if_vge.c revision 198987
1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 198987 2009-11-06 14:52:37Z jhb $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96#include <sys/taskqueue.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103#include <net/if_types.h>
104#include <net/if_vlan_var.h>
105
106#include <net/bpf.h>
107
108#include <machine/bus.h>
109#include <machine/resource.h>
110#include <sys/bus.h>
111#include <sys/rman.h>
112
113#include <dev/mii/mii.h>
114#include <dev/mii/miivar.h>
115
116#include <dev/pci/pcireg.h>
117#include <dev/pci/pcivar.h>
118
119MODULE_DEPEND(vge, pci, 1, 1, 1);
120MODULE_DEPEND(vge, ether, 1, 1, 1);
121MODULE_DEPEND(vge, miibus, 1, 1, 1);
122
123/* "device miibus" required.  See GENERIC if you get errors here. */
124#include "miibus_if.h"
125
126#include <dev/vge/if_vgereg.h>
127#include <dev/vge/if_vgevar.h>
128
129#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130
131/*
132 * Various supported device vendors/types and their names.
133 */
134static struct vge_type vge_devs[] = {
135	{ VIA_VENDORID, VIA_DEVICEID_61XX,
136		"VIA Networking Gigabit Ethernet" },
137	{ 0, 0, NULL }
138};
139
140static int vge_probe		(device_t);
141static int vge_attach		(device_t);
142static int vge_detach		(device_t);
143
144static int vge_encap		(struct vge_softc *, struct mbuf *, int);
145
146static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
147static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
148				    bus_size_t, int);
149static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
150				    bus_size_t, int);
151static int vge_allocmem		(device_t, struct vge_softc *);
152static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
153static int vge_rx_list_init	(struct vge_softc *);
154static int vge_tx_list_init	(struct vge_softc *);
155#ifdef VGE_FIXUP_RX
156static __inline void vge_fixup_rx
157				(struct mbuf *);
158#endif
159static int vge_rxeof		(struct vge_softc *);
160static void vge_txeof		(struct vge_softc *);
161static void vge_intr		(void *);
162static void vge_tick		(void *);
163static void vge_tx_task		(void *, int);
164static void vge_start		(struct ifnet *);
165static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
166static void vge_init		(void *);
167static void vge_stop		(struct vge_softc *);
168static void vge_watchdog	(struct ifnet *);
169static int vge_suspend		(device_t);
170static int vge_resume		(device_t);
171static int vge_shutdown		(device_t);
172static int vge_ifmedia_upd	(struct ifnet *);
173static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
174
175#ifdef VGE_EEPROM
176static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
177#endif
178static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
179
180static void vge_miipoll_start	(struct vge_softc *);
181static void vge_miipoll_stop	(struct vge_softc *);
182static int vge_miibus_readreg	(device_t, int, int);
183static int vge_miibus_writereg	(device_t, int, int, int);
184static void vge_miibus_statchg	(device_t);
185
186static void vge_cam_clear	(struct vge_softc *);
187static int vge_cam_set		(struct vge_softc *, uint8_t *);
188static void vge_setmulti	(struct vge_softc *);
189static void vge_reset		(struct vge_softc *);
190
191#define VGE_PCI_LOIO             0x10
192#define VGE_PCI_LOMEM            0x14
193
194static device_method_t vge_methods[] = {
195	/* Device interface */
196	DEVMETHOD(device_probe,		vge_probe),
197	DEVMETHOD(device_attach,	vge_attach),
198	DEVMETHOD(device_detach,	vge_detach),
199	DEVMETHOD(device_suspend,	vge_suspend),
200	DEVMETHOD(device_resume,	vge_resume),
201	DEVMETHOD(device_shutdown,	vge_shutdown),
202
203	/* bus interface */
204	DEVMETHOD(bus_print_child,	bus_generic_print_child),
205	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
206
207	/* MII interface */
208	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
209	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
210	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
211
212	{ 0, 0 }
213};
214
215static driver_t vge_driver = {
216	"vge",
217	vge_methods,
218	sizeof(struct vge_softc)
219};
220
221static devclass_t vge_devclass;
222
223DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
224DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
225
226#ifdef VGE_EEPROM
227/*
228 * Read a word of data stored in the EEPROM at address 'addr.'
229 */
230static void
231vge_eeprom_getword(sc, addr, dest)
232	struct vge_softc	*sc;
233	int			addr;
234	u_int16_t		*dest;
235{
236	register int		i;
237	u_int16_t		word = 0;
238
239	/*
240	 * Enter EEPROM embedded programming mode. In order to
241	 * access the EEPROM at all, we first have to set the
242	 * EELOAD bit in the CHIPCFG2 register.
243	 */
244	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
245	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
246
247	/* Select the address of the word we want to read */
248	CSR_WRITE_1(sc, VGE_EEADDR, addr);
249
250	/* Issue read command */
251	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
252
253	/* Wait for the done bit to be set. */
254	for (i = 0; i < VGE_TIMEOUT; i++) {
255		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
256			break;
257	}
258
259	if (i == VGE_TIMEOUT) {
260		device_printf(sc->vge_dev, "EEPROM read timed out\n");
261		*dest = 0;
262		return;
263	}
264
265	/* Read the result */
266	word = CSR_READ_2(sc, VGE_EERDDAT);
267
268	/* Turn off EEPROM access mode. */
269	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
270	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
271
272	*dest = word;
273
274	return;
275}
276#endif
277
278/*
279 * Read a sequence of words from the EEPROM.
280 */
281static void
282vge_read_eeprom(sc, dest, off, cnt, swap)
283	struct vge_softc	*sc;
284	caddr_t			dest;
285	int			off;
286	int			cnt;
287	int			swap;
288{
289	int			i;
290#ifdef VGE_EEPROM
291	u_int16_t		word = 0, *ptr;
292
293	for (i = 0; i < cnt; i++) {
294		vge_eeprom_getword(sc, off + i, &word);
295		ptr = (u_int16_t *)(dest + (i * 2));
296		if (swap)
297			*ptr = ntohs(word);
298		else
299			*ptr = word;
300	}
301#else
302	for (i = 0; i < ETHER_ADDR_LEN; i++)
303		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
304#endif
305}
306
307static void
308vge_miipoll_stop(sc)
309	struct vge_softc	*sc;
310{
311	int			i;
312
313	CSR_WRITE_1(sc, VGE_MIICMD, 0);
314
315	for (i = 0; i < VGE_TIMEOUT; i++) {
316		DELAY(1);
317		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
318			break;
319	}
320
321	if (i == VGE_TIMEOUT)
322		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
323
324	return;
325}
326
327static void
328vge_miipoll_start(sc)
329	struct vge_softc	*sc;
330{
331	int			i;
332
333	/* First, make sure we're idle. */
334
335	CSR_WRITE_1(sc, VGE_MIICMD, 0);
336	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
337
338	for (i = 0; i < VGE_TIMEOUT; i++) {
339		DELAY(1);
340		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
341			break;
342	}
343
344	if (i == VGE_TIMEOUT) {
345		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
346		return;
347	}
348
349	/* Now enable auto poll mode. */
350
351	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
352
353	/* And make sure it started. */
354
355	for (i = 0; i < VGE_TIMEOUT; i++) {
356		DELAY(1);
357		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
358			break;
359	}
360
361	if (i == VGE_TIMEOUT)
362		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
363
364	return;
365}
366
367static int
368vge_miibus_readreg(dev, phy, reg)
369	device_t		dev;
370	int			phy, reg;
371{
372	struct vge_softc	*sc;
373	int			i;
374	u_int16_t		rval = 0;
375
376	sc = device_get_softc(dev);
377
378	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
379		return(0);
380
381	VGE_LOCK(sc);
382	vge_miipoll_stop(sc);
383
384	/* Specify the register we want to read. */
385	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
386
387	/* Issue read command. */
388	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
389
390	/* Wait for the read command bit to self-clear. */
391	for (i = 0; i < VGE_TIMEOUT; i++) {
392		DELAY(1);
393		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
394			break;
395	}
396
397	if (i == VGE_TIMEOUT)
398		device_printf(sc->vge_dev, "MII read timed out\n");
399	else
400		rval = CSR_READ_2(sc, VGE_MIIDATA);
401
402	vge_miipoll_start(sc);
403	VGE_UNLOCK(sc);
404
405	return (rval);
406}
407
408static int
409vge_miibus_writereg(dev, phy, reg, data)
410	device_t		dev;
411	int			phy, reg, data;
412{
413	struct vge_softc	*sc;
414	int			i, rval = 0;
415
416	sc = device_get_softc(dev);
417
418	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
419		return(0);
420
421	VGE_LOCK(sc);
422	vge_miipoll_stop(sc);
423
424	/* Specify the register we want to write. */
425	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
426
427	/* Specify the data we want to write. */
428	CSR_WRITE_2(sc, VGE_MIIDATA, data);
429
430	/* Issue write command. */
431	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
432
433	/* Wait for the write command bit to self-clear. */
434	for (i = 0; i < VGE_TIMEOUT; i++) {
435		DELAY(1);
436		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
437			break;
438	}
439
440	if (i == VGE_TIMEOUT) {
441		device_printf(sc->vge_dev, "MII write timed out\n");
442		rval = EIO;
443	}
444
445	vge_miipoll_start(sc);
446	VGE_UNLOCK(sc);
447
448	return (rval);
449}
450
451static void
452vge_cam_clear(sc)
453	struct vge_softc	*sc;
454{
455	int			i;
456
457	/*
458	 * Turn off all the mask bits. This tells the chip
459	 * that none of the entries in the CAM filter are valid.
