if_vge.c revision 164776
1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 164776 2006-11-30 21:01:59Z ru $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96#include <sys/taskqueue.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103#include <net/if_types.h>
104#include <net/if_vlan_var.h>
105
106#include <net/bpf.h>
107
108#include <machine/bus.h>
109#include <machine/resource.h>
110#include <sys/bus.h>
111#include <sys/rman.h>
112
113#include <dev/mii/mii.h>
114#include <dev/mii/miivar.h>
115
116#include <dev/pci/pcireg.h>
117#include <dev/pci/pcivar.h>
118
119MODULE_DEPEND(vge, pci, 1, 1, 1);
120MODULE_DEPEND(vge, ether, 1, 1, 1);
121MODULE_DEPEND(vge, miibus, 1, 1, 1);
122
123/* "device miibus" required.  See GENERIC if you get errors here. */
124#include "miibus_if.h"
125
126#include <dev/vge/if_vgereg.h>
127#include <dev/vge/if_vgevar.h>
128
129#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130
131/*
132 * Various supported device vendors/types and their names.
133 */
134static struct vge_type vge_devs[] = {
135	{ VIA_VENDORID, VIA_DEVICEID_61XX,
136		"VIA Networking Gigabit Ethernet" },
137	{ 0, 0, NULL }
138};
139
140static int vge_probe		(device_t);
141static int vge_attach		(device_t);
142static int vge_detach		(device_t);
143
144static int vge_encap		(struct vge_softc *, struct mbuf *, int);
145
146static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
147static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
148				    bus_size_t, int);
149static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
150				    bus_size_t, int);
151static int vge_allocmem		(device_t, struct vge_softc *);
152static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
153static int vge_rx_list_init	(struct vge_softc *);
154static int vge_tx_list_init	(struct vge_softc *);
155#ifdef VGE_FIXUP_RX
156static __inline void vge_fixup_rx
157				(struct mbuf *);
158#endif
159static void vge_rxeof		(struct vge_softc *);
160static void vge_txeof		(struct vge_softc *);
161static void vge_intr		(void *);
162static void vge_tick		(void *);
163static void vge_tx_task		(void *, int);
164static void vge_start		(struct ifnet *);
165static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
166static void vge_init		(void *);
167static void vge_stop		(struct vge_softc *);
168static void vge_watchdog	(struct ifnet *);
169static int vge_suspend		(device_t);
170static int vge_resume		(device_t);
171static void vge_shutdown	(device_t);
172static int vge_ifmedia_upd	(struct ifnet *);
173static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
174
175#ifdef VGE_EEPROM
176static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
177#endif
178static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
179
180static void vge_miipoll_start	(struct vge_softc *);
181static void vge_miipoll_stop	(struct vge_softc *);
182static int vge_miibus_readreg	(device_t, int, int);
183static int vge_miibus_writereg	(device_t, int, int, int);
184static void vge_miibus_statchg	(device_t);
185
186static void vge_cam_clear	(struct vge_softc *);
187static int vge_cam_set		(struct vge_softc *, uint8_t *);
188static void vge_setmulti	(struct vge_softc *);
189static void vge_reset		(struct vge_softc *);
190
191#define VGE_PCI_LOIO             0x10
192#define VGE_PCI_LOMEM            0x14
193
194static device_method_t vge_methods[] = {
195	/* Device interface */
196	DEVMETHOD(device_probe,		vge_probe),
197	DEVMETHOD(device_attach,	vge_attach),
198	DEVMETHOD(device_detach,	vge_detach),
199	DEVMETHOD(device_suspend,	vge_suspend),
200	DEVMETHOD(device_resume,	vge_resume),
201	DEVMETHOD(device_shutdown,	vge_shutdown),
202
203	/* bus interface */
204	DEVMETHOD(bus_print_child,	bus_generic_print_child),
205	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
206
207	/* MII interface */
208	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
209	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
210	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
211
212	{ 0, 0 }
213};
214
215static driver_t vge_driver = {
216	"vge",
217	vge_methods,
218	sizeof(struct vge_softc)
219};
220
221static devclass_t vge_devclass;
222
223DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
224DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
225DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
226
227#ifdef VGE_EEPROM
228/*
229 * Read a word of data stored in the EEPROM at address 'addr.'
230 */
231static void
232vge_eeprom_getword(sc, addr, dest)
233	struct vge_softc	*sc;
234	int			addr;
235	u_int16_t		*dest;
236{
237	register int		i;
238	u_int16_t		word = 0;
239
240	/*
241	 * Enter EEPROM embedded programming mode. In order to
242	 * access the EEPROM at all, we first have to set the
243	 * EELOAD bit in the CHIPCFG2 register.
244	 */
245	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
246	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
247
248	/* Select the address of the word we want to read */
249	CSR_WRITE_1(sc, VGE_EEADDR, addr);
250
251	/* Issue read command */
252	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
253
254	/* Wait for the done bit to be set. */
255	for (i = 0; i < VGE_TIMEOUT; i++) {
256		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
257			break;
258	}
259
260	if (i == VGE_TIMEOUT) {
261		device_printf(sc->vge_dev, "EEPROM read timed out\n");
262		*dest = 0;
263		return;
264	}
265
266	/* Read the result */
267	word = CSR_READ_2(sc, VGE_EERDDAT);
268
269	/* Turn off EEPROM access mode. */
270	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
271	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
272
273	*dest = word;
274
275	return;
276}
277#endif
278
279/*
280 * Read a sequence of words from the EEPROM.
