if_vge.c revision 226478
1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 226478 2011-10-17 19:49:00Z yongari $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96#include <sys/sysctl.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103#include <net/if_types.h>
104#include <net/if_vlan_var.h>
105
106#include <net/bpf.h>
107
108#include <machine/bus.h>
109#include <machine/resource.h>
110#include <sys/bus.h>
111#include <sys/rman.h>
112
113#include <dev/mii/mii.h>
114#include <dev/mii/miivar.h>
115
116#include <dev/pci/pcireg.h>
117#include <dev/pci/pcivar.h>
118
119MODULE_DEPEND(vge, pci, 1, 1, 1);
120MODULE_DEPEND(vge, ether, 1, 1, 1);
121MODULE_DEPEND(vge, miibus, 1, 1, 1);
122
123/* "device miibus" required.  See GENERIC if you get errors here. */
124#include "miibus_if.h"
125
126#include <dev/vge/if_vgereg.h>
127#include <dev/vge/if_vgevar.h>
128
129#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130
131/* Tunables */
132static int msi_disable = 0;
133TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
134
135/*
136 * The SQE error counter of MIB seems to report bogus value.
137 * Vendor's workaround does not seem to work on PCIe based
138 * controllers. Disable it until we find better workaround.
139 */
140#undef VGE_ENABLE_SQEERR
141
142/*
143 * Various supported device vendors/types and their names.
144 */
145static struct vge_type vge_devs[] = {
146	{ VIA_VENDORID, VIA_DEVICEID_61XX,
147		"VIA Networking Velocity Gigabit Ethernet" },
148	{ 0, 0, NULL }
149};
150
151static int	vge_attach(device_t);
152static int	vge_detach(device_t);
153static int	vge_probe(device_t);
154static int	vge_resume(device_t);
155static int	vge_shutdown(device_t);
156static int	vge_suspend(device_t);
157
158static void	vge_cam_clear(struct vge_softc *);
159static int	vge_cam_set(struct vge_softc *, uint8_t *);
160static void	vge_clrwol(struct vge_softc *);
161static void	vge_discard_rxbuf(struct vge_softc *, int);
162static int	vge_dma_alloc(struct vge_softc *);
163static void	vge_dma_free(struct vge_softc *);
164static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
165#ifdef VGE_EEPROM
166static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
167#endif
168static int	vge_encap(struct vge_softc *, struct mbuf **);
169#ifndef __NO_STRICT_ALIGNMENT
170static __inline void
171		vge_fixup_rx(struct mbuf *);
172#endif
173static void	vge_freebufs(struct vge_softc *);
174static void	vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
175static int	vge_ifmedia_upd(struct ifnet *);
176static void	vge_init(void *);
177static void	vge_init_locked(struct vge_softc *);
178static void	vge_intr(void *);
179static void	vge_intr_holdoff(struct vge_softc *);
180static int	vge_ioctl(struct ifnet *, u_long, caddr_t);
181static void	vge_link_statchg(void *);
182static int	vge_miibus_readreg(device_t, int, int);
183static void	vge_miibus_statchg(device_t);
184static int	vge_miibus_writereg(device_t, int, int, int);
185static void	vge_miipoll_start(struct vge_softc *);
186static void	vge_miipoll_stop(struct vge_softc *);
187static int	vge_newbuf(struct vge_softc *, int);
188static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
189static void	vge_reset(struct vge_softc *);
190static int	vge_rx_list_init(struct vge_softc *);
191static int	vge_rxeof(struct vge_softc *, int);
192static void	vge_rxfilter(struct vge_softc *);
193static void	vge_setvlan(struct vge_softc *);
194static void	vge_setwol(struct vge_softc *);
195static void	vge_start(struct ifnet *);
196static void	vge_start_locked(struct ifnet *);
197static void	vge_stats_clear(struct vge_softc *);
198static void	vge_stats_update(struct vge_softc *);
199static void	vge_stop(struct vge_softc *);
200static void	vge_sysctl_node(struct vge_softc *);
201static int	vge_tx_list_init(struct vge_softc *);
202static void	vge_txeof(struct vge_softc *);
203static void	vge_watchdog(void *);
204
205static device_method_t vge_methods[] = {
206	/* Device interface */
207	DEVMETHOD(device_probe,		vge_probe),
208	DEVMETHOD(device_attach,	vge_attach),
209	DEVMETHOD(device_detach,	vge_detach),
210	DEVMETHOD(device_suspend,	vge_suspend),
211	DEVMETHOD(device_resume,	vge_resume),
212	DEVMETHOD(device_shutdown,	vge_shutdown),
213
214	/* bus interface */
215	DEVMETHOD(bus_print_child,	bus_generic_print_child),
216	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
217
218	/* MII interface */
219	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
220	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
221	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
222
223	{ 0, 0 }
224};
225
226static driver_t vge_driver = {
227	"vge",
228	vge_methods,
229	sizeof(struct vge_softc)
230};
231
232static devclass_t vge_devclass;
233
234DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
235DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
236
237#ifdef VGE_EEPROM
238/*
239 * Read a word of data stored in the EEPROM at address 'addr.'
240 */
241static void
242vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
243{
244	int i;
245	uint16_t word = 0;
246
247	/*
248	 * Enter EEPROM embedded programming mode. In order to
249	 * access the EEPROM at all, we first have to set the
250	 * EELOAD bit in the CHIPCFG2 register.
251	 */
252	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
253	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
254
255	/* Select the address of the word we want to read */
256	CSR_WRITE_1(sc, VGE_EEADDR, addr);
257
258	/* Issue read command */
259	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
260
261	/* Wait for the done bit to be set. */
262	for (i = 0; i < VGE_TIMEOUT; i++) {
263		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
264			break;
265	}
266
267	if (i == VGE_TIMEOUT) {
268		device_printf(sc->vge_dev, "EEPROM read timed out\n");
269		*dest = 0;
270		return;
271	}
272
273	/* Read the result */
274	word = CSR_READ_2(sc, VGE_EERDDAT);
275
276	/* Turn off EEPROM access mode. */
277	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
278	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
279
280	*dest = word;
281}
282#endif
283
284/*
285 * Read a sequence of words from the EEPROM.
286 */
287static void
288vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
289{
290	int i;
291#ifdef VGE_EEPROM
292	uint16_t word = 0, *ptr;
293
294	for (i = 0; i < cnt; i++) {
295		vge_eeprom_getword(sc, off + i, &word);
296		ptr = (uint16_t *)(dest + (i * 2));
297		if (swap)
298			*ptr = ntohs(word);
299		else
300			*ptr = word;
301	}
302#else
303	for (i = 0; i < ETHER_ADDR_LEN; i++)
304		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
305#endif
306}
307
308static void
309vge_miipoll_stop(struct vge_softc *sc)
310{
311	int i;
312
313	CSR_WRITE_1(sc, VGE_MIICMD, 0);
314
315	for (i = 0; i < VGE_TIMEOUT; i++) {
316		DELAY(1);
317		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
318			break;
319	}
320
321	if (i == VGE_TIMEOUT)
322		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
323}
324
325static void
326vge_miipoll_start(struct vge_softc *sc)
327{
328	int i;
329
330	/* First, make sure we're idle. */
331
332	CSR_WRITE_1(sc, VGE_MIICMD, 0);
333	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
334
335	for (i = 0; i < VGE_TIMEOUT; i++) {
336		DELAY(1);
337		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
338			break;
339	}
340
341	if (i == VGE_TIMEOUT) {
342		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
343		return;
344	}
345
346	/* Now enable auto poll mode. */
347
348	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
349
350	/* And make sure it started. */
351
352	for (i = 0; i < VGE_TIMEOUT; i++) {
353		DELAY(1);
354		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
355			break;
356	}
357
358	if (i == VGE_TIMEOUT)
359		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
360}
361
362static int
363vge_miibus_readreg(device_t dev, int phy, int reg)
364{
365	struct vge_softc *sc;
366	int i;
367	uint16_t rval = 0;
368
369	sc = device_get_softc(dev);
370
371	vge_miipoll_stop(sc);
372
373	/* Specify the register we want to read. */
374	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
375
376	/* Issue read command. */
377	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
378
379	/* Wait for the read command bit to self-clear. */
380	for (i = 0; i < VGE_TIMEOUT; i++) {
381		DELAY(1);
382		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
383			break;
384	}
385
386	if (i == VGE_TIMEOUT)
387		device_printf(sc->vge_dev, "MII read timed out\n");
388	else
389		rval = CSR_READ_2(sc, VGE_MIIDATA);
390
391	vge_miipoll_start(sc);
392
393	return (rval);
394}
395
396static int
397vge_miibus_writereg(device_t dev, int phy, int reg, int data)
398{
399	struct vge_softc *sc;
400	int i, rval = 0;
401
402	sc = device_get_softc(dev);
403
404	vge_miipoll_stop(sc);
405
406	/* Specify the register we want to write. */
407	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
408
409	/* Specify the data we want to write. */
410	CSR_WRITE_2(sc, VGE_MIIDATA, data);
411
412	/* Issue write command. */
413	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
414
415	/* Wait for the write command bit to self-clear. */
416	for (i = 0; i < VGE_TIMEOUT; i++) {
417		DELAY(1);
418		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
419			break;
420	}
421
422	if (i == VGE_TIMEOUT) {
423		device_printf(sc->vge_dev, "MII write timed out\n");
424		rval = EIO;
425	}
426
427	vge_miipoll_start(sc);
428
429	return (rval);
430}
431
432static void
433vge_cam_clear(struct vge_softc *sc)
434{
435	int i;
436
437	/*
438	 * Turn off all the mask bits. This tells the chip
439	 * that none of the entries in the CAM filter are valid.
440	 * desired entries will be enabled as we fill the filter in.
