if_vge.c revision 199414
1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 199414 2009-11-17 18:22:14Z jhb $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96#include <sys/taskqueue.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103#include <net/if_types.h>
104#include <net/if_vlan_var.h>
105
106#include <net/bpf.h>
107
108#include <machine/bus.h>
109#include <machine/resource.h>
110#include <sys/bus.h>
111#include <sys/rman.h>
112
113#include <dev/mii/mii.h>
114#include <dev/mii/miivar.h>
115
116#include <dev/pci/pcireg.h>
117#include <dev/pci/pcivar.h>
118
119MODULE_DEPEND(vge, pci, 1, 1, 1);
120MODULE_DEPEND(vge, ether, 1, 1, 1);
121MODULE_DEPEND(vge, miibus, 1, 1, 1);
122
123/* "device miibus" required.  See GENERIC if you get errors here. */
124#include "miibus_if.h"
125
126#include <dev/vge/if_vgereg.h>
127#include <dev/vge/if_vgevar.h>
128
129#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130
131/*
132 * Various supported device vendors/types and their names.
133 */
134static struct vge_type vge_devs[] = {
135	{ VIA_VENDORID, VIA_DEVICEID_61XX,
136		"VIA Networking Gigabit Ethernet" },
137	{ 0, 0, NULL }
138};
139
140static int vge_probe		(device_t);
141static int vge_attach		(device_t);
142static int vge_detach		(device_t);
143
144static int vge_encap		(struct vge_softc *, struct mbuf *, int);
145
146static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
147static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
148				    bus_size_t, int);
149static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
150				    bus_size_t, int);
151static int vge_allocmem		(device_t, struct vge_softc *);
152static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
153static int vge_rx_list_init	(struct vge_softc *);
154static int vge_tx_list_init	(struct vge_softc *);
155#ifdef VGE_FIXUP_RX
156static __inline void vge_fixup_rx
157				(struct mbuf *);
158#endif
159static int vge_rxeof		(struct vge_softc *);
160static void vge_txeof		(struct vge_softc *);
161static void vge_intr		(void *);
162static void vge_tick		(void *);
163static void vge_tx_task		(void *, int);
164static void vge_start		(struct ifnet *);
165static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
166static void vge_init		(void *);
167static void vge_stop		(struct vge_softc *);
168static void vge_watchdog	(struct ifnet *);
169static int vge_suspend		(device_t);
170static int vge_resume		(device_t);
171static int vge_shutdown		(device_t);
172static int vge_ifmedia_upd	(struct ifnet *);
173static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
174
175#ifdef VGE_EEPROM
176static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
177#endif
178static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
179
180static void vge_miipoll_start	(struct vge_softc *);
181static void vge_miipoll_stop	(struct vge_softc *);
182static int vge_miibus_readreg	(device_t, int, int);
183static int vge_miibus_writereg	(device_t, int, int, int);
184static void vge_miibus_statchg	(device_t);
185
186static void vge_cam_clear	(struct vge_softc *);
187static int vge_cam_set		(struct vge_softc *, uint8_t *);
188static void vge_setmulti	(struct vge_softc *);
189static void vge_reset		(struct vge_softc *);
190
191#define VGE_PCI_LOIO             0x10
192#define VGE_PCI_LOMEM            0x14
193
194static device_method_t vge_methods[] = {
195	/* Device interface */
196	DEVMETHOD(device_probe,		vge_probe),
197	DEVMETHOD(device_attach,	vge_attach),
198	DEVMETHOD(device_detach,	vge_detach),
199	DEVMETHOD(device_suspend,	vge_suspend),
200	DEVMETHOD(device_resume,	vge_resume),
201	DEVMETHOD(device_shutdown,	vge_shutdown),
202
203	/* bus interface */
204	DEVMETHOD(bus_print_child,	bus_generic_print_child),
205	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
206
207	/* MII interface */
208	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
209	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
210	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
211
212	{ 0, 0 }
213};
214
215static driver_t vge_driver = {
216	"vge",
217	vge_methods,
218	sizeof(struct vge_softc)
219};
220
221static devclass_t vge_devclass;
222
223DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
224DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
225
226#ifdef VGE_EEPROM
227/*
228 * Read a word of data stored in the EEPROM at address 'addr.'
229 */
230static void
231vge_eeprom_getword(sc, addr, dest)
232	struct vge_softc	*sc;
233	int			addr;
234	u_int16_t		*dest;
235{
236	register int		i;
237	u_int16_t		word = 0;
238
239	/*
240	 * Enter EEPROM embedded programming mode. In order to
241	 * access the EEPROM at all, we first have to set the
242	 * EELOAD bit in the CHIPCFG2 register.
243	 */
244	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
245	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
246
247	/* Select the address of the word we want to read */
248	CSR_WRITE_1(sc, VGE_EEADDR, addr);
249
250	/* Issue read command */
251	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
252
253	/* Wait for the done bit to be set. */
254	for (i = 0; i < VGE_TIMEOUT; i++) {
255		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
256			break;
257	}
258
259	if (i == VGE_TIMEOUT) {
260		device_printf(sc->vge_dev, "EEPROM read timed out\n");
261		*dest = 0;
262		return;
263	}
264
265	/* Read the result */
266	word = CSR_READ_2(sc, VGE_EERDDAT);
267
268	/* Turn off EEPROM access mode. */
269	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
270	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
271
272	*dest = word;
273
274	return;
275}
276#endif
277
278/*
279 * Read a sequence of words from the EEPROM.
280 */
281static void
282vge_read_eeprom(sc, dest, off, cnt, swap)
283	struct vge_softc	*sc;
284	caddr_t			dest;
285	int			off;
286	int			cnt;
287	int			swap;
288{
289	int			i;
290#ifdef VGE_EEPROM
291	u_int16_t		word = 0, *ptr;
292
293	for (i = 0; i < cnt; i++) {
294		vge_eeprom_getword(sc, off + i, &word);
295		ptr = (u_int16_t *)(dest + (i * 2));
296		if (swap)
297			*ptr = ntohs(word);
298		else
299			*ptr = word;
300	}
301#else
302	for (i = 0; i < ETHER_ADDR_LEN; i++)
303		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
304#endif
305}
306
307static void
308vge_miipoll_stop(sc)
309	struct vge_softc	*sc;
310{
311	int			i;
312
313	CSR_WRITE_1(sc, VGE_MIICMD, 0);
314
315	for (i = 0; i < VGE_TIMEOUT; i++) {
316		DELAY(1);
317		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
318			break;
319	}
320
321	if (i == VGE_TIMEOUT)
322		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
323
324	return;
325}
326
327static void
328vge_miipoll_start(sc)
329	struct vge_softc	*sc;
330{
331	int			i;
332
333	/* First, make sure we're idle. */
334
335	CSR_WRITE_1(sc, VGE_MIICMD, 0);
336	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
337
338	for (i = 0; i < VGE_TIMEOUT; i++) {
339		DELAY(1);
340		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
341			break;
342	}
343
344	if (i == VGE_TIMEOUT) {
345		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
346		return;
347	}
348
349	/* Now enable auto poll mode. */
350
351	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
352
353	/* And make sure it started. */
354
355	for (i = 0; i < VGE_TIMEOUT; i++) {
356		DELAY(1);
357		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
358			break;
359	}
360
361	if (i == VGE_TIMEOUT)
362		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
363
364	return;
365}
366
367static int
368vge_miibus_readreg(dev, phy, reg)
369	device_t		dev;
370	int			phy, reg;
371{
372	struct vge_softc	*sc;
373	int			i;
374	u_int16_t		rval = 0;
375
376	sc = device_get_softc(dev);
377
378	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
379		return(0);
380
381	VGE_LOCK(sc);
382	vge_miipoll_stop(sc);
383
384	/* Specify the register we want to read. */
385	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
386
387	/* Issue read command. */
388	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
389
390	/* Wait for the read command bit to self-clear. */
391	for (i = 0; i < VGE_TIMEOUT; i++) {
392		DELAY(1);
393		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
394			break;
395	}
396
397	if (i == VGE_TIMEOUT)
398		device_printf(sc->vge_dev, "MII read timed out\n");
399	else
400		rval = CSR_READ_2(sc, VGE_MIIDATA);
401
402	vge_miipoll_start(sc);
403	VGE_UNLOCK(sc);
404
405	return (rval);
406}
407
408static int
409vge_miibus_writereg(dev, phy, reg, data)
410	device_t		dev;
411	int			phy, reg, data;
412{
413	struct vge_softc	*sc;
414	int			i, rval = 0;
415
416	sc = device_get_softc(dev);
417
418	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
419		return(0);
420
421	VGE_LOCK(sc);
422	vge_miipoll_stop(sc);
423
424	/* Specify the register we want to write. */
425	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
426
427	/* Specify the data we want to write. */
428	CSR_WRITE_2(sc, VGE_MIIDATA, data);
429
430	/* Issue write command. */
431	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
432
433	/* Wait for the write command bit to self-clear. */
434	for (i = 0; i < VGE_TIMEOUT; i++) {
435		DELAY(1);
436		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
437			break;
438	}
439
440	if (i == VGE_TIMEOUT) {
441		device_printf(sc->vge_dev, "MII write timed out\n");
442		rval = EIO;
443	}
444
445	vge_miipoll_start(sc);
446	VGE_UNLOCK(sc);
447
448	return (rval);
449}
450
451static void
452vge_cam_clear(sc)
453	struct vge_softc	*sc;
454{
455	int			i;
456
457	/*
458	 * Turn off all the mask bits. This tells the chip
459	 * that none of the entries in the CAM filter are valid.