281 */
282static void
283vge_read_eeprom(sc, dest, off, cnt, swap)
284	struct vge_softc	*sc;
285	caddr_t			dest;
286	int			off;
287	int			cnt;
288	int			swap;
289{
290	int			i;
291#ifdef VGE_EEPROM
292	u_int16_t		word = 0, *ptr;
293
294	for (i = 0; i < cnt; i++) {
295		vge_eeprom_getword(sc, off + i, &word);
296		ptr = (u_int16_t *)(dest + (i * 2));
297		if (swap)
298			*ptr = ntohs(word);
299		else
300			*ptr = word;
301	}
302#else
303	for (i = 0; i < ETHER_ADDR_LEN; i++)
304		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
305#endif
306}
307
308static void
309vge_miipoll_stop(sc)
310	struct vge_softc	*sc;
311{
312	int			i;
313
314	CSR_WRITE_1(sc, VGE_MIICMD, 0);
315
316	for (i = 0; i < VGE_TIMEOUT; i++) {
317		DELAY(1);
318		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
319			break;
320	}
321
322	if (i == VGE_TIMEOUT)
323		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
324
325	return;
326}
327
328static void
329vge_miipoll_start(sc)
330	struct vge_softc	*sc;
331{
332	int			i;
333
334	/* First, make sure we're idle. */
335
336	CSR_WRITE_1(sc, VGE_MIICMD, 0);
337	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
338
339	for (i = 0; i < VGE_TIMEOUT; i++) {
340		DELAY(1);
341		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
342			break;
343	}
344
345	if (i == VGE_TIMEOUT) {
346		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
347		return;
348	}
349
350	/* Now enable auto poll mode. */
351
352	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
353
354	/* And make sure it started. */
355
356	for (i = 0; i < VGE_TIMEOUT; i++) {
357		DELAY(1);
358		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
359			break;
360	}
361
362	if (i == VGE_TIMEOUT)
363		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
364
365	return;
366}
367
368static int
369vge_miibus_readreg(dev, phy, reg)
370	device_t		dev;
371	int			phy, reg;
372{
373	struct vge_softc	*sc;
374	int			i;
375	u_int16_t		rval = 0;
376
377	sc = device_get_softc(dev);
378
379	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
380		return(0);
381
382	VGE_LOCK(sc);
383	vge_miipoll_stop(sc);
384
385	/* Specify the register we want to read. */
386	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
387
388	/* Issue read command. */
389	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
390
391	/* Wait for the read command bit to self-clear. */
392	for (i = 0; i < VGE_TIMEOUT; i++) {
393		DELAY(1);
394		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
395			break;
396	}
397
398	if (i == VGE_TIMEOUT)
399		device_printf(sc->vge_dev, "MII read timed out\n");
400	else
401		rval = CSR_READ_2(sc, VGE_MIIDATA);
402
403	vge_miipoll_start(sc);
404	VGE_UNLOCK(sc);
405
406	return (rval);
407}
408
409static int
410vge_miibus_writereg(dev, phy, reg, data)
411	device_t		dev;
412	int			phy, reg, data;
413{
414	struct vge_softc	*sc;
415	int			i, rval = 0;
416
417	sc = device_get_softc(dev);
418
419	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
420		return(0);
421
422	VGE_LOCK(sc);
423	vge_miipoll_stop(sc);
424
425	/* Specify the register we want to write. */
426	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
427
428	/* Specify the data we want to write. */
429	CSR_WRITE_2(sc, VGE_MIIDATA, data);
430
431	/* Issue write command. */
432	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
433
434	/* Wait for the write command bit to self-clear. */
435	for (i = 0; i < VGE_TIMEOUT; i++) {
436		DELAY(1);
437		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
438			break;
439	}
440
441	if (i == VGE_TIMEOUT) {
442		device_printf(sc->vge_dev, "MII write timed out\n");
443		rval = EIO;
444	}
445
446	vge_miipoll_start(sc);
447	VGE_UNLOCK(sc);
448
449	return (rval);
450}
451
452static void
453vge_cam_clear(sc)
454	struct vge_softc	*sc;
455{
456	int			i;
457
458	/*
459	 * Turn off all the mask bits. This tells the chip
460	 * that none of the entries in the CAM filter are valid.
461	 * desired entries will be enabled as we fill the filter in.
462	 */
463
464	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
465	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
466	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
467	for (i = 0; i < 8; i++)
468		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
469
470	/* Clear the VLAN filter too. */
471
472	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
473	for (i = 0; i < 8; i++)
474		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
475
476	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
477	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
478	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
479
480	sc->vge_camidx = 0;
481
482	return;
483}
484
485static int
486vge_cam_set(sc, addr)
487	struct vge_softc	*sc;
488	uint8_t			*addr;
489{
490	int			i, error = 0;
491
492	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
493		return(ENOSPC);
494
495	/* Select the CAM data page. */
496	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
497	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
498
499	/* Set the filter entry we want to update and enable writing. */
500	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
501
502	/* Write the address to the CAM registers */
503	for (i = 0; i < ETHER_ADDR_LEN; i++)
504		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
505
506	/* Issue a write command. */
507	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
508
509	/* Wake for it to clear. */
510	for (i = 0; i < VGE_TIMEOUT; i++) {
511		DELAY(1);
512		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
513			break;
514	}
515
516	if (i == VGE_TIMEOUT) {
517		device_printf(sc->vge_dev, "setting CAM filter failed\n");
518		error = EIO;
519		goto fail;
520	}
521
522	/* Select the CAM mask page. */
523	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
524	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
525
526	/* Set the mask bit that enables this filter. */
527	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
528	    1<<(sc->vge_camidx & 7));
529
530	sc->vge_camidx++;
531
532fail:
533	/* Turn off access to CAM. */
534	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
535	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
536	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
537
538	return (error);
539}
540
541/*
542 * Program the multicast filter. We use the 64-entry CAM filter
543 * for perfect filtering. If there's more than 64 multicast addresses,
544 * we use the hash filter insted.
545 */
546static void
547vge_setmulti(sc)
548	struct vge_softc	*sc;
549{
550	struct ifnet		*ifp;
551	int			error = 0/*, h = 0*/;
552	struct ifmultiaddr	*ifma;
553	u_int32_t		h, hashes[2] = { 0, 0 };
554
555	ifp = sc->vge_ifp;
556
557	/* First, zot all the multicast entries. */
558	vge_cam_clear(sc);
559	CSR_WRITE_4(sc, VGE_MAR0, 0);
560	CSR_WRITE_4(sc, VGE_MAR1, 0);
561
562	/*
563	 * If the user wants allmulti or promisc mode, enable reception
564	 * of all multicast frames.
565	 */
566	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
567		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
568		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
569		return;
570	}
571
572	/* Now program new ones */
573	IF_ADDR_LOCK(ifp);
574	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
575		if (ifma->ifma_addr->sa_family != AF_LINK)
576			continue;
577		error = vge_cam_set(sc,
578		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
579		if (error)
580			break;
581	}
582
583	/* If there were too many addresses, use the hash filter. */
584	if (error) {
585		vge_cam_clear(sc);
586
587		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
588			if (ifma->ifma_addr->sa_family != AF_LINK)
589				continue;
590			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
591			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
592			if (h < 32)
593				hashes[0] |= (1 << h);
594			else
595				hashes[1] |= (1 << (h - 32));
596		}
597
598		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
599		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
600	}
601	IF_ADDR_UNLOCK(ifp);
602
603	return;
604}
605
606static void
607vge_reset(sc)
608	struct vge_softc		*sc;
609{
610	register int		i;
611
612	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
613
614	for (i = 0; i < VGE_TIMEOUT; i++) {
615		DELAY(5);
616		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
617			break;
618	}
619
620	if (i == VGE_TIMEOUT) {
621		device_printf(sc->vge_dev, "soft reset timed out");
622		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
623		DELAY(2000);
624	}
625
626	DELAY(5000);
627
628	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
629
630	for (i = 0; i < VGE_TIMEOUT; i++) {
631		DELAY(5);
632		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
633			break;
634	}
635
636	if (i == VGE_TIMEOUT) {
637		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
638		return;
639	}
640
641	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
642
643	return;
644}
645
646/*
647 * Probe for a VIA gigabit chip. Check the PCI vendor and device
648 * IDs against our list and return a device name if we find a match.
649 */
650static int
651vge_probe(dev)
652	device_t		dev;
653{
654	struct vge_type		*t;
655	struct vge_softc	*sc;
656
657	t = vge_devs;
658	sc = device_get_softc(dev);
659
660	while (t->vge_name != NULL) {
661		if ((pci_get_vendor(dev) == t->vge_vid) &&
662		    (pci_get_device(dev) == t->vge_did)) {
663			device_set_desc(dev, t->vge_name);
664			return (BUS_PROBE_DEFAULT);
665		}
666		t++;
667	}
668
669	return (ENXIO);
670}
671
672static void
673vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
674	void			*arg;
675	bus_dma_segment_t	*segs;
676	int			nseg;
677	bus_size_t		mapsize;
678	int			error;
679{
680
681	struct vge_dmaload_arg	*ctx;
682	struct vge_rx_desc	*d = NULL;
683
684	if (error)
685		return;
686
687	ctx = arg;
688
689	/* Signal error to caller if there's too many segments */
690	if (nseg > ctx->vge_maxsegs) {
691		ctx->vge_maxsegs = 0;
692		return;
693	}
694
695	/*
696	 * Map the segment array into descriptors.