460	 * desired entries will be enabled as we fill the filter in.
461	 */
462
463	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
464	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
465	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
466	for (i = 0; i < 8; i++)
467		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
468
469	/* Clear the VLAN filter too. */
470
471	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
472	for (i = 0; i < 8; i++)
473		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
474
475	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
476	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
477	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
478
479	sc->vge_camidx = 0;
480
481	return;
482}
483
484static int
485vge_cam_set(sc, addr)
486	struct vge_softc	*sc;
487	uint8_t			*addr;
488{
489	int			i, error = 0;
490
491	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
492		return(ENOSPC);
493
494	/* Select the CAM data page. */
495	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
496	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
497
498	/* Set the filter entry we want to update and enable writing. */
499	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
500
501	/* Write the address to the CAM registers */
502	for (i = 0; i < ETHER_ADDR_LEN; i++)
503		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
504
505	/* Issue a write command. */
506	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
507
508	/* Wake for it to clear. */
509	for (i = 0; i < VGE_TIMEOUT; i++) {
510		DELAY(1);
511		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
512			break;
513	}
514
515	if (i == VGE_TIMEOUT) {
516		device_printf(sc->vge_dev, "setting CAM filter failed\n");
517		error = EIO;
518		goto fail;
519	}
520
521	/* Select the CAM mask page. */
522	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
523	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
524
525	/* Set the mask bit that enables this filter. */
526	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
527	    1<<(sc->vge_camidx & 7));
528
529	sc->vge_camidx++;
530
531fail:
532	/* Turn off access to CAM. */
533	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
534	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
535	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
536
537	return (error);
538}
539
540/*
541 * Program the multicast filter. We use the 64-entry CAM filter
542 * for perfect filtering. If there's more than 64 multicast addresses,
543 * we use the hash filter insted.
544 */
545static void
546vge_setmulti(sc)
547	struct vge_softc	*sc;
548{
549	struct ifnet		*ifp;
550	int			error = 0/*, h = 0*/;
551	struct ifmultiaddr	*ifma;
552	u_int32_t		h, hashes[2] = { 0, 0 };
553
554	ifp = sc->vge_ifp;
555
556	/* First, zot all the multicast entries. */
557	vge_cam_clear(sc);
558	CSR_WRITE_4(sc, VGE_MAR0, 0);
559	CSR_WRITE_4(sc, VGE_MAR1, 0);
560
561	/*
562	 * If the user wants allmulti or promisc mode, enable reception
563	 * of all multicast frames.
564	 */
565	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
566		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
567		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
568		return;
569	}
570
571	/* Now program new ones */
572	if_maddr_rlock(ifp);
573	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
574		if (ifma->ifma_addr->sa_family != AF_LINK)
575			continue;
576		error = vge_cam_set(sc,
577		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
578		if (error)
579			break;
580	}
581
582	/* If there were too many addresses, use the hash filter. */
583	if (error) {
584		vge_cam_clear(sc);
585
586		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
587			if (ifma->ifma_addr->sa_family != AF_LINK)
588				continue;
589			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
590			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
591			if (h < 32)
592				hashes[0] |= (1 << h);
593			else
594				hashes[1] |= (1 << (h - 32));
595		}
596
597		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
598		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
599	}
600	if_maddr_runlock(ifp);
601
602	return;
603}
604
605static void
606vge_reset(sc)
607	struct vge_softc		*sc;
608{
609	register int		i;
610
611	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
612
613	for (i = 0; i < VGE_TIMEOUT; i++) {
614		DELAY(5);
615		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
616			break;
617	}
618
619	if (i == VGE_TIMEOUT) {
620		device_printf(sc->vge_dev, "soft reset timed out");
621		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
622		DELAY(2000);
623	}
624
625	DELAY(5000);
626
627	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
628
629	for (i = 0; i < VGE_TIMEOUT; i++) {
630		DELAY(5);
631		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
632			break;
633	}
634
635	if (i == VGE_TIMEOUT) {
636		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
637		return;
638	}
639
640	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
641
642	return;
643}
644
645/*
646 * Probe for a VIA gigabit chip. Check the PCI vendor and device
647 * IDs against our list and return a device name if we find a match.
648 */
649static int
650vge_probe(dev)
651	device_t		dev;
652{
653	struct vge_type		*t;
654
655	t = vge_devs;
656
657	while (t->vge_name != NULL) {
658		if ((pci_get_vendor(dev) == t->vge_vid) &&
659		    (pci_get_device(dev) == t->vge_did)) {
660			device_set_desc(dev, t->vge_name);
661			return (BUS_PROBE_DEFAULT);
662		}
663		t++;
664	}
665
666	return (ENXIO);
667}
668
669static void
670vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
671	void			*arg;
672	bus_dma_segment_t	*segs;
673	int			nseg;
674	bus_size_t		mapsize;
675	int			error;
676{
677
678	struct vge_dmaload_arg	*ctx;
679	struct vge_rx_desc	*d = NULL;
680
681	if (error)
682		return;
683
684	ctx = arg;
685
686	/* Signal error to caller if there's too many segments */
687	if (nseg > ctx->vge_maxsegs) {
688		ctx->vge_maxsegs = 0;
689		return;
690	}
691
692	/*
693	 * Map the segment array into descriptors.