460	 * desired entries will be enabled as we fill the filter in.
461	 */
462
463	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
464	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
465	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
466	for (i = 0; i < 8; i++)
467		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
468
469	/* Clear the VLAN filter too. */
470
471	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
472	for (i = 0; i < 8; i++)
473		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
474
475	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
476	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
477	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
478
479	sc->vge_camidx = 0;
480
481	return;
482}
483
484static int
485vge_cam_set(sc, addr)
486	struct vge_softc	*sc;
487	uint8_t			*addr;
488{
489	int			i, error = 0;
490
491	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
492		return(ENOSPC);
493
494	/* Select the CAM data page. */
495	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
496	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
497
498	/* Set the filter entry we want to update and enable writing. */
499	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
500
501	/* Write the address to the CAM registers */
502	for (i = 0; i < ETHER_ADDR_LEN; i++)
503		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
504
505	/* Issue a write command. */
506	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
507
508	/* Wake for it to clear. */
509	for (i = 0; i < VGE_TIMEOUT; i++) {
510		DELAY(1);
511		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
512			break;
513	}
514
515	if (i == VGE_TIMEOUT) {
516		device_printf(sc->vge_dev, "setting CAM filter failed\n");
517		error = EIO;
518		goto fail;
519	}
520
521	/* Select the CAM mask page. */
522	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
523	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
524
525	/* Set the mask bit that enables this filter. */
526	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
527	    1<<(sc->vge_camidx & 7));
528
529	sc->vge_camidx++;
530
531fail:
532	/* Turn off access to CAM. */
533	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
534	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
535	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
536
537	return (error);
538}
539
540/*
541 * Program the multicast filter. We use the 64-entry CAM filter
542 * for perfect filtering. If there's more than 64 multicast addresses,
543 * we use the hash filter insted.
544 */
545static void
546vge_setmulti(sc)
547	struct vge_softc	*sc;
548{
549	struct ifnet		*ifp;
550	int			error = 0/*, h = 0*/;
551	struct ifmultiaddr	*ifma;
552	u_int32_t		h, hashes[2] = { 0, 0 };
553
554	ifp = sc->vge_ifp;
555
556	/* First, zot all the multicast entries. */
557	vge_cam_clear(sc);
558	CSR_WRITE_4(sc, VGE_MAR0, 0);
559	CSR_WRITE_4(sc, VGE_MAR1, 0);
560
561	/*
562	 * If the user wants allmulti or promisc mode, enable reception
563	 * of all multicast frames.
564	 */
565	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
566		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
567		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
568		return;
569	}
570
571	/* Now program new ones */
572	if_maddr_rlock(ifp);
573	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
574		if (ifma->ifma_addr->sa_family != AF_LINK)
575			continue;
576		error = vge_cam_set(sc,
577		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
578		if (error)
579			break;
580	}
581
582	/* If there were too many addresses, use the hash filter. */
583	if (error) {
584		vge_cam_clear(sc);
585
586		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
587			if (ifma->ifma_addr->sa_family != AF_LINK)
588				continue;
589			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
590			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
591			if (h < 32)
592				hashes[0] |= (1 << h);
593			else
594				hashes[1] |= (1 << (h - 32));
595		}
596
597		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
598		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
599	}
600	if_maddr_runlock(ifp);
601
602	return;
603}
604
605static void
606vge_reset(sc)
607	struct vge_softc		*sc;
608{
609	register int		i;
610
611	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
612
613	for (i = 0; i < VGE_TIMEOUT; i++) {
614		DELAY(5);
615		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
616			break;
617	}
618
619	if (i == VGE_TIMEOUT) {
620		device_printf(sc->vge_dev, "soft reset timed out");
621		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
622		DELAY(2000);
623	}
624
625	DELAY(5000);
626
627	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
628
629	for (i = 0; i < VGE_TIMEOUT; i++) {
630		DELAY(5);
631		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
632			break;
633	}
634
635	if (i == VGE_TIMEOUT) {
636		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
637		return;
638	}
639
640	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
641
642	return;
643}
644
645/*
646 * Probe for a VIA gigabit chip. Check the PCI vendor and device
647 * IDs against our list and return a device name if we find a match.
648 */
649static int
650vge_probe(dev)
651	device_t		dev;
652{
653	struct vge_type		*t;
654
655	t = vge_devs;
656
657	while (t->vge_name != NULL) {
658		if ((pci_get_vendor(dev) == t->vge_vid) &&
659		    (pci_get_device(dev) == t->vge_did)) {
660			device_set_desc(dev, t->vge_name);
661			return (BUS_PROBE_DEFAULT);
662		}
663		t++;
664	}
665
666	return (ENXIO);
667}
668
669static void
670vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
671	void			*arg;
672	bus_dma_segment_t	*segs;
673	int			nseg;
674	bus_size_t		mapsize;
675	int			error;
676{
677
678	struct vge_dmaload_arg	*ctx;
679	struct vge_rx_desc	*d = NULL;
680
681	if (error)
682		return;
683
684	ctx = arg;
685
686	/* Signal error to caller if there's too many segments */
687	if (nseg > ctx->vge_maxsegs) {
688		ctx->vge_maxsegs = 0;
689		return;
690	}
691
692	/*
693	 * Map the segment array into descriptors.