697	 */
698
699	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
700
701	/* If this descriptor is still owned by the chip, bail. */
702
703	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
704		device_printf(ctx->sc->vge_dev,
705		    "tried to map busy descriptor\n");
706		ctx->vge_maxsegs = 0;
707		return;
708	}
709
710	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
711	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
712	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
713	d->vge_sts = 0;
714	d->vge_ctl = 0;
715
716	ctx->vge_maxsegs = 1;
717
718	return;
719}
720
721static void
722vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
723	void			*arg;
724	bus_dma_segment_t	*segs;
725	int			nseg;
726	bus_size_t		mapsize;
727	int			error;
728{
729	struct vge_dmaload_arg	*ctx;
730	struct vge_tx_desc	*d = NULL;
731	struct vge_tx_frag	*f;
732	int			i = 0;
733
734	if (error)
735		return;
736
737	ctx = arg;
738
739	/* Signal error to caller if there's too many segments */
740	if (nseg > ctx->vge_maxsegs) {
741		ctx->vge_maxsegs = 0;
742		return;
743	}
744
745	/* Map the segment array into descriptors. */
746
747	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
748
749	/* If this descriptor is still owned by the chip, bail. */
750
751	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
752		ctx->vge_maxsegs = 0;
753		return;
754	}
755
756	for (i = 0; i < nseg; i++) {
757		f = &d->vge_frag[i];
758		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
759		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
760		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
761	}
762
763	/* Argh. This chip does not autopad short frames */
764
765	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
766		f = &d->vge_frag[i];
767		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
768		    ctx->vge_m0->m_pkthdr.len));
769		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
770		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
771		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
772		i++;
773	}
774
775	/*
776	 * When telling the chip how many segments there are, we
777	 * must use nsegs + 1 instead of just nsegs. Darned if I
778	 * know why.
779	 */
780	i++;
781
782	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
783	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
784
785	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
786		d->vge_ctl |= VGE_TDCTL_JUMBO;
787
788	ctx->vge_maxsegs = nseg;
789
790	return;
791}
792
793/*
794 * Map a single buffer address.
795 */
796
797static void
798vge_dma_map_addr(arg, segs, nseg, error)
799	void			*arg;
800	bus_dma_segment_t	*segs;
801	int			nseg;
802	int			error;
803{
804	bus_addr_t		*addr;
805
806	if (error)
807		return;
808
809	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
810	addr = arg;
811	*addr = segs->ds_addr;
812
813	return;
814}
815
816static int
817vge_allocmem(dev, sc)
818	device_t		dev;
819	struct vge_softc		*sc;
820{
821	int			error;
822	int			nseg;
823	int			i;
824
825	/*
826	 * Allocate map for RX mbufs.
827	 */
828	nseg = 32;
829	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
830	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
831	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
832	    NULL, NULL, &sc->vge_ldata.vge_mtag);
833	if (error) {
834		device_printf(dev, "could not allocate dma tag\n");
835		return (ENOMEM);
836	}
837
838	/*
839	 * Allocate map for TX descriptor list.
840	 */
841	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
842	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
843	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
844	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
845	if (error) {
846		device_printf(dev, "could not allocate dma tag\n");
847		return (ENOMEM);
848	}
849
850	/* Allocate DMA'able memory for the TX ring */
851
852	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
853	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
854	    &sc->vge_ldata.vge_tx_list_map);
855	if (error)
856		return (ENOMEM);
857
858	/* Load the map for the TX ring. */
859
860	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
861	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
862	     VGE_TX_LIST_SZ, vge_dma_map_addr,
863	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
864
865	/* Create DMA maps for TX buffers */
866
867	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
868		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
869			    &sc->vge_ldata.vge_tx_dmamap[i]);
870		if (error) {
871			device_printf(dev, "can't create DMA map for TX\n");
872			return (ENOMEM);
873		}
874	}
875
876	/*
877	 * Allocate map for RX descriptor list.
878	 */
879	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
880	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
881	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
882	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
883	if (error) {
884		device_printf(dev, "could not allocate dma tag\n");
885		return (ENOMEM);
886	}
887
888	/* Allocate DMA'able memory for the RX ring */
889
890	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
891	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
892	    &sc->vge_ldata.vge_rx_list_map);
893	if (error)
894		return (ENOMEM);
895
896	/* Load the map for the RX ring. */
897
898	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
899	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
900	     VGE_TX_LIST_SZ, vge_dma_map_addr,
901	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
902
903	/* Create DMA maps for RX buffers */
904
905	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
906		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
907			    &sc->vge_ldata.vge_rx_dmamap[i]);
908		if (error) {
909			device_printf(dev, "can't create DMA map for RX\n");
910			return (ENOMEM);
911		}
912	}
913
914	return (0);
915}
916
917/*
918 * Attach the interface. Allocate softc structures, do ifmedia
919 * setup and ethernet/BPF attach.
920 */
921static int
922vge_attach(dev)
923	device_t		dev;
924{
925	u_char			eaddr[ETHER_ADDR_LEN];
926	struct vge_softc	*sc;
927	struct ifnet		*ifp;
928	int			unit, error = 0, rid;
929
930	sc = device_get_softc(dev);
931	unit = device_get_unit(dev);
932	sc->vge_dev = dev;
933
934	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
935	    MTX_DEF | MTX_RECURSE);
936	/*
937	 * Map control/status registers.
938	 */
939	pci_enable_busmaster(dev);
940
941	rid = VGE_PCI_LOMEM;
942	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
943	    0, ~0, 1, RF_ACTIVE);
944
945	if (sc->vge_res == NULL) {
946		printf ("vge%d: couldn't map ports/memory\n", unit);
947		error = ENXIO;
948		goto fail;
949	}
950
951	sc->vge_btag = rman_get_bustag(sc->vge_res);
952	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
953
954	/* Allocate interrupt */
955	rid = 0;
956	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
957	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
958
959	if (sc->vge_irq == NULL) {
960		printf("vge%d: couldn't map interrupt\n", unit);
961		error = ENXIO;
962		goto fail;
963	}
964
965	/* Reset the adapter. */
966	vge_reset(sc);
967
968	/*
969	 * Get station address from the EEPROM.
970	 */
971	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
972
973	sc->vge_unit = unit;
974
975	/*
976	 * Allocate the parent bus DMA tag appropriate for PCI.
