if_vge.c revision 200522
1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 200522 2009-12-14 18:27:34Z yongari $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96
97#include <net/if.h>
98#include <net/if_arp.h>
99#include <net/ethernet.h>
100#include <net/if_dl.h>
101#include <net/if_media.h>
102#include <net/if_types.h>
103#include <net/if_vlan_var.h>
104
105#include <net/bpf.h>
106
107#include <machine/bus.h>
108#include <machine/resource.h>
109#include <sys/bus.h>
110#include <sys/rman.h>
111
112#include <dev/mii/mii.h>
113#include <dev/mii/miivar.h>
114
115#include <dev/pci/pcireg.h>
116#include <dev/pci/pcivar.h>
117
118MODULE_DEPEND(vge, pci, 1, 1, 1);
119MODULE_DEPEND(vge, ether, 1, 1, 1);
120MODULE_DEPEND(vge, miibus, 1, 1, 1);
121
122/* "device miibus" required.  See GENERIC if you get errors here. */
123#include "miibus_if.h"
124
125#include <dev/vge/if_vgereg.h>
126#include <dev/vge/if_vgevar.h>
127
128#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
129
130/*
131 * Various supported device vendors/types and their names.
132 */
133static struct vge_type vge_devs[] = {
134	{ VIA_VENDORID, VIA_DEVICEID_61XX,
135		"VIA Networking Gigabit Ethernet" },
136	{ 0, 0, NULL }
137};
138
139static int vge_probe		(device_t);
140static int vge_attach		(device_t);
141static int vge_detach		(device_t);
142
143static int vge_encap		(struct vge_softc *, struct mbuf *, int);
144
145static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
146static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
147				    bus_size_t, int);
148static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
149				    bus_size_t, int);
150static int vge_allocmem		(device_t, struct vge_softc *);
151static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
152static int vge_rx_list_init	(struct vge_softc *);
153static int vge_tx_list_init	(struct vge_softc *);
154#ifdef VGE_FIXUP_RX
155static __inline void vge_fixup_rx
156				(struct mbuf *);
157#endif
158static int vge_rxeof		(struct vge_softc *);
159static void vge_txeof		(struct vge_softc *);
160static void vge_intr		(void *);
161static void vge_tick		(void *);
162static void vge_start		(struct ifnet *);
163static void vge_start_locked	(struct ifnet *);
164static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
165static void vge_init		(void *);
166static void vge_init_locked	(struct vge_softc *);
167static void vge_stop		(struct vge_softc *);
168static void vge_watchdog	(void *);
169static int vge_suspend		(device_t);
170static int vge_resume		(device_t);
171static int vge_shutdown		(device_t);
172static int vge_ifmedia_upd	(struct ifnet *);
173static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
174
175#ifdef VGE_EEPROM
176static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
177#endif
178static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
179
180static void vge_miipoll_start	(struct vge_softc *);
181static void vge_miipoll_stop	(struct vge_softc *);
182static int vge_miibus_readreg	(device_t, int, int);
183static int vge_miibus_writereg	(device_t, int, int, int);
184static void vge_miibus_statchg	(device_t);
185
186static void vge_cam_clear	(struct vge_softc *);
187static int vge_cam_set		(struct vge_softc *, uint8_t *);
188static void vge_setmulti	(struct vge_softc *);
189static void vge_reset		(struct vge_softc *);
190
191#define VGE_PCI_LOIO             0x10
192#define VGE_PCI_LOMEM            0x14
193
194static device_method_t vge_methods[] = {
195	/* Device interface */
196	DEVMETHOD(device_probe,		vge_probe),
197	DEVMETHOD(device_attach,	vge_attach),
198	DEVMETHOD(device_detach,	vge_detach),
199	DEVMETHOD(device_suspend,	vge_suspend),
200	DEVMETHOD(device_resume,	vge_resume),
201	DEVMETHOD(device_shutdown,	vge_shutdown),
202
203	/* bus interface */
204	DEVMETHOD(bus_print_child,	bus_generic_print_child),
205	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
206
207	/* MII interface */
208	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
209	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
210	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
211
212	{ 0, 0 }
213};
214
215static driver_t vge_driver = {
216	"vge",
217	vge_methods,
218	sizeof(struct vge_softc)
219};
220
221static devclass_t vge_devclass;
222
223DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
224DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
225
226#ifdef VGE_EEPROM
227/*
228 * Read a word of data stored in the EEPROM at address 'addr.'
229 */
230static void
231vge_eeprom_getword(sc, addr, dest)
232	struct vge_softc	*sc;
233	int			addr;
234	u_int16_t		*dest;
235{
236	int			i;
237	u_int16_t		word = 0;
238
239	/*
240	 * Enter EEPROM embedded programming mode. In order to
241	 * access the EEPROM at all, we first have to set the
242	 * EELOAD bit in the CHIPCFG2 register.
243	 */
244	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
245	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
246
247	/* Select the address of the word we want to read */
248	CSR_WRITE_1(sc, VGE_EEADDR, addr);
249
250	/* Issue read command */
251	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
252
253	/* Wait for the done bit to be set. */
254	for (i = 0; i < VGE_TIMEOUT; i++) {
255		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
256			break;
257	}
258
259	if (i == VGE_TIMEOUT) {
260		device_printf(sc->vge_dev, "EEPROM read timed out\n");
261		*dest = 0;
262		return;
263	}
264
265	/* Read the result */
266	word = CSR_READ_2(sc, VGE_EERDDAT);
267
268	/* Turn off EEPROM access mode. */
269	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
270	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
271
272	*dest = word;
273
274	return;
275}
276#endif
277
278/*
279 * Read a sequence of words from the EEPROM.
280 */
281static void
282vge_read_eeprom(sc, dest, off, cnt, swap)
283	struct vge_softc	*sc;
284	caddr_t			dest;
285	int			off;
286	int			cnt;
287	int			swap;
288{
289	int			i;
290#ifdef VGE_EEPROM
291	u_int16_t		word = 0, *ptr;
292
293	for (i = 0; i < cnt; i++) {
294		vge_eeprom_getword(sc, off + i, &word);
295		ptr = (u_int16_t *)(dest + (i * 2));
296		if (swap)
297			*ptr = ntohs(word);
298		else
299			*ptr = word;
300	}
301#else
302	for (i = 0; i < ETHER_ADDR_LEN; i++)
303		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
304#endif
305}
306
307static void
308vge_miipoll_stop(sc)
309	struct vge_softc	*sc;
310{
311	int			i;
312
313	CSR_WRITE_1(sc, VGE_MIICMD, 0);
314
315	for (i = 0; i < VGE_TIMEOUT; i++) {
316		DELAY(1);
317		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
318			break;
319	}
320
321	if (i == VGE_TIMEOUT)
322		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
323
324	return;
325}
326
327static void
328vge_miipoll_start(sc)
329	struct vge_softc	*sc;
330{
331	int			i;
332
333	/* First, make sure we're idle. */
334
335	CSR_WRITE_1(sc, VGE_MIICMD, 0);
336	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
337
338	for (i = 0; i < VGE_TIMEOUT; i++) {
339		DELAY(1);
340		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
341			break;
342	}
343
344	if (i == VGE_TIMEOUT) {
345		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
346		return;
347	}
348
349	/* Now enable auto poll mode. */
350
351	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
352
353	/* And make sure it started. */
354
355	for (i = 0; i < VGE_TIMEOUT; i++) {
356		DELAY(1);
357		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
358			break;
359	}
360
361	if (i == VGE_TIMEOUT)
362		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
363
364	return;
365}
366
367static int
368vge_miibus_readreg(dev, phy, reg)
369	device_t		dev;
370	int			phy, reg;
371{
372	struct vge_softc	*sc;
373	int			i;
374	u_int16_t		rval = 0;
375
376	sc = device_get_softc(dev);
377
378	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
379		return(0);
380
381	vge_miipoll_stop(sc);
382
383	/* Specify the register we want to read. */
384	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
385
386	/* Issue read command. */
387	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
388
389	/* Wait for the read command bit to self-clear. */
390	for (i = 0; i < VGE_TIMEOUT; i++) {
391		DELAY(1);
392		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
393			break;
394	}
395
396	if (i == VGE_TIMEOUT)
397		device_printf(sc->vge_dev, "MII read timed out\n");
398	else
399		rval = CSR_READ_2(sc, VGE_MIIDATA);
400
401	vge_miipoll_start(sc);
402
403	return (rval);
404}
405
406static int
407vge_miibus_writereg(dev, phy, reg, data)
408	device_t		dev;
409	int			phy, reg, data;
410{
411	struct vge_softc	*sc;
412	int			i, rval = 0;
413
414	sc = device_get_softc(dev);
415
416	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
417		return(0);
418
419	vge_miipoll_stop(sc);
420
421	/* Specify the register we want to write. */
422	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
423
424	/* Specify the data we want to write. */
425	CSR_WRITE_2(sc, VGE_MIIDATA, data);
426
427	/* Issue write command. */
428	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
429
430	/* Wait for the write command bit to self-clear. */
431	for (i = 0; i < VGE_TIMEOUT; i++) {
432		DELAY(1);
433		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
434			break;
435	}
436
437	if (i == VGE_TIMEOUT) {
438		device_printf(sc->vge_dev, "MII write timed out\n");
439		rval = EIO;
440	}
441
442	vge_miipoll_start(sc);
443
444	return (rval);
445}
446
447static void
448vge_cam_clear(sc)
449	struct vge_softc	*sc;
450{
451	int			i;
452
453	/*
454	 * Turn off all the mask bits. This tells the chip
455	 * that none of the entries in the CAM filter are valid.