694	 */
695
696	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
697
698	/* If this descriptor is still owned by the chip, bail. */
699
700	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
701		device_printf(ctx->sc->vge_dev,
702		    "tried to map busy descriptor\n");
703		ctx->vge_maxsegs = 0;
704		return;
705	}
706
707	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
708	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
709	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
710	d->vge_sts = 0;
711	d->vge_ctl = 0;
712
713	ctx->vge_maxsegs = 1;
714
715	return;
716}
717
718static void
719vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
720	void			*arg;
721	bus_dma_segment_t	*segs;
722	int			nseg;
723	bus_size_t		mapsize;
724	int			error;
725{
726	struct vge_dmaload_arg	*ctx;
727	struct vge_tx_desc	*d = NULL;
728	struct vge_tx_frag	*f;
729	int			i = 0;
730
731	if (error)
732		return;
733
734	ctx = arg;
735
736	/* Signal error to caller if there's too many segments */
737	if (nseg > ctx->vge_maxsegs) {
738		ctx->vge_maxsegs = 0;
739		return;
740	}
741
742	/* Map the segment array into descriptors. */
743
744	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
745
746	/* If this descriptor is still owned by the chip, bail. */
747
748	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
749		ctx->vge_maxsegs = 0;
750		return;
751	}
752
753	for (i = 0; i < nseg; i++) {
754		f = &d->vge_frag[i];
755		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
756		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
757		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
758	}
759
760	/* Argh. This chip does not autopad short frames */
761
762	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
763		f = &d->vge_frag[i];
764		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
765		    ctx->vge_m0->m_pkthdr.len));
766		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
767		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
768		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
769		i++;
770	}
771
772	/*
773	 * When telling the chip how many segments there are, we
774	 * must use nsegs + 1 instead of just nsegs. Darned if I
775	 * know why.
776	 */
777	i++;
778
779	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
780	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
781
782	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
783		d->vge_ctl |= VGE_TDCTL_JUMBO;
784
785	ctx->vge_maxsegs = nseg;
786
787	return;
788}
789
790/*
791 * Map a single buffer address.
792 */
793
794static void
795vge_dma_map_addr(arg, segs, nseg, error)
796	void			*arg;
797	bus_dma_segment_t	*segs;
798	int			nseg;
799	int			error;
800{
801	bus_addr_t		*addr;
802
803	if (error)
804		return;
805
806	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
807	addr = arg;
808	*addr = segs->ds_addr;
809
810	return;
811}
812
813static int
814vge_allocmem(dev, sc)
815	device_t		dev;
816	struct vge_softc		*sc;
817{
818	int			error;
819	int			nseg;
820	int			i;
821
822	/*
823	 * Allocate map for RX mbufs.
824	 */
825	nseg = 32;
826	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
827	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
828	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
829	    NULL, NULL, &sc->vge_ldata.vge_mtag);
830	if (error) {
831		device_printf(dev, "could not allocate dma tag\n");
832		return (ENOMEM);
833	}
834
835	/*
836	 * Allocate map for TX descriptor list.
837	 */
838	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
839	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
840	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
841	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
842	if (error) {
843		device_printf(dev, "could not allocate dma tag\n");
844		return (ENOMEM);
845	}
846
847	/* Allocate DMA'able memory for the TX ring */
848
849	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
850	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
851	    &sc->vge_ldata.vge_tx_list_map);
852	if (error)
853		return (ENOMEM);
854
855	/* Load the map for the TX ring. */
856
857	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
858	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
859	     VGE_TX_LIST_SZ, vge_dma_map_addr,
860	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
861
862	/* Create DMA maps for TX buffers */
863
864	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
865		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
866			    &sc->vge_ldata.vge_tx_dmamap[i]);
867		if (error) {
868			device_printf(dev, "can't create DMA map for TX\n");
869			return (ENOMEM);
870		}
871	}
872
873	/*
874	 * Allocate map for RX descriptor list.
875	 */
876	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
877	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
878	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
879	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
880	if (error) {
881		device_printf(dev, "could not allocate dma tag\n");
882		return (ENOMEM);
883	}
884
885	/* Allocate DMA'able memory for the RX ring */
886
887	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
888	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
889	    &sc->vge_ldata.vge_rx_list_map);
890	if (error)
891		return (ENOMEM);
892
893	/* Load the map for the RX ring. */
894
895	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
896	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
897	     VGE_TX_LIST_SZ, vge_dma_map_addr,
898	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
899
900	/* Create DMA maps for RX buffers */
901
902	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
903		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
904			    &sc->vge_ldata.vge_rx_dmamap[i]);
905		if (error) {
906			device_printf(dev, "can't create DMA map for RX\n");
907			return (ENOMEM);
908		}
909	}
910
911	return (0);
912}
913
914/*
915 * Attach the interface. Allocate softc structures, do ifmedia
916 * setup and ethernet/BPF attach.
917 */
918static int
919vge_attach(dev)
920	device_t		dev;
921{
922	u_char			eaddr[ETHER_ADDR_LEN];
923	struct vge_softc	*sc;
924	struct ifnet		*ifp;
925	int			unit, error = 0, rid;
926
927	sc = device_get_softc(dev);
928	unit = device_get_unit(dev);
929	sc->vge_dev = dev;
930
931	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
932	    MTX_DEF | MTX_RECURSE);
933	/*
934	 * Map control/status registers.
935	 */
936	pci_enable_busmaster(dev);
937
938	rid = VGE_PCI_LOMEM;
939	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
940	    0, ~0, 1, RF_ACTIVE);
941
942	if (sc->vge_res == NULL) {
943		printf ("vge%d: couldn't map ports/memory\n", unit);
944		error = ENXIO;
945		goto fail;
946	}
947
948	sc->vge_btag = rman_get_bustag(sc->vge_res);
949	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
950
951	/* Allocate interrupt */
952	rid = 0;
953	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
954	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
955
956	if (sc->vge_irq == NULL) {
957		printf("vge%d: couldn't map interrupt\n", unit);
958		error = ENXIO;
959		goto fail;
960	}
961
962	/* Reset the adapter. */
963	vge_reset(sc);
964
965	/*
966	 * Get station address from the EEPROM.
967	 */
968	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
969
970	/*
971	 * Allocate the parent bus DMA tag appropriate for PCI.
972	 */
973#define VGE_NSEG_NEW 32
974	error = bus_dma_tag_create(NULL,	/* parent */
975			1, 0,			/* alignment, boundary */
976			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
977			BUS_SPACE_MAXADDR,	/* highaddr */
978			NULL, NULL,		/* filter, filterarg */
979			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
980			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
981			BUS_DMA_ALLOCNOW,	/* flags */
982			NULL, NULL,		/* lockfunc, lockarg */
983			&sc->vge_parent_tag);
984	if (error)
985		goto fail;
986
987	error = vge_allocmem(dev, sc);
988
989	if (error)
990		goto fail;
991
992	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
993	if (ifp == NULL) {
994		device_printf(dev, "can not if_alloc()\n");
995		error = ENOSPC;
996		goto fail;
997	}
998
999	/* Do MII setup */
1000	if (mii_phy_probe(dev, &sc->vge_miibus,
1001	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1002		device_printf(dev, "MII without any phy!\n");
1003		error = ENXIO;
1004		goto fail;
1005	}
1006
1007	ifp->if_softc = sc;
1008	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1009	ifp->if_mtu = ETHERMTU;
1010	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1011	ifp->if_ioctl = vge_ioctl;
1012	ifp->if_capabilities = IFCAP_VLAN_MTU;
1013	ifp->if_start = vge_start;
1014	ifp->if_hwassist = VGE_CSUM_FEATURES;
1015	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1016	ifp->if_capenable = ifp->if_capabilities;
1017#ifdef DEVICE_POLLING
1018	ifp->if_capabilities |= IFCAP_POLLING;
1019#endif
1020	ifp->if_watchdog = vge_watchdog;
1021	ifp->if_init = vge_init;
1022	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
1023	ifp->if_snd.ifq_drv_maxlen = VGE_IFQ_MAXLEN;
1024	IFQ_SET_READY(&ifp->if_snd);
1025
1026	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1027
1028	/*
1029	 * Call MI attach routine.