977	 */
978#define VGE_NSEG_NEW 32
979	error = bus_dma_tag_create(NULL,	/* parent */
980			1, 0,			/* alignment, boundary */
981			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
982			BUS_SPACE_MAXADDR,	/* highaddr */
983			NULL, NULL,		/* filter, filterarg */
984			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
985			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
986			BUS_DMA_ALLOCNOW,	/* flags */
987			NULL, NULL,		/* lockfunc, lockarg */
988			&sc->vge_parent_tag);
989	if (error)
990		goto fail;
991
992	error = vge_allocmem(dev, sc);
993
994	if (error)
995		goto fail;
996
997	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
998	if (ifp == NULL) {
999		printf("vge%d: can not if_alloc()\n", sc->vge_unit);
1000		error = ENOSPC;
1001		goto fail;
1002	}
1003
1004	/* Do MII setup */
1005	if (mii_phy_probe(dev, &sc->vge_miibus,
1006	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1007		printf("vge%d: MII without any phy!\n", sc->vge_unit);
1008		error = ENXIO;
1009		goto fail;
1010	}
1011
1012	ifp->if_softc = sc;
1013	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1014	ifp->if_mtu = ETHERMTU;
1015	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1016	ifp->if_ioctl = vge_ioctl;
1017	ifp->if_capabilities = IFCAP_VLAN_MTU;
1018	ifp->if_start = vge_start;
1019	ifp->if_hwassist = VGE_CSUM_FEATURES;
1020	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1021	ifp->if_capenable = ifp->if_capabilities;
1022#ifdef DEVICE_POLLING
1023	ifp->if_capabilities |= IFCAP_POLLING;
1024#endif
1025	ifp->if_watchdog = vge_watchdog;
1026	ifp->if_init = vge_init;
1027	ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN;
1028
1029	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1030
1031	/*
1032	 * Call MI attach routine.
1033	 */
1034	ether_ifattach(ifp, eaddr);
1035
1036	/* Hook interrupt last to avoid having to lock softc */
1037	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1038	    vge_intr, sc, &sc->vge_intrhand);
1039
1040	if (error) {
1041		printf("vge%d: couldn't set up irq\n", unit);
1042		ether_ifdetach(ifp);
1043		goto fail;
1044	}
1045
1046fail:
1047	if (error)
1048		vge_detach(dev);
1049
1050	return (error);
1051}
1052
1053/*
1054 * Shutdown hardware and free up resources. This can be called any
1055 * time after the mutex has been initialized. It is called in both
1056 * the error case in attach and the normal detach case so it needs
1057 * to be careful about only freeing resources that have actually been
1058 * allocated.
1059 */
1060static int
1061vge_detach(dev)
1062	device_t		dev;
1063{
1064	struct vge_softc		*sc;
1065	struct ifnet		*ifp;
1066	int			i;
1067
1068	sc = device_get_softc(dev);
1069	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1070	ifp = sc->vge_ifp;
1071
1072#ifdef DEVICE_POLLING
1073	if (ifp->if_capenable & IFCAP_POLLING)
1074		ether_poll_deregister(ifp);
1075#endif
1076
1077	/* These should only be active if attach succeeded */
1078	if (device_is_attached(dev)) {
1079		vge_stop(sc);
1080		/*
1081		 * Force off the IFF_UP flag here, in case someone
1082		 * still had a BPF descriptor attached to this
1083		 * interface. If they do, ether_ifattach() will cause
1084		 * the BPF code to try and clear the promisc mode
1085		 * flag, which will bubble down to vge_ioctl(),
1086		 * which will try to call vge_init() again. This will
1087		 * turn the NIC back on and restart the MII ticker,
1088		 * which will panic the system when the kernel tries
1089		 * to invoke the vge_tick() function that isn't there
1090		 * anymore.
1091		 */
1092		ifp->if_flags &= ~IFF_UP;
1093		ether_ifdetach(ifp);
1094	}
1095	if (sc->vge_miibus)
1096		device_delete_child(dev, sc->vge_miibus);
1097	bus_generic_detach(dev);
1098
1099	if (sc->vge_intrhand)
1100		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1101	if (sc->vge_irq)
1102		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1103	if (sc->vge_res)
1104		bus_release_resource(dev, SYS_RES_MEMORY,
1105		    VGE_PCI_LOMEM, sc->vge_res);
1106	if (ifp)
1107		if_free(ifp);
1108
1109	/* Unload and free the RX DMA ring memory and map */
1110
1111	if (sc->vge_ldata.vge_rx_list_tag) {
1112		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1113		    sc->vge_ldata.vge_rx_list_map);
1114		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1115		    sc->vge_ldata.vge_rx_list,
1116		    sc->vge_ldata.vge_rx_list_map);
1117		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1118	}
1119
1120	/* Unload and free the TX DMA ring memory and map */
1121
1122	if (sc->vge_ldata.vge_tx_list_tag) {
1123		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1124		    sc->vge_ldata.vge_tx_list_map);
1125		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1126		    sc->vge_ldata.vge_tx_list,
1127		    sc->vge_ldata.vge_tx_list_map);
1128		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1129	}
1130
1131	/* Destroy all the RX and TX buffer maps */
1132
1133	if (sc->vge_ldata.vge_mtag) {
1134		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1135			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1136			    sc->vge_ldata.vge_tx_dmamap[i]);
1137		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1138			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1139			    sc->vge_ldata.vge_rx_dmamap[i]);
1140		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1141	}
1142
1143	if (sc->vge_parent_tag)
1144		bus_dma_tag_destroy(sc->vge_parent_tag);
1145
1146	mtx_destroy(&sc->vge_mtx);
1147
1148	return (0);
1149}
1150
1151static int
1152vge_newbuf(sc, idx, m)
1153	struct vge_softc	*sc;
1154	int			idx;
1155	struct mbuf		*m;
1156{
1157	struct vge_dmaload_arg	arg;
1158	struct mbuf		*n = NULL;
1159	int			i, error;
1160
1161	if (m == NULL) {
1162		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1163		if (n == NULL)
1164			return (ENOBUFS);
1165		m = n;
1166	} else
1167		m->m_data = m->m_ext.ext_buf;
1168
1169
1170#ifdef VGE_FIXUP_RX
1171	/*
1172	 * This is part of an evil trick to deal with non-x86 platforms.
1173	 * The VIA chip requires RX buffers to be aligned on 32-bit
1174	 * boundaries, but that will hose non-x86 machines. To get around
1175	 * this, we leave some empty space at the start of each buffer
1176	 * and for non-x86 hosts, we copy the buffer back two bytes
1177	 * to achieve word alignment. This is slightly more efficient
1178	 * than allocating a new buffer, copying the contents, and
1179	 * discarding the old buffer.
1180	 */
1181	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1182	m_adj(m, VGE_ETHER_ALIGN);
1183#else
1184	m->m_len = m->m_pkthdr.len = MCLBYTES;
1185#endif
1186
1187	arg.sc = sc;
1188	arg.vge_idx = idx;
1189	arg.vge_maxsegs = 1;
1190	arg.vge_flags = 0;
1191
1192	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1193	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1194	    &arg, BUS_DMA_NOWAIT);
1195	if (error || arg.vge_maxsegs != 1) {
1196		if (n != NULL)
1197			m_freem(n);
1198		return (ENOMEM);
1199	}
1200
1201	/*
1202	 * Note: the manual fails to document the fact that for
1203	 * proper opration, the driver needs to replentish the RX
1204	 * DMA ring 4 descriptors at a time (rather than one at a
1205	 * time, like most chips). We can allocate the new buffers
1206	 * but we should not set the OWN bits until we're ready
1207	 * to hand back 4 of them in one shot.