456	 * desired entries will be enabled as we fill the filter in.
457	 */
458
459	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
460	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
461	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
462	for (i = 0; i < 8; i++)
463		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
464
465	/* Clear the VLAN filter too. */
466
467	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
468	for (i = 0; i < 8; i++)
469		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
470
471	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
472	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
473	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
474
475	sc->vge_camidx = 0;
476
477	return;
478}
479
480static int
481vge_cam_set(sc, addr)
482	struct vge_softc	*sc;
483	uint8_t			*addr;
484{
485	int			i, error = 0;
486
487	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
488		return(ENOSPC);
489
490	/* Select the CAM data page. */
491	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
492	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
493
494	/* Set the filter entry we want to update and enable writing. */
495	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
496
497	/* Write the address to the CAM registers */
498	for (i = 0; i < ETHER_ADDR_LEN; i++)
499		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
500
501	/* Issue a write command. */
502	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
503
504	/* Wake for it to clear. */
505	for (i = 0; i < VGE_TIMEOUT; i++) {
506		DELAY(1);
507		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
508			break;
509	}
510
511	if (i == VGE_TIMEOUT) {
512		device_printf(sc->vge_dev, "setting CAM filter failed\n");
513		error = EIO;
514		goto fail;
515	}
516
517	/* Select the CAM mask page. */
518	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
519	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
520
521	/* Set the mask bit that enables this filter. */
522	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
523	    1<<(sc->vge_camidx & 7));
524
525	sc->vge_camidx++;
526
527fail:
528	/* Turn off access to CAM. */
529	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
530	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
531	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
532
533	return (error);
534}
535
536/*
537 * Program the multicast filter. We use the 64-entry CAM filter
538 * for perfect filtering. If there's more than 64 multicast addresses,
539 * we use the hash filter instead.
540 */
541static void
542vge_setmulti(sc)
543	struct vge_softc	*sc;
544{
545	struct ifnet		*ifp;
546	int			error = 0/*, h = 0*/;
547	struct ifmultiaddr	*ifma;
548	u_int32_t		h, hashes[2] = { 0, 0 };
549
550	ifp = sc->vge_ifp;
551
552	/* First, zot all the multicast entries. */
553	vge_cam_clear(sc);
554	CSR_WRITE_4(sc, VGE_MAR0, 0);
555	CSR_WRITE_4(sc, VGE_MAR1, 0);
556
557	/*
558	 * If the user wants allmulti or promisc mode, enable reception
559	 * of all multicast frames.
560	 */
561	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
562		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
563		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
564		return;
565	}
566
567	/* Now program new ones */
568	if_maddr_rlock(ifp);
569	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
570		if (ifma->ifma_addr->sa_family != AF_LINK)
571			continue;
572		error = vge_cam_set(sc,
573		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
574		if (error)
575			break;
576	}
577
578	/* If there were too many addresses, use the hash filter. */
579	if (error) {
580		vge_cam_clear(sc);
581
582		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
583			if (ifma->ifma_addr->sa_family != AF_LINK)
584				continue;
585			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
586			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
587			if (h < 32)
588				hashes[0] |= (1 << h);
589			else
590				hashes[1] |= (1 << (h - 32));
591		}
592
593		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
594		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
595	}
596	if_maddr_runlock(ifp);
597
598	return;
599}
600
601static void
602vge_reset(sc)
603	struct vge_softc		*sc;
604{
605	int			i;
606
607	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
608
609	for (i = 0; i < VGE_TIMEOUT; i++) {
610		DELAY(5);
611		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
612			break;
613	}
614
615	if (i == VGE_TIMEOUT) {
616		device_printf(sc->vge_dev, "soft reset timed out");
617		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
618		DELAY(2000);
619	}
620
621	DELAY(5000);
622
623	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
624
625	for (i = 0; i < VGE_TIMEOUT; i++) {
626		DELAY(5);
627		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
628			break;
629	}
630
631	if (i == VGE_TIMEOUT) {
632		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
633		return;
634	}
635
636	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
637
638	return;
639}
640
641/*
642 * Probe for a VIA gigabit chip. Check the PCI vendor and device
643 * IDs against our list and return a device name if we find a match.
644 */
645static int
646vge_probe(dev)
647	device_t		dev;
648{
649	struct vge_type		*t;
650
651	t = vge_devs;
652
653	while (t->vge_name != NULL) {
654		if ((pci_get_vendor(dev) == t->vge_vid) &&
655		    (pci_get_device(dev) == t->vge_did)) {
656			device_set_desc(dev, t->vge_name);
657			return (BUS_PROBE_DEFAULT);
658		}
659		t++;
660	}
661
662	return (ENXIO);
663}
664
665static void
666vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
667	void			*arg;
668	bus_dma_segment_t	*segs;
669	int			nseg;
670	bus_size_t		mapsize;
671	int			error;
672{
673
674	struct vge_dmaload_arg	*ctx;
675	struct vge_rx_desc	*d = NULL;
676
677	if (error)
678		return;
679
680	ctx = arg;
681
682	/* Signal error to caller if there's too many segments */
683	if (nseg > ctx->vge_maxsegs) {
684		ctx->vge_maxsegs = 0;
685		return;
686	}
687
688	/*
689	 * Map the segment array into descriptors.