1030	 */
1031	ether_ifattach(ifp, eaddr);
1032
1033	/* Hook interrupt last to avoid having to lock softc */
1034	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1035	    NULL, vge_intr, sc, &sc->vge_intrhand);
1036
1037	if (error) {
1038		printf("vge%d: couldn't set up irq\n", unit);
1039		ether_ifdetach(ifp);
1040		goto fail;
1041	}
1042
1043fail:
1044	if (error)
1045		vge_detach(dev);
1046
1047	return (error);
1048}
1049
1050/*
1051 * Shutdown hardware and free up resources. This can be called any
1052 * time after the mutex has been initialized. It is called in both
1053 * the error case in attach and the normal detach case so it needs
1054 * to be careful about only freeing resources that have actually been
1055 * allocated.
1056 */
1057static int
1058vge_detach(dev)
1059	device_t		dev;
1060{
1061	struct vge_softc		*sc;
1062	struct ifnet		*ifp;
1063	int			i;
1064
1065	sc = device_get_softc(dev);
1066	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1067	ifp = sc->vge_ifp;
1068
1069#ifdef DEVICE_POLLING
1070	if (ifp->if_capenable & IFCAP_POLLING)
1071		ether_poll_deregister(ifp);
1072#endif
1073
1074	/* These should only be active if attach succeeded */
1075	if (device_is_attached(dev)) {
1076		vge_stop(sc);
1077		/*
1078		 * Force off the IFF_UP flag here, in case someone
1079		 * still had a BPF descriptor attached to this
1080		 * interface. If they do, ether_ifattach() will cause
1081		 * the BPF code to try and clear the promisc mode
1082		 * flag, which will bubble down to vge_ioctl(),
1083		 * which will try to call vge_init() again. This will
1084		 * turn the NIC back on and restart the MII ticker,
1085		 * which will panic the system when the kernel tries
1086		 * to invoke the vge_tick() function that isn't there
1087		 * anymore.
1088		 */
1089		ifp->if_flags &= ~IFF_UP;
1090		ether_ifdetach(ifp);
1091	}
1092	if (sc->vge_miibus)
1093		device_delete_child(dev, sc->vge_miibus);
1094	bus_generic_detach(dev);
1095
1096	if (sc->vge_intrhand)
1097		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1098	if (sc->vge_irq)
1099		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1100	if (sc->vge_res)
1101		bus_release_resource(dev, SYS_RES_MEMORY,
1102		    VGE_PCI_LOMEM, sc->vge_res);
1103	if (ifp)
1104		if_free(ifp);
1105
1106	/* Unload and free the RX DMA ring memory and map */
1107
1108	if (sc->vge_ldata.vge_rx_list_tag) {
1109		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1110		    sc->vge_ldata.vge_rx_list_map);
1111		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1112		    sc->vge_ldata.vge_rx_list,
1113		    sc->vge_ldata.vge_rx_list_map);
1114		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1115	}
1116
1117	/* Unload and free the TX DMA ring memory and map */
1118
1119	if (sc->vge_ldata.vge_tx_list_tag) {
1120		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1121		    sc->vge_ldata.vge_tx_list_map);
1122		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1123		    sc->vge_ldata.vge_tx_list,
1124		    sc->vge_ldata.vge_tx_list_map);
1125		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1126	}
1127
1128	/* Destroy all the RX and TX buffer maps */
1129
1130	if (sc->vge_ldata.vge_mtag) {
1131		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1132			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1133			    sc->vge_ldata.vge_tx_dmamap[i]);
1134		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1135			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1136			    sc->vge_ldata.vge_rx_dmamap[i]);
1137		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1138	}
1139
1140	if (sc->vge_parent_tag)
1141		bus_dma_tag_destroy(sc->vge_parent_tag);
1142
1143	mtx_destroy(&sc->vge_mtx);
1144
1145	return (0);
1146}
1147
1148static int
1149vge_newbuf(sc, idx, m)
1150	struct vge_softc	*sc;
1151	int			idx;
1152	struct mbuf		*m;
1153{
1154	struct vge_dmaload_arg	arg;
1155	struct mbuf		*n = NULL;
1156	int			i, error;
1157
1158	if (m == NULL) {
1159		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1160		if (n == NULL)
1161			return (ENOBUFS);
1162		m = n;
1163	} else
1164		m->m_data = m->m_ext.ext_buf;
1165
1166
1167#ifdef VGE_FIXUP_RX
1168	/*
1169	 * This is part of an evil trick to deal with non-x86 platforms.
1170	 * The VIA chip requires RX buffers to be aligned on 32-bit
1171	 * boundaries, but that will hose non-x86 machines. To get around
1172	 * this, we leave some empty space at the start of each buffer
1173	 * and for non-x86 hosts, we copy the buffer back two bytes
1174	 * to achieve word alignment. This is slightly more efficient
1175	 * than allocating a new buffer, copying the contents, and
1176	 * discarding the old buffer.
1177	 */
1178	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1179	m_adj(m, VGE_ETHER_ALIGN);
1180#else
1181	m->m_len = m->m_pkthdr.len = MCLBYTES;
1182#endif
1183
1184	arg.sc = sc;
1185	arg.vge_idx = idx;
1186	arg.vge_maxsegs = 1;
1187	arg.vge_flags = 0;
1188
1189	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1190	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1191	    &arg, BUS_DMA_NOWAIT);
1192	if (error || arg.vge_maxsegs != 1) {
1193		if (n != NULL)
1194			m_freem(n);
1195		return (ENOMEM);
1196	}
1197
1198	/*
1199	 * Note: the manual fails to document the fact that for
1200	 * proper opration, the driver needs to replentish the RX
1201	 * DMA ring 4 descriptors at a time (rather than one at a
1202	 * time, like most chips). We can allocate the new buffers
1203	 * but we should not set the OWN bits until we're ready
1204	 * to hand back 4 of them in one shot.
1205	 */
1206
1207#define VGE_RXCHUNK 4
1208	sc->vge_rx_consumed++;
1209	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1210		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1211			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1212			    htole32(VGE_RDSTS_OWN);
1213		sc->vge_rx_consumed = 0;
1214	}
1215
1216	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1217
1218	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1219	    sc->vge_ldata.vge_rx_dmamap[idx],
1220	    BUS_DMASYNC_PREREAD);
1221
1222	return (0);
1223}
1224
1225static int
1226vge_tx_list_init(sc)
1227	struct vge_softc		*sc;
1228{
1229	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1230	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1231	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1232
1233	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1234	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1235	sc->vge_ldata.vge_tx_prodidx = 0;
1236	sc->vge_ldata.vge_tx_considx = 0;
1237	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1238
1239	return (0);
1240}
1241
1242static int
1243vge_rx_list_init(sc)
1244	struct vge_softc		*sc;
1245{
1246	int			i;
1247
1248	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1249	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1250	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1251
1252	sc->vge_rx_consumed = 0;
1253
1254	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1255		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1256			return (ENOBUFS);
1257	}
1258
1259	/* Flush the RX descriptors */
1260
1261	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1262	    sc->vge_ldata.vge_rx_list_map,
1263	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1264
1265	sc->vge_ldata.vge_rx_prodidx = 0;
1266	sc->vge_rx_consumed = 0;
1267	sc->vge_head = sc->vge_tail = NULL;
1268
1269	return (0);
1270}
1271
1272#ifdef VGE_FIXUP_RX
1273static __inline void
1274vge_fixup_rx(m)
1275	struct mbuf		*m;
1276{
1277	int			i;
1278	uint16_t		*src, *dst;
1279
1280	src = mtod(m, uint16_t *);
1281	dst = src - 1;
1282
1283	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1284		*dst++ = *src++;
1285
1286	m->m_data -= ETHER_ALIGN;
1287
1288	return;
1289}
1290#endif
1291
1292/*
1293 * RX handler. We support the reception of jumbo frames that have
1294 * been fragmented across multiple 2K mbuf cluster buffers.