694	 */
695
696	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
697
698	/* If this descriptor is still owned by the chip, bail. */
699
700	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
701		device_printf(ctx->sc->vge_dev,
702		    "tried to map busy descriptor\n");
703		ctx->vge_maxsegs = 0;
704		return;
705	}
706
707	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
708	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
709	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
710	d->vge_sts = 0;
711	d->vge_ctl = 0;
712
713	ctx->vge_maxsegs = 1;
714
715	return;
716}
717
718static void
719vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
720	void			*arg;
721	bus_dma_segment_t	*segs;
722	int			nseg;
723	bus_size_t		mapsize;
724	int			error;
725{
726	struct vge_dmaload_arg	*ctx;
727	struct vge_tx_desc	*d = NULL;
728	struct vge_tx_frag	*f;
729	int			i = 0;
730
731	if (error)
732		return;
733
734	ctx = arg;
735
736	/* Signal error to caller if there's too many segments */
737	if (nseg > ctx->vge_maxsegs) {
738		ctx->vge_maxsegs = 0;
739		return;
740	}
741
742	/* Map the segment array into descriptors. */
743
744	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
745
746	/* If this descriptor is still owned by the chip, bail. */
747
748	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
749		ctx->vge_maxsegs = 0;
750		return;
751	}
752
753	for (i = 0; i < nseg; i++) {
754		f = &d->vge_frag[i];
755		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
756		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
757		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
758	}
759
760	/* Argh. This chip does not autopad short frames */
761
762	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
763		f = &d->vge_frag[i];
764		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
765		    ctx->vge_m0->m_pkthdr.len));
766		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
767		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
768		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
769		i++;
770	}
771
772	/*
773	 * When telling the chip how many segments there are, we
774	 * must use nsegs + 1 instead of just nsegs. Darned if I
775	 * know why.
776	 */
777	i++;
778
779	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
780	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
781
782	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
783		d->vge_ctl |= VGE_TDCTL_JUMBO;
784
785	ctx->vge_maxsegs = nseg;
786
787	return;
788}
789
790/*
791 * Map a single buffer address.
792 */
793
794static void
795vge_dma_map_addr(arg, segs, nseg, error)
796	void			*arg;
797	bus_dma_segment_t	*segs;
798	int			nseg;
799	int			error;
800{
801	bus_addr_t		*addr;
802
803	if (error)
804		return;
805
806	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
807	addr = arg;
808	*addr = segs->ds_addr;
809
810	return;
811}
812
813static int
814vge_allocmem(dev, sc)
815	device_t		dev;
816	struct vge_softc		*sc;
817{
818	int			error;
819	int			nseg;
820	int			i;
821
822	/*
823	 * Allocate map for RX mbufs.
824	 */
825	nseg = 32;
826	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
827	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
828	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
829	    NULL, NULL, &sc->vge_ldata.vge_mtag);
830	if (error) {
831		device_printf(dev, "could not allocate dma tag\n");
832		return (ENOMEM);
833	}
834
835	/*
836	 * Allocate map for TX descriptor list.
837	 */
838	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
839	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
840	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
841	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
842	if (error) {
843		device_printf(dev, "could not allocate dma tag\n");
844		return (ENOMEM);
845	}
846
847	/* Allocate DMA'able memory for the TX ring */
848
849	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
850	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
851	    &sc->vge_ldata.vge_tx_list_map);
852	if (error)
853		return (ENOMEM);
854
855	/* Load the map for the TX ring. */
856
857	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
858	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
859	     VGE_TX_LIST_SZ, vge_dma_map_addr,
860	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
861
862	/* Create DMA maps for TX buffers */
863
864	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
865		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
866			    &sc->vge_ldata.vge_tx_dmamap[i]);
867		if (error) {
868			device_printf(dev, "can't create DMA map for TX\n");
869			return (ENOMEM);
870		}
871	}
872
873	/*
874	 * Allocate map for RX descriptor list.
875	 */
876	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
877	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
878	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
879	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
880	if (error) {
881		device_printf(dev, "could not allocate dma tag\n");
882		return (ENOMEM);
883	}
884
885	/* Allocate DMA'able memory for the RX ring */
886
887	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
888	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
889	    &sc->vge_ldata.vge_rx_list_map);
890	if (error)
891		return (ENOMEM);
892
893	/* Load the map for the RX ring. */
894
895	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
896	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
897	     VGE_TX_LIST_SZ, vge_dma_map_addr,
898	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
899
900	/* Create DMA maps for RX buffers */
901
902	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
903		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
904			    &sc->vge_ldata.vge_rx_dmamap[i]);
905		if (error) {
906			device_printf(dev, "can't create DMA map for RX\n");
907			return (ENOMEM);
908		}
909	}
910
911	return (0);
912}
913
914/*
915 * Attach the interface. Allocate softc structures, do ifmedia
916 * setup and ethernet/BPF attach.
917 */
918static int
919vge_attach(dev)
920	device_t		dev;
921{
922	u_char			eaddr[ETHER_ADDR_LEN];
923	struct vge_softc	*sc;
924	struct ifnet		*ifp;
925	int			unit, error = 0, rid;
926
927	sc = device_get_softc(dev);
928	unit = device_get_unit(dev);
929	sc->vge_dev = dev;
930
931	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
932	    MTX_DEF | MTX_RECURSE);
933	/*
934	 * Map control/status registers.
935	 */
936	pci_enable_busmaster(dev);
937
938	rid = VGE_PCI_LOMEM;
939	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
940	    0, ~0, 1, RF_ACTIVE);
941
942	if (sc->vge_res == NULL) {
943		printf ("vge%d: couldn't map ports/memory\n", unit);
944		error = ENXIO;
945		goto fail;
946	}
947
948	/* Allocate interrupt */
949	rid = 0;
950	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
951	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
952
953	if (sc->vge_irq == NULL) {
954		printf("vge%d: couldn't map interrupt\n", unit);
955		error = ENXIO;
956		goto fail;
957	}
958
959	/* Reset the adapter. */
960	vge_reset(sc);
961
962	/*
963	 * Get station address from the EEPROM.
964	 */
965	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
966
967	/*
968	 * Allocate the parent bus DMA tag appropriate for PCI.
969	 */
970#define VGE_NSEG_NEW 32
971	error = bus_dma_tag_create(NULL,	/* parent */
972			1, 0,			/* alignment, boundary */
973			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
974			BUS_SPACE_MAXADDR,	/* highaddr */
975			NULL, NULL,		/* filter, filterarg */
976			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
977			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
978			BUS_DMA_ALLOCNOW,	/* flags */
979			NULL, NULL,		/* lockfunc, lockarg */
980			&sc->vge_parent_tag);
981	if (error)
982		goto fail;
983
984	error = vge_allocmem(dev, sc);
985
986	if (error)
987		goto fail;
988
989	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
990	if (ifp == NULL) {
991		device_printf(dev, "can not if_alloc()\n");
992		error = ENOSPC;
993		goto fail;
994	}
995
996	/* Do MII setup */
997	if (mii_phy_probe(dev, &sc->vge_miibus,
998	    vge_ifmedia_upd, vge_ifmedia_sts)) {
999		device_printf(dev, "MII without any phy!\n");
1000		error = ENXIO;
1001		goto fail;
1002	}
1003
1004	ifp->if_softc = sc;
1005	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1006	ifp->if_mtu = ETHERMTU;
1007	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1008	ifp->if_ioctl = vge_ioctl;
1009	ifp->if_capabilities = IFCAP_VLAN_MTU;
1010	ifp->if_start = vge_start;
1011	ifp->if_hwassist = VGE_CSUM_FEATURES;
1012	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1013	ifp->if_capenable = ifp->if_capabilities;
1014#ifdef DEVICE_POLLING
1015	ifp->if_capabilities |= IFCAP_POLLING;
1016#endif
1017	ifp->if_watchdog = vge_watchdog;
1018	ifp->if_init = vge_init;
1019	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
1020	ifp->if_snd.ifq_drv_maxlen = VGE_IFQ_MAXLEN;
1021	IFQ_SET_READY(&ifp->if_snd);
1022
1023	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1024
1025	/*
1026	 * Call MI attach routine.