690	 */
691
692	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
693
694	/* If this descriptor is still owned by the chip, bail. */
695
696	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
697		device_printf(ctx->sc->vge_dev,
698		    "tried to map busy descriptor\n");
699		ctx->vge_maxsegs = 0;
700		return;
701	}
702
703	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
704	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
705	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
706	d->vge_sts = 0;
707	d->vge_ctl = 0;
708
709	ctx->vge_maxsegs = 1;
710
711	return;
712}
713
714static void
715vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
716	void			*arg;
717	bus_dma_segment_t	*segs;
718	int			nseg;
719	bus_size_t		mapsize;
720	int			error;
721{
722	struct vge_dmaload_arg	*ctx;
723	struct vge_tx_desc	*d = NULL;
724	struct vge_tx_frag	*f;
725	int			i = 0;
726
727	if (error)
728		return;
729
730	ctx = arg;
731
732	/* Signal error to caller if there's too many segments */
733	if (nseg > ctx->vge_maxsegs) {
734		ctx->vge_maxsegs = 0;
735		return;
736	}
737
738	/* Map the segment array into descriptors. */
739
740	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
741
742	/* If this descriptor is still owned by the chip, bail. */
743
744	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
745		ctx->vge_maxsegs = 0;
746		return;
747	}
748
749	for (i = 0; i < nseg; i++) {
750		f = &d->vge_frag[i];
751		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
752		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
753		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
754	}
755
756	/* Argh. This chip does not autopad short frames */
757
758	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
759		f = &d->vge_frag[i];
760		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
761		    ctx->vge_m0->m_pkthdr.len));
762		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
763		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
764		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
765		i++;
766	}
767
768	/*
769	 * When telling the chip how many segments there are, we
770	 * must use nsegs + 1 instead of just nsegs. Darned if I
771	 * know why.
772	 */
773	i++;
774
775	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
776	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
777
778	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
779		d->vge_ctl |= VGE_TDCTL_JUMBO;
780
781	ctx->vge_maxsegs = nseg;
782
783	return;
784}
785
786/*
787 * Map a single buffer address.
788 */
789
790static void
791vge_dma_map_addr(arg, segs, nseg, error)
792	void			*arg;
793	bus_dma_segment_t	*segs;
794	int			nseg;
795	int			error;
796{
797	bus_addr_t		*addr;
798
799	if (error)
800		return;
801
802	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
803	addr = arg;
804	*addr = segs->ds_addr;
805
806	return;
807}
808
809static int
810vge_allocmem(dev, sc)
811	device_t		dev;
812	struct vge_softc		*sc;
813{
814	int			error;
815	int			nseg;
816	int			i;
817
818	/*
819	 * Allocate map for RX mbufs.
820	 */
821	nseg = 32;
822	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
823	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
824	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
825	    NULL, NULL, &sc->vge_ldata.vge_mtag);
826	if (error) {
827		device_printf(dev, "could not allocate dma tag\n");
828		return (ENOMEM);
829	}
830
831	/*
832	 * Allocate map for TX descriptor list.
833	 */
834	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
835	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
836	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
837	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
838	if (error) {
839		device_printf(dev, "could not allocate dma tag\n");
840		return (ENOMEM);
841	}
842
843	/* Allocate DMA'able memory for the TX ring */
844
845	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
846	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
847	    &sc->vge_ldata.vge_tx_list_map);
848	if (error)
849		return (ENOMEM);
850
851	/* Load the map for the TX ring. */
852
853	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
854	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
855	     VGE_TX_LIST_SZ, vge_dma_map_addr,
856	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
857
858	/* Create DMA maps for TX buffers */
859
860	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
861		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
862			    &sc->vge_ldata.vge_tx_dmamap[i]);
863		if (error) {
864			device_printf(dev, "can't create DMA map for TX\n");
865			return (ENOMEM);
866		}
867	}
868
869	/*
870	 * Allocate map for RX descriptor list.
871	 */
872	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
873	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
874	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
875	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
876	if (error) {
877		device_printf(dev, "could not allocate dma tag\n");
878		return (ENOMEM);
879	}
880
881	/* Allocate DMA'able memory for the RX ring */
882
883	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
884	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
885	    &sc->vge_ldata.vge_rx_list_map);
886	if (error)
887		return (ENOMEM);
888
889	/* Load the map for the RX ring. */
890
891	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
892	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
893	     VGE_TX_LIST_SZ, vge_dma_map_addr,
894	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
895
896	/* Create DMA maps for RX buffers */
897
898	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
899		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
900			    &sc->vge_ldata.vge_rx_dmamap[i]);
901		if (error) {
902			device_printf(dev, "can't create DMA map for RX\n");
903			return (ENOMEM);
904		}
905	}
906
907	return (0);
908}
909
910/*
911 * Attach the interface. Allocate softc structures, do ifmedia
912 * setup and ethernet/BPF attach.
913 */
914static int
915vge_attach(dev)
916	device_t		dev;
917{
918	u_char			eaddr[ETHER_ADDR_LEN];
919	struct vge_softc	*sc;
920	struct ifnet		*ifp;
921	int			error = 0, rid;
922
923	sc = device_get_softc(dev);
924	sc->vge_dev = dev;
925
926	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
927	    MTX_DEF);
928	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
929
930	/*
931	 * Map control/status registers.
932	 */
933	pci_enable_busmaster(dev);
934
935	rid = VGE_PCI_LOMEM;
936	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
937	    RF_ACTIVE);
938
939	if (sc->vge_res == NULL) {
940		device_printf(dev, "couldn't map ports/memory\n");
941		error = ENXIO;
942		goto fail;
943	}
944
945	/* Allocate interrupt */
946	rid = 0;
947	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
948	    RF_SHAREABLE | RF_ACTIVE);
949
950	if (sc->vge_irq == NULL) {
951		device_printf(dev, "couldn't map interrupt\n");
952		error = ENXIO;
953		goto fail;
954	}
955
956	/* Reset the adapter. */
957	vge_reset(sc);
958
959	/*
960	 * Get station address from the EEPROM.
961	 */
962	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
963
964	/*
965	 * Allocate the parent bus DMA tag appropriate for PCI.
966	 */
967#define VGE_NSEG_NEW 32
968	error = bus_dma_tag_create(NULL,	/* parent */
969			1, 0,			/* alignment, boundary */
970			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
971			BUS_SPACE_MAXADDR,	/* highaddr */
972			NULL, NULL,		/* filter, filterarg */
973			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
974			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
975			BUS_DMA_ALLOCNOW,	/* flags */
976			NULL, NULL,		/* lockfunc, lockarg */
977			&sc->vge_parent_tag);
978	if (error)
979		goto fail;
980
981	error = vge_allocmem(dev, sc);
982
983	if (error)
984		goto fail;
985
986	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
987	if (ifp == NULL) {
988		device_printf(dev, "can not if_alloc()\n");
989		error = ENOSPC;
990		goto fail;
991	}
992
993	/* Do MII setup */
994	if (mii_phy_probe(dev, &sc->vge_miibus,
995	    vge_ifmedia_upd, vge_ifmedia_sts)) {
996		device_printf(dev, "MII without any phy!\n");
997		error = ENXIO;
998		goto fail;
999	}
1000
1001	ifp->if_softc = sc;
1002	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1003	ifp->if_mtu = ETHERMTU;
1004	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1005	ifp->if_ioctl = vge_ioctl;
1006	ifp->if_capabilities = IFCAP_VLAN_MTU;
1007	ifp->if_start = vge_start;
1008	ifp->if_hwassist = VGE_CSUM_FEATURES;
1009	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1010	ifp->if_capenable = ifp->if_capabilities;
1011#ifdef DEVICE_POLLING
1012	ifp->if_capabilities |= IFCAP_POLLING;
1013#endif
1014	ifp->if_init = vge_init;
1015	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
1016	ifp->if_snd.ifq_drv_maxlen = VGE_IFQ_MAXLEN;
1017	IFQ_SET_READY(&ifp->if_snd);
1018
1019	/*
1020	 * Call MI attach routine.