1295 */
1296static int
1297vge_rxeof(sc)
1298	struct vge_softc	*sc;
1299{
1300	struct mbuf		*m;
1301	struct ifnet		*ifp;
1302	int			i, total_len;
1303	int			lim = 0;
1304	struct vge_rx_desc	*cur_rx;
1305	u_int32_t		rxstat, rxctl;
1306
1307	VGE_LOCK_ASSERT(sc);
1308	ifp = sc->vge_ifp;
1309	i = sc->vge_ldata.vge_rx_prodidx;
1310
1311	/* Invalidate the descriptor memory */
1312
1313	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1314	    sc->vge_ldata.vge_rx_list_map,
1315	    BUS_DMASYNC_POSTREAD);
1316
1317	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1318
1319#ifdef DEVICE_POLLING
1320		if (ifp->if_capenable & IFCAP_POLLING) {
1321			if (sc->rxcycles <= 0)
1322				break;
1323			sc->rxcycles--;
1324		}
1325#endif
1326
1327		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1328		m = sc->vge_ldata.vge_rx_mbuf[i];
1329		total_len = VGE_RXBYTES(cur_rx);
1330		rxstat = le32toh(cur_rx->vge_sts);
1331		rxctl = le32toh(cur_rx->vge_ctl);
1332
1333		/* Invalidate the RX mbuf and unload its map */
1334
1335		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1336		    sc->vge_ldata.vge_rx_dmamap[i],
1337		    BUS_DMASYNC_POSTWRITE);
1338		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1339		    sc->vge_ldata.vge_rx_dmamap[i]);
1340
1341		/*
1342		 * If the 'start of frame' bit is set, this indicates
1343		 * either the first fragment in a multi-fragment receive,
1344		 * or an intermediate fragment. Either way, we want to
1345		 * accumulate the buffers.
1346		 */
1347		if (rxstat & VGE_RXPKT_SOF) {
1348			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1349			if (sc->vge_head == NULL)
1350				sc->vge_head = sc->vge_tail = m;
1351			else {
1352				m->m_flags &= ~M_PKTHDR;
1353				sc->vge_tail->m_next = m;
1354				sc->vge_tail = m;
1355			}
1356			vge_newbuf(sc, i, NULL);
1357			VGE_RX_DESC_INC(i);
1358			continue;
1359		}
1360
1361		/*
1362		 * Bad/error frames will have the RXOK bit cleared.
1363		 * However, there's one error case we want to allow:
1364		 * if a VLAN tagged frame arrives and the chip can't
1365		 * match it against the CAM filter, it considers this
1366		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1367		 * We don't want to drop the frame though: our VLAN
1368		 * filtering is done in software.
1369		 */
1370		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1371		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1372			ifp->if_ierrors++;
1373			/*
1374			 * If this is part of a multi-fragment packet,
1375			 * discard all the pieces.
1376			 */
1377			if (sc->vge_head != NULL) {
1378				m_freem(sc->vge_head);
1379				sc->vge_head = sc->vge_tail = NULL;
1380			}
1381			vge_newbuf(sc, i, m);
1382			VGE_RX_DESC_INC(i);
1383			continue;
1384		}
1385
1386		/*
1387		 * If allocating a replacement mbuf fails,
1388		 * reload the current one.
1389		 */
1390
1391		if (vge_newbuf(sc, i, NULL)) {
1392			ifp->if_ierrors++;
1393			if (sc->vge_head != NULL) {
1394				m_freem(sc->vge_head);
1395				sc->vge_head = sc->vge_tail = NULL;
1396			}
1397			vge_newbuf(sc, i, m);
1398			VGE_RX_DESC_INC(i);
1399			continue;
1400		}
1401
1402		VGE_RX_DESC_INC(i);
1403
1404		if (sc->vge_head != NULL) {
1405			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1406			/*
1407			 * Special case: if there's 4 bytes or less
1408			 * in this buffer, the mbuf can be discarded:
1409			 * the last 4 bytes is the CRC, which we don't
1410			 * care about anyway.
1411			 */
1412			if (m->m_len <= ETHER_CRC_LEN) {
1413				sc->vge_tail->m_len -=
1414				    (ETHER_CRC_LEN - m->m_len);
1415				m_freem(m);
1416			} else {
1417				m->m_len -= ETHER_CRC_LEN;
1418				m->m_flags &= ~M_PKTHDR;
1419				sc->vge_tail->m_next = m;
1420			}
1421			m = sc->vge_head;
1422			sc->vge_head = sc->vge_tail = NULL;
1423			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1424		} else
1425			m->m_pkthdr.len = m->m_len =
1426			    (total_len - ETHER_CRC_LEN);
1427
1428#ifdef VGE_FIXUP_RX
1429		vge_fixup_rx(m);
1430#endif
1431		ifp->if_ipackets++;
1432		m->m_pkthdr.rcvif = ifp;
1433
1434		/* Do RX checksumming if enabled */
1435		if (ifp->if_capenable & IFCAP_RXCSUM) {
1436
1437			/* Check IP header checksum */
1438			if (rxctl & VGE_RDCTL_IPPKT)
1439				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1440			if (rxctl & VGE_RDCTL_IPCSUMOK)
1441				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1442
1443			/* Check TCP/UDP checksum */
1444			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1445			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1446				m->m_pkthdr.csum_flags |=
1447				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1448				m->m_pkthdr.csum_data = 0xffff;
1449			}
1450		}
1451
1452		if (rxstat & VGE_RDSTS_VTAG) {
1453			/*
1454			 * The 32-bit rxctl register is stored in little-endian.
1455			 * However, the 16-bit vlan tag is stored in big-endian,
1456			 * so we have to byte swap it.
1457			 */
1458			m->m_pkthdr.ether_vtag =
1459			    bswap16(rxctl & VGE_RDCTL_VLANID);
1460			m->m_flags |= M_VLANTAG;
1461		}
1462
1463		VGE_UNLOCK(sc);
1464		(*ifp->if_input)(ifp, m);
1465		VGE_LOCK(sc);
1466
1467		lim++;
1468		if (lim == VGE_RX_DESC_CNT)
1469			break;
1470
1471	}
1472
1473	/* Flush the RX DMA ring */
1474
1475	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1476	    sc->vge_ldata.vge_rx_list_map,
1477	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1478
1479	sc->vge_ldata.vge_rx_prodidx = i;
1480	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1481
1482
1483	return (lim);
1484}
1485
1486static void
1487vge_txeof(sc)
1488	struct vge_softc		*sc;
1489{
1490	struct ifnet		*ifp;
1491	u_int32_t		txstat;
1492	int			idx;
1493
1494	ifp = sc->vge_ifp;
1495	idx = sc->vge_ldata.vge_tx_considx;
1496
1497	/* Invalidate the TX descriptor list */
1498
1499	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1500	    sc->vge_ldata.vge_tx_list_map,
1501	    BUS_DMASYNC_POSTREAD);
1502
1503	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1504
1505		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1506		if (txstat & VGE_TDSTS_OWN)
1507			break;
1508
1509		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1510		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1511		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1512		    sc->vge_ldata.vge_tx_dmamap[idx]);
1513		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1514			ifp->if_collisions++;
1515		if (txstat & VGE_TDSTS_TXERR)
1516			ifp->if_oerrors++;
1517		else
1518			ifp->if_opackets++;
1519
1520		sc->vge_ldata.vge_tx_free++;
1521		VGE_TX_DESC_INC(idx);
1522	}
1523
1524	/* No changes made to the TX ring, so no flush needed */
1525
1526	if (idx != sc->vge_ldata.vge_tx_considx) {
1527		sc->vge_ldata.vge_tx_considx = idx;
1528		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1529		ifp->if_timer = 0;
1530	}
1531
1532	/*
1533	 * If not all descriptors have been released reaped yet,
1534	 * reload the timer so that we will eventually get another
1535	 * interrupt that will cause us to re-enter this routine.