1027	 */
1028	ether_ifattach(ifp, eaddr);
1029
1030	/* Hook interrupt last to avoid having to lock softc */
1031	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1032	    NULL, vge_intr, sc, &sc->vge_intrhand);
1033
1034	if (error) {
1035		printf("vge%d: couldn't set up irq\n", unit);
1036		ether_ifdetach(ifp);
1037		goto fail;
1038	}
1039
1040fail:
1041	if (error)
1042		vge_detach(dev);
1043
1044	return (error);
1045}
1046
1047/*
1048 * Shutdown hardware and free up resources. This can be called any
1049 * time after the mutex has been initialized. It is called in both
1050 * the error case in attach and the normal detach case so it needs
1051 * to be careful about only freeing resources that have actually been
1052 * allocated.
1053 */
1054static int
1055vge_detach(dev)
1056	device_t		dev;
1057{
1058	struct vge_softc		*sc;
1059	struct ifnet		*ifp;
1060	int			i;
1061
1062	sc = device_get_softc(dev);
1063	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1064	ifp = sc->vge_ifp;
1065
1066#ifdef DEVICE_POLLING
1067	if (ifp->if_capenable & IFCAP_POLLING)
1068		ether_poll_deregister(ifp);
1069#endif
1070
1071	/* These should only be active if attach succeeded */
1072	if (device_is_attached(dev)) {
1073		vge_stop(sc);
1074		/*
1075		 * Force off the IFF_UP flag here, in case someone
1076		 * still had a BPF descriptor attached to this
1077		 * interface. If they do, ether_ifattach() will cause
1078		 * the BPF code to try and clear the promisc mode
1079		 * flag, which will bubble down to vge_ioctl(),
1080		 * which will try to call vge_init() again. This will
1081		 * turn the NIC back on and restart the MII ticker,
1082		 * which will panic the system when the kernel tries
1083		 * to invoke the vge_tick() function that isn't there
1084		 * anymore.
1085		 */
1086		ifp->if_flags &= ~IFF_UP;
1087		ether_ifdetach(ifp);
1088	}
1089	if (sc->vge_miibus)
1090		device_delete_child(dev, sc->vge_miibus);
1091	bus_generic_detach(dev);
1092
1093	if (sc->vge_intrhand)
1094		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1095	if (sc->vge_irq)
1096		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1097	if (sc->vge_res)
1098		bus_release_resource(dev, SYS_RES_MEMORY,
1099		    VGE_PCI_LOMEM, sc->vge_res);
1100	if (ifp)
1101		if_free(ifp);
1102
1103	/* Unload and free the RX DMA ring memory and map */
1104
1105	if (sc->vge_ldata.vge_rx_list_tag) {
1106		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1107		    sc->vge_ldata.vge_rx_list_map);
1108		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1109		    sc->vge_ldata.vge_rx_list,
1110		    sc->vge_ldata.vge_rx_list_map);
1111		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1112	}
1113
1114	/* Unload and free the TX DMA ring memory and map */
1115
1116	if (sc->vge_ldata.vge_tx_list_tag) {
1117		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1118		    sc->vge_ldata.vge_tx_list_map);
1119		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1120		    sc->vge_ldata.vge_tx_list,
1121		    sc->vge_ldata.vge_tx_list_map);
1122		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1123	}
1124
1125	/* Destroy all the RX and TX buffer maps */
1126
1127	if (sc->vge_ldata.vge_mtag) {
1128		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1129			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1130			    sc->vge_ldata.vge_tx_dmamap[i]);
1131		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1132			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1133			    sc->vge_ldata.vge_rx_dmamap[i]);
1134		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1135	}
1136
1137	if (sc->vge_parent_tag)
1138		bus_dma_tag_destroy(sc->vge_parent_tag);
1139
1140	mtx_destroy(&sc->vge_mtx);
1141
1142	return (0);
1143}
1144
1145static int
1146vge_newbuf(sc, idx, m)
1147	struct vge_softc	*sc;
1148	int			idx;
1149	struct mbuf		*m;
1150{
1151	struct vge_dmaload_arg	arg;
1152	struct mbuf		*n = NULL;
1153	int			i, error;
1154
1155	if (m == NULL) {
1156		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1157		if (n == NULL)
1158			return (ENOBUFS);
1159		m = n;
1160	} else
1161		m->m_data = m->m_ext.ext_buf;
1162
1163
1164#ifdef VGE_FIXUP_RX
1165	/*
1166	 * This is part of an evil trick to deal with non-x86 platforms.
1167	 * The VIA chip requires RX buffers to be aligned on 32-bit
1168	 * boundaries, but that will hose non-x86 machines. To get around
1169	 * this, we leave some empty space at the start of each buffer
1170	 * and for non-x86 hosts, we copy the buffer back two bytes
1171	 * to achieve word alignment. This is slightly more efficient
1172	 * than allocating a new buffer, copying the contents, and
1173	 * discarding the old buffer.
1174	 */
1175	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1176	m_adj(m, VGE_ETHER_ALIGN);
1177#else
1178	m->m_len = m->m_pkthdr.len = MCLBYTES;
1179#endif
1180
1181	arg.sc = sc;
1182	arg.vge_idx = idx;
1183	arg.vge_maxsegs = 1;
1184	arg.vge_flags = 0;
1185
1186	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1187	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1188	    &arg, BUS_DMA_NOWAIT);
1189	if (error || arg.vge_maxsegs != 1) {
1190		if (n != NULL)
1191			m_freem(n);
1192		return (ENOMEM);
1193	}
1194
1195	/*
1196	 * Note: the manual fails to document the fact that for
1197	 * proper opration, the driver needs to replentish the RX
1198	 * DMA ring 4 descriptors at a time (rather than one at a
1199	 * time, like most chips). We can allocate the new buffers
1200	 * but we should not set the OWN bits until we're ready
1201	 * to hand back 4 of them in one shot.
1202	 */
1203
1204#define VGE_RXCHUNK 4
1205	sc->vge_rx_consumed++;
1206	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1207		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1208			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1209			    htole32(VGE_RDSTS_OWN);
1210		sc->vge_rx_consumed = 0;
1211	}
1212
1213	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1214
1215	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1216	    sc->vge_ldata.vge_rx_dmamap[idx],
1217	    BUS_DMASYNC_PREREAD);
1218
1219	return (0);
1220}
1221
1222static int
1223vge_tx_list_init(sc)
1224	struct vge_softc		*sc;
1225{
1226	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1227	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1228	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1229
1230	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1231	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1232	sc->vge_ldata.vge_tx_prodidx = 0;
1233	sc->vge_ldata.vge_tx_considx = 0;
1234	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1235
1236	return (0);
1237}
1238
1239static int
1240vge_rx_list_init(sc)
1241	struct vge_softc		*sc;
1242{
1243	int			i;
1244
1245	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1246	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1247	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1248
1249	sc->vge_rx_consumed = 0;
1250
1251	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1252		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1253			return (ENOBUFS);
1254	}
1255
1256	/* Flush the RX descriptors */
1257
1258	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1259	    sc->vge_ldata.vge_rx_list_map,
1260	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1261
1262	sc->vge_ldata.vge_rx_prodidx = 0;
1263	sc->vge_rx_consumed = 0;
1264	sc->vge_head = sc->vge_tail = NULL;
1265
1266	return (0);
1267}
1268
1269#ifdef VGE_FIXUP_RX
1270static __inline void
1271vge_fixup_rx(m)
1272	struct mbuf		*m;
1273{
1274	int			i;
1275	uint16_t		*src, *dst;
1276
1277	src = mtod(m, uint16_t *);
1278	dst = src - 1;
1279
1280	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1281		*dst++ = *src++;
1282
1283	m->m_data -= ETHER_ALIGN;
1284
1285	return;
1286}
1287#endif
1288
1289/*
1290 * RX handler. We support the reception of jumbo frames that have
1291 * been fragmented across multiple 2K mbuf cluster buffers.