1021	 */
1022	ether_ifattach(ifp, eaddr);
1023
1024	/* Hook interrupt last to avoid having to lock softc */
1025	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1026	    NULL, vge_intr, sc, &sc->vge_intrhand);
1027
1028	if (error) {
1029		device_printf(dev, "couldn't set up irq\n");
1030		ether_ifdetach(ifp);
1031		goto fail;
1032	}
1033
1034fail:
1035	if (error)
1036		vge_detach(dev);
1037
1038	return (error);
1039}
1040
1041/*
1042 * Shutdown hardware and free up resources. This can be called any
1043 * time after the mutex has been initialized. It is called in both
1044 * the error case in attach and the normal detach case so it needs
1045 * to be careful about only freeing resources that have actually been
1046 * allocated.
1047 */
1048static int
1049vge_detach(dev)
1050	device_t		dev;
1051{
1052	struct vge_softc		*sc;
1053	struct ifnet		*ifp;
1054	int			i;
1055
1056	sc = device_get_softc(dev);
1057	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1058	ifp = sc->vge_ifp;
1059
1060#ifdef DEVICE_POLLING
1061	if (ifp->if_capenable & IFCAP_POLLING)
1062		ether_poll_deregister(ifp);
1063#endif
1064
1065	/* These should only be active if attach succeeded */
1066	if (device_is_attached(dev)) {
1067		ether_ifdetach(ifp);
1068		VGE_LOCK(sc);
1069		vge_stop(sc);
1070		VGE_UNLOCK(sc);
1071		callout_drain(&sc->vge_watchdog);
1072	}
1073	if (sc->vge_miibus)
1074		device_delete_child(dev, sc->vge_miibus);
1075	bus_generic_detach(dev);
1076
1077	if (sc->vge_intrhand)
1078		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1079	if (sc->vge_irq)
1080		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1081	if (sc->vge_res)
1082		bus_release_resource(dev, SYS_RES_MEMORY,
1083		    VGE_PCI_LOMEM, sc->vge_res);
1084	if (ifp)
1085		if_free(ifp);
1086
1087	/* Unload and free the RX DMA ring memory and map */
1088
1089	if (sc->vge_ldata.vge_rx_list_tag) {
1090		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1091		    sc->vge_ldata.vge_rx_list_map);
1092		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1093		    sc->vge_ldata.vge_rx_list,
1094		    sc->vge_ldata.vge_rx_list_map);
1095		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1096	}
1097
1098	/* Unload and free the TX DMA ring memory and map */
1099
1100	if (sc->vge_ldata.vge_tx_list_tag) {
1101		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1102		    sc->vge_ldata.vge_tx_list_map);
1103		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1104		    sc->vge_ldata.vge_tx_list,
1105		    sc->vge_ldata.vge_tx_list_map);
1106		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1107	}
1108
1109	/* Destroy all the RX and TX buffer maps */
1110
1111	if (sc->vge_ldata.vge_mtag) {
1112		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1113			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1114			    sc->vge_ldata.vge_tx_dmamap[i]);
1115		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1116			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1117			    sc->vge_ldata.vge_rx_dmamap[i]);
1118		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1119	}
1120
1121	if (sc->vge_parent_tag)
1122		bus_dma_tag_destroy(sc->vge_parent_tag);
1123
1124	mtx_destroy(&sc->vge_mtx);
1125
1126	return (0);
1127}
1128
1129static int
1130vge_newbuf(sc, idx, m)
1131	struct vge_softc	*sc;
1132	int			idx;
1133	struct mbuf		*m;
1134{
1135	struct vge_dmaload_arg	arg;
1136	struct mbuf		*n = NULL;
1137	int			i, error;
1138
1139	if (m == NULL) {
1140		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1141		if (n == NULL)
1142			return (ENOBUFS);
1143		m = n;
1144	} else
1145		m->m_data = m->m_ext.ext_buf;
1146
1147
1148#ifdef VGE_FIXUP_RX
1149	/*
1150	 * This is part of an evil trick to deal with non-x86 platforms.
1151	 * The VIA chip requires RX buffers to be aligned on 32-bit
1152	 * boundaries, but that will hose non-x86 machines. To get around
1153	 * this, we leave some empty space at the start of each buffer
1154	 * and for non-x86 hosts, we copy the buffer back two bytes
1155	 * to achieve word alignment. This is slightly more efficient
1156	 * than allocating a new buffer, copying the contents, and
1157	 * discarding the old buffer.
1158	 */
1159	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1160	m_adj(m, VGE_ETHER_ALIGN);
1161#else
1162	m->m_len = m->m_pkthdr.len = MCLBYTES;
1163#endif
1164
1165	arg.sc = sc;
1166	arg.vge_idx = idx;
1167	arg.vge_maxsegs = 1;
1168	arg.vge_flags = 0;
1169
1170	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1171	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1172	    &arg, BUS_DMA_NOWAIT);
1173	if (error || arg.vge_maxsegs != 1) {
1174		if (n != NULL)
1175			m_freem(n);
1176		return (ENOMEM);
1177	}
1178
1179	/*
1180	 * Note: the manual fails to document the fact that for
1181	 * proper operation, the driver needs to replenish the RX
1182	 * DMA ring 4 descriptors at a time (rather than one at a
1183	 * time, like most chips). We can allocate the new buffers
1184	 * but we should not set the OWN bits until we're ready
1185	 * to hand back 4 of them in one shot.
1186	 */
1187
1188#define VGE_RXCHUNK 4
1189	sc->vge_rx_consumed++;
1190	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1191		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1192			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1193			    htole32(VGE_RDSTS_OWN);
1194		sc->vge_rx_consumed = 0;
1195	}
1196
1197	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1198
1199	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1200	    sc->vge_ldata.vge_rx_dmamap[idx],
1201	    BUS_DMASYNC_PREREAD);
1202
1203	return (0);
1204}
1205
1206static int
1207vge_tx_list_init(sc)
1208	struct vge_softc		*sc;
1209{
1210	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1211	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1212	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1213
1214	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1215	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1216	sc->vge_ldata.vge_tx_prodidx = 0;
1217	sc->vge_ldata.vge_tx_considx = 0;
1218	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1219
1220	return (0);
1221}
1222
1223static int
1224vge_rx_list_init(sc)
1225	struct vge_softc		*sc;
1226{
1227	int			i;
1228
1229	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1230	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1231	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1232
1233	sc->vge_rx_consumed = 0;
1234
1235	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1236		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1237			return (ENOBUFS);
1238	}
1239
1240	/* Flush the RX descriptors */
1241
1242	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1243	    sc->vge_ldata.vge_rx_list_map,
1244	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1245
1246	sc->vge_ldata.vge_rx_prodidx = 0;
1247	sc->vge_rx_consumed = 0;
1248	sc->vge_head = sc->vge_tail = NULL;
1249
1250	return (0);
1251}
1252
1253#ifdef VGE_FIXUP_RX
1254static __inline void
1255vge_fixup_rx(m)
1256	struct mbuf		*m;
1257{
1258	int			i;
1259	uint16_t		*src, *dst;
1260
1261	src = mtod(m, uint16_t *);
1262	dst = src - 1;
1263
1264	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1265		*dst++ = *src++;
1266
1267	m->m_data -= ETHER_ALIGN;
1268
1269	return;
1270}
1271#endif
1272
1273/*
1274 * RX handler. We support the reception of jumbo frames that have
1275 * been fragmented across multiple 2K mbuf cluster buffers.