1536	 * This is done in case the transmitter has gone idle.
1537	 */
1538	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1539		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1540	}
1541
1542	return;
1543}
1544
1545static void
1546vge_tick(xsc)
1547	void			*xsc;
1548{
1549	struct vge_softc	*sc;
1550	struct ifnet		*ifp;
1551	struct mii_data		*mii;
1552
1553	sc = xsc;
1554	ifp = sc->vge_ifp;
1555	VGE_LOCK(sc);
1556	mii = device_get_softc(sc->vge_miibus);
1557
1558	mii_tick(mii);
1559	if (sc->vge_link) {
1560		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1561			sc->vge_link = 0;
1562			if_link_state_change(sc->vge_ifp,
1563			    LINK_STATE_DOWN);
1564		}
1565	} else {
1566		if (mii->mii_media_status & IFM_ACTIVE &&
1567		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1568			sc->vge_link = 1;
1569			if_link_state_change(sc->vge_ifp,
1570			    LINK_STATE_UP);
1571			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1572				taskqueue_enqueue(taskqueue_swi,
1573				    &sc->vge_txtask);
1574		}
1575	}
1576
1577	VGE_UNLOCK(sc);
1578
1579	return;
1580}
1581
1582#ifdef DEVICE_POLLING
1583static int
1584vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1585{
1586	struct vge_softc *sc = ifp->if_softc;
1587	int rx_npkts = 0;
1588
1589	VGE_LOCK(sc);
1590	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1591		goto done;
1592
1593	sc->rxcycles = count;
1594	rx_npkts = vge_rxeof(sc);
1595	vge_txeof(sc);
1596
1597	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1598		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1599
1600	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1601		u_int32_t       status;
1602		status = CSR_READ_4(sc, VGE_ISR);
1603		if (status == 0xFFFFFFFF)
1604			goto done;
1605		if (status)
1606			CSR_WRITE_4(sc, VGE_ISR, status);
1607
1608		/*
1609		 * XXX check behaviour on receiver stalls.
1610		 */
1611
1612		if (status & VGE_ISR_TXDMA_STALL ||
1613		    status & VGE_ISR_RXDMA_STALL)
1614			vge_init(sc);
1615
1616		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1617			vge_rxeof(sc);
1618			ifp->if_ierrors++;
1619			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1620			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1621		}
1622	}
1623done:
1624	VGE_UNLOCK(sc);
1625	return (rx_npkts);
1626}
1627#endif /* DEVICE_POLLING */
1628
1629static void
1630vge_intr(arg)
1631	void			*arg;
1632{
1633	struct vge_softc	*sc;
1634	struct ifnet		*ifp;
1635	u_int32_t		status;
1636
1637	sc = arg;
1638
1639	if (sc->suspended) {
1640		return;
1641	}
1642
1643	VGE_LOCK(sc);
1644	ifp = sc->vge_ifp;
1645
1646	if (!(ifp->if_flags & IFF_UP)) {
1647		VGE_UNLOCK(sc);
1648		return;
1649	}
1650
1651#ifdef DEVICE_POLLING
1652	if  (ifp->if_capenable & IFCAP_POLLING) {
1653		VGE_UNLOCK(sc);
1654		return;
1655	}
1656#endif
1657
1658	/* Disable interrupts */
1659	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1660
1661	for (;;) {
1662
1663		status = CSR_READ_4(sc, VGE_ISR);
1664		/* If the card has gone away the read returns 0xffff. */
1665		if (status == 0xFFFFFFFF)
1666			break;
1667
1668		if (status)
1669			CSR_WRITE_4(sc, VGE_ISR, status);
1670
1671		if ((status & VGE_INTRS) == 0)
1672			break;
1673
1674		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1675			vge_rxeof(sc);
1676
1677		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1678			vge_rxeof(sc);
1679			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1680			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1681		}
1682
1683		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1684			vge_txeof(sc);
1685
1686		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1687			vge_init(sc);
1688
1689		if (status & VGE_ISR_LINKSTS)
1690			vge_tick(sc);
1691	}
1692
1693	/* Re-enable interrupts */
1694	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1695
1696	VGE_UNLOCK(sc);
1697
1698	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1699		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1700
1701	return;
1702}
1703
1704static int
1705vge_encap(sc, m_head, idx)
1706	struct vge_softc	*sc;
1707	struct mbuf		*m_head;
1708	int			idx;
1709{
1710	struct mbuf		*m_new = NULL;
1711	struct vge_dmaload_arg	arg;
1712	bus_dmamap_t		map;
1713	int			error;
1714
1715	if (sc->vge_ldata.vge_tx_free <= 2)
1716		return (EFBIG);
1717
1718	arg.vge_flags = 0;
1719
1720	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1721		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1722	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1723		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1724	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1725		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1726
1727	arg.sc = sc;
1728	arg.vge_idx = idx;
1729	arg.vge_m0 = m_head;
1730	arg.vge_maxsegs = VGE_TX_FRAGS;
1731
1732	map = sc->vge_ldata.vge_tx_dmamap[idx];
1733	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1734	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1735
1736	if (error && error != EFBIG) {
1737		if_printf(sc->vge_ifp, "can't map mbuf (error %d)\n", error);
1738		return (ENOBUFS);
1739	}
1740
1741	/* Too many segments to map, coalesce into a single mbuf */
1742
1743	if (error || arg.vge_maxsegs == 0) {
1744		m_new = m_defrag(m_head, M_DONTWAIT);
1745		if (m_new == NULL)
1746			return (1);
1747		else
1748			m_head = m_new;
1749
1750		arg.sc = sc;
1751		arg.vge_m0 = m_head;
1752		arg.vge_idx = idx;
1753		arg.vge_maxsegs = 1;
1754
1755		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1756		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1757		if (error) {
1758			if_printf(sc->vge_ifp, "can't map mbuf (error %d)\n",
1759			    error);
1760			return (EFBIG);
1761		}
1762	}
1763
1764	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1765	sc->vge_ldata.vge_tx_free--;
1766
1767	/*
1768	 * Set up hardware VLAN tagging.
1769	 */
1770
1771	if (m_head->m_flags & M_VLANTAG)
1772		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1773		    htole32(m_head->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG);
1774
1775	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1776
1777	return (0);
1778}
1779
1780static void
1781vge_tx_task(arg, npending)
1782	void			*arg;
1783	int			npending;
1784{
1785	struct ifnet		*ifp;
1786
1787	ifp = arg;
1788	vge_start(ifp);
1789
1790	return;
1791}
1792
1793/*
1794 * Main transmit routine.