441	 */
442
443	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
444	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
445	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
446	for (i = 0; i < 8; i++)
447		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
448
449	/* Clear the VLAN filter too. */
450
451	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
452	for (i = 0; i < 8; i++)
453		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
454
455	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
456	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
457	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
458
459	sc->vge_camidx = 0;
460}
461
462static int
463vge_cam_set(struct vge_softc *sc, uint8_t *addr)
464{
465	int i, error = 0;
466
467	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
468		return (ENOSPC);
469
470	/* Select the CAM data page. */
471	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
472	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
473
474	/* Set the filter entry we want to update and enable writing. */
475	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
476
477	/* Write the address to the CAM registers */
478	for (i = 0; i < ETHER_ADDR_LEN; i++)
479		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
480
481	/* Issue a write command. */
482	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
483
484	/* Wake for it to clear. */
485	for (i = 0; i < VGE_TIMEOUT; i++) {
486		DELAY(1);
487		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
488			break;
489	}
490
491	if (i == VGE_TIMEOUT) {
492		device_printf(sc->vge_dev, "setting CAM filter failed\n");
493		error = EIO;
494		goto fail;
495	}
496
497	/* Select the CAM mask page. */
498	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
499	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
500
501	/* Set the mask bit that enables this filter. */
502	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
503	    1<<(sc->vge_camidx & 7));
504
505	sc->vge_camidx++;
506
507fail:
508	/* Turn off access to CAM. */
509	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
510	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
511	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
512
513	return (error);
514}
515
516static void
517vge_setvlan(struct vge_softc *sc)
518{
519	struct ifnet *ifp;
520	uint8_t cfg;
521
522	VGE_LOCK_ASSERT(sc);
523
524	ifp = sc->vge_ifp;
525	cfg = CSR_READ_1(sc, VGE_RXCFG);
526	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
527		cfg |= VGE_VTAG_OPT2;
528	else
529		cfg &= ~VGE_VTAG_OPT2;
530	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
531}
532
533/*
534 * Program the multicast filter. We use the 64-entry CAM filter
535 * for perfect filtering. If there's more than 64 multicast addresses,
536 * we use the hash filter instead.
537 */
538static void
539vge_rxfilter(struct vge_softc *sc)
540{
541	struct ifnet *ifp;
542	struct ifmultiaddr *ifma;
543	uint32_t h, hashes[2];
544	uint8_t rxcfg;
545	int error = 0;
546
547	VGE_LOCK_ASSERT(sc);
548
549	/* First, zot all the multicast entries. */
550	hashes[0] = 0;
551	hashes[1] = 0;
552
553	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
554	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
555	    VGE_RXCTL_RX_PROMISC);
556	/*
557	 * Always allow VLAN oversized frames and frames for
558	 * this host.
559	 */
560	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
561
562	ifp = sc->vge_ifp;
563	if ((ifp->if_flags & IFF_BROADCAST) != 0)
564		rxcfg |= VGE_RXCTL_RX_BCAST;
565	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
566		if ((ifp->if_flags & IFF_PROMISC) != 0)
567			rxcfg |= VGE_RXCTL_RX_PROMISC;
568		if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
569			hashes[0] = 0xFFFFFFFF;
570			hashes[1] = 0xFFFFFFFF;
571		}
572		goto done;
573	}
574
575	vge_cam_clear(sc);
576	/* Now program new ones */
577	if_maddr_rlock(ifp);
578	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
579		if (ifma->ifma_addr->sa_family != AF_LINK)
580			continue;
581		error = vge_cam_set(sc,
582		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
583		if (error)
584			break;
585	}
586
587	/* If there were too many addresses, use the hash filter. */
588	if (error) {
589		vge_cam_clear(sc);
590
591		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
592			if (ifma->ifma_addr->sa_family != AF_LINK)
593				continue;
594			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
595			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
596			if (h < 32)
597				hashes[0] |= (1 << h);
598			else
599				hashes[1] |= (1 << (h - 32));
600		}
601	}
602	if_maddr_runlock(ifp);
603
604done:
605	if (hashes[0] != 0 || hashes[1] != 0)
606		rxcfg |= VGE_RXCTL_RX_MCAST;
607	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
608	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
609	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
610}
611
612static void
613vge_reset(struct vge_softc *sc)
614{
615	int i;
616
617	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
618
619	for (i = 0; i < VGE_TIMEOUT; i++) {
620		DELAY(5);
621		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
622			break;
623	}
624
625	if (i == VGE_TIMEOUT) {
626		device_printf(sc->vge_dev, "soft reset timed out\n");
627		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
628		DELAY(2000);
629	}
630
631	DELAY(5000);
632}
633
634/*
635 * Probe for a VIA gigabit chip. Check the PCI vendor and device
636 * IDs against our list and return a device name if we find a match.
637 */
638static int
639vge_probe(device_t dev)
640{
641	struct vge_type	*t;
642
643	t = vge_devs;
644
645	while (t->vge_name != NULL) {
646		if ((pci_get_vendor(dev) == t->vge_vid) &&
647		    (pci_get_device(dev) == t->vge_did)) {
648			device_set_desc(dev, t->vge_name);
649			return (BUS_PROBE_DEFAULT);
650		}
651		t++;
652	}
653
654	return (ENXIO);
655}
656
657/*
658 * Map a single buffer address.
659 */
660
661struct vge_dmamap_arg {
662	bus_addr_t	vge_busaddr;
663};
664
665static void
666vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
667{
668	struct vge_dmamap_arg *ctx;
669
670	if (error != 0)
671		return;
672
673	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
674
675	ctx = (struct vge_dmamap_arg *)arg;
676	ctx->vge_busaddr = segs[0].ds_addr;
677}
678
679static int
680vge_dma_alloc(struct vge_softc *sc)
681{
682	struct vge_dmamap_arg ctx;
683	struct vge_txdesc *txd;
684	struct vge_rxdesc *rxd;
685	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
686	int error, i;
687
688	/*
689	 * It seems old PCI controllers do not support DAC.  DAC
690	 * configuration can be enabled by accessing VGE_CHIPCFG3
691	 * register but honor EEPROM configuration instead of
692	 * blindly overriding DAC configuration.  PCIe based
693	 * controllers are supposed to support 64bit DMA so enable
694	 * 64bit DMA on these controllers.
695	 */
696	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
697		lowaddr = BUS_SPACE_MAXADDR;
698	else
699		lowaddr = BUS_SPACE_MAXADDR_32BIT;
700
701again:
702	/* Create parent ring tag. */
703	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
704	    1, 0,			/* algnmnt, boundary */
705	    lowaddr,			/* lowaddr */
706	    BUS_SPACE_MAXADDR,		/* highaddr */
707	    NULL, NULL,			/* filter, filterarg */
708	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
709	    0,				/* nsegments */
710	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
711	    0,				/* flags */
712	    NULL, NULL,			/* lockfunc, lockarg */
713	    &sc->vge_cdata.vge_ring_tag);
714	if (error != 0) {
715		device_printf(sc->vge_dev,
716		    "could not create parent DMA tag.\n");
717		goto fail;
718	}
719
720	/* Create tag for Tx ring. */
721	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
722	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
723	    BUS_SPACE_MAXADDR,		/* lowaddr */
724	    BUS_SPACE_MAXADDR,		/* highaddr */
725	    NULL, NULL,			/* filter, filterarg */
726	    VGE_TX_LIST_SZ,		/* maxsize */
727	    1,				/* nsegments */
728	    VGE_TX_LIST_SZ,		/* maxsegsize */
729	    0,				/* flags */
730	    NULL, NULL,			/* lockfunc, lockarg */
731	    &sc->vge_cdata.vge_tx_ring_tag);
732	if (error != 0) {
733		device_printf(sc->vge_dev,
734		    "could not allocate Tx ring DMA tag.\n");
735		goto fail;
736	}
737
738	/* Create tag for Rx ring. */
739	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
740	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
741	    BUS_SPACE_MAXADDR,		/* lowaddr */
742	    BUS_SPACE_MAXADDR,		/* highaddr */
743	    NULL, NULL,			/* filter, filterarg */
744	    VGE_RX_LIST_SZ,		/* maxsize */
745	    1,				/* nsegments */
746	    VGE_RX_LIST_SZ,		/* maxsegsize */
747	    0,				/* flags */
748	    NULL, NULL,			/* lockfunc, lockarg */
749	    &sc->vge_cdata.vge_rx_ring_tag);
750	if (error != 0) {
751		device_printf(sc->vge_dev,
752		    "could not allocate Rx ring DMA tag.\n");
753		goto fail;
754	}
755
756	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
757	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
758	    (void **)&sc->vge_rdata.vge_tx_ring,
759	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
760	    &sc->vge_cdata.vge_tx_ring_map);
761	if (error != 0) {
762		device_printf(sc->vge_dev,
763		    "could not allocate DMA'able memory for Tx ring.\n");
764		goto fail;
765	}
766
767	ctx.vge_busaddr = 0;
768	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
769	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
770	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
771	if (error != 0 || ctx.vge_busaddr == 0) {
772		device_printf(sc->vge_dev,
773		    "could not load DMA'able memory for Tx ring.\n");
774		goto fail;
775	}
776	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
777
778	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
779	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
780	    (void **)&sc->vge_rdata.vge_rx_ring,
781	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
782	    &sc->vge_cdata.vge_rx_ring_map);
783	if (error != 0) {
784		device_printf(sc->vge_dev,
785		    "could not allocate DMA'able memory for Rx ring.\n");
786		goto fail;
787	}
788
789	ctx.vge_busaddr = 0;
790	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
791	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
792	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
793	if (error != 0 || ctx.vge_busaddr == 0) {
794		device_printf(sc->vge_dev,
795		    "could not load DMA'able memory for Rx ring.\n");
796		goto fail;
797	}
798	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
799
800	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
801	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