1276 */
1277static int
1278vge_rxeof(sc)
1279	struct vge_softc	*sc;
1280{
1281	struct mbuf		*m;
1282	struct ifnet		*ifp;
1283	int			i, total_len;
1284	int			lim = 0;
1285	struct vge_rx_desc	*cur_rx;
1286	u_int32_t		rxstat, rxctl;
1287
1288	VGE_LOCK_ASSERT(sc);
1289	ifp = sc->vge_ifp;
1290	i = sc->vge_ldata.vge_rx_prodidx;
1291
1292	/* Invalidate the descriptor memory */
1293
1294	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1295	    sc->vge_ldata.vge_rx_list_map,
1296	    BUS_DMASYNC_POSTREAD);
1297
1298	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1299
1300#ifdef DEVICE_POLLING
1301		if (ifp->if_capenable & IFCAP_POLLING) {
1302			if (sc->rxcycles <= 0)
1303				break;
1304			sc->rxcycles--;
1305		}
1306#endif
1307
1308		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1309		m = sc->vge_ldata.vge_rx_mbuf[i];
1310		total_len = VGE_RXBYTES(cur_rx);
1311		rxstat = le32toh(cur_rx->vge_sts);
1312		rxctl = le32toh(cur_rx->vge_ctl);
1313
1314		/* Invalidate the RX mbuf and unload its map */
1315
1316		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1317		    sc->vge_ldata.vge_rx_dmamap[i],
1318		    BUS_DMASYNC_POSTWRITE);
1319		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1320		    sc->vge_ldata.vge_rx_dmamap[i]);
1321
1322		/*
1323		 * If the 'start of frame' bit is set, this indicates
1324		 * either the first fragment in a multi-fragment receive,
1325		 * or an intermediate fragment. Either way, we want to
1326		 * accumulate the buffers.
1327		 */
1328		if (rxstat & VGE_RXPKT_SOF) {
1329			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1330			if (sc->vge_head == NULL)
1331				sc->vge_head = sc->vge_tail = m;
1332			else {
1333				m->m_flags &= ~M_PKTHDR;
1334				sc->vge_tail->m_next = m;
1335				sc->vge_tail = m;
1336			}
1337			vge_newbuf(sc, i, NULL);
1338			VGE_RX_DESC_INC(i);
1339			continue;
1340		}
1341
1342		/*
1343		 * Bad/error frames will have the RXOK bit cleared.
1344		 * However, there's one error case we want to allow:
1345		 * if a VLAN tagged frame arrives and the chip can't
1346		 * match it against the CAM filter, it considers this
1347		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1348		 * We don't want to drop the frame though: our VLAN
1349		 * filtering is done in software.
1350		 */
1351		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1352		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1353			ifp->if_ierrors++;
1354			/*
1355			 * If this is part of a multi-fragment packet,
1356			 * discard all the pieces.
1357			 */
1358			if (sc->vge_head != NULL) {
1359				m_freem(sc->vge_head);
1360				sc->vge_head = sc->vge_tail = NULL;
1361			}
1362			vge_newbuf(sc, i, m);
1363			VGE_RX_DESC_INC(i);
1364			continue;
1365		}
1366
1367		/*
1368		 * If allocating a replacement mbuf fails,
1369		 * reload the current one.
1370		 */
1371
1372		if (vge_newbuf(sc, i, NULL)) {
1373			ifp->if_ierrors++;
1374			if (sc->vge_head != NULL) {
1375				m_freem(sc->vge_head);
1376				sc->vge_head = sc->vge_tail = NULL;
1377			}
1378			vge_newbuf(sc, i, m);
1379			VGE_RX_DESC_INC(i);
1380			continue;
1381		}
1382
1383		VGE_RX_DESC_INC(i);
1384
1385		if (sc->vge_head != NULL) {
1386			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1387			/*
1388			 * Special case: if there's 4 bytes or less
1389			 * in this buffer, the mbuf can be discarded:
1390			 * the last 4 bytes is the CRC, which we don't
1391			 * care about anyway.
1392			 */
1393			if (m->m_len <= ETHER_CRC_LEN) {
1394				sc->vge_tail->m_len -=
1395				    (ETHER_CRC_LEN - m->m_len);
1396				m_freem(m);
1397			} else {
1398				m->m_len -= ETHER_CRC_LEN;
1399				m->m_flags &= ~M_PKTHDR;
1400				sc->vge_tail->m_next = m;
1401			}
1402			m = sc->vge_head;
1403			sc->vge_head = sc->vge_tail = NULL;
1404			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1405		} else
1406			m->m_pkthdr.len = m->m_len =
1407			    (total_len - ETHER_CRC_LEN);
1408
1409#ifdef VGE_FIXUP_RX
1410		vge_fixup_rx(m);
1411#endif
1412		ifp->if_ipackets++;
1413		m->m_pkthdr.rcvif = ifp;
1414
1415		/* Do RX checksumming if enabled */
1416		if (ifp->if_capenable & IFCAP_RXCSUM) {
1417
1418			/* Check IP header checksum */
1419			if (rxctl & VGE_RDCTL_IPPKT)
1420				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1421			if (rxctl & VGE_RDCTL_IPCSUMOK)
1422				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1423
1424			/* Check TCP/UDP checksum */
1425			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1426			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1427				m->m_pkthdr.csum_flags |=
1428				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1429				m->m_pkthdr.csum_data = 0xffff;
1430			}
1431		}
1432
1433		if (rxstat & VGE_RDSTS_VTAG) {
1434			/*
1435			 * The 32-bit rxctl register is stored in little-endian.
1436			 * However, the 16-bit vlan tag is stored in big-endian,
1437			 * so we have to byte swap it.
1438			 */
1439			m->m_pkthdr.ether_vtag =
1440			    bswap16(rxctl & VGE_RDCTL_VLANID);
1441			m->m_flags |= M_VLANTAG;
1442		}
1443
1444		VGE_UNLOCK(sc);
1445		(*ifp->if_input)(ifp, m);
1446		VGE_LOCK(sc);
1447
1448		lim++;
1449		if (lim == VGE_RX_DESC_CNT)
1450			break;
1451
1452	}
1453
1454	/* Flush the RX DMA ring */
1455
1456	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1457	    sc->vge_ldata.vge_rx_list_map,
1458	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1459
1460	sc->vge_ldata.vge_rx_prodidx = i;
1461	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1462
1463
1464	return (lim);
1465}
1466
1467static void
1468vge_txeof(sc)
1469	struct vge_softc		*sc;
1470{
1471	struct ifnet		*ifp;
1472	u_int32_t		txstat;
1473	int			idx;
1474
1475	ifp = sc->vge_ifp;
1476	idx = sc->vge_ldata.vge_tx_considx;
1477
1478	/* Invalidate the TX descriptor list */
1479
1480	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1481	    sc->vge_ldata.vge_tx_list_map,
1482	    BUS_DMASYNC_POSTREAD);
1483
1484	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1485
1486		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1487		if (txstat & VGE_TDSTS_OWN)
1488			break;
1489
1490		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1491		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1492		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1493		    sc->vge_ldata.vge_tx_dmamap[idx]);
1494		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1495			ifp->if_collisions++;
1496		if (txstat & VGE_TDSTS_TXERR)
1497			ifp->if_oerrors++;
1498		else
1499			ifp->if_opackets++;
1500
1501		sc->vge_ldata.vge_tx_free++;
1502		VGE_TX_DESC_INC(idx);
1503	}
1504
1505	/* No changes made to the TX ring, so no flush needed */
1506
1507	if (idx != sc->vge_ldata.vge_tx_considx) {
1508		sc->vge_ldata.vge_tx_considx = idx;
1509		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1510		sc->vge_timer = 0;
1511	}
1512
1513	/*
1514	 * If not all descriptors have been released reaped yet,
1515	 * reload the timer so that we will eventually get another
1516	 * interrupt that will cause us to re-enter this routine.