1292 */
1293static int
1294vge_rxeof(sc)
1295	struct vge_softc	*sc;
1296{
1297	struct mbuf		*m;
1298	struct ifnet		*ifp;
1299	int			i, total_len;
1300	int			lim = 0;
1301	struct vge_rx_desc	*cur_rx;
1302	u_int32_t		rxstat, rxctl;
1303
1304	VGE_LOCK_ASSERT(sc);
1305	ifp = sc->vge_ifp;
1306	i = sc->vge_ldata.vge_rx_prodidx;
1307
1308	/* Invalidate the descriptor memory */
1309
1310	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1311	    sc->vge_ldata.vge_rx_list_map,
1312	    BUS_DMASYNC_POSTREAD);
1313
1314	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1315
1316#ifdef DEVICE_POLLING
1317		if (ifp->if_capenable & IFCAP_POLLING) {
1318			if (sc->rxcycles <= 0)
1319				break;
1320			sc->rxcycles--;
1321		}
1322#endif
1323
1324		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1325		m = sc->vge_ldata.vge_rx_mbuf[i];
1326		total_len = VGE_RXBYTES(cur_rx);
1327		rxstat = le32toh(cur_rx->vge_sts);
1328		rxctl = le32toh(cur_rx->vge_ctl);
1329
1330		/* Invalidate the RX mbuf and unload its map */
1331
1332		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1333		    sc->vge_ldata.vge_rx_dmamap[i],
1334		    BUS_DMASYNC_POSTWRITE);
1335		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1336		    sc->vge_ldata.vge_rx_dmamap[i]);
1337
1338		/*
1339		 * If the 'start of frame' bit is set, this indicates
1340		 * either the first fragment in a multi-fragment receive,
1341		 * or an intermediate fragment. Either way, we want to
1342		 * accumulate the buffers.
1343		 */
1344		if (rxstat & VGE_RXPKT_SOF) {
1345			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1346			if (sc->vge_head == NULL)
1347				sc->vge_head = sc->vge_tail = m;
1348			else {
1349				m->m_flags &= ~M_PKTHDR;
1350				sc->vge_tail->m_next = m;
1351				sc->vge_tail = m;
1352			}
1353			vge_newbuf(sc, i, NULL);
1354			VGE_RX_DESC_INC(i);
1355			continue;
1356		}
1357
1358		/*
1359		 * Bad/error frames will have the RXOK bit cleared.
1360		 * However, there's one error case we want to allow:
1361		 * if a VLAN tagged frame arrives and the chip can't
1362		 * match it against the CAM filter, it considers this
1363		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1364		 * We don't want to drop the frame though: our VLAN
1365		 * filtering is done in software.
1366		 */
1367		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1368		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1369			ifp->if_ierrors++;
1370			/*
1371			 * If this is part of a multi-fragment packet,
1372			 * discard all the pieces.
1373			 */
1374			if (sc->vge_head != NULL) {
1375				m_freem(sc->vge_head);
1376				sc->vge_head = sc->vge_tail = NULL;
1377			}
1378			vge_newbuf(sc, i, m);
1379			VGE_RX_DESC_INC(i);
1380			continue;
1381		}
1382
1383		/*
1384		 * If allocating a replacement mbuf fails,
1385		 * reload the current one.
1386		 */
1387
1388		if (vge_newbuf(sc, i, NULL)) {
1389			ifp->if_ierrors++;
1390			if (sc->vge_head != NULL) {
1391				m_freem(sc->vge_head);
1392				sc->vge_head = sc->vge_tail = NULL;
1393			}
1394			vge_newbuf(sc, i, m);
1395			VGE_RX_DESC_INC(i);
1396			continue;
1397		}
1398
1399		VGE_RX_DESC_INC(i);
1400
1401		if (sc->vge_head != NULL) {
1402			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1403			/*
1404			 * Special case: if there's 4 bytes or less
1405			 * in this buffer, the mbuf can be discarded:
1406			 * the last 4 bytes is the CRC, which we don't
1407			 * care about anyway.
1408			 */
1409			if (m->m_len <= ETHER_CRC_LEN) {
1410				sc->vge_tail->m_len -=
1411				    (ETHER_CRC_LEN - m->m_len);
1412				m_freem(m);
1413			} else {
1414				m->m_len -= ETHER_CRC_LEN;
1415				m->m_flags &= ~M_PKTHDR;
1416				sc->vge_tail->m_next = m;
1417			}
1418			m = sc->vge_head;
1419			sc->vge_head = sc->vge_tail = NULL;
1420			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1421		} else
1422			m->m_pkthdr.len = m->m_len =
1423			    (total_len - ETHER_CRC_LEN);
1424
1425#ifdef VGE_FIXUP_RX
1426		vge_fixup_rx(m);
1427#endif
1428		ifp->if_ipackets++;
1429		m->m_pkthdr.rcvif = ifp;
1430
1431		/* Do RX checksumming if enabled */
1432		if (ifp->if_capenable & IFCAP_RXCSUM) {
1433
1434			/* Check IP header checksum */
1435			if (rxctl & VGE_RDCTL_IPPKT)
1436				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1437			if (rxctl & VGE_RDCTL_IPCSUMOK)
1438				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1439
1440			/* Check TCP/UDP checksum */
1441			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1442			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1443				m->m_pkthdr.csum_flags |=
1444				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1445				m->m_pkthdr.csum_data = 0xffff;
1446			}
1447		}
1448
1449		if (rxstat & VGE_RDSTS_VTAG) {
1450			/*
1451			 * The 32-bit rxctl register is stored in little-endian.
1452			 * However, the 16-bit vlan tag is stored in big-endian,
1453			 * so we have to byte swap it.
1454			 */
1455			m->m_pkthdr.ether_vtag =
1456			    bswap16(rxctl & VGE_RDCTL_VLANID);
1457			m->m_flags |= M_VLANTAG;
1458		}
1459
1460		VGE_UNLOCK(sc);
1461		(*ifp->if_input)(ifp, m);
1462		VGE_LOCK(sc);
1463
1464		lim++;
1465		if (lim == VGE_RX_DESC_CNT)
1466			break;
1467
1468	}
1469
1470	/* Flush the RX DMA ring */
1471
1472	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1473	    sc->vge_ldata.vge_rx_list_map,
1474	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1475
1476	sc->vge_ldata.vge_rx_prodidx = i;
1477	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1478
1479
1480	return (lim);
1481}
1482
1483static void
1484vge_txeof(sc)
1485	struct vge_softc		*sc;
1486{
1487	struct ifnet		*ifp;
1488	u_int32_t		txstat;
1489	int			idx;
1490
1491	ifp = sc->vge_ifp;
1492	idx = sc->vge_ldata.vge_tx_considx;
1493
1494	/* Invalidate the TX descriptor list */
1495
1496	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1497	    sc->vge_ldata.vge_tx_list_map,
1498	    BUS_DMASYNC_POSTREAD);
1499
1500	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1501
1502		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1503		if (txstat & VGE_TDSTS_OWN)
1504			break;
1505
1506		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1507		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1508		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1509		    sc->vge_ldata.vge_tx_dmamap[idx]);
1510		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1511			ifp->if_collisions++;
1512		if (txstat & VGE_TDSTS_TXERR)
1513			ifp->if_oerrors++;
1514		else
1515			ifp->if_opackets++;
1516
1517		sc->vge_ldata.vge_tx_free++;
1518		VGE_TX_DESC_INC(idx);
1519	}
1520
1521	/* No changes made to the TX ring, so no flush needed */
1522
1523	if (idx != sc->vge_ldata.vge_tx_considx) {
1524		sc->vge_ldata.vge_tx_considx = idx;
1525		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1526		ifp->if_timer = 0;
1527	}
1528
1529	/*
1530	 * If not all descriptors have been released reaped yet,
1531	 * reload the timer so that we will eventually get another
1532	 * interrupt that will cause us to re-enter this routine.