1208	 */
1209
1210#define VGE_RXCHUNK 4
1211	sc->vge_rx_consumed++;
1212	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1213		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1214			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1215			    htole32(VGE_RDSTS_OWN);
1216		sc->vge_rx_consumed = 0;
1217	}
1218
1219	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1220
1221	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1222	    sc->vge_ldata.vge_rx_dmamap[idx],
1223	    BUS_DMASYNC_PREREAD);
1224
1225	return (0);
1226}
1227
1228static int
1229vge_tx_list_init(sc)
1230	struct vge_softc		*sc;
1231{
1232	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1233	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1234	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1235
1236	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1237	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1238	sc->vge_ldata.vge_tx_prodidx = 0;
1239	sc->vge_ldata.vge_tx_considx = 0;
1240	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1241
1242	return (0);
1243}
1244
1245static int
1246vge_rx_list_init(sc)
1247	struct vge_softc		*sc;
1248{
1249	int			i;
1250
1251	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1252	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1253	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1254
1255	sc->vge_rx_consumed = 0;
1256
1257	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1258		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1259			return (ENOBUFS);
1260	}
1261
1262	/* Flush the RX descriptors */
1263
1264	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1265	    sc->vge_ldata.vge_rx_list_map,
1266	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1267
1268	sc->vge_ldata.vge_rx_prodidx = 0;
1269	sc->vge_rx_consumed = 0;
1270	sc->vge_head = sc->vge_tail = NULL;
1271
1272	return (0);
1273}
1274
1275#ifdef VGE_FIXUP_RX
1276static __inline void
1277vge_fixup_rx(m)
1278	struct mbuf		*m;
1279{
1280	int			i;
1281	uint16_t		*src, *dst;
1282
1283	src = mtod(m, uint16_t *);
1284	dst = src - 1;
1285
1286	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1287		*dst++ = *src++;
1288
1289	m->m_data -= ETHER_ALIGN;
1290
1291	return;
1292}
1293#endif
1294
1295/*
1296 * RX handler. We support the reception of jumbo frames that have
1297 * been fragmented across multiple 2K mbuf cluster buffers.
1298 */
1299static void
1300vge_rxeof(sc)
1301	struct vge_softc	*sc;
1302{
1303	struct mbuf		*m;
1304	struct ifnet		*ifp;
1305	int			i, total_len;
1306	int			lim = 0;
1307	struct vge_rx_desc	*cur_rx;
1308	u_int32_t		rxstat, rxctl;
1309
1310	VGE_LOCK_ASSERT(sc);
1311	ifp = sc->vge_ifp;
1312	i = sc->vge_ldata.vge_rx_prodidx;
1313
1314	/* Invalidate the descriptor memory */
1315
1316	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1317	    sc->vge_ldata.vge_rx_list_map,
1318	    BUS_DMASYNC_POSTREAD);
1319
1320	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1321
1322#ifdef DEVICE_POLLING
1323		if (ifp->if_capenable & IFCAP_POLLING) {
1324			if (sc->rxcycles <= 0)
1325				break;
1326			sc->rxcycles--;
1327		}
1328#endif
1329
1330		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1331		m = sc->vge_ldata.vge_rx_mbuf[i];
1332		total_len = VGE_RXBYTES(cur_rx);
1333		rxstat = le32toh(cur_rx->vge_sts);
1334		rxctl = le32toh(cur_rx->vge_ctl);
1335
1336		/* Invalidate the RX mbuf and unload its map */
1337
1338		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1339		    sc->vge_ldata.vge_rx_dmamap[i],
1340		    BUS_DMASYNC_POSTWRITE);
1341		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1342		    sc->vge_ldata.vge_rx_dmamap[i]);
1343
1344		/*
1345		 * If the 'start of frame' bit is set, this indicates
1346		 * either the first fragment in a multi-fragment receive,
1347		 * or an intermediate fragment. Either way, we want to
1348		 * accumulate the buffers.
1349		 */
1350		if (rxstat & VGE_RXPKT_SOF) {
1351			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1352			if (sc->vge_head == NULL)
1353				sc->vge_head = sc->vge_tail = m;
1354			else {
1355				m->m_flags &= ~M_PKTHDR;
1356				sc->vge_tail->m_next = m;
1357				sc->vge_tail = m;
1358			}
1359			vge_newbuf(sc, i, NULL);
1360			VGE_RX_DESC_INC(i);
1361			continue;
1362		}
1363
1364		/*
1365		 * Bad/error frames will have the RXOK bit cleared.
1366		 * However, there's one error case we want to allow:
1367		 * if a VLAN tagged frame arrives and the chip can't
1368		 * match it against the CAM filter, it considers this
1369		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1370		 * We don't want to drop the frame though: our VLAN
1371		 * filtering is done in software.
1372		 */
1373		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1374		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1375			ifp->if_ierrors++;
1376			/*
1377			 * If this is part of a multi-fragment packet,
1378			 * discard all the pieces.
1379			 */
1380			if (sc->vge_head != NULL) {
1381				m_freem(sc->vge_head);
1382				sc->vge_head = sc->vge_tail = NULL;
1383			}
1384			vge_newbuf(sc, i, m);
1385			VGE_RX_DESC_INC(i);
1386			continue;
1387		}
1388
1389		/*
1390		 * If allocating a replacement mbuf fails,
1391		 * reload the current one.
1392		 */
1393
1394		if (vge_newbuf(sc, i, NULL)) {
1395			ifp->if_ierrors++;
1396			if (sc->vge_head != NULL) {
1397				m_freem(sc->vge_head);
1398				sc->vge_head = sc->vge_tail = NULL;
1399			}
1400			vge_newbuf(sc, i, m);
1401			VGE_RX_DESC_INC(i);
1402			continue;
1403		}
1404
1405		VGE_RX_DESC_INC(i);
1406
1407		if (sc->vge_head != NULL) {
1408			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1409			/*
1410			 * Special case: if there's 4 bytes or less
1411			 * in this buffer, the mbuf can be discarded:
1412			 * the last 4 bytes is the CRC, which we don't
1413			 * care about anyway.
1414			 */
1415			if (m->m_len <= ETHER_CRC_LEN) {
1416				sc->vge_tail->m_len -=
1417				    (ETHER_CRC_LEN - m->m_len);
1418				m_freem(m);
1419			} else {
1420				m->m_len -= ETHER_CRC_LEN;
1421				m->m_flags &= ~M_PKTHDR;
1422				sc->vge_tail->m_next = m;
1423			}
1424			m = sc->vge_head;
1425			sc->vge_head = sc->vge_tail = NULL;
1426			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1427		} else
1428			m->m_pkthdr.len = m->m_len =
1429			    (total_len - ETHER_CRC_LEN);
1430
1431#ifdef VGE_FIXUP_RX
1432		vge_fixup_rx(m);
1433#endif
1434		ifp->if_ipackets++;
1435		m->m_pkthdr.rcvif = ifp;
1436
1437		/* Do RX checksumming if enabled */
1438		if (ifp->if_capenable & IFCAP_RXCSUM) {
1439
1440			/* Check IP header checksum */
1441			if (rxctl & VGE_RDCTL_IPPKT)
1442				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1443			if (rxctl & VGE_RDCTL_IPCSUMOK)
1444				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1445
1446			/* Check TCP/UDP checksum */
1447			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1448			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1449				m->m_pkthdr.csum_flags |=
1450				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1451				m->m_pkthdr.csum_data = 0xffff;
1452			}
1453		}
1454
1455		if (rxstat & VGE_RDSTS_VTAG) {
1456			/*
1457			 * The 32-bit rxctl register is stored in little-endian.