802	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
803	if ((VGE_ADDR_HI(tx_ring_end) !=
804	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
805	    (VGE_ADDR_HI(rx_ring_end) !=
806	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
807	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
808		device_printf(sc->vge_dev, "4GB boundary crossed, "
809		    "switching to 32bit DMA address mode.\n");
810		vge_dma_free(sc);
811		/* Limit DMA address space to 32bit and try again. */
812		lowaddr = BUS_SPACE_MAXADDR_32BIT;
813		goto again;
814	}
815
816	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
817		lowaddr = VGE_BUF_DMA_MAXADDR;
818	else
819		lowaddr = BUS_SPACE_MAXADDR_32BIT;
820	/* Create parent buffer tag. */
821	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
822	    1, 0,			/* algnmnt, boundary */
823	    lowaddr,			/* lowaddr */
824	    BUS_SPACE_MAXADDR,		/* highaddr */
825	    NULL, NULL,			/* filter, filterarg */
826	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
827	    0,				/* nsegments */
828	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
829	    0,				/* flags */
830	    NULL, NULL,			/* lockfunc, lockarg */
831	    &sc->vge_cdata.vge_buffer_tag);
832	if (error != 0) {
833		device_printf(sc->vge_dev,
834		    "could not create parent buffer DMA tag.\n");
835		goto fail;
836	}
837
838	/* Create tag for Tx buffers. */
839	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
840	    1, 0,			/* algnmnt, boundary */
841	    BUS_SPACE_MAXADDR,		/* lowaddr */
842	    BUS_SPACE_MAXADDR,		/* highaddr */
843	    NULL, NULL,			/* filter, filterarg */
844	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
845	    VGE_MAXTXSEGS,		/* nsegments */
846	    MCLBYTES,			/* maxsegsize */
847	    0,				/* flags */
848	    NULL, NULL,			/* lockfunc, lockarg */
849	    &sc->vge_cdata.vge_tx_tag);
850	if (error != 0) {
851		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
852		goto fail;
853	}
854
855	/* Create tag for Rx buffers. */
856	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
857	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
858	    BUS_SPACE_MAXADDR,		/* lowaddr */
859	    BUS_SPACE_MAXADDR,		/* highaddr */
860	    NULL, NULL,			/* filter, filterarg */
861	    MCLBYTES,			/* maxsize */
862	    1,				/* nsegments */
863	    MCLBYTES,			/* maxsegsize */
864	    0,				/* flags */
865	    NULL, NULL,			/* lockfunc, lockarg */
866	    &sc->vge_cdata.vge_rx_tag);
867	if (error != 0) {
868		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
869		goto fail;
870	}
871
872	/* Create DMA maps for Tx buffers. */
873	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
874		txd = &sc->vge_cdata.vge_txdesc[i];
875		txd->tx_m = NULL;
876		txd->tx_dmamap = NULL;
877		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
878		    &txd->tx_dmamap);
879		if (error != 0) {
880			device_printf(sc->vge_dev,
881			    "could not create Tx dmamap.\n");
882			goto fail;
883		}
884	}
885	/* Create DMA maps for Rx buffers. */
886	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
887	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
888		device_printf(sc->vge_dev,
889		    "could not create spare Rx dmamap.\n");
890		goto fail;
891	}
892	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
893		rxd = &sc->vge_cdata.vge_rxdesc[i];
894		rxd->rx_m = NULL;
895		rxd->rx_dmamap = NULL;
896		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
897		    &rxd->rx_dmamap);
898		if (error != 0) {
899			device_printf(sc->vge_dev,
900			    "could not create Rx dmamap.\n");
901			goto fail;
902		}
903	}
904
905fail:
906	return (error);
907}
908
909static void
910vge_dma_free(struct vge_softc *sc)
911{
912	struct vge_txdesc *txd;
913	struct vge_rxdesc *rxd;
914	int i;
915
916	/* Tx ring. */
917	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
918		if (sc->vge_cdata.vge_tx_ring_map)
919			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
920			    sc->vge_cdata.vge_tx_ring_map);
921		if (sc->vge_cdata.vge_tx_ring_map &&
922		    sc->vge_rdata.vge_tx_ring)
923			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
924			    sc->vge_rdata.vge_tx_ring,
925			    sc->vge_cdata.vge_tx_ring_map);
926		sc->vge_rdata.vge_tx_ring = NULL;
927		sc->vge_cdata.vge_tx_ring_map = NULL;
928		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
929		sc->vge_cdata.vge_tx_ring_tag = NULL;
930	}
931	/* Rx ring. */
932	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
933		if (sc->vge_cdata.vge_rx_ring_map)
934			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
935			    sc->vge_cdata.vge_rx_ring_map);
936		if (sc->vge_cdata.vge_rx_ring_map &&
937		    sc->vge_rdata.vge_rx_ring)
938			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
939			    sc->vge_rdata.vge_rx_ring,
940			    sc->vge_cdata.vge_rx_ring_map);
941		sc->vge_rdata.vge_rx_ring = NULL;
942		sc->vge_cdata.vge_rx_ring_map = NULL;
943		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
944		sc->vge_cdata.vge_rx_ring_tag = NULL;
945	}
946	/* Tx buffers. */
947	if (sc->vge_cdata.vge_tx_tag != NULL) {
948		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
949			txd = &sc->vge_cdata.vge_txdesc[i];
950			if (txd->tx_dmamap != NULL) {
951				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
952				    txd->tx_dmamap);
953				txd->tx_dmamap = NULL;
954			}
955		}
956		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
957		sc->vge_cdata.vge_tx_tag = NULL;
958	}
959	/* Rx buffers. */
960	if (sc->vge_cdata.vge_rx_tag != NULL) {
961		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
962			rxd = &sc->vge_cdata.vge_rxdesc[i];
963			if (rxd->rx_dmamap != NULL) {
964				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
965				    rxd->rx_dmamap);
966				rxd->rx_dmamap = NULL;
967			}
968		}
969		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
970			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
971			    sc->vge_cdata.vge_rx_sparemap);
972			sc->vge_cdata.vge_rx_sparemap = NULL;
973		}
974		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
975		sc->vge_cdata.vge_rx_tag = NULL;
976	}
977
978	if (sc->vge_cdata.vge_buffer_tag != NULL) {
979		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
980		sc->vge_cdata.vge_buffer_tag = NULL;
981	}
982	if (sc->vge_cdata.vge_ring_tag != NULL) {
983		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
984		sc->vge_cdata.vge_ring_tag = NULL;
985	}
986}
987
988/*
989 * Attach the interface. Allocate softc structures, do ifmedia
990 * setup and ethernet/BPF attach.
991 */
992static int
993vge_attach(device_t dev)
994{
995	u_char eaddr[ETHER_ADDR_LEN];
996	struct vge_softc *sc;
997	struct ifnet *ifp;
998	int error = 0, cap, i, msic, rid;
999
1000	sc = device_get_softc(dev);
1001	sc->vge_dev = dev;
1002
1003	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1004	    MTX_DEF);
1005	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1006
1007	/*
1008	 * Map control/status registers.
1009	 */
1010	pci_enable_busmaster(dev);
1011
1012	rid = PCIR_BAR(1);
1013	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1014	    RF_ACTIVE);
1015
1016	if (sc->vge_res == NULL) {
1017		device_printf(dev, "couldn't map ports/memory\n");
1018		error = ENXIO;
1019		goto fail;
1020	}
1021
1022	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1023		sc->vge_flags |= VGE_FLAG_PCIE;
1024		sc->vge_expcap = cap;
1025	} else
1026		sc->vge_flags |= VGE_FLAG_JUMBO;
1027	if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1028		sc->vge_flags |= VGE_FLAG_PMCAP;
1029		sc->vge_pmcap = cap;
1030	}
1031	rid = 0;
1032	msic = pci_msi_count(dev);
1033	if (msi_disable == 0 && msic > 0) {
1034		msic = 1;
1035		if (pci_alloc_msi(dev, &msic) == 0) {
1036			if (msic == 1) {
1037				sc->vge_flags |= VGE_FLAG_MSI;
1038				device_printf(dev, "Using %d MSI message\n",
1039				    msic);
1040				rid = 1;
1041			} else
1042				pci_release_msi(dev);
1043		}
1044	}
1045
1046	/* Allocate interrupt */
1047	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1048	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1049	if (sc->vge_irq == NULL) {
1050		device_printf(dev, "couldn't map interrupt\n");
1051		error = ENXIO;
1052		goto fail;
1053	}
1054
1055	/* Reset the adapter. */
1056	vge_reset(sc);
1057	/* Reload EEPROM. */
1058	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1059	for (i = 0; i < VGE_TIMEOUT; i++) {
1060		DELAY(5);
1061		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1062			break;
1063	}
1064	if (i == VGE_TIMEOUT)
1065		device_printf(dev, "EEPROM reload timed out\n");
1066	/*
1067	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1068	 * MAC will receive magic packet which in turn confuses
1069	 * controller.
1070	 */
1071	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1072
1073	/*
1074	 * Get station address from the EEPROM.
1075	 */
1076	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1077	/*
1078	 * Save configured PHY address.
1079	 * It seems the PHY address of PCIe controllers just
1080	 * reflects media jump strapping status so we assume the
1081	 * internal PHY address of PCIe controller is at 1.
1082	 */
1083	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1084		sc->vge_phyaddr = 1;
1085	else
1086		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1087		    VGE_MIICFG_PHYADDR;
1088	/* Clear WOL and take hardware from powerdown. */
1089	vge_clrwol(sc);
1090	vge_sysctl_node(sc);
1091	error = vge_dma_alloc(sc);
1092	if (error)
1093		goto fail;
1094
1095	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1096	if (ifp == NULL) {
1097		device_printf(dev, "can not if_alloc()\n");
1098		error = ENOSPC;
1099		goto fail;
1100	}
1101
1102	/* Do MII setup */
1103	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1104	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1105	    0);
1106	if (error != 0) {
1107		device_printf(dev, "attaching PHYs failed\n");
1108		goto fail;
1109	}
1110
1111	ifp->if_softc = sc;
1112	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1113	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1114	ifp->if_ioctl = vge_ioctl;
1115	ifp->if_capabilities = IFCAP_VLAN_MTU;
1116	ifp->if_start = vge_start;
1117	ifp->if_hwassist = VGE_CSUM_FEATURES;
1118	ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1119	    IFCAP_VLAN_HWTAGGING;
1120	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1121		ifp->if_capabilities |= IFCAP_WOL;
1122	ifp->if_capenable = ifp->if_capabilities;
1123#ifdef DEVICE_POLLING
1124	ifp->if_capabilities |= IFCAP_POLLING;
1125#endif
1126	ifp->if_init = vge_init;
1127	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1128	ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1129	IFQ_SET_READY(&ifp->if_snd);
1130
1131	/*
1132	 * Call MI attach routine.