1517	 * This is done in case the transmitter has gone idle.
1518	 */
1519	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1520		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1521	}
1522
1523	return;
1524}
1525
1526static void
1527vge_tick(xsc)
1528	void			*xsc;
1529{
1530	struct vge_softc	*sc;
1531	struct ifnet		*ifp;
1532	struct mii_data		*mii;
1533
1534	sc = xsc;
1535	ifp = sc->vge_ifp;
1536	VGE_LOCK_ASSERT(sc);
1537	mii = device_get_softc(sc->vge_miibus);
1538
1539	mii_tick(mii);
1540	if (sc->vge_link) {
1541		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1542			sc->vge_link = 0;
1543			if_link_state_change(sc->vge_ifp,
1544			    LINK_STATE_DOWN);
1545		}
1546	} else {
1547		if (mii->mii_media_status & IFM_ACTIVE &&
1548		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1549			sc->vge_link = 1;
1550			if_link_state_change(sc->vge_ifp,
1551			    LINK_STATE_UP);
1552			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1553				vge_start_locked(ifp);
1554		}
1555	}
1556
1557	return;
1558}
1559
1560#ifdef DEVICE_POLLING
1561static int
1562vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1563{
1564	struct vge_softc *sc = ifp->if_softc;
1565	int rx_npkts = 0;
1566
1567	VGE_LOCK(sc);
1568	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1569		goto done;
1570
1571	sc->rxcycles = count;
1572	rx_npkts = vge_rxeof(sc);
1573	vge_txeof(sc);
1574
1575	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1576		vge_start_locked(ifp);
1577
1578	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1579		u_int32_t       status;
1580		status = CSR_READ_4(sc, VGE_ISR);
1581		if (status == 0xFFFFFFFF)
1582			goto done;
1583		if (status)
1584			CSR_WRITE_4(sc, VGE_ISR, status);
1585
1586		/*
1587		 * XXX check behaviour on receiver stalls.
1588		 */
1589
1590		if (status & VGE_ISR_TXDMA_STALL ||
1591		    status & VGE_ISR_RXDMA_STALL)
1592			vge_init_locked(sc);
1593
1594		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1595			vge_rxeof(sc);
1596			ifp->if_ierrors++;
1597			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1598			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1599		}
1600	}
1601done:
1602	VGE_UNLOCK(sc);
1603	return (rx_npkts);
1604}
1605#endif /* DEVICE_POLLING */
1606
1607static void
1608vge_intr(arg)
1609	void			*arg;
1610{
1611	struct vge_softc	*sc;
1612	struct ifnet		*ifp;
1613	u_int32_t		status;
1614
1615	sc = arg;
1616
1617	if (sc->suspended) {
1618		return;
1619	}
1620
1621	VGE_LOCK(sc);
1622	ifp = sc->vge_ifp;
1623
1624	if (!(ifp->if_flags & IFF_UP)) {
1625		VGE_UNLOCK(sc);
1626		return;
1627	}
1628
1629#ifdef DEVICE_POLLING
1630	if  (ifp->if_capenable & IFCAP_POLLING) {
1631		VGE_UNLOCK(sc);
1632		return;
1633	}
1634#endif
1635
1636	/* Disable interrupts */
1637	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1638
1639	for (;;) {
1640
1641		status = CSR_READ_4(sc, VGE_ISR);
1642		/* If the card has gone away the read returns 0xffff. */
1643		if (status == 0xFFFFFFFF)
1644			break;
1645
1646		if (status)
1647			CSR_WRITE_4(sc, VGE_ISR, status);
1648
1649		if ((status & VGE_INTRS) == 0)
1650			break;
1651
1652		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1653			vge_rxeof(sc);
1654
1655		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1656			vge_rxeof(sc);
1657			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1658			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1659		}
1660
1661		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1662			vge_txeof(sc);
1663
1664		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1665			vge_init_locked(sc);
1666
1667		if (status & VGE_ISR_LINKSTS)
1668			vge_tick(sc);
1669	}
1670
1671	/* Re-enable interrupts */
1672	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1673
1674	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1675		vge_start_locked(ifp);
1676
1677	VGE_UNLOCK(sc);
1678
1679	return;
1680}
1681
1682static int
1683vge_encap(sc, m_head, idx)
1684	struct vge_softc	*sc;
1685	struct mbuf		*m_head;
1686	int			idx;
1687{
1688	struct mbuf		*m_new = NULL;
1689	struct vge_dmaload_arg	arg;
1690	bus_dmamap_t		map;
1691	int			error;
1692
1693	if (sc->vge_ldata.vge_tx_free <= 2)
1694		return (EFBIG);
1695
1696	arg.vge_flags = 0;
1697
1698	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1699		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1700	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1701		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1702	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1703		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1704
1705	arg.sc = sc;
1706	arg.vge_idx = idx;
1707	arg.vge_m0 = m_head;
1708	arg.vge_maxsegs = VGE_TX_FRAGS;
1709
1710	map = sc->vge_ldata.vge_tx_dmamap[idx];
1711	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1712	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1713
1714	if (error && error != EFBIG) {
1715		if_printf(sc->vge_ifp, "can't map mbuf (error %d)\n", error);
1716		return (ENOBUFS);
1717	}
1718
1719	/* Too many segments to map, coalesce into a single mbuf */
1720
1721	if (error || arg.vge_maxsegs == 0) {
1722		m_new = m_defrag(m_head, M_DONTWAIT);
1723		if (m_new == NULL)
1724			return (1);
1725		else
1726			m_head = m_new;
1727
1728		arg.sc = sc;
1729		arg.vge_m0 = m_head;
1730		arg.vge_idx = idx;
1731		arg.vge_maxsegs = 1;
1732
1733		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1734		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1735		if (error) {
1736			if_printf(sc->vge_ifp, "can't map mbuf (error %d)\n",
1737			    error);
1738			return (EFBIG);
1739		}
1740	}
1741
1742	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1743	sc->vge_ldata.vge_tx_free--;
1744
1745	/*
1746	 * Set up hardware VLAN tagging.
1747	 */
1748
1749	if (m_head->m_flags & M_VLANTAG)
1750		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1751		    htole32(m_head->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG);
1752
1753	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1754
1755	return (0);
1756}
1757
1758/*
1759 * Main transmit routine.
1760 */
1761
1762static void
1763vge_start(ifp)
1764	struct ifnet		*ifp;
1765{
1766	struct vge_softc	*sc;
1767
1768	sc = ifp->if_softc;
1769	VGE_LOCK(sc);
1770	vge_start_locked(ifp);
1771	VGE_UNLOCK(sc);
1772}
1773
1774static void
1775vge_start_locked(ifp)
1776	struct ifnet		*ifp;
1777{
1778	struct vge_softc	*sc;
1779	struct mbuf		*m_head = NULL;
1780	int			idx, pidx = 0;
1781
1782	sc = ifp->if_softc;
1783	VGE_LOCK_ASSERT(sc);
1784
1785	if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE)
1786		return;
1787
1788	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1789		return;
1790
1791	idx = sc->vge_ldata.vge_tx_prodidx;
1792
1793	pidx = idx - 1;
1794	if (pidx < 0)
1795		pidx = VGE_TX_DESC_CNT - 1;
1796
1797
1798	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1799		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1800		if (m_head == NULL)
1801			break;
1802
1803		if (vge_encap(sc, m_head, idx)) {
1804			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1805			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1806			break;
1807		}
1808
1809		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1810		    htole16(VGE_TXDESC_Q);
1811
1812		pidx = idx;
1813		VGE_TX_DESC_INC(idx);
1814
1815		/*
1816		 * If there's a BPF listener, bounce a copy of this frame
1817		 * to him.