1533	 * This is done in case the transmitter has gone idle.
1534	 */
1535	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1536		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1537	}
1538
1539	return;
1540}
1541
1542static void
1543vge_tick(xsc)
1544	void			*xsc;
1545{
1546	struct vge_softc	*sc;
1547	struct ifnet		*ifp;
1548	struct mii_data		*mii;
1549
1550	sc = xsc;
1551	ifp = sc->vge_ifp;
1552	VGE_LOCK(sc);
1553	mii = device_get_softc(sc->vge_miibus);
1554
1555	mii_tick(mii);
1556	if (sc->vge_link) {
1557		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1558			sc->vge_link = 0;
1559			if_link_state_change(sc->vge_ifp,
1560			    LINK_STATE_DOWN);
1561		}
1562	} else {
1563		if (mii->mii_media_status & IFM_ACTIVE &&
1564		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1565			sc->vge_link = 1;
1566			if_link_state_change(sc->vge_ifp,
1567			    LINK_STATE_UP);
1568			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1569				taskqueue_enqueue(taskqueue_swi,
1570				    &sc->vge_txtask);
1571		}
1572	}
1573
1574	VGE_UNLOCK(sc);
1575
1576	return;
1577}
1578
1579#ifdef DEVICE_POLLING
1580static int
1581vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1582{
1583	struct vge_softc *sc = ifp->if_softc;
1584	int rx_npkts = 0;
1585
1586	VGE_LOCK(sc);
1587	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1588		goto done;
1589
1590	sc->rxcycles = count;
1591	rx_npkts = vge_rxeof(sc);
1592	vge_txeof(sc);
1593
1594	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1595		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1596
1597	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1598		u_int32_t       status;
1599		status = CSR_READ_4(sc, VGE_ISR);
1600		if (status == 0xFFFFFFFF)
1601			goto done;
1602		if (status)
1603			CSR_WRITE_4(sc, VGE_ISR, status);
1604
1605		/*
1606		 * XXX check behaviour on receiver stalls.
1607		 */
1608
1609		if (status & VGE_ISR_TXDMA_STALL ||
1610		    status & VGE_ISR_RXDMA_STALL)
1611			vge_init(sc);
1612
1613		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1614			vge_rxeof(sc);
1615			ifp->if_ierrors++;
1616			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1617			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1618		}
1619	}
1620done:
1621	VGE_UNLOCK(sc);
1622	return (rx_npkts);
1623}
1624#endif /* DEVICE_POLLING */
1625
1626static void
1627vge_intr(arg)
1628	void			*arg;
1629{
1630	struct vge_softc	*sc;
1631	struct ifnet		*ifp;
1632	u_int32_t		status;
1633
1634	sc = arg;
1635
1636	if (sc->suspended) {
1637		return;
1638	}
1639
1640	VGE_LOCK(sc);
1641	ifp = sc->vge_ifp;
1642
1643	if (!(ifp->if_flags & IFF_UP)) {
1644		VGE_UNLOCK(sc);
1645		return;
1646	}
1647
1648#ifdef DEVICE_POLLING
1649	if  (ifp->if_capenable & IFCAP_POLLING) {
1650		VGE_UNLOCK(sc);
1651		return;
1652	}
1653#endif
1654
1655	/* Disable interrupts */
1656	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1657
1658	for (;;) {
1659
1660		status = CSR_READ_4(sc, VGE_ISR);
1661		/* If the card has gone away the read returns 0xffff. */
1662		if (status == 0xFFFFFFFF)
1663			break;
1664
1665		if (status)
1666			CSR_WRITE_4(sc, VGE_ISR, status);
1667
1668		if ((status & VGE_INTRS) == 0)
1669			break;
1670
1671		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1672			vge_rxeof(sc);
1673
1674		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1675			vge_rxeof(sc);
1676			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1677			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1678		}
1679
1680		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1681			vge_txeof(sc);
1682
1683		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1684			vge_init(sc);
1685
1686		if (status & VGE_ISR_LINKSTS)
1687			vge_tick(sc);
1688	}
1689
1690	/* Re-enable interrupts */
1691	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1692
1693	VGE_UNLOCK(sc);
1694
1695	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1696		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1697
1698	return;
1699}
1700
1701static int
1702vge_encap(sc, m_head, idx)
1703	struct vge_softc	*sc;
1704	struct mbuf		*m_head;
1705	int			idx;
1706{
1707	struct mbuf		*m_new = NULL;
1708	struct vge_dmaload_arg	arg;
1709	bus_dmamap_t		map;
1710	int			error;
1711
1712	if (sc->vge_ldata.vge_tx_free <= 2)
1713		return (EFBIG);
1714
1715	arg.vge_flags = 0;
1716
1717	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1718		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1719	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1720		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1721	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1722		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1723
1724	arg.sc = sc;
1725	arg.vge_idx = idx;
1726	arg.vge_m0 = m_head;
1727	arg.vge_maxsegs = VGE_TX_FRAGS;
1728
1729	map = sc->vge_ldata.vge_tx_dmamap[idx];
1730	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1731	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1732
1733	if (error && error != EFBIG) {
1734		if_printf(sc->vge_ifp, "can't map mbuf (error %d)\n", error);
1735		return (ENOBUFS);
1736	}
1737
1738	/* Too many segments to map, coalesce into a single mbuf */
1739
1740	if (error || arg.vge_maxsegs == 0) {
1741		m_new = m_defrag(m_head, M_DONTWAIT);
1742		if (m_new == NULL)
1743			return (1);
1744		else
1745			m_head = m_new;
1746
1747		arg.sc = sc;
1748		arg.vge_m0 = m_head;
1749		arg.vge_idx = idx;
1750		arg.vge_maxsegs = 1;
1751
1752		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1753		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1754		if (error) {
1755			if_printf(sc->vge_ifp, "can't map mbuf (error %d)\n",
1756			    error);
1757			return (EFBIG);
1758		}
1759	}
1760
1761	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1762	sc->vge_ldata.vge_tx_free--;
1763
1764	/*
1765	 * Set up hardware VLAN tagging.
1766	 */
1767
1768	if (m_head->m_flags & M_VLANTAG)
1769		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1770		    htole32(m_head->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG);
1771
1772	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1773
1774	return (0);
1775}
1776
1777static void
1778vge_tx_task(arg, npending)
1779	void			*arg;
1780	int			npending;
1781{
1782	struct ifnet		*ifp;
1783
1784	ifp = arg;
1785	vge_start(ifp);
1786
1787	return;
1788}
1789
1790/*
1791 * Main transmit routine.