1795 */
1796
1797static void
1798vge_start(ifp)
1799	struct ifnet		*ifp;
1800{
1801	struct vge_softc	*sc;
1802	struct mbuf		*m_head = NULL;
1803	int			idx, pidx = 0;
1804
1805	sc = ifp->if_softc;
1806	VGE_LOCK(sc);
1807
1808	if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
1809		VGE_UNLOCK(sc);
1810		return;
1811	}
1812
1813	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1814		VGE_UNLOCK(sc);
1815		return;
1816	}
1817
1818	idx = sc->vge_ldata.vge_tx_prodidx;
1819
1820	pidx = idx - 1;
1821	if (pidx < 0)
1822		pidx = VGE_TX_DESC_CNT - 1;
1823
1824
1825	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1826		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1827		if (m_head == NULL)
1828			break;
1829
1830		if (vge_encap(sc, m_head, idx)) {
1831			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1832			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1833			break;
1834		}
1835
1836		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1837		    htole16(VGE_TXDESC_Q);
1838
1839		pidx = idx;
1840		VGE_TX_DESC_INC(idx);
1841
1842		/*
1843		 * If there's a BPF listener, bounce a copy of this frame
1844		 * to him.
1845		 */
1846		ETHER_BPF_MTAP(ifp, m_head);
1847	}
1848
1849	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1850		VGE_UNLOCK(sc);
1851		return;
1852	}
1853
1854	/* Flush the TX descriptors */
1855
1856	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1857	    sc->vge_ldata.vge_tx_list_map,
1858	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1859
1860	/* Issue a transmit command. */
1861	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1862
1863	sc->vge_ldata.vge_tx_prodidx = idx;
1864
1865	/*
1866	 * Use the countdown timer for interrupt moderation.
1867	 * 'TX done' interrupts are disabled. Instead, we reset the
1868	 * countdown timer, which will begin counting until it hits
1869	 * the value in the SSTIMER register, and then trigger an
1870	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1871	 * the timer count is reloaded. Only when the transmitter
1872	 * is idle will the timer hit 0 and an interrupt fire.
1873	 */
1874	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1875
1876	VGE_UNLOCK(sc);
1877
1878	/*
1879	 * Set a timeout in case the chip goes out to lunch.
1880	 */
1881	ifp->if_timer = 5;
1882
1883	return;
1884}
1885
1886static void
1887vge_init(xsc)
1888	void			*xsc;
1889{
1890	struct vge_softc	*sc = xsc;
1891	struct ifnet		*ifp = sc->vge_ifp;
1892	struct mii_data		*mii;
1893	int			i;
1894
1895	VGE_LOCK(sc);
1896	mii = device_get_softc(sc->vge_miibus);
1897
1898	/*
1899	 * Cancel pending I/O and free all RX/TX buffers.
1900	 */
1901	vge_stop(sc);
1902	vge_reset(sc);
1903
1904	/*
1905	 * Initialize the RX and TX descriptors and mbufs.
1906	 */
1907
1908	vge_rx_list_init(sc);
1909	vge_tx_list_init(sc);
1910
1911	/* Set our station address */
1912	for (i = 0; i < ETHER_ADDR_LEN; i++)
1913		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
1914
1915	/*
1916	 * Set receive FIFO threshold. Also allow transmission and
1917	 * reception of VLAN tagged frames.
1918	 */
1919	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1920	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1921
1922	/* Set DMA burst length */
1923	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1924	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1925
1926	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1927
1928	/* Set collision backoff algorithm */
1929	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1930	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1931	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1932
1933	/* Disable LPSEL field in priority resolution */
1934	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1935
1936	/*
1937	 * Load the addresses of the DMA queues into the chip.
1938	 * Note that we only use one transmit queue.
1939	 */
1940
1941	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1942	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1943	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1944
1945	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1946	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1947	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1948	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1949
1950	/* Enable and wake up the RX descriptor queue */
1951	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1952	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1953
1954	/* Enable the TX descriptor queue */
1955	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1956
1957	/* Set up the receive filter -- allow large frames for VLANs. */
1958	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1959
1960	/* If we want promiscuous mode, set the allframes bit. */
1961	if (ifp->if_flags & IFF_PROMISC) {
1962		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1963	}
1964
1965	/* Set capture broadcast bit to capture broadcast frames. */
1966	if (ifp->if_flags & IFF_BROADCAST) {
1967		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1968	}
1969
1970	/* Set multicast bit to capture multicast frames. */
1971	if (ifp->if_flags & IFF_MULTICAST) {
1972		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1973	}
1974
1975	/* Init the cam filter. */
1976	vge_cam_clear(sc);
1977
1978	/* Init the multicast filter. */
1979	vge_setmulti(sc);
1980
1981	/* Enable flow control */
1982
1983	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1984
1985	/* Enable jumbo frame reception (if desired) */
1986
1987	/* Start the MAC. */
1988	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1989	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1990	CSR_WRITE_1(sc, VGE_CRS0,
1991	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1992
1993	/*
1994	 * Configure one-shot timer for microsecond
1995	 * resulution and load it for 500 usecs.
1996	 */
1997	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1998	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1999
2000	/*
2001	 * Configure interrupt moderation for receive. Enable
2002	 * the holdoff counter and load it, and set the RX
2003	 * suppression count to the number of descriptors we
2004	 * want to allow before triggering an interrupt.
2005	 * The holdoff timer is in units of 20 usecs.
2006	 */
2007
2008#ifdef notyet
2009	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2010	/* Select the interrupt holdoff timer page. */
2011	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2012	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2013	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2014
2015	/* Enable use of the holdoff timer. */
2016	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2017	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2018
2019	/* Select the RX suppression threshold page. */
2020	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2021	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2022	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2023
2024	/* Restore the page select bits. */
2025	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2026	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2027#endif
2028
2029#ifdef DEVICE_POLLING
2030	/*
2031	 * Disable interrupts if we are polling.
2032	 */
2033	if (ifp->if_capenable & IFCAP_POLLING) {
2034		CSR_WRITE_4(sc, VGE_IMR, 0);
2035		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2036	} else	/* otherwise ... */
2037#endif
2038	{
2039	/*
2040	 * Enable interrupts.
2041	 */
2042		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2043		CSR_WRITE_4(sc, VGE_ISR, 0);
2044		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2045	}
2046
2047	mii_mediachg(mii);
2048
2049	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2050	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2051
2052	sc->vge_if_flags = 0;
2053	sc->vge_link = 0;
2054
2055	VGE_UNLOCK(sc);
2056
2057	return;
2058}
2059
2060/*
2061 * Set media options.
2062 */
2063static int
2064vge_ifmedia_upd(ifp)
2065	struct ifnet		*ifp;
2066{
2067	struct vge_softc	*sc;
2068	struct mii_data		*mii;
2069
2070	sc = ifp->if_softc;
2071	VGE_LOCK(sc);
2072	mii = device_get_softc(sc->vge_miibus);
2073	mii_mediachg(mii);
2074	VGE_UNLOCK(sc);
2075
2076	return (0);
2077}
2078
2079/*
2080 * Report current media status.
2081 */
2082static void
2083vge_ifmedia_sts(ifp, ifmr)
2084	struct ifnet		*ifp;
2085	struct ifmediareq	*ifmr;
2086{
2087	struct vge_softc	*sc;
2088	struct mii_data		*mii;
2089
2090	sc = ifp->if_softc;
2091	mii = device_get_softc(sc->vge_miibus);
2092
2093	mii_pollstat(mii);
2094	ifmr->ifm_active = mii->mii_media_active;
2095	ifmr->ifm_status = mii->mii_media_status;
2096
2097	return;
2098}
2099
2100static void
2101vge_miibus_statchg(dev)
2102	device_t		dev;
2103{
2104	struct vge_softc	*sc;
2105	struct mii_data		*mii;
2106	struct ifmedia_entry	*ife;
2107
2108	sc = device_get_softc(dev);
2109	mii = device_get_softc(sc->vge_miibus);
2110	ife = mii->mii_media.ifm_cur;
2111
2112	/*
2113	 * If the user manually selects a media mode, we need to turn
2114	 * on the forced MAC mode bit in the DIAGCTL register. If the
2115	 * user happens to choose a full duplex mode, we also need to
2116	 * set the 'force full duplex' bit. This applies only to
2117	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2118	 * mode is disabled, and in 1000baseT mode, full duplex is
2119	 * always implied, so we turn on the forced mode bit but leave
2120	 * the FDX bit cleared.