1133	 */
1134	ether_ifattach(ifp, eaddr);
1135
1136	/* Tell the upper layer(s) we support long frames. */
1137	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1138
1139	/* Hook interrupt last to avoid having to lock softc */
1140	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1141	    NULL, vge_intr, sc, &sc->vge_intrhand);
1142
1143	if (error) {
1144		device_printf(dev, "couldn't set up irq\n");
1145		ether_ifdetach(ifp);
1146		goto fail;
1147	}
1148
1149fail:
1150	if (error)
1151		vge_detach(dev);
1152
1153	return (error);
1154}
1155
1156/*
1157 * Shutdown hardware and free up resources. This can be called any
1158 * time after the mutex has been initialized. It is called in both
1159 * the error case in attach and the normal detach case so it needs
1160 * to be careful about only freeing resources that have actually been
1161 * allocated.
1162 */
1163static int
1164vge_detach(device_t dev)
1165{
1166	struct vge_softc *sc;
1167	struct ifnet *ifp;
1168
1169	sc = device_get_softc(dev);
1170	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1171	ifp = sc->vge_ifp;
1172
1173#ifdef DEVICE_POLLING
1174	if (ifp->if_capenable & IFCAP_POLLING)
1175		ether_poll_deregister(ifp);
1176#endif
1177
1178	/* These should only be active if attach succeeded */
1179	if (device_is_attached(dev)) {
1180		ether_ifdetach(ifp);
1181		VGE_LOCK(sc);
1182		vge_stop(sc);
1183		VGE_UNLOCK(sc);
1184		callout_drain(&sc->vge_watchdog);
1185	}
1186	if (sc->vge_miibus)
1187		device_delete_child(dev, sc->vge_miibus);
1188	bus_generic_detach(dev);
1189
1190	if (sc->vge_intrhand)
1191		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1192	if (sc->vge_irq)
1193		bus_release_resource(dev, SYS_RES_IRQ,
1194		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1195	if (sc->vge_flags & VGE_FLAG_MSI)
1196		pci_release_msi(dev);
1197	if (sc->vge_res)
1198		bus_release_resource(dev, SYS_RES_MEMORY,
1199		    PCIR_BAR(1), sc->vge_res);
1200	if (ifp)
1201		if_free(ifp);
1202
1203	vge_dma_free(sc);
1204	mtx_destroy(&sc->vge_mtx);
1205
1206	return (0);
1207}
1208
1209static void
1210vge_discard_rxbuf(struct vge_softc *sc, int prod)
1211{
1212	struct vge_rxdesc *rxd;
1213	int i;
1214
1215	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1216	rxd->rx_desc->vge_sts = 0;
1217	rxd->rx_desc->vge_ctl = 0;
1218
1219	/*
1220	 * Note: the manual fails to document the fact that for
1221	 * proper opration, the driver needs to replentish the RX
1222	 * DMA ring 4 descriptors at a time (rather than one at a
1223	 * time, like most chips). We can allocate the new buffers
1224	 * but we should not set the OWN bits until we're ready
1225	 * to hand back 4 of them in one shot.
1226	 */
1227	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1228		for (i = VGE_RXCHUNK; i > 0; i--) {
1229			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1230			rxd = rxd->rxd_prev;
1231		}
1232		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1233	}
1234}
1235
1236static int
1237vge_newbuf(struct vge_softc *sc, int prod)
1238{
1239	struct vge_rxdesc *rxd;
1240	struct mbuf *m;
1241	bus_dma_segment_t segs[1];
1242	bus_dmamap_t map;
1243	int i, nsegs;
1244
1245	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1246	if (m == NULL)
1247		return (ENOBUFS);
1248	/*
1249	 * This is part of an evil trick to deal with strict-alignment
1250	 * architectures. The VIA chip requires RX buffers to be aligned
1251	 * on 32-bit boundaries, but that will hose strict-alignment
1252	 * architectures. To get around this, we leave some empty space
1253	 * at the start of each buffer and for non-strict-alignment hosts,
1254	 * we copy the buffer back two bytes to achieve word alignment.
1255	 * This is slightly more efficient than allocating a new buffer,
1256	 * copying the contents, and discarding the old buffer.
1257	 */
1258	m->m_len = m->m_pkthdr.len = MCLBYTES;
1259	m_adj(m, VGE_RX_BUF_ALIGN);
1260
1261	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1262	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1263		m_freem(m);
1264		return (ENOBUFS);
1265	}
1266	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1267
1268	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1269	if (rxd->rx_m != NULL) {
1270		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1271		    BUS_DMASYNC_POSTREAD);
1272		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1273	}
1274	map = rxd->rx_dmamap;
1275	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1276	sc->vge_cdata.vge_rx_sparemap = map;
1277	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1278	    BUS_DMASYNC_PREREAD);
1279	rxd->rx_m = m;
1280
1281	rxd->rx_desc->vge_sts = 0;
1282	rxd->rx_desc->vge_ctl = 0;
1283	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1284	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1285	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1286
1287	/*
1288	 * Note: the manual fails to document the fact that for
1289	 * proper operation, the driver needs to replenish the RX
1290	 * DMA ring 4 descriptors at a time (rather than one at a
1291	 * time, like most chips). We can allocate the new buffers
1292	 * but we should not set the OWN bits until we're ready
1293	 * to hand back 4 of them in one shot.
1294	 */
1295	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1296		for (i = VGE_RXCHUNK; i > 0; i--) {
1297			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1298			rxd = rxd->rxd_prev;
1299		}
1300		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1301	}
1302
1303	return (0);
1304}
1305
1306static int
1307vge_tx_list_init(struct vge_softc *sc)
1308{
1309	struct vge_ring_data *rd;
1310	struct vge_txdesc *txd;
1311	int i;
1312
1313	VGE_LOCK_ASSERT(sc);
1314
1315	sc->vge_cdata.vge_tx_prodidx = 0;
1316	sc->vge_cdata.vge_tx_considx = 0;
1317	sc->vge_cdata.vge_tx_cnt = 0;
1318
1319	rd = &sc->vge_rdata;
1320	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1321	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1322		txd = &sc->vge_cdata.vge_txdesc[i];
1323		txd->tx_m = NULL;
1324		txd->tx_desc = &rd->vge_tx_ring[i];
1325	}
1326
1327	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1328	    sc->vge_cdata.vge_tx_ring_map,
1329	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1330
1331	return (0);
1332}
1333
1334static int
1335vge_rx_list_init(struct vge_softc *sc)
1336{
1337	struct vge_ring_data *rd;
1338	struct vge_rxdesc *rxd;
1339	int i;
1340
1341	VGE_LOCK_ASSERT(sc);
1342
1343	sc->vge_cdata.vge_rx_prodidx = 0;
1344	sc->vge_cdata.vge_head = NULL;
1345	sc->vge_cdata.vge_tail = NULL;
1346	sc->vge_cdata.vge_rx_commit = 0;
1347
1348	rd = &sc->vge_rdata;
1349	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1350	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1351		rxd = &sc->vge_cdata.vge_rxdesc[i];
1352		rxd->rx_m = NULL;
1353		rxd->rx_desc = &rd->vge_rx_ring[i];
1354		if (i == 0)
1355			rxd->rxd_prev =
1356			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1357		else
1358			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1359		if (vge_newbuf(sc, i) != 0)
1360			return (ENOBUFS);
1361	}
1362
1363	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1364	    sc->vge_cdata.vge_rx_ring_map,
1365	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1366
1367	sc->vge_cdata.vge_rx_commit = 0;
1368
1369	return (0);
1370}
1371
1372static void
1373vge_freebufs(struct vge_softc *sc)
1374{
1375	struct vge_txdesc *txd;
1376	struct vge_rxdesc *rxd;
1377	struct ifnet *ifp;
1378	int i;
1379
1380	VGE_LOCK_ASSERT(sc);
1381
1382	ifp = sc->vge_ifp;
1383	/*
1384	 * Free RX and TX mbufs still in the queues.
1385	 */
1386	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1387		rxd = &sc->vge_cdata.vge_rxdesc[i];
1388		if (rxd->rx_m != NULL) {
1389			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1390			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1391			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1392			    rxd->rx_dmamap);
1393			m_freem(rxd->rx_m);
1394			rxd->rx_m = NULL;
1395		}
1396	}
1397
1398	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1399		txd = &sc->vge_cdata.vge_txdesc[i];
1400		if (txd->tx_m != NULL) {
1401			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1402			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1403			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1404			    txd->tx_dmamap);
1405			m_freem(txd->tx_m);
1406			txd->tx_m = NULL;
1407			ifp->if_oerrors++;
1408		}
1409	}
1410}
1411
1412#ifndef	__NO_STRICT_ALIGNMENT
1413static __inline void
1414vge_fixup_rx(struct mbuf *m)
1415{
1416	int i;
1417	uint16_t *src, *dst;
1418
1419	src = mtod(m, uint16_t *);
1420	dst = src - 1;
1421
1422	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1423		*dst++ = *src++;
1424
1425	m->m_data -= ETHER_ALIGN;
1426}
1427#endif
1428
1429/*
1430 * RX handler. We support the reception of jumbo frames that have
1431 * been fragmented across multiple 2K mbuf cluster buffers.
1432 */
1433static int
1434vge_rxeof(struct vge_softc *sc, int count)
1435{
1436	struct mbuf *m;
1437	struct ifnet *ifp;
1438	int prod, prog, total_len;
1439	struct vge_rxdesc *rxd;
1440	struct vge_rx_desc *cur_rx;
1441	uint32_t rxstat, rxctl;
1442
1443	VGE_LOCK_ASSERT(sc);
1444
1445	ifp = sc->vge_ifp;
1446
1447	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1448	    sc->vge_cdata.vge_rx_ring_map,
1449	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1450
1451	prod = sc->vge_cdata.vge_rx_prodidx;
1452	for (prog = 0; count > 0 &&
1453	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1454	    VGE_RX_DESC_INC(prod)) {
1455		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1456		rxstat = le32toh(cur_rx->vge_sts);
1457		if ((rxstat & VGE_RDSTS_OWN) != 0)
1458			break;
1459		count--;
1460		prog++;
1461		rxctl = le32toh(cur_rx->vge_ctl);
1462		total_len = VGE_RXBYTES(rxstat);
1463		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1464		m = rxd->rx_m;
1465
1466		/*
1467		 * If the 'start of frame' bit is set, this indicates
1468		 * either the first fragment in a multi-fragment receive,
1469		 * or an intermediate fragment. Either way, we want to
1470		 * accumulate the buffers.
