mii_pollstat(mii);
2813			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2814			    == (IFM_ACTIVE | IFM_AVALID)) {
2815				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2816				case IFM_10_T:
2817				case IFM_100_TX:
2818					return;
2819				default:
2820					break;
2821				}
2822			}
2823			VGE_UNLOCK(sc);
2824			pause("vgelnk", hz);
2825			VGE_LOCK(sc);
2826		}
2827		if (i == MII_ANEGTICKS_GIGE)
2828			device_printf(sc->vge_dev, "establishing link failed, "
2829			    "WOL may not work!");
2830	}
2831	/*
2832	 * No link, force MAC to have 100Mbps, full-duplex link.
2833	 * This is the last resort and may/may not work.
2834	 */
2835	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2836	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2837}
2838
2839static void
2840vge_setwol(struct vge_softc *sc)
2841{
2842	struct ifnet *ifp;
2843	uint16_t pmstat;
2844	uint8_t val;
2845
2846	VGE_LOCK_ASSERT(sc);
2847
2848	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2849		/* No PME capability, PHY power down. */
2850		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2851		    BMCR_PDOWN);
2852		vge_miipoll_stop(sc);
2853		return;
2854	}
2855
2856	ifp = sc->vge_ifp;
2857
2858	/* Clear WOL on pattern match. */
2859	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2860	/* Disable WOL on magic/unicast packet. */
2861	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2862	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2863	    VGE_WOLCFG_PMEOVR);
2864	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2865		vge_setlinkspeed(sc);
2866		val = 0;
2867		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2868			val |= VGE_WOLCR1_UCAST;
2869		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2870			val |= VGE_WOLCR1_MAGIC;
2871		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2872		val = 0;
2873		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2874			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2875		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2876		/* Disable MII auto-polling. */
2877		vge_miipoll_stop(sc);
2878	}
2879	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2880	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2881	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2882
2883	/* Clear WOL status on pattern match. */
2884	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2885	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2886
2887	val = CSR_READ_1(sc, VGE_PWRSTAT);
2888	val |= VGE_STICKHW_SWPTAG;
2889	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2890	/* Put hardware into sleep. */
2891	val = CSR_READ_1(sc, VGE_PWRSTAT);
2892	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2893	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2894	/* Request PME if WOL is requested. */
2895	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2896	    PCIR_POWER_STATUS, 2);
2897	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2898	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2899		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2900	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2901	    pmstat, 2);
2902}
2903
2904static void
2905vge_clrwol(struct vge_softc *sc)
2906{
2907	uint8_t val;
2908
2909	val = CSR_READ_1(sc, VGE_PWRSTAT);
2910	val &= ~VGE_STICKHW_SWPTAG;
2911	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2912	/* Disable WOL and clear power state indicator. */
2913	val = CSR_READ_1(sc, VGE_PWRSTAT);
2914	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2915	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2916
2917	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2918	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2919
2920	/* Clear WOL on pattern match. */
2921	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2922	/* Disable WOL on magic/unicast packet. */
2923	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2924	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2925	    VGE_WOLCFG_PMEOVR);
2926	/* Clear WOL status on pattern match. */
2927	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2928	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2929}
2930