1792 */
1793
1794static void
1795vge_start(ifp)
1796	struct ifnet		*ifp;
1797{
1798	struct vge_softc	*sc;
1799	struct mbuf		*m_head = NULL;
1800	int			idx, pidx = 0;
1801
1802	sc = ifp->if_softc;
1803	VGE_LOCK(sc);
1804
1805	if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
1806		VGE_UNLOCK(sc);
1807		return;
1808	}
1809
1810	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1811		VGE_UNLOCK(sc);
1812		return;
1813	}
1814
1815	idx = sc->vge_ldata.vge_tx_prodidx;
1816
1817	pidx = idx - 1;
1818	if (pidx < 0)
1819		pidx = VGE_TX_DESC_CNT - 1;
1820
1821
1822	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1823		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1824		if (m_head == NULL)
1825			break;
1826
1827		if (vge_encap(sc, m_head, idx)) {
1828			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1829			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1830			break;
1831		}
1832
1833		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1834		    htole16(VGE_TXDESC_Q);
1835
1836		pidx = idx;
1837		VGE_TX_DESC_INC(idx);
1838
1839		/*
1840		 * If there's a BPF listener, bounce a copy of this frame
1841		 * to him.
1842		 */
1843		ETHER_BPF_MTAP(ifp, m_head);
1844	}
1845
1846	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1847		VGE_UNLOCK(sc);
1848		return;
1849	}
1850
1851	/* Flush the TX descriptors */
1852
1853	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1854	    sc->vge_ldata.vge_tx_list_map,
1855	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1856
1857	/* Issue a transmit command. */
1858	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1859
1860	sc->vge_ldata.vge_tx_prodidx = idx;
1861
1862	/*
1863	 * Use the countdown timer for interrupt moderation.
1864	 * 'TX done' interrupts are disabled. Instead, we reset the
1865	 * countdown timer, which will begin counting until it hits
1866	 * the value in the SSTIMER register, and then trigger an
1867	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1868	 * the timer count is reloaded. Only when the transmitter
1869	 * is idle will the timer hit 0 and an interrupt fire.
1870	 */
1871	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1872
1873	VGE_UNLOCK(sc);
1874
1875	/*
1876	 * Set a timeout in case the chip goes out to lunch.
1877	 */
1878	ifp->if_timer = 5;
1879
1880	return;
1881}
1882
1883static void
1884vge_init(xsc)
1885	void			*xsc;
1886{
1887	struct vge_softc	*sc = xsc;
1888	struct ifnet		*ifp = sc->vge_ifp;
1889	struct mii_data		*mii;
1890	int			i;
1891
1892	VGE_LOCK(sc);
1893	mii = device_get_softc(sc->vge_miibus);
1894
1895	/*
1896	 * Cancel pending I/O and free all RX/TX buffers.
1897	 */
1898	vge_stop(sc);
1899	vge_reset(sc);
1900
1901	/*
1902	 * Initialize the RX and TX descriptors and mbufs.
1903	 */
1904
1905	vge_rx_list_init(sc);
1906	vge_tx_list_init(sc);
1907
1908	/* Set our station address */
1909	for (i = 0; i < ETHER_ADDR_LEN; i++)
1910		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
1911
1912	/*
1913	 * Set receive FIFO threshold. Also allow transmission and
1914	 * reception of VLAN tagged frames.
1915	 */
1916	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1917	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1918
1919	/* Set DMA burst length */
1920	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1921	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1922
1923	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1924
1925	/* Set collision backoff algorithm */
1926	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1927	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1928	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1929
1930	/* Disable LPSEL field in priority resolution */
1931	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1932
1933	/*
1934	 * Load the addresses of the DMA queues into the chip.
1935	 * Note that we only use one transmit queue.
1936	 */
1937
1938	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1939	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1940	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1941
1942	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1943	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1944	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1945	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1946
1947	/* Enable and wake up the RX descriptor queue */
1948	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1949	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1950
1951	/* Enable the TX descriptor queue */
1952	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1953
1954	/* Set up the receive filter -- allow large frames for VLANs. */
1955	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1956
1957	/* If we want promiscuous mode, set the allframes bit. */
1958	if (ifp->if_flags & IFF_PROMISC) {
1959		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1960	}
1961
1962	/* Set capture broadcast bit to capture broadcast frames. */
1963	if (ifp->if_flags & IFF_BROADCAST) {
1964		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1965	}
1966
1967	/* Set multicast bit to capture multicast frames. */
1968	if (ifp->if_flags & IFF_MULTICAST) {
1969		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1970	}
1971
1972	/* Init the cam filter. */
1973	vge_cam_clear(sc);
1974
1975	/* Init the multicast filter. */
1976	vge_setmulti(sc);
1977
1978	/* Enable flow control */
1979
1980	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1981
1982	/* Enable jumbo frame reception (if desired) */
1983
1984	/* Start the MAC. */
1985	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1986	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1987	CSR_WRITE_1(sc, VGE_CRS0,
1988	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1989
1990	/*
1991	 * Configure one-shot timer for microsecond
1992	 * resulution and load it for 500 usecs.
1993	 */
1994	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1995	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1996
1997	/*
1998	 * Configure interrupt moderation for receive. Enable
1999	 * the holdoff counter and load it, and set the RX
2000	 * suppression count to the number of descriptors we
2001	 * want to allow before triggering an interrupt.
2002	 * The holdoff timer is in units of 20 usecs.
2003	 */
2004
2005#ifdef notyet
2006	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2007	/* Select the interrupt holdoff timer page. */
2008	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2009	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2010	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2011
2012	/* Enable use of the holdoff timer. */
2013	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2014	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2015
2016	/* Select the RX suppression threshold page. */
2017	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2018	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2019	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2020
2021	/* Restore the page select bits. */
2022	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2023	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2024#endif
2025
2026#ifdef DEVICE_POLLING
2027	/*
2028	 * Disable interrupts if we are polling.
2029	 */
2030	if (ifp->if_capenable & IFCAP_POLLING) {
2031		CSR_WRITE_4(sc, VGE_IMR, 0);
2032		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2033	} else	/* otherwise ... */
2034#endif
2035	{
2036	/*
2037	 * Enable interrupts.
2038	 */
2039		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2040		CSR_WRITE_4(sc, VGE_ISR, 0);
2041		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2042	}
2043
2044	mii_mediachg(mii);
2045
2046	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2047	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2048
2049	sc->vge_if_flags = 0;
2050	sc->vge_link = 0;
2051
2052	VGE_UNLOCK(sc);
2053
2054	return;
2055}
2056
2057/*
2058 * Set media options.
2059 */
2060static int
2061vge_ifmedia_upd(ifp)
2062	struct ifnet		*ifp;
2063{
2064	struct vge_softc	*sc;
2065	struct mii_data		*mii;
2066
2067	sc = ifp->if_softc;
2068	VGE_LOCK(sc);
2069	mii = device_get_softc(sc->vge_miibus);
2070	mii_mediachg(mii);
2071	VGE_UNLOCK(sc);
2072
2073	return (0);
2074}
2075
2076/*
2077 * Report current media status.
2078 */
2079static void
2080vge_ifmedia_sts(ifp, ifmr)
2081	struct ifnet		*ifp;
2082	struct ifmediareq	*ifmr;
2083{
2084	struct vge_softc	*sc;
2085	struct mii_data		*mii;
2086
2087	sc = ifp->if_softc;
2088	mii = device_get_softc(sc->vge_miibus);
2089
2090	mii_pollstat(mii);
2091	ifmr->ifm_active = mii->mii_media_active;
2092	ifmr->ifm_status = mii->mii_media_status;
2093
2094	return;
2095}
2096
2097static void
2098vge_miibus_statchg(dev)
2099	device_t		dev;
2100{
2101	struct vge_softc	*sc;
2102	struct mii_data		*mii;
2103	struct ifmedia_entry	*ife;
2104
2105	sc = device_get_softc(dev);
2106	mii = device_get_softc(sc->vge_miibus);
2107	ife = mii->mii_media.ifm_cur;
2108
2109	/*
2110	 * If the user manually selects a media mode, we need to turn
2111	 * on the forced MAC mode bit in the DIAGCTL register. If the
2112	 * user happens to choose a full duplex mode, we also need to
2113	 * set the 'force full duplex' bit. This applies only to
2114	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2115	 * mode is disabled, and in 1000baseT mode, full duplex is
2116	 * always implied, so we turn on the forced mode bit but leave
2117	 * the FDX bit cleared.