1471		 */
1472		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1473			if (vge_newbuf(sc, prod) != 0) {
1474				ifp->if_iqdrops++;
1475				VGE_CHAIN_RESET(sc);
1476				vge_discard_rxbuf(sc, prod);
1477				continue;
1478			}
1479			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1480			if (sc->vge_cdata.vge_head == NULL) {
1481				sc->vge_cdata.vge_head = m;
1482				sc->vge_cdata.vge_tail = m;
1483			} else {
1484				m->m_flags &= ~M_PKTHDR;
1485				sc->vge_cdata.vge_tail->m_next = m;
1486				sc->vge_cdata.vge_tail = m;
1487			}
1488			continue;
1489		}
1490
1491		/*
1492		 * Bad/error frames will have the RXOK bit cleared.
1493		 * However, there's one error case we want to allow:
1494		 * if a VLAN tagged frame arrives and the chip can't
1495		 * match it against the CAM filter, it considers this
1496		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1497		 * We don't want to drop the frame though: our VLAN
1498		 * filtering is done in software.
1499		 * We also want to receive bad-checksummed frames and
1500		 * and frames with bad-length.
1501		 */
1502		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1503		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1504		    VGE_RDSTS_CSUMERR)) == 0) {
1505			ifp->if_ierrors++;
1506			/*
1507			 * If this is part of a multi-fragment packet,
1508			 * discard all the pieces.
1509			 */
1510			VGE_CHAIN_RESET(sc);
1511			vge_discard_rxbuf(sc, prod);
1512			continue;
1513		}
1514
1515		if (vge_newbuf(sc, prod) != 0) {
1516			ifp->if_iqdrops++;
1517			VGE_CHAIN_RESET(sc);
1518			vge_discard_rxbuf(sc, prod);
1519			continue;
1520		}
1521
1522		/* Chain received mbufs. */
1523		if (sc->vge_cdata.vge_head != NULL) {
1524			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1525			/*
1526			 * Special case: if there's 4 bytes or less
1527			 * in this buffer, the mbuf can be discarded:
1528			 * the last 4 bytes is the CRC, which we don't
1529			 * care about anyway.
1530			 */
1531			if (m->m_len <= ETHER_CRC_LEN) {
1532				sc->vge_cdata.vge_tail->m_len -=
1533				    (ETHER_CRC_LEN - m->m_len);
1534				m_freem(m);
1535			} else {
1536				m->m_len -= ETHER_CRC_LEN;
1537				m->m_flags &= ~M_PKTHDR;
1538				sc->vge_cdata.vge_tail->m_next = m;
1539			}
1540			m = sc->vge_cdata.vge_head;
1541			m->m_flags |= M_PKTHDR;
1542			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1543		} else {
1544			m->m_flags |= M_PKTHDR;
1545			m->m_pkthdr.len = m->m_len =
1546			    (total_len - ETHER_CRC_LEN);
1547		}
1548
1549#ifndef	__NO_STRICT_ALIGNMENT
1550		vge_fixup_rx(m);
1551#endif
1552		m->m_pkthdr.rcvif = ifp;
1553
1554		/* Do RX checksumming if enabled */
1555		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1556		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1557			/* Check IP header checksum */
1558			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1559				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1560			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1561				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1562
1563			/* Check TCP/UDP checksum */
1564			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1565			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1566				m->m_pkthdr.csum_flags |=
1567				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1568				m->m_pkthdr.csum_data = 0xffff;
1569			}
1570		}
1571
1572		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1573			/*
1574			 * The 32-bit rxctl register is stored in little-endian.
1575			 * However, the 16-bit vlan tag is stored in big-endian,
1576			 * so we have to byte swap it.
1577			 */
1578			m->m_pkthdr.ether_vtag =
1579			    bswap16(rxctl & VGE_RDCTL_VLANID);
1580			m->m_flags |= M_VLANTAG;
1581		}
1582
1583		VGE_UNLOCK(sc);
1584		(*ifp->if_input)(ifp, m);
1585		VGE_LOCK(sc);
1586		sc->vge_cdata.vge_head = NULL;
1587		sc->vge_cdata.vge_tail = NULL;
1588	}
1589
1590	if (prog > 0) {
1591		sc->vge_cdata.vge_rx_prodidx = prod;
1592		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1593		    sc->vge_cdata.vge_rx_ring_map,
1594		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1595		/* Update residue counter. */
1596		if (sc->vge_cdata.vge_rx_commit != 0) {
1597			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1598			    sc->vge_cdata.vge_rx_commit);
1599			sc->vge_cdata.vge_rx_commit = 0;
1600		}
1601	}
1602	return (prog);
1603}
1604
1605static void
1606vge_txeof(struct vge_softc *sc)
1607{
1608	struct ifnet *ifp;
1609	struct vge_tx_desc *cur_tx;
1610	struct vge_txdesc *txd;
1611	uint32_t txstat;
1612	int cons, prod;
1613
1614	VGE_LOCK_ASSERT(sc);
1615
1616	ifp = sc->vge_ifp;
1617
1618	if (sc->vge_cdata.vge_tx_cnt == 0)
1619		return;
1620
1621	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1622	    sc->vge_cdata.vge_tx_ring_map,
1623	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1624
1625	/*
1626	 * Go through our tx list and free mbufs for those
1627	 * frames that have been transmitted.
1628	 */
1629	cons = sc->vge_cdata.vge_tx_considx;
1630	prod = sc->vge_cdata.vge_tx_prodidx;
1631	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1632		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1633		txstat = le32toh(cur_tx->vge_sts);
1634		if ((txstat & VGE_TDSTS_OWN) != 0)
1635			break;
1636		sc->vge_cdata.vge_tx_cnt--;
1637		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1638
1639		txd = &sc->vge_cdata.vge_txdesc[cons];
1640		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1641		    BUS_DMASYNC_POSTWRITE);
1642		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1643
1644		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1645		    __func__));
1646		m_freem(txd->tx_m);
1647		txd->tx_m = NULL;
1648		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1649	}
1650	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1651	    sc->vge_cdata.vge_tx_ring_map,
1652	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1653	sc->vge_cdata.vge_tx_considx = cons;
1654	if (sc->vge_cdata.vge_tx_cnt == 0)
1655		sc->vge_timer = 0;
1656}
1657
1658static void
1659vge_link_statchg(void *xsc)
1660{
1661	struct vge_softc *sc;
1662	struct ifnet *ifp;
1663	struct mii_data *mii;
1664
1665	sc = xsc;
1666	ifp = sc->vge_ifp;
1667	VGE_LOCK_ASSERT(sc);
1668	mii = device_get_softc(sc->vge_miibus);
1669
1670	mii_pollstat(mii);
1671	if ((sc->vge_flags & VGE_FLAG_LINK) != 0) {
1672		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1673			sc->vge_flags &= ~VGE_FLAG_LINK;
1674			if_link_state_change(sc->vge_ifp,
1675			    LINK_STATE_DOWN);
1676		}
1677	} else {
1678		if (mii->mii_media_status & IFM_ACTIVE &&
1679		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1680			sc->vge_flags |= VGE_FLAG_LINK;
1681			if_link_state_change(sc->vge_ifp,
1682			    LINK_STATE_UP);
1683			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1684				vge_start_locked(ifp);
1685		}
1686	}
1687}
1688
1689#ifdef DEVICE_POLLING
1690static int
1691vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1692{
1693	struct vge_softc *sc = ifp->if_softc;
1694	int rx_npkts = 0;
1695
1696	VGE_LOCK(sc);
1697	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1698		goto done;
1699
1700	rx_npkts = vge_rxeof(sc, count);
1701	vge_txeof(sc);
1702
1703	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1704		vge_start_locked(ifp);
1705
1706	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1707		uint32_t       status;
1708		status = CSR_READ_4(sc, VGE_ISR);
1709		if (status == 0xFFFFFFFF)
1710			goto done;
1711		if (status)
1712			CSR_WRITE_4(sc, VGE_ISR, status);
1713
1714		/*
1715		 * XXX check behaviour on receiver stalls.