2121	 */
2122
2123	switch (IFM_SUBTYPE(ife->ifm_media)) {
2124	case IFM_AUTO:
2125		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2126		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2127		break;
2128	case IFM_1000_T:
2129		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2130		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2131		break;
2132	case IFM_100_TX:
2133	case IFM_10_T:
2134		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2135		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2136			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2137		} else {
2138			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2139		}
2140		break;
2141	default:
2142		device_printf(dev, "unknown media type: %x\n",
2143		    IFM_SUBTYPE(ife->ifm_media));
2144		break;
2145	}
2146
2147	return;
2148}
2149
2150static int
2151vge_ioctl(ifp, command, data)
2152	struct ifnet		*ifp;
2153	u_long			command;
2154	caddr_t			data;
2155{
2156	struct vge_softc	*sc = ifp->if_softc;
2157	struct ifreq		*ifr = (struct ifreq *) data;
2158	struct mii_data		*mii;
2159	int			error = 0;
2160
2161	switch (command) {
2162	case SIOCSIFMTU:
2163		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2164			error = EINVAL;
2165		ifp->if_mtu = ifr->ifr_mtu;
2166		break;
2167	case SIOCSIFFLAGS:
2168		if (ifp->if_flags & IFF_UP) {
2169			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2170			    ifp->if_flags & IFF_PROMISC &&
2171			    !(sc->vge_if_flags & IFF_PROMISC)) {
2172				CSR_SETBIT_1(sc, VGE_RXCTL,
2173				    VGE_RXCTL_RX_PROMISC);
2174				vge_setmulti(sc);
2175			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2176			    !(ifp->if_flags & IFF_PROMISC) &&
2177			    sc->vge_if_flags & IFF_PROMISC) {
2178				CSR_CLRBIT_1(sc, VGE_RXCTL,
2179				    VGE_RXCTL_RX_PROMISC);
2180				vge_setmulti(sc);
2181                        } else
2182				vge_init(sc);
2183		} else {
2184			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2185				vge_stop(sc);
2186		}
2187		sc->vge_if_flags = ifp->if_flags;
2188		break;
2189	case SIOCADDMULTI:
2190	case SIOCDELMULTI:
2191		vge_setmulti(sc);
2192		break;
2193	case SIOCGIFMEDIA:
2194	case SIOCSIFMEDIA:
2195		mii = device_get_softc(sc->vge_miibus);
2196		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2197		break;
2198	case SIOCSIFCAP:
2199	    {
2200		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2201#ifdef DEVICE_POLLING
2202		if (mask & IFCAP_POLLING) {
2203			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2204				error = ether_poll_register(vge_poll, ifp);
2205				if (error)
2206					return(error);
2207				VGE_LOCK(sc);
2208					/* Disable interrupts */
2209				CSR_WRITE_4(sc, VGE_IMR, 0);
2210				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2211				ifp->if_capenable |= IFCAP_POLLING;
2212				VGE_UNLOCK(sc);
2213			} else {
2214				error = ether_poll_deregister(ifp);
2215				/* Enable interrupts. */
2216				VGE_LOCK(sc);
2217				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2218				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2219				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2220				ifp->if_capenable &= ~IFCAP_POLLING;
2221				VGE_UNLOCK(sc);
2222			}
2223		}
2224#endif /* DEVICE_POLLING */
2225		if ((mask & IFCAP_TXCSUM) != 0 &&
2226		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2227			ifp->if_capenable ^= IFCAP_TXCSUM;
2228			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2229				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2230			else
2231				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2232		}
2233		if ((mask & IFCAP_RXCSUM) != 0 &&
2234		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2235			ifp->if_capenable ^= IFCAP_RXCSUM;
2236	    }
2237		break;
2238	default:
2239		error = ether_ioctl(ifp, command, data);
2240		break;
2241	}
2242
2243	return (error);
2244}
2245
2246static void
2247vge_watchdog(ifp)
2248	struct ifnet		*ifp;
2249{
2250	struct vge_softc		*sc;
2251
2252	sc = ifp->if_softc;
2253	VGE_LOCK(sc);
2254	if_printf(ifp, "watchdog timeout\n");
2255	ifp->if_oerrors++;
2256
2257	vge_txeof(sc);
2258	vge_rxeof(sc);
2259
2260	vge_init(sc);
2261
2262	VGE_UNLOCK(sc);
2263
2264	return;
2265}
2266
2267/*
2268 * Stop the adapter and free any mbufs allocated to the
2269 * RX and TX lists.
2270 */
2271static void
2272vge_stop(sc)
2273	struct vge_softc		*sc;
2274{
2275	register int		i;
2276	struct ifnet		*ifp;
2277
2278	VGE_LOCK(sc);
2279	ifp = sc->vge_ifp;
2280	ifp->if_timer = 0;
2281
2282	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2283
2284	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2285	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2286	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2287	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2288	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2289	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2290
2291	if (sc->vge_head != NULL) {
2292		m_freem(sc->vge_head);
2293		sc->vge_head = sc->vge_tail = NULL;
2294	}
2295
2296	/* Free the TX list buffers. */
2297
2298	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2299		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2300			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2301			    sc->vge_ldata.vge_tx_dmamap[i]);
2302			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2303			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2304		}
2305	}
2306
2307	/* Free the RX list buffers. */
2308
2309	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2310		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2311			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2312			    sc->vge_ldata.vge_rx_dmamap[i]);
2313			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2314			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2315		}
2316	}
2317
2318	VGE_UNLOCK(sc);
2319
2320	return;
2321}
2322
2323/*
2324 * Device suspend routine.  Stop the interface and save some PCI
2325 * settings in case the BIOS doesn't restore them properly on
2326 * resume.
2327 */
2328static int
2329vge_suspend(dev)
2330	device_t		dev;
2331{
2332	struct vge_softc	*sc;
2333
2334	sc = device_get_softc(dev);
2335
2336	vge_stop(sc);
2337
2338	sc->suspended = 1;
2339
2340	return (0);
2341}
2342
2343/*
2344 * Device resume routine.  Restore some PCI settings in case the BIOS
2345 * doesn't, re-enable busmastering, and restart the interface if
2346 * appropriate.
2347 */
2348static int
2349vge_resume(dev)
2350	device_t		dev;
2351{
2352	struct vge_softc	*sc;
2353	struct ifnet		*ifp;
2354
2355	sc = device_get_softc(dev);
2356	ifp = sc->vge_ifp;
2357
2358	/* reenable busmastering */
2359	pci_enable_busmaster(dev);
2360	pci_enable_io(dev, SYS_RES_MEMORY);
2361
2362	/* reinitialize interface if necessary */
2363	if (ifp->if_flags & IFF_UP)
2364		vge_init(sc);
2365
2366	sc->suspended = 0;
2367
2368	return (0);
2369}
2370
2371/*
2372 * Stop all chip I/O so that the kernel's probe routines don't
2373 * get confused by errant DMAs when rebooting.
2374 */
2375static int
2376vge_shutdown(dev)
2377	device_t		dev;
2378{
2379	struct vge_softc		*sc;
2380
2381	sc = device_get_softc(dev);
2382
2383	vge_stop(sc);
2384
2385	return (0);
2386}
2387