2118	 */
2119
2120	switch (IFM_SUBTYPE(ife->ifm_media)) {
2121	case IFM_AUTO:
2122		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2123		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2124		break;
2125	case IFM_1000_T:
2126		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2127		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2128		break;
2129	case IFM_100_TX:
2130	case IFM_10_T:
2131		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2132		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2133			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2134		} else {
2135			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2136		}
2137		break;
2138	default:
2139		device_printf(dev, "unknown media type: %x\n",
2140		    IFM_SUBTYPE(ife->ifm_media));
2141		break;
2142	}
2143
2144	return;
2145}
2146
2147static int
2148vge_ioctl(ifp, command, data)
2149	struct ifnet		*ifp;
2150	u_long			command;
2151	caddr_t			data;
2152{
2153	struct vge_softc	*sc = ifp->if_softc;
2154	struct ifreq		*ifr = (struct ifreq *) data;
2155	struct mii_data		*mii;
2156	int			error = 0;
2157
2158	switch (command) {
2159	case SIOCSIFMTU:
2160		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2161			error = EINVAL;
2162		ifp->if_mtu = ifr->ifr_mtu;
2163		break;
2164	case SIOCSIFFLAGS:
2165		if (ifp->if_flags & IFF_UP) {
2166			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2167			    ifp->if_flags & IFF_PROMISC &&
2168			    !(sc->vge_if_flags & IFF_PROMISC)) {
2169				CSR_SETBIT_1(sc, VGE_RXCTL,
2170				    VGE_RXCTL_RX_PROMISC);
2171				vge_setmulti(sc);
2172			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2173			    !(ifp->if_flags & IFF_PROMISC) &&
2174			    sc->vge_if_flags & IFF_PROMISC) {
2175				CSR_CLRBIT_1(sc, VGE_RXCTL,
2176				    VGE_RXCTL_RX_PROMISC);
2177				vge_setmulti(sc);
2178                        } else
2179				vge_init(sc);
2180		} else {
2181			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2182				vge_stop(sc);
2183		}
2184		sc->vge_if_flags = ifp->if_flags;
2185		break;
2186	case SIOCADDMULTI:
2187	case SIOCDELMULTI:
2188		vge_setmulti(sc);
2189		break;
2190	case SIOCGIFMEDIA:
2191	case SIOCSIFMEDIA:
2192		mii = device_get_softc(sc->vge_miibus);
2193		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2194		break;
2195	case SIOCSIFCAP:
2196	    {
2197		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2198#ifdef DEVICE_POLLING
2199		if (mask & IFCAP_POLLING) {
2200			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2201				error = ether_poll_register(vge_poll, ifp);
2202				if (error)
2203					return(error);
2204				VGE_LOCK(sc);
2205					/* Disable interrupts */
2206				CSR_WRITE_4(sc, VGE_IMR, 0);
2207				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2208				ifp->if_capenable |= IFCAP_POLLING;
2209				VGE_UNLOCK(sc);
2210			} else {
2211				error = ether_poll_deregister(ifp);
2212				/* Enable interrupts. */
2213				VGE_LOCK(sc);
2214				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2215				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2216				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2217				ifp->if_capenable &= ~IFCAP_POLLING;
2218				VGE_UNLOCK(sc);
2219			}
2220		}
2221#endif /* DEVICE_POLLING */
2222		if ((mask & IFCAP_TXCSUM) != 0 &&
2223		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2224			ifp->if_capenable ^= IFCAP_TXCSUM;
2225			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2226				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2227			else
2228				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2229		}
2230		if ((mask & IFCAP_RXCSUM) != 0 &&
2231		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2232			ifp->if_capenable ^= IFCAP_RXCSUM;
2233	    }
2234		break;
2235	default:
2236		error = ether_ioctl(ifp, command, data);
2237		break;
2238	}
2239
2240	return (error);
2241}
2242
2243static void
2244vge_watchdog(ifp)
2245	struct ifnet		*ifp;
2246{
2247	struct vge_softc		*sc;
2248
2249	sc = ifp->if_softc;
2250	VGE_LOCK(sc);
2251	if_printf(ifp, "watchdog timeout\n");
2252	ifp->if_oerrors++;
2253
2254	vge_txeof(sc);
2255	vge_rxeof(sc);
2256
2257	vge_init(sc);
2258
2259	VGE_UNLOCK(sc);
2260
2261	return;
2262}
2263
2264/*
2265 * Stop the adapter and free any mbufs allocated to the
2266 * RX and TX lists.
2267 */
2268static void
2269vge_stop(sc)
2270	struct vge_softc		*sc;
2271{
2272	register int		i;
2273	struct ifnet		*ifp;
2274
2275	VGE_LOCK(sc);
2276	ifp = sc->vge_ifp;
2277	ifp->if_timer = 0;
2278
2279	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2280
2281	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2282	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2283	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2284	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2285	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2286	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2287
2288	if (sc->vge_head != NULL) {
2289		m_freem(sc->vge_head);
2290		sc->vge_head = sc->vge_tail = NULL;
2291	}
2292
2293	/* Free the TX list buffers. */
2294
2295	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2296		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2297			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2298			    sc->vge_ldata.vge_tx_dmamap[i]);
2299			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2300			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2301		}
2302	}
2303
2304	/* Free the RX list buffers. */
2305
2306	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2307		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2308			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2309			    sc->vge_ldata.vge_rx_dmamap[i]);
2310			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2311			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2312		}
2313	}
2314
2315	VGE_UNLOCK(sc);
2316
2317	return;
2318}
2319
2320/*
2321 * Device suspend routine.  Stop the interface and save some PCI
2322 * settings in case the BIOS doesn't restore them properly on
2323 * resume.
2324 */
2325static int
2326vge_suspend(dev)
2327	device_t		dev;
2328{
2329	struct vge_softc	*sc;
2330
2331	sc = device_get_softc(dev);
2332
2333	vge_stop(sc);
2334
2335	sc->suspended = 1;
2336
2337	return (0);
2338}
2339
2340/*
2341 * Device resume routine.  Restore some PCI settings in case the BIOS
2342 * doesn't, re-enable busmastering, and restart the interface if
2343 * appropriate.
2344 */
2345static int
2346vge_resume(dev)
2347	device_t		dev;
2348{
2349	struct vge_softc	*sc;
2350	struct ifnet		*ifp;
2351
2352	sc = device_get_softc(dev);
2353	ifp = sc->vge_ifp;
2354
2355	/* reenable busmastering */
2356	pci_enable_busmaster(dev);
2357	pci_enable_io(dev, SYS_RES_MEMORY);
2358
2359	/* reinitialize interface if necessary */
2360	if (ifp->if_flags & IFF_UP)
2361		vge_init(sc);
2362
2363	sc->suspended = 0;
2364
2365	return (0);
2366}
2367
2368/*
2369 * Stop all chip I/O so that the kernel's probe routines don't
2370 * get confused by errant DMAs when rebooting.
2371 */
2372static int
2373vge_shutdown(dev)
2374	device_t		dev;
2375{
2376	struct vge_softc		*sc;
2377
2378	sc = device_get_softc(dev);
2379
2380	vge_stop(sc);
2381
2382	return (0);
2383}
2384