1716		 */
1717
1718		if (status & VGE_ISR_TXDMA_STALL ||
1719		    status & VGE_ISR_RXDMA_STALL) {
1720			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1721			vge_init_locked(sc);
1722		}
1723
1724		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1725			vge_rxeof(sc, count);
1726			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1727			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1728		}
1729	}
1730done:
1731	VGE_UNLOCK(sc);
1732	return (rx_npkts);
1733}
1734#endif /* DEVICE_POLLING */
1735
1736static void
1737vge_intr(void *arg)
1738{
1739	struct vge_softc *sc;
1740	struct ifnet *ifp;
1741	uint32_t status;
1742
1743	sc = arg;
1744	VGE_LOCK(sc);
1745
1746	ifp = sc->vge_ifp;
1747	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1748	    (ifp->if_flags & IFF_UP) == 0) {
1749		VGE_UNLOCK(sc);
1750		return;
1751	}
1752
1753#ifdef DEVICE_POLLING
1754	if  (ifp->if_capenable & IFCAP_POLLING) {
1755		status = CSR_READ_4(sc, VGE_ISR);
1756		CSR_WRITE_4(sc, VGE_ISR, status);
1757		if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1758			vge_link_statchg(sc);
1759		VGE_UNLOCK(sc);
1760		return;
1761	}
1762#endif
1763
1764	/* Disable interrupts */
1765	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1766	status = CSR_READ_4(sc, VGE_ISR);
1767	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1768	/* If the card has gone away the read returns 0xffff. */
1769	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1770		goto done;
1771	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1772		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1773			vge_rxeof(sc, VGE_RX_DESC_CNT);
1774		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1775			vge_rxeof(sc, VGE_RX_DESC_CNT);
1776			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1777			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1778		}
1779
1780		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1781			vge_txeof(sc);
1782
1783		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1784			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1785			vge_init_locked(sc);
1786		}
1787
1788		if (status & VGE_ISR_LINKSTS)
1789			vge_link_statchg(sc);
1790	}
1791done:
1792	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1793		/* Re-enable interrupts */
1794		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1795
1796		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1797			vge_start_locked(ifp);
1798	}
1799	VGE_UNLOCK(sc);
1800}
1801
1802static int
1803vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1804{
1805	struct vge_txdesc *txd;
1806	struct vge_tx_frag *frag;
1807	struct mbuf *m;
1808	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1809	int error, i, nsegs, padlen;
1810	uint32_t cflags;
1811
1812	VGE_LOCK_ASSERT(sc);
1813
1814	M_ASSERTPKTHDR((*m_head));
1815
1816	/* Argh. This chip does not autopad short frames. */
1817	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1818		m = *m_head;
1819		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1820		if (M_WRITABLE(m) == 0) {
1821			/* Get a writable copy. */
1822			m = m_dup(*m_head, M_DONTWAIT);
1823			m_freem(*m_head);
1824			if (m == NULL) {
1825				*m_head = NULL;
1826				return (ENOBUFS);
1827			}
1828			*m_head = m;
1829		}
1830		if (M_TRAILINGSPACE(m) < padlen) {
1831			m = m_defrag(m, M_DONTWAIT);
1832			if (m == NULL) {
1833				m_freem(*m_head);
1834				*m_head = NULL;
1835				return (ENOBUFS);
1836			}
1837		}
1838		/*
1839		 * Manually pad short frames, and zero the pad space
1840		 * to avoid leaking data.
1841		 */
1842		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1843		m->m_pkthdr.len += padlen;
1844		m->m_len = m->m_pkthdr.len;
1845		*m_head = m;
1846	}
1847
1848	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1849
1850	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1851	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1852	if (error == EFBIG) {
1853		m = m_collapse(*m_head, M_DONTWAIT, VGE_MAXTXSEGS);
1854		if (m == NULL) {
1855			m_freem(*m_head);
1856			*m_head = NULL;
1857			return (ENOMEM);
1858		}
1859		*m_head = m;
1860		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1861		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1862		if (error != 0) {
1863			m_freem(*m_head);
1864			*m_head = NULL;
1865			return (error);
1866		}
1867	} else if (error != 0)
1868		return (error);
1869	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1870	    BUS_DMASYNC_PREWRITE);
1871
1872	m = *m_head;
1873	cflags = 0;
1874
1875	/* Configure checksum offload. */
1876	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1877		cflags |= VGE_TDCTL_IPCSUM;
1878	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1879		cflags |= VGE_TDCTL_TCPCSUM;
1880	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1881		cflags |= VGE_TDCTL_UDPCSUM;
1882
1883	/* Configure VLAN. */
1884	if ((m->m_flags & M_VLANTAG) != 0)
1885		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1886	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1887	/*
1888	 * XXX
1889	 * Velocity family seems to support TSO but no information
1890	 * for MSS configuration is available. Also the number of
1891	 * fragments supported by a descriptor is too small to hold
1892	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1893	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1894	 * longer chain of buffers but no additional information is
1895	 * available.
1896	 *
1897	 * When telling the chip how many segments there are, we
1898	 * must use nsegs + 1 instead of just nsegs. Darned if I
1899	 * know why. This also means we can't use the last fragment
1900	 * field of Tx descriptor.
1901	 */
1902	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1903	    VGE_TD_LS_NORM);
1904	for (i = 0; i < nsegs; i++) {
1905		frag = &txd->tx_desc->vge_frag[i];
1906		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1907		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1908		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1909	}
1910
1911	sc->vge_cdata.vge_tx_cnt++;
1912	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1913
1914	/*
1915	 * Finally request interrupt and give the first descriptor
1916	 * ownership to hardware.
1917	 */
1918	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1919	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1920	txd->tx_m = m;
1921
1922	return (0);
1923}
1924
1925/*
1926 * Main transmit routine.
1927 */
1928
1929static void
1930vge_start(struct ifnet *ifp)
1931{
1932	struct vge_softc *sc;
1933
1934	sc = ifp->if_softc;
1935	VGE_LOCK(sc);
1936	vge_start_locked(ifp);
1937	VGE_UNLOCK(sc);
1938}
1939
1940
1941static void
1942vge_start_locked(struct ifnet *ifp)
1943{
1944	struct vge_softc *sc;
1945	struct vge_txdesc *txd;
1946	struct mbuf *m_head;
1947	int enq, idx;
1948
1949	sc = ifp->if_softc;
1950
1951	VGE_LOCK_ASSERT(sc);
1952
1953	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1954	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1955	    IFF_DRV_RUNNING)
1956		return;
1957
1958	idx = sc->vge_cdata.vge_tx_prodidx;
1959	VGE_TX_DESC_DEC(idx);
1960	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1961	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1962		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1963		if (m_head == NULL)
1964			break;
1965		/*
1966		 * Pack the data into the transmit ring. If we
1967		 * don't have room, set the OACTIVE flag and wait
1968		 * for the NIC to drain the ring.
1969		 */
1970		if (vge_encap(sc, &m_head)) {
1971			if (m_head == NULL)
1972				break;
1973			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1974			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1975			break;
1976		}
1977
1978		txd = &sc->vge_cdata.vge_txdesc[idx];
1979		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1980		VGE_TX_DESC_INC(idx);
1981
1982		enq++;
1983		/*
1984		 * If there's a BPF listener, bounce a copy of this frame
1985		 * to him.
1986		 */
1987		ETHER_BPF_MTAP(ifp, m_head);
1988	}
1989
1990	if (enq > 0) {
1991		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1992		    sc->vge_cdata.vge_tx_ring_map,
1993		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1994		/* Issue a transmit command. */
1995		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1996		/*
1997		 * Set a timeout in case the chip goes out to lunch.
1998		 */
1999		sc->vge_timer = 5;
2000	}
2001}
2002
2003static void
2004vge_init(void *xsc)
2005{
2006	struct vge_softc *sc = xsc;
2007
2008	VGE_LOCK(sc);
2009	vge_init_locked(sc);
2010	VGE_UNLOCK(sc);
2011}
2012
2013static void
2014vge_init_locked(struct vge_softc *sc)
2015{
2016	struct ifnet *ifp = sc->vge_ifp;
2017	struct mii_data *mii;
2018	int error, i;
2019
2020	VGE_LOCK_ASSERT(sc);
2021	mii = device_get_softc(sc->vge_miibus);
2022
2023	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2024		return;
2025
2026	/*
2027	 * Cancel pending I/O and free all RX/TX buffers.
2028	 */
2029	vge_stop(sc);
2030	vge_reset(sc);
2031
2032	/*
2033	 * Initialize the RX and TX descriptors and mbufs.
2034	 */
2035
2036	error = vge_rx_list_init(sc);
2037	if (error != 0) {
2038                device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2039                return;
2040	}
2041	vge_tx_list_init(sc);
2042	/* Clear MAC statistics. */
2043	vge_stats_clear(sc);
2044	/* Set our station address */
2045	for (i = 0; i < ETHER_ADDR_LEN; i++)
2046		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2047
2048	/*
2049	 * Set receive FIFO threshold. Also allow transmission and
2050	 * reception of VLAN tagged frames.
2051	 */
2052	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2053	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2054
2055	/* Set DMA burst length */
2056	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2057	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2058
2059	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2060
2061	/* Set collision backoff algorithm */
2062	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2063	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2064	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2065
2066	/* Disable LPSEL field in priority resolution */
2067	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2068
2069	/*
2070	 * Load the addresses of the DMA queues into the chip.
2071	 * Note that we only use one transmit queue.
2072	 */
2073
2074	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2075	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2076	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2077	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2078	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2079
2080	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2081	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2082	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2083	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2084
2085	/* Configure interrupt moderation. */
2086	vge_intr_holdoff(sc);
2087
2088	/* Enable and wake up the RX descriptor queue */
2089	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2090	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2091
2092	/* Enable the TX descriptor queue */
2093	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2094
2095	/* Init the cam filter. */
2096	vge_cam_clear(sc);
2097
2098	/* Set up receiver filter. */
2099	vge_rxfilter(sc);
2100	vge_setvlan(sc);
2101
2102	/* Enable flow control */
2103
2104	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2105
2106	/* Enable jumbo frame reception (if desired) */
2107
2108	/* Start the MAC. */
2109	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2110	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2111	CSR_WRITE_1(sc, VGE_CRS0,
2112	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2113
2114#ifdef DEVICE_POLLING
2115	/*
2116	 * Disable interrupts except link state change if we are polling.
2117	 */
2118	if (ifp->if_capenable & IFCAP_POLLING) {
2119		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2120	} else	/* otherwise ... */
2121#endif
2122	{
2123	/*
2124	 * Enable interrupts.
2125	 */
2126		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2127	}
2128	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2129	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2130
2131	sc->vge_flags &= ~VGE_FLAG_LINK;
2132	mii_mediachg(mii);
2133
2134	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2135	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2136	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2137}
2138
2139/*
2140 * Set media options.
2141 */
2142static int
2143vge_ifmedia_upd(struct ifnet *ifp)
2144{
2145	struct vge_softc *sc;
2146	struct mii_data *mii;
2147	int error;
2148
2149	sc = ifp->if_softc;
2150	VGE_LOCK(sc);
2151	mii = device_get_softc(sc->vge_miibus);
2152	error = mii_mediachg(mii);
2153	VGE_UNLOCK(sc);
2154
2155	return (error);
2156}
2157
2158/*
2159 * Report current media status.