1818		 */
1819		ETHER_BPF_MTAP(ifp, m_head);
1820	}
1821
1822	if (idx == sc->vge_ldata.vge_tx_prodidx)
1823		return;
1824
1825	/* Flush the TX descriptors */
1826
1827	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1828	    sc->vge_ldata.vge_tx_list_map,
1829	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1830
1831	/* Issue a transmit command. */
1832	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1833
1834	sc->vge_ldata.vge_tx_prodidx = idx;
1835
1836	/*
1837	 * Use the countdown timer for interrupt moderation.
1838	 * 'TX done' interrupts are disabled. Instead, we reset the
1839	 * countdown timer, which will begin counting until it hits
1840	 * the value in the SSTIMER register, and then trigger an
1841	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1842	 * the timer count is reloaded. Only when the transmitter
1843	 * is idle will the timer hit 0 and an interrupt fire.
1844	 */
1845	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1846
1847	/*
1848	 * Set a timeout in case the chip goes out to lunch.
1849	 */
1850	sc->vge_timer = 5;
1851
1852	return;
1853}
1854
1855static void
1856vge_init(xsc)
1857	void			*xsc;
1858{
1859	struct vge_softc	*sc = xsc;
1860
1861	VGE_LOCK(sc);
1862	vge_init_locked(sc);
1863	VGE_UNLOCK(sc);
1864}
1865
1866static void
1867vge_init_locked(struct vge_softc *sc)
1868{
1869	struct ifnet		*ifp = sc->vge_ifp;
1870	struct mii_data		*mii;
1871	int			i;
1872
1873	VGE_LOCK_ASSERT(sc);
1874	mii = device_get_softc(sc->vge_miibus);
1875
1876	/*
1877	 * Cancel pending I/O and free all RX/TX buffers.
1878	 */
1879	vge_stop(sc);
1880	vge_reset(sc);
1881
1882	/*
1883	 * Initialize the RX and TX descriptors and mbufs.
1884	 */
1885
1886	vge_rx_list_init(sc);
1887	vge_tx_list_init(sc);
1888
1889	/* Set our station address */
1890	for (i = 0; i < ETHER_ADDR_LEN; i++)
1891		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
1892
1893	/*
1894	 * Set receive FIFO threshold. Also allow transmission and
1895	 * reception of VLAN tagged frames.
1896	 */
1897	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1898	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1899
1900	/* Set DMA burst length */
1901	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1902	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1903
1904	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1905
1906	/* Set collision backoff algorithm */
1907	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1908	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1909	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1910
1911	/* Disable LPSEL field in priority resolution */
1912	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1913
1914	/*
1915	 * Load the addresses of the DMA queues into the chip.
1916	 * Note that we only use one transmit queue.
1917	 */
1918
1919	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1920	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1921	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1922
1923	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1924	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1925	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1926	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1927
1928	/* Enable and wake up the RX descriptor queue */
1929	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1930	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1931
1932	/* Enable the TX descriptor queue */
1933	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1934
1935	/* Set up the receive filter -- allow large frames for VLANs. */
1936	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1937
1938	/* If we want promiscuous mode, set the allframes bit. */
1939	if (ifp->if_flags & IFF_PROMISC) {
1940		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1941	}
1942
1943	/* Set capture broadcast bit to capture broadcast frames. */
1944	if (ifp->if_flags & IFF_BROADCAST) {
1945		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1946	}
1947
1948	/* Set multicast bit to capture multicast frames. */
1949	if (ifp->if_flags & IFF_MULTICAST) {
1950		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1951	}
1952
1953	/* Init the cam filter. */
1954	vge_cam_clear(sc);
1955
1956	/* Init the multicast filter. */
1957	vge_setmulti(sc);
1958
1959	/* Enable flow control */
1960
1961	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1962
1963	/* Enable jumbo frame reception (if desired) */
1964
1965	/* Start the MAC. */
1966	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1967	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1968	CSR_WRITE_1(sc, VGE_CRS0,
1969	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1970
1971	/*
1972	 * Configure one-shot timer for microsecond
1973	 * resolution and load it for 500 usecs.
1974	 */
1975	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1976	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1977
1978	/*
1979	 * Configure interrupt moderation for receive. Enable
1980	 * the holdoff counter and load it, and set the RX
1981	 * suppression count to the number of descriptors we
1982	 * want to allow before triggering an interrupt.
1983	 * The holdoff timer is in units of 20 usecs.
1984	 */
1985
1986#ifdef notyet
1987	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1988	/* Select the interrupt holdoff timer page. */
1989	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1990	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1991	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1992
1993	/* Enable use of the holdoff timer. */
1994	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1995	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1996
1997	/* Select the RX suppression threshold page. */
1998	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1999	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2000	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2001
2002	/* Restore the page select bits. */
2003	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2004	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2005#endif
2006
2007#ifdef DEVICE_POLLING
2008	/*
2009	 * Disable interrupts if we are polling.
2010	 */
2011	if (ifp->if_capenable & IFCAP_POLLING) {
2012		CSR_WRITE_4(sc, VGE_IMR, 0);
2013		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2014	} else	/* otherwise ... */
2015#endif
2016	{
2017	/*
2018	 * Enable interrupts.
2019	 */
2020		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2021		CSR_WRITE_4(sc, VGE_ISR, 0);
2022		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2023	}
2024
2025	mii_mediachg(mii);
2026
2027	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2028	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2029	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2030
2031	sc->vge_if_flags = 0;
2032	sc->vge_link = 0;
2033
2034	return;
2035}
2036
2037/*
2038 * Set media options.
2039 */
2040static int
2041vge_ifmedia_upd(ifp)
2042	struct ifnet		*ifp;
2043{
2044	struct vge_softc	*sc;
2045	struct mii_data		*mii;
2046
2047	sc = ifp->if_softc;
2048	VGE_LOCK(sc);
2049	mii = device_get_softc(sc->vge_miibus);
2050	mii_mediachg(mii);
2051	VGE_UNLOCK(sc);
2052
2053	return (0);
2054}
2055
2056/*
2057 * Report current media status.
2058 */
2059static void
2060vge_ifmedia_sts(ifp, ifmr)
2061	struct ifnet		*ifp;
2062	struct ifmediareq	*ifmr;
2063{
2064	struct vge_softc	*sc;
2065	struct mii_data		*mii;
2066
2067	sc = ifp->if_softc;
2068	mii = device_get_softc(sc->vge_miibus);
2069
2070	VGE_LOCK(sc);
2071	mii_pollstat(mii);
2072	VGE_UNLOCK(sc);
2073	ifmr->ifm_active = mii->mii_media_active;
2074	ifmr->ifm_status = mii->mii_media_status;
2075
2076	return;
2077}
2078
2079static void
2080vge_miibus_statchg(dev)
2081	device_t		dev;
2082{
2083	struct vge_softc	*sc;
2084	struct mii_data		*mii;
2085	struct ifmedia_entry	*ife;
2086
2087	sc = device_get_softc(dev);
2088	mii = device_get_softc(sc->vge_miibus);
2089	ife = mii->mii_media.ifm_cur;
2090
2091	/*
2092	 * If the user manually selects a media mode, we need to turn
2093	 * on the forced MAC mode bit in the DIAGCTL register. If the
2094	 * user happens to choose a full duplex mode, we also need to
2095	 * set the 'force full duplex' bit. This applies only to
2096	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2097	 * mode is disabled, and in 1000baseT mode, full duplex is
2098	 * always implied, so we turn on the forced mode bit but leave
2099	 * the FDX bit cleared.