1458			 * However, the 16-bit vlan tag is stored in big-endian,
1459			 * so we have to byte swap it.
1460			 */
1461			m->m_pkthdr.ether_vtag =
1462			    bswap16(rxctl & VGE_RDCTL_VLANID);
1463			m->m_flags |= M_VLANTAG;
1464		}
1465
1466		VGE_UNLOCK(sc);
1467		(*ifp->if_input)(ifp, m);
1468		VGE_LOCK(sc);
1469
1470		lim++;
1471		if (lim == VGE_RX_DESC_CNT)
1472			break;
1473
1474	}
1475
1476	/* Flush the RX DMA ring */
1477
1478	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1479	    sc->vge_ldata.vge_rx_list_map,
1480	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1481
1482	sc->vge_ldata.vge_rx_prodidx = i;
1483	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1484
1485
1486	return;
1487}
1488
1489static void
1490vge_txeof(sc)
1491	struct vge_softc		*sc;
1492{
1493	struct ifnet		*ifp;
1494	u_int32_t		txstat;
1495	int			idx;
1496
1497	ifp = sc->vge_ifp;
1498	idx = sc->vge_ldata.vge_tx_considx;
1499
1500	/* Invalidate the TX descriptor list */
1501
1502	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1503	    sc->vge_ldata.vge_tx_list_map,
1504	    BUS_DMASYNC_POSTREAD);
1505
1506	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1507
1508		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1509		if (txstat & VGE_TDSTS_OWN)
1510			break;
1511
1512		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1513		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1514		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1515		    sc->vge_ldata.vge_tx_dmamap[idx]);
1516		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1517			ifp->if_collisions++;
1518		if (txstat & VGE_TDSTS_TXERR)
1519			ifp->if_oerrors++;
1520		else
1521			ifp->if_opackets++;
1522
1523		sc->vge_ldata.vge_tx_free++;
1524		VGE_TX_DESC_INC(idx);
1525	}
1526
1527	/* No changes made to the TX ring, so no flush needed */
1528
1529	if (idx != sc->vge_ldata.vge_tx_considx) {
1530		sc->vge_ldata.vge_tx_considx = idx;
1531		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1532		ifp->if_timer = 0;
1533	}
1534
1535	/*
1536	 * If not all descriptors have been released reaped yet,
1537	 * reload the timer so that we will eventually get another
1538	 * interrupt that will cause us to re-enter this routine.
1539	 * This is done in case the transmitter has gone idle.
1540	 */
1541	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1542		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1543	}
1544
1545	return;
1546}
1547
1548static void
1549vge_tick(xsc)
1550	void			*xsc;
1551{
1552	struct vge_softc	*sc;
1553	struct ifnet		*ifp;
1554	struct mii_data		*mii;
1555
1556	sc = xsc;
1557	ifp = sc->vge_ifp;
1558	VGE_LOCK(sc);
1559	mii = device_get_softc(sc->vge_miibus);
1560
1561	mii_tick(mii);
1562	if (sc->vge_link) {
1563		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1564			sc->vge_link = 0;
1565			if_link_state_change(sc->vge_ifp,
1566			    LINK_STATE_DOWN);
1567		}
1568	} else {
1569		if (mii->mii_media_status & IFM_ACTIVE &&
1570		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1571			sc->vge_link = 1;
1572			if_link_state_change(sc->vge_ifp,
1573			    LINK_STATE_UP);
1574			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1575				taskqueue_enqueue(taskqueue_swi,
1576				    &sc->vge_txtask);
1577		}
1578	}
1579
1580	VGE_UNLOCK(sc);
1581
1582	return;
1583}
1584
1585#ifdef DEVICE_POLLING
1586static void
1587vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1588{
1589	struct vge_softc *sc = ifp->if_softc;
1590
1591	VGE_LOCK(sc);
1592	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1593		goto done;
1594
1595	sc->rxcycles = count;
1596	vge_rxeof(sc);
1597	vge_txeof(sc);
1598
1599	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1600		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1601
1602	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1603		u_int32_t       status;
1604		status = CSR_READ_4(sc, VGE_ISR);
1605		if (status == 0xFFFFFFFF)
1606			goto done;
1607		if (status)
1608			CSR_WRITE_4(sc, VGE_ISR, status);
1609
1610		/*
1611		 * XXX check behaviour on receiver stalls.
1612		 */
1613
1614		if (status & VGE_ISR_TXDMA_STALL ||
1615		    status & VGE_ISR_RXDMA_STALL)
1616			vge_init(sc);
1617
1618		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1619			vge_rxeof(sc);
1620			ifp->if_ierrors++;
1621			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1622			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1623		}
1624	}
1625done:
1626	VGE_UNLOCK(sc);
1627}
1628#endif /* DEVICE_POLLING */
1629
1630static void
1631vge_intr(arg)
1632	void			*arg;
1633{
1634	struct vge_softc	*sc;
1635	struct ifnet		*ifp;
1636	u_int32_t		status;
1637
1638	sc = arg;
1639
1640	if (sc->suspended) {
1641		return;
1642	}
1643
1644	VGE_LOCK(sc);
1645	ifp = sc->vge_ifp;
1646
1647	if (!(ifp->if_flags & IFF_UP)) {
1648		VGE_UNLOCK(sc);
1649		return;
1650	}
1651
1652#ifdef DEVICE_POLLING
1653	if  (ifp->if_capenable & IFCAP_POLLING) {
1654		VGE_UNLOCK(sc);
1655		return;
1656	}
1657#endif
1658
1659	/* Disable interrupts */
1660	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1661
1662	for (;;) {
1663
1664		status = CSR_READ_4(sc, VGE_ISR);
1665		/* If the card has gone away the read returns 0xffff. */
1666		if (status == 0xFFFFFFFF)
1667			break;
1668
1669		if (status)
1670			CSR_WRITE_4(sc, VGE_ISR, status);
1671
1672		if ((status & VGE_INTRS) == 0)
1673			break;
1674
1675		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1676			vge_rxeof(sc);
1677
1678		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1679			vge_rxeof(sc);
1680			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1681			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1682		}
1683
1684		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1685			vge_txeof(sc);
1686
1687		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1688			vge_init(sc);
1689
1690		if (status & VGE_ISR_LINKSTS)
1691			vge_tick(sc);
1692	}
1693
1694	/* Re-enable interrupts */
1695	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1696
1697	VGE_UNLOCK(sc);
1698
1699	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1700		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1701
1702	return;
1703}
1704
1705static int
1706vge_encap(sc, m_head, idx)
1707	struct vge_softc	*sc;
1708	struct mbuf		*m_head;
1709	int			idx;
1710{
1711	struct mbuf		*m_new = NULL;
1712	struct vge_dmaload_arg	arg;
1713	bus_dmamap_t		map;
1714	int			error;
1715
1716	if (sc->vge_ldata.vge_tx_free <= 2)
1717		return (EFBIG);
1718
1719	arg.vge_flags = 0;
1720
1721	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1722		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1723	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1724		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1725	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1726		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1727
1728	arg.sc = sc;
1729	arg.vge_idx = idx;
1730	arg.vge_m0 = m_head;
1731	arg.vge_maxsegs = VGE_TX_FRAGS;
1732
1733	map = sc->vge_ldata.vge_tx_dmamap[idx];
1734	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1735	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1736
1737	if (error && error != EFBIG) {
1738		printf("vge%d: can't map mbuf (error %d)\n",
1739		    sc->vge_unit, error);
1740		return (ENOBUFS);
1741	}
1742
1743	/* Too many segments to map, coalesce into a single mbuf */
1744
1745	if (error || arg.vge_maxsegs == 0) {
1746		m_new = m_defrag(m_head, M_DONTWAIT);
1747		if (m_new == NULL)
1748			return (1);
1749		else
1750			m_head = m_new;
1751
1752		arg.sc = sc;
1753		arg.vge_m0 = m_head;
1754		arg.vge_idx = idx;
1755		arg.vge_maxsegs = 1;
1756
1757		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1758		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1759		if (error) {
1760			printf("vge%d: can't map mbuf (error %d)\n",
1761			    sc->vge_unit, error);
1762			return (EFBIG);
1763		}
1764	}
1765
1766	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1767	sc->vge_ldata.vge_tx_free--;
1768
1769	/*
1770	 * Set up hardware VLAN tagging.