2160 */
2161static void
2162vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2163{
2164	struct vge_softc *sc;
2165	struct mii_data *mii;
2166
2167	sc = ifp->if_softc;
2168	mii = device_get_softc(sc->vge_miibus);
2169
2170	VGE_LOCK(sc);
2171	if ((ifp->if_flags & IFF_UP) == 0) {
2172		VGE_UNLOCK(sc);
2173		return;
2174	}
2175	mii_pollstat(mii);
2176	ifmr->ifm_active = mii->mii_media_active;
2177	ifmr->ifm_status = mii->mii_media_status;
2178	VGE_UNLOCK(sc);
2179}
2180
2181static void
2182vge_miibus_statchg(device_t dev)
2183{
2184	struct vge_softc *sc;
2185	struct mii_data *mii;
2186	struct ifmedia_entry *ife;
2187
2188	sc = device_get_softc(dev);
2189	mii = device_get_softc(sc->vge_miibus);
2190	ife = mii->mii_media.ifm_cur;
2191
2192	/*
2193	 * If the user manually selects a media mode, we need to turn
2194	 * on the forced MAC mode bit in the DIAGCTL register. If the
2195	 * user happens to choose a full duplex mode, we also need to
2196	 * set the 'force full duplex' bit. This applies only to
2197	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2198	 * mode is disabled, and in 1000baseT mode, full duplex is
2199	 * always implied, so we turn on the forced mode bit but leave
2200	 * the FDX bit cleared.
2201	 */
2202
2203	switch (IFM_SUBTYPE(ife->ifm_media)) {
2204	case IFM_AUTO:
2205		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2206		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2207		break;
2208	case IFM_1000_T:
2209		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2210		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2211		break;
2212	case IFM_100_TX:
2213	case IFM_10_T:
2214		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2215		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2216			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2217		} else {
2218			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2219		}
2220		break;
2221	default:
2222		device_printf(dev, "unknown media type: %x\n",
2223		    IFM_SUBTYPE(ife->ifm_media));
2224		break;
2225	}
2226}
2227
2228static int
2229vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2230{
2231	struct vge_softc *sc = ifp->if_softc;
2232	struct ifreq *ifr = (struct ifreq *) data;
2233	struct mii_data *mii;
2234	int error = 0, mask;
2235
2236	switch (command) {
2237	case SIOCSIFMTU:
2238		VGE_LOCK(sc);
2239		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2240			error = EINVAL;
2241		else if (ifp->if_mtu != ifr->ifr_mtu) {
2242			if (ifr->ifr_mtu > ETHERMTU &&
2243			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2244				error = EINVAL;
2245			else
2246				ifp->if_mtu = ifr->ifr_mtu;
2247		}
2248		VGE_UNLOCK(sc);
2249		break;
2250	case SIOCSIFFLAGS:
2251		VGE_LOCK(sc);
2252		if ((ifp->if_flags & IFF_UP) != 0) {
2253			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2254			    ((ifp->if_flags ^ sc->vge_if_flags) &
2255			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2256				vge_rxfilter(sc);
2257			else
2258				vge_init_locked(sc);
2259		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2260			vge_stop(sc);
2261		sc->vge_if_flags = ifp->if_flags;
2262		VGE_UNLOCK(sc);
2263		break;
2264	case SIOCADDMULTI:
2265	case SIOCDELMULTI:
2266		VGE_LOCK(sc);
2267		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2268			vge_rxfilter(sc);
2269		VGE_UNLOCK(sc);
2270		break;
2271	case SIOCGIFMEDIA:
2272	case SIOCSIFMEDIA:
2273		mii = device_get_softc(sc->vge_miibus);
2274		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2275		break;
2276	case SIOCSIFCAP:
2277		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2278#ifdef DEVICE_POLLING
2279		if (mask & IFCAP_POLLING) {
2280			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2281				error = ether_poll_register(vge_poll, ifp);
2282				if (error)
2283					return (error);
2284				VGE_LOCK(sc);
2285					/* Disable interrupts */
2286				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2287				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2288				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2289				ifp->if_capenable |= IFCAP_POLLING;
2290				VGE_UNLOCK(sc);
2291			} else {
2292				error = ether_poll_deregister(ifp);
2293				/* Enable interrupts. */
2294				VGE_LOCK(sc);
2295				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2296				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2297				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2298				ifp->if_capenable &= ~IFCAP_POLLING;
2299				VGE_UNLOCK(sc);
2300			}
2301		}
2302#endif /* DEVICE_POLLING */
2303		VGE_LOCK(sc);
2304		if ((mask & IFCAP_TXCSUM) != 0 &&
2305		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2306			ifp->if_capenable ^= IFCAP_TXCSUM;
2307			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2308				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2309			else
2310				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2311		}
2312		if ((mask & IFCAP_RXCSUM) != 0 &&
2313		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2314			ifp->if_capenable ^= IFCAP_RXCSUM;
2315		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2316		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2317			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2318		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2319		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2320			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2321		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2322		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2323			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2324		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2325		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2326			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2327		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2328		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2329			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2330			vge_setvlan(sc);
2331		}
2332		VGE_UNLOCK(sc);
2333		VLAN_CAPABILITIES(ifp);
2334		break;
2335	default:
2336		error = ether_ioctl(ifp, command, data);
2337		break;
2338	}
2339
2340	return (error);
2341}
2342
2343static void
2344vge_watchdog(void *arg)
2345{
2346	struct vge_softc *sc;
2347	struct ifnet *ifp;
2348
2349	sc = arg;
2350	VGE_LOCK_ASSERT(sc);
2351	vge_stats_update(sc);
2352	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2353	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2354		return;
2355
2356	ifp = sc->vge_ifp;
2357	if_printf(ifp, "watchdog timeout\n");
2358	ifp->if_oerrors++;
2359
2360	vge_txeof(sc);
2361	vge_rxeof(sc, VGE_RX_DESC_CNT);
2362
2363	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2364	vge_init_locked(sc);
2365}
2366
2367/*
2368 * Stop the adapter and free any mbufs allocated to the
2369 * RX and TX lists.
2370 */
2371static void
2372vge_stop(struct vge_softc *sc)
2373{
2374	struct ifnet *ifp;
2375
2376	VGE_LOCK_ASSERT(sc);
2377	ifp = sc->vge_ifp;
2378	sc->vge_timer = 0;
2379	callout_stop(&sc->vge_watchdog);
2380
2381	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2382
2383	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2384	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2385	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2386	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2387	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2388	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2389
2390	vge_stats_update(sc);
2391	VGE_CHAIN_RESET(sc);
2392	vge_txeof(sc);
2393	vge_freebufs(sc);
2394}
2395
2396/*
2397 * Device suspend routine.  Stop the interface and save some PCI
2398 * settings in case the BIOS doesn't restore them properly on
2399 * resume.
2400 */
2401static int
2402vge_suspend(device_t dev)
2403{
2404	struct vge_softc *sc;
2405
2406	sc = device_get_softc(dev);
2407
2408	VGE_LOCK(sc);
2409	vge_stop(sc);
2410	vge_setwol(sc);
2411	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2412	VGE_UNLOCK(sc);
2413
2414	return (0);
2415}
2416
2417/*
2418 * Device resume routine.  Restore some PCI settings in case the BIOS
2419 * doesn't, re-enable busmastering, and restart the interface if
2420 * appropriate.
2421 */
2422static int
2423vge_resume(device_t dev)
2424{
2425	struct vge_softc *sc;
2426	struct ifnet *ifp;
2427	uint16_t pmstat;
2428
2429	sc = device_get_softc(dev);
2430	VGE_LOCK(sc);
2431	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2432		/* Disable PME and clear PME status. */
2433		pmstat = pci_read_config(sc->vge_dev,
2434		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2435		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2436			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2437			pci_write_config(sc->vge_dev,
2438			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2439		}
2440	}
2441	vge_clrwol(sc);
2442	/* Restart MII auto-polling. */
2443	vge_miipoll_start(sc);
2444	ifp = sc->vge_ifp;
2445	/* Reinitialize interface if necessary. */
2446	if ((ifp->if_flags & IFF_UP) != 0) {
2447		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2448		vge_init_locked(sc);
2449	}
2450	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2451	VGE_UNLOCK(sc);
2452
2453	return (0);
2454}
2455
2456/*
2457 * Stop all chip I/O so that the kernel's probe routines don't
2458 * get confused by errant DMAs when rebooting.