2100	 */
2101
2102	switch (IFM_SUBTYPE(ife->ifm_media)) {
2103	case IFM_AUTO:
2104		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2105		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2106		break;
2107	case IFM_1000_T:
2108		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2109		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2110		break;
2111	case IFM_100_TX:
2112	case IFM_10_T:
2113		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2114		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2115			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2116		} else {
2117			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2118		}
2119		break;
2120	default:
2121		device_printf(dev, "unknown media type: %x\n",
2122		    IFM_SUBTYPE(ife->ifm_media));
2123		break;
2124	}
2125
2126	return;
2127}
2128
2129static int
2130vge_ioctl(ifp, command, data)
2131	struct ifnet		*ifp;
2132	u_long			command;
2133	caddr_t			data;
2134{
2135	struct vge_softc	*sc = ifp->if_softc;
2136	struct ifreq		*ifr = (struct ifreq *) data;
2137	struct mii_data		*mii;
2138	int			error = 0;
2139
2140	switch (command) {
2141	case SIOCSIFMTU:
2142		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2143			error = EINVAL;
2144		ifp->if_mtu = ifr->ifr_mtu;
2145		break;
2146	case SIOCSIFFLAGS:
2147		VGE_LOCK(sc);
2148		if (ifp->if_flags & IFF_UP) {
2149			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2150			    ifp->if_flags & IFF_PROMISC &&
2151			    !(sc->vge_if_flags & IFF_PROMISC)) {
2152				CSR_SETBIT_1(sc, VGE_RXCTL,
2153				    VGE_RXCTL_RX_PROMISC);
2154				vge_setmulti(sc);
2155			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2156			    !(ifp->if_flags & IFF_PROMISC) &&
2157			    sc->vge_if_flags & IFF_PROMISC) {
2158				CSR_CLRBIT_1(sc, VGE_RXCTL,
2159				    VGE_RXCTL_RX_PROMISC);
2160				vge_setmulti(sc);
2161                        } else
2162				vge_init_locked(sc);
2163		} else {
2164			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2165				vge_stop(sc);
2166		}
2167		sc->vge_if_flags = ifp->if_flags;
2168		VGE_UNLOCK(sc);
2169		break;
2170	case SIOCADDMULTI:
2171	case SIOCDELMULTI:
2172		VGE_LOCK(sc);
2173		vge_setmulti(sc);
2174		VGE_UNLOCK(sc);
2175		break;
2176	case SIOCGIFMEDIA:
2177	case SIOCSIFMEDIA:
2178		mii = device_get_softc(sc->vge_miibus);
2179		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2180		break;
2181	case SIOCSIFCAP:
2182	    {
2183		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2184#ifdef DEVICE_POLLING
2185		if (mask & IFCAP_POLLING) {
2186			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2187				error = ether_poll_register(vge_poll, ifp);
2188				if (error)
2189					return(error);
2190				VGE_LOCK(sc);
2191					/* Disable interrupts */
2192				CSR_WRITE_4(sc, VGE_IMR, 0);
2193				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2194				ifp->if_capenable |= IFCAP_POLLING;
2195				VGE_UNLOCK(sc);
2196			} else {
2197				error = ether_poll_deregister(ifp);
2198				/* Enable interrupts. */
2199				VGE_LOCK(sc);
2200				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2201				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2202				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2203				ifp->if_capenable &= ~IFCAP_POLLING;
2204				VGE_UNLOCK(sc);
2205			}
2206		}
2207#endif /* DEVICE_POLLING */
2208		VGE_LOCK(sc);
2209		if ((mask & IFCAP_TXCSUM) != 0 &&
2210		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2211			ifp->if_capenable ^= IFCAP_TXCSUM;
2212			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2213				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2214			else
2215				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2216		}
2217		if ((mask & IFCAP_RXCSUM) != 0 &&
2218		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2219			ifp->if_capenable ^= IFCAP_RXCSUM;
2220		VGE_UNLOCK(sc);
2221	    }
2222		break;
2223	default:
2224		error = ether_ioctl(ifp, command, data);
2225		break;
2226	}
2227
2228	return (error);
2229}
2230
2231static void
2232vge_watchdog(void *arg)
2233{
2234	struct vge_softc *sc;
2235	struct ifnet *ifp;
2236
2237	sc = arg;
2238	VGE_LOCK_ASSERT(sc);
2239	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2240	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2241		return;
2242
2243	ifp = sc->vge_ifp;
2244	if_printf(ifp, "watchdog timeout\n");
2245	ifp->if_oerrors++;
2246
2247	vge_txeof(sc);
2248	vge_rxeof(sc);
2249
2250	vge_init_locked(sc);
2251
2252	return;
2253}
2254
2255/*
2256 * Stop the adapter and free any mbufs allocated to the
2257 * RX and TX lists.
2258 */
2259static void
2260vge_stop(sc)
2261	struct vge_softc		*sc;
2262{
2263	int			i;
2264	struct ifnet		*ifp;
2265
2266	VGE_LOCK_ASSERT(sc);
2267	ifp = sc->vge_ifp;
2268	sc->vge_timer = 0;
2269	callout_stop(&sc->vge_watchdog);
2270
2271	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2272
2273	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2274	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2275	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2276	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2277	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2278	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2279
2280	if (sc->vge_head != NULL) {
2281		m_freem(sc->vge_head);
2282		sc->vge_head = sc->vge_tail = NULL;
2283	}
2284
2285	/* Free the TX list buffers. */
2286
2287	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2288		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2289			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2290			    sc->vge_ldata.vge_tx_dmamap[i]);
2291			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2292			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2293		}
2294	}
2295
2296	/* Free the RX list buffers. */
2297
2298	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2299		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2300			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2301			    sc->vge_ldata.vge_rx_dmamap[i]);
2302			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2303			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2304		}
2305	}
2306
2307	return;
2308}
2309
2310/*
2311 * Device suspend routine.  Stop the interface and save some PCI
2312 * settings in case the BIOS doesn't restore them properly on
2313 * resume.
2314 */
2315static int
2316vge_suspend(dev)
2317	device_t		dev;
2318{
2319	struct vge_softc	*sc;
2320
2321	sc = device_get_softc(dev);
2322
2323	VGE_LOCK(sc);
2324	vge_stop(sc);
2325
2326	sc->suspended = 1;
2327	VGE_UNLOCK(sc);
2328
2329	return (0);
2330}
2331
2332/*
2333 * Device resume routine.  Restore some PCI settings in case the BIOS
2334 * doesn't, re-enable busmastering, and restart the interface if
2335 * appropriate.
2336 */
2337static int
2338vge_resume(dev)
2339	device_t		dev;
2340{
2341	struct vge_softc	*sc;
2342	struct ifnet		*ifp;
2343
2344	sc = device_get_softc(dev);
2345	ifp = sc->vge_ifp;
2346
2347	/* reenable busmastering */
2348	pci_enable_busmaster(dev);
2349	pci_enable_io(dev, SYS_RES_MEMORY);
2350
2351	/* reinitialize interface if necessary */
2352	VGE_LOCK(sc);
2353	if (ifp->if_flags & IFF_UP)
2354		vge_init_locked(sc);
2355
2356	sc->suspended = 0;
2357	VGE_UNLOCK(sc);
2358
2359	return (0);
2360}
2361
2362/*
2363 * Stop all chip I/O so that the kernel's probe routines don't
2364 * get confused by errant DMAs when rebooting.
2365 */
2366static int
2367vge_shutdown(dev)
2368	device_t		dev;
2369{
2370	struct vge_softc		*sc;
2371
2372	sc = device_get_softc(dev);
2373
2374	VGE_LOCK(sc);
2375	vge_stop(sc);
2376	VGE_UNLOCK(sc);
2377
2378	return (0);
2379}
2380