1771	 */
1772
1773	if (m_head->m_flags & M_VLANTAG)
1774		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1775		    htole32(m_head->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG);
1776
1777	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1778
1779	return (0);
1780}
1781
1782static void
1783vge_tx_task(arg, npending)
1784	void			*arg;
1785	int			npending;
1786{
1787	struct ifnet		*ifp;
1788
1789	ifp = arg;
1790	vge_start(ifp);
1791
1792	return;
1793}
1794
1795/*
1796 * Main transmit routine.
1797 */
1798
1799static void
1800vge_start(ifp)
1801	struct ifnet		*ifp;
1802{
1803	struct vge_softc	*sc;
1804	struct mbuf		*m_head = NULL;
1805	int			idx, pidx = 0;
1806
1807	sc = ifp->if_softc;
1808	VGE_LOCK(sc);
1809
1810	if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
1811		VGE_UNLOCK(sc);
1812		return;
1813	}
1814
1815	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1816		VGE_UNLOCK(sc);
1817		return;
1818	}
1819
1820	idx = sc->vge_ldata.vge_tx_prodidx;
1821
1822	pidx = idx - 1;
1823	if (pidx < 0)
1824		pidx = VGE_TX_DESC_CNT - 1;
1825
1826
1827	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1828		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1829		if (m_head == NULL)
1830			break;
1831
1832		if (vge_encap(sc, m_head, idx)) {
1833			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1834			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1835			break;
1836		}
1837
1838		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1839		    htole16(VGE_TXDESC_Q);
1840
1841		pidx = idx;
1842		VGE_TX_DESC_INC(idx);
1843
1844		/*
1845		 * If there's a BPF listener, bounce a copy of this frame
1846		 * to him.
1847		 */
1848		BPF_MTAP(ifp, m_head);
1849	}
1850
1851	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1852		VGE_UNLOCK(sc);
1853		return;
1854	}
1855
1856	/* Flush the TX descriptors */
1857
1858	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1859	    sc->vge_ldata.vge_tx_list_map,
1860	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1861
1862	/* Issue a transmit command. */
1863	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1864
1865	sc->vge_ldata.vge_tx_prodidx = idx;
1866
1867	/*
1868	 * Use the countdown timer for interrupt moderation.
1869	 * 'TX done' interrupts are disabled. Instead, we reset the
1870	 * countdown timer, which will begin counting until it hits
1871	 * the value in the SSTIMER register, and then trigger an
1872	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1873	 * the timer count is reloaded. Only when the transmitter
1874	 * is idle will the timer hit 0 and an interrupt fire.
1875	 */
1876	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1877
1878	VGE_UNLOCK(sc);
1879
1880	/*
1881	 * Set a timeout in case the chip goes out to lunch.
1882	 */
1883	ifp->if_timer = 5;
1884
1885	return;
1886}
1887
1888static void
1889vge_init(xsc)
1890	void			*xsc;
1891{
1892	struct vge_softc	*sc = xsc;
1893	struct ifnet		*ifp = sc->vge_ifp;
1894	struct mii_data		*mii;
1895	int			i;
1896
1897	VGE_LOCK(sc);
1898	mii = device_get_softc(sc->vge_miibus);
1899
1900	/*
1901	 * Cancel pending I/O and free all RX/TX buffers.
1902	 */
1903	vge_stop(sc);
1904	vge_reset(sc);
1905
1906	/*
1907	 * Initialize the RX and TX descriptors and mbufs.
1908	 */
1909
1910	vge_rx_list_init(sc);
1911	vge_tx_list_init(sc);
1912
1913	/* Set our station address */
1914	for (i = 0; i < ETHER_ADDR_LEN; i++)
1915		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
1916
1917	/*
1918	 * Set receive FIFO threshold. Also allow transmission and
1919	 * reception of VLAN tagged frames.
1920	 */
1921	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1922	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1923
1924	/* Set DMA burst length */
1925	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1926	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1927
1928	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1929
1930	/* Set collision backoff algorithm */
1931	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1932	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1933	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1934
1935	/* Disable LPSEL field in priority resolution */
1936	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1937
1938	/*
1939	 * Load the addresses of the DMA queues into the chip.
1940	 * Note that we only use one transmit queue.
1941	 */
1942
1943	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1944	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1945	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1946
1947	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1948	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1949	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1950	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1951
1952	/* Enable and wake up the RX descriptor queue */
1953	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1954	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1955
1956	/* Enable the TX descriptor queue */
1957	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1958
1959	/* Set up the receive filter -- allow large frames for VLANs. */
1960	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1961
1962	/* If we want promiscuous mode, set the allframes bit. */
1963	if (ifp->if_flags & IFF_PROMISC) {
1964		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1965	}
1966
1967	/* Set capture broadcast bit to capture broadcast frames. */
1968	if (ifp->if_flags & IFF_BROADCAST) {
1969		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1970	}
1971
1972	/* Set multicast bit to capture multicast frames. */
1973	if (ifp->if_flags & IFF_MULTICAST) {
1974		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1975	}
1976
1977	/* Init the cam filter. */
1978	vge_cam_clear(sc);
1979
1980	/* Init the multicast filter. */
1981	vge_setmulti(sc);
1982
1983	/* Enable flow control */
1984
1985	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1986
1987	/* Enable jumbo frame reception (if desired) */
1988
1989	/* Start the MAC. */
1990	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1991	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1992	CSR_WRITE_1(sc, VGE_CRS0,
1993	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1994
1995	/*
1996	 * Configure one-shot timer for microsecond
1997	 * resulution and load it for 500 usecs.