2459 */
2460static int
2461vge_shutdown(device_t dev)
2462{
2463
2464	return (vge_suspend(dev));
2465}
2466
2467#define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2468	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2469
2470static void
2471vge_sysctl_node(struct vge_softc *sc)
2472{
2473	struct sysctl_ctx_list *ctx;
2474	struct sysctl_oid_list *child, *parent;
2475	struct sysctl_oid *tree;
2476	struct vge_hw_stats *stats;
2477
2478	stats = &sc->vge_stats;
2479	ctx = device_get_sysctl_ctx(sc->vge_dev);
2480	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2481
2482	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2483	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2484	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2485	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2486	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2487	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2488
2489	/* Pull in device tunables. */
2490	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2491	resource_int_value(device_get_name(sc->vge_dev),
2492	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2493	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2494	resource_int_value(device_get_name(sc->vge_dev),
2495	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2496	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2497	resource_int_value(device_get_name(sc->vge_dev),
2498	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2499
2500	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2501	    NULL, "VGE statistics");
2502	parent = SYSCTL_CHILDREN(tree);
2503
2504	/* Rx statistics. */
2505	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2506	    NULL, "RX MAC statistics");
2507	child = SYSCTL_CHILDREN(tree);
2508	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2509	    &stats->rx_frames, "frames");
2510	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2511	    &stats->rx_good_frames, "Good frames");
2512	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2513	    &stats->rx_fifo_oflows, "FIFO overflows");
2514	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2515	    &stats->rx_runts, "Too short frames");
2516	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2517	    &stats->rx_runts_errs, "Too short frames with errors");
2518	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2519	    &stats->rx_pkts_64, "64 bytes frames");
2520	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2521	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2522	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2523	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2524	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2525	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2526	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2527	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2528	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2529	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2530	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2531	    &stats->rx_pkts_1519_max, "1519 to max frames");
2532	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2533	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2534	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2535	    &stats->rx_jumbos, "Jumbo frames");
2536	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2537	    &stats->rx_crcerrs, "CRC errors");
2538	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2539	    &stats->rx_pause_frames, "CRC errors");
2540	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2541	    &stats->rx_alignerrs, "Alignment errors");
2542	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2543	    &stats->rx_nobufs, "Frames with no buffer event");
2544	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2545	    &stats->rx_symerrs, "Frames with symbol errors");
2546	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2547	    &stats->rx_lenerrs, "Frames with length mismatched");
2548
2549	/* Tx statistics. */
2550	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2551	    NULL, "TX MAC statistics");
2552	child = SYSCTL_CHILDREN(tree);
2553	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2554	    &stats->tx_good_frames, "Good frames");
2555	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2556	    &stats->tx_pkts_64, "64 bytes frames");
2557	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2558	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2559	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2560	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2561	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2562	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2563	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2564	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2565	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2566	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2567	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2568	    &stats->tx_jumbos, "Jumbo frames");
2569	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2570	    &stats->tx_colls, "Collisions");
2571	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2572	    &stats->tx_latecolls, "Late collisions");
2573	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2574	    &stats->tx_pause, "Pause frames");
2575#ifdef VGE_ENABLE_SQEERR
2576	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2577	    &stats->tx_sqeerrs, "SQE errors");
2578#endif
2579	/* Clear MAC statistics. */
2580	vge_stats_clear(sc);
2581}
2582
2583#undef	VGE_SYSCTL_STAT_ADD32
2584
2585static void
2586vge_stats_clear(struct vge_softc *sc)
2587{
2588	int i;
2589
2590	CSR_WRITE_1(sc, VGE_MIBCSR,
2591	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2592	CSR_WRITE_1(sc, VGE_MIBCSR,
2593	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2594	for (i = VGE_TIMEOUT; i > 0; i--) {
2595		DELAY(1);
2596		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2597			break;
2598	}
2599	if (i == 0)
2600		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2601	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2602	    ~VGE_MIBCSR_FREEZE);
2603}
2604
2605static void
2606vge_stats_update(struct vge_softc *sc)
2607{
2608	struct vge_hw_stats *stats;
2609	struct ifnet *ifp;
2610	uint32_t mib[VGE_MIB_CNT], val;
2611	int i;
2612
2613	VGE_LOCK_ASSERT(sc);
2614
2615	stats = &sc->vge_stats;
2616	ifp = sc->vge_ifp;
2617
2618	CSR_WRITE_1(sc, VGE_MIBCSR,
2619	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2620	for (i = VGE_TIMEOUT; i > 0; i--) {
2621		DELAY(1);
2622		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2623			break;
2624	}
2625	if (i == 0) {
2626		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2627		vge_stats_clear(sc);
2628		return;
2629	}
2630
2631	bzero(mib, sizeof(mib));
2632reset_idx:
2633	/* Set MIB read index to 0. */
2634	CSR_WRITE_1(sc, VGE_MIBCSR,
2635	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2636	for (i = 0; i < VGE_MIB_CNT; i++) {
2637		val = CSR_READ_4(sc, VGE_MIBDATA);
2638		if (i != VGE_MIB_DATA_IDX(val)) {
2639			/* Reading interrupted. */
2640			goto reset_idx;
2641		}
2642		mib[i] = val & VGE_MIB_DATA_MASK;
2643	}
2644
2645	/* Rx stats. */
2646	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2647	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2648	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2649	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2650	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2651	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2652	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2653	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2654	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2655	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2656	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2657	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2658	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2659	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2660	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2661	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2662	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2663	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2664	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2665	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2666
2667	/* Tx stats. */
2668	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2669	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2670	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2671	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2672	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2673	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2674	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2675	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2676	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2677	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2678#ifdef VGE_ENABLE_SQEERR
2679	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2680#endif
2681	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2682
2683	/* Update counters in ifnet. */
2684	ifp->if_opackets += mib[VGE_MIB_TX_GOOD_FRAMES];
2685
2686	ifp->if_collisions += mib[VGE_MIB_TX_COLLS] +
2687	    mib[VGE_MIB_TX_LATECOLLS];
2688
2689	ifp->if_oerrors += mib[VGE_MIB_TX_COLLS] +
2690	    mib[VGE_MIB_TX_LATECOLLS];
2691
2692	ifp->if_ipackets += mib[VGE_MIB_RX_GOOD_FRAMES];
2693
2694	ifp->if_ierrors += mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2695	    mib[VGE_MIB_RX_RUNTS] +
2696	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2697	    mib[VGE_MIB_RX_CRCERRS] +
2698	    mib[VGE_MIB_RX_ALIGNERRS] +
2699	    mib[VGE_MIB_RX_NOBUFS] +
2700	    mib[VGE_MIB_RX_SYMERRS] +
2701	    mib[VGE_MIB_RX_LENERRS];
2702}
2703
2704static void
2705vge_intr_holdoff(struct vge_softc *sc)
2706{
2707	uint8_t intctl;
2708
2709	VGE_LOCK_ASSERT(sc);
2710
2711	/*
2712	 * Set Tx interrupt supression threshold.
2713	 * It's possible to use single-shot timer in VGE_CRS1 register
2714	 * in Tx path such that driver can remove most of Tx completion
2715	 * interrupts. However this requires additional access to
2716	 * VGE_CRS1 register to reload the timer in addintion to
2717	 * activating Tx kick command. Another downside is we don't know
2718	 * what single-shot timer value should be used in advance so
2719	 * reclaiming transmitted mbufs could be delayed a lot which in
2720	 * turn slows down Tx operation.
2721	 */
2722	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2723	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2724
2725	/* Set Rx interrupt suppresion threshold. */
2726	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2727	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2728
2729	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2730	intctl &= ~VGE_INTCTL_SC_RELOAD;
2731	intctl |= VGE_INTCTL_HC_RELOAD;
2732	if (sc->vge_tx_coal_pkt <= 0)
2733		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2734	else
2735		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2736	if (sc->vge_rx_coal_pkt <= 0)
2737		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2738	else
2739		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2740	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2741	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2742	if (sc->vge_int_holdoff > 0) {
2743		/* Set interrupt holdoff timer. */
2744		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2745		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2746		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2747		/* Enable holdoff timer. */
2748		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2749	}
2750}
2751
2752static void
2753vge_setlinkspeed(struct vge_softc *sc)
2754{
2755	struct mii_data *mii;
2756	int aneg, i;
2757
2758	VGE_LOCK_ASSERT(sc);
2759
2760	mii = device_get_softc(sc->vge_miibus);
2761	mii_pollstat(mii);
2762	aneg = 0;
2763	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2764	    (IFM_ACTIVE | IFM_AVALID)) {
2765		switch IFM_SUBTYPE(mii->mii_media_active) {
2766		case IFM_10_T:
2767		case IFM_100_TX:
2768			return;
2769		case IFM_1000_T:
2770			aneg++;
2771		default:
2772			break;
2773		}
2774	}
2775	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2776	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2777	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2778	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2779	    BMCR_AUTOEN | BMCR_STARTNEG);
2780	DELAY(1000);
2781	if (aneg != 0) {
2782		/* Poll link state until vge(4) get a 10/100 link. */
2783		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2784			mii_pollstat(mii);
2785			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2786			    == (IFM_ACTIVE | IFM_AVALID)) {
2787				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2788				case IFM_10_T:
2789				case IFM_100_TX:
2790					return;
2791				default:
2792					break;
2793				}
2794			}
2795			VGE_UNLOCK(sc);
2796			pause("vgelnk", hz);
2797			VGE_LOCK(sc);
2798		}
2799		if (i == MII_ANEGTICKS_GIGE)
2800			device_printf(sc->vge_dev, "establishing link failed, "
2801			    "WOL may not work!");
2802	}
2803	/*
2804	 * No link, force MAC to have 100Mbps, full-duplex link.
2805	 * This is the last resort and may/may not work.
2806	 */
2807	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2808	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2809}
2810
2811static void
2812vge_setwol(struct vge_softc *sc)
2813{
2814	struct ifnet *ifp;
2815	uint16_t pmstat;
2816	uint8_t val;
2817
2818	VGE_LOCK_ASSERT(sc);
2819
2820	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2821		/* No PME capability, PHY power down. */
2822		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2823		    BMCR_PDOWN);
2824		vge_miipoll_stop(sc);
2825		return;
2826	}
2827
2828	ifp = sc->vge_ifp;
2829
2830	/* Clear WOL on pattern match. */
2831	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2832	/* Disable WOL on magic/unicast packet. */
2833	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2834	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2835	    VGE_WOLCFG_PMEOVR);
2836	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2837		vge_setlinkspeed(sc);
2838		val = 0;
2839		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2840			val |= VGE_WOLCR1_UCAST;
2841		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2842			val |= VGE_WOLCR1_MAGIC;
2843		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2844		val = 0;
2845		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2846			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2847		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2848		/* Disable MII auto-polling. */
2849		vge_miipoll_stop(sc);
2850	}
2851	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2852	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2853	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2854
2855	/* Clear WOL status on pattern match. */
2856	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2857	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2858
2859	val = CSR_READ_1(sc, VGE_PWRSTAT);
2860	val |= VGE_STICKHW_SWPTAG;
2861	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2862	/* Put hardware into sleep. */
2863	val = CSR_READ_1(sc, VGE_PWRSTAT);
2864	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2865	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2866	/* Request PME if WOL is requested. */
2867	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2868	    PCIR_POWER_STATUS, 2);
2869	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2870	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2871		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2872	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2873	    pmstat, 2);
2874}
2875
2876static void
2877vge_clrwol(struct vge_softc *sc)
2878{
2879	uint8_t val;
2880
2881	val = CSR_READ_1(sc, VGE_PWRSTAT);
2882	val &= ~VGE_STICKHW_SWPTAG;
2883	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2884	/* Disable WOL and clear power state indicator. */
2885	val = CSR_READ_1(sc, VGE_PWRSTAT);
2886	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2887	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2888
2889	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2890	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2891
2892	/* Clear WOL on pattern match. */
2893	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2894	/* Disable WOL on magic/unicast packet. */
2895	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2896	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2897	    VGE_WOLCFG_PMEOVR);
2898	/* Clear WOL status on pattern match. */
2899	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2900	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2901}
2902