1998	 */
1999	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2000	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2001
2002	/*
2003	 * Configure interrupt moderation for receive. Enable
2004	 * the holdoff counter and load it, and set the RX
2005	 * suppression count to the number of descriptors we
2006	 * want to allow before triggering an interrupt.
2007	 * The holdoff timer is in units of 20 usecs.
2008	 */
2009
2010#ifdef notyet
2011	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2012	/* Select the interrupt holdoff timer page. */
2013	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2014	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2015	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2016
2017	/* Enable use of the holdoff timer. */
2018	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2019	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2020
2021	/* Select the RX suppression threshold page. */
2022	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2023	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2024	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2025
2026	/* Restore the page select bits. */
2027	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2028	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2029#endif
2030
2031#ifdef DEVICE_POLLING
2032	/*
2033	 * Disable interrupts if we are polling.
2034	 */
2035	if (ifp->if_capenable & IFCAP_POLLING) {
2036		CSR_WRITE_4(sc, VGE_IMR, 0);
2037		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2038	} else	/* otherwise ... */
2039#endif
2040	{
2041	/*
2042	 * Enable interrupts.
2043	 */
2044		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2045		CSR_WRITE_4(sc, VGE_ISR, 0);
2046		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2047	}
2048
2049	mii_mediachg(mii);
2050
2051	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2052	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2053
2054	sc->vge_if_flags = 0;
2055	sc->vge_link = 0;
2056
2057	VGE_UNLOCK(sc);
2058
2059	return;
2060}
2061
2062/*
2063 * Set media options.
2064 */
2065static int
2066vge_ifmedia_upd(ifp)
2067	struct ifnet		*ifp;
2068{
2069	struct vge_softc	*sc;
2070	struct mii_data		*mii;
2071
2072	sc = ifp->if_softc;
2073	VGE_LOCK(sc);
2074	mii = device_get_softc(sc->vge_miibus);
2075	mii_mediachg(mii);
2076	VGE_UNLOCK(sc);
2077
2078	return (0);
2079}
2080
2081/*
2082 * Report current media status.
2083 */
2084static void
2085vge_ifmedia_sts(ifp, ifmr)
2086	struct ifnet		*ifp;
2087	struct ifmediareq	*ifmr;
2088{
2089	struct vge_softc	*sc;
2090	struct mii_data		*mii;
2091
2092	sc = ifp->if_softc;
2093	mii = device_get_softc(sc->vge_miibus);
2094
2095	mii_pollstat(mii);
2096	ifmr->ifm_active = mii->mii_media_active;
2097	ifmr->ifm_status = mii->mii_media_status;
2098
2099	return;
2100}
2101
2102static void
2103vge_miibus_statchg(dev)
2104	device_t		dev;
2105{
2106	struct vge_softc	*sc;
2107	struct mii_data		*mii;
2108	struct ifmedia_entry	*ife;
2109
2110	sc = device_get_softc(dev);
2111	mii = device_get_softc(sc->vge_miibus);
2112	ife = mii->mii_media.ifm_cur;
2113
2114	/*
2115	 * If the user manually selects a media mode, we need to turn
2116	 * on the forced MAC mode bit in the DIAGCTL register. If the
2117	 * user happens to choose a full duplex mode, we also need to
2118	 * set the 'force full duplex' bit. This applies only to
2119	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2120	 * mode is disabled, and in 1000baseT mode, full duplex is
2121	 * always implied, so we turn on the forced mode bit but leave
2122	 * the FDX bit cleared.
2123	 */
2124
2125	switch (IFM_SUBTYPE(ife->ifm_media)) {
2126	case IFM_AUTO:
2127		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2128		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2129		break;
2130	case IFM_1000_T:
2131		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2132		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2133		break;
2134	case IFM_100_TX:
2135	case IFM_10_T:
2136		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2137		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2138			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2139		} else {
2140			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2141		}
2142		break;
2143	default:
2144		device_printf(dev, "unknown media type: %x\n",
2145		    IFM_SUBTYPE(ife->ifm_media));
2146		break;
2147	}
2148
2149	return;
2150}
2151
2152static int
2153vge_ioctl(ifp, command, data)
2154	struct ifnet		*ifp;
2155	u_long			command;
2156	caddr_t			data;
2157{
2158	struct vge_softc	*sc = ifp->if_softc;
2159	struct ifreq		*ifr = (struct ifreq *) data;
2160	struct mii_data		*mii;
2161	int			error = 0;
2162
2163	switch (command) {
2164	case SIOCSIFMTU:
2165		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2166			error = EINVAL;
2167		ifp->if_mtu = ifr->ifr_mtu;
2168		break;
2169	case SIOCSIFFLAGS:
2170		if (ifp->if_flags & IFF_UP) {
2171			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2172			    ifp->if_flags & IFF_PROMISC &&
2173			    !(sc->vge_if_flags & IFF_PROMISC)) {
2174				CSR_SETBIT_1(sc, VGE_RXCTL,
2175				    VGE_RXCTL_RX_PROMISC);
2176				vge_setmulti(sc);
2177			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2178			    !(ifp->if_flags & IFF_PROMISC) &&
2179			    sc->vge_if_flags & IFF_PROMISC) {
2180				CSR_CLRBIT_1(sc, VGE_RXCTL,
2181				    VGE_RXCTL_RX_PROMISC);
2182				vge_setmulti(sc);
2183                        } else
2184				vge_init(sc);
2185		} else {
2186			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2187				vge_stop(sc);
2188		}
2189		sc->vge_if_flags = ifp->if_flags;
2190		break;
2191	case SIOCADDMULTI:
2192	case SIOCDELMULTI:
2193		vge_setmulti(sc);
2194		break;
2195	case SIOCGIFMEDIA:
2196	case SIOCSIFMEDIA:
2197		mii = device_get_softc(sc->vge_miibus);
2198		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2199		break;
2200	case SIOCSIFCAP:
2201	    {
2202		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2203#ifdef DEVICE_POLLING
2204		if (mask & IFCAP_POLLING) {
2205			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2206				error = ether_poll_register(vge_poll, ifp);
2207				if (error)
2208					return(error);
2209				VGE_LOCK(sc);
2210					/* Disable interrupts */
2211				CSR_WRITE_4(sc, VGE_IMR, 0);
2212				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2213				ifp->if_capenable |= IFCAP_POLLING;
2214				VGE_UNLOCK(sc);
2215			} else {
2216				error = ether_poll_deregister(ifp);
2217				/* Enable interrupts. */
2218				VGE_LOCK(sc);
2219				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2220				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2221				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2222				ifp->if_capenable &= ~IFCAP_POLLING;
2223				VGE_UNLOCK(sc);
2224			}
2225		}
2226#endif /* DEVICE_POLLING */
2227		if (mask & IFCAP_HWCSUM) {
2228			ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM);
2229			if (ifp->if_capenable & IFCAP_TXCSUM)
2230				ifp->if_hwassist = VGE_CSUM_FEATURES;
2231			else
2232				ifp->if_hwassist = 0;
2233			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2234				vge_init(sc);
2235		}
2236	    }
2237		break;
2238	default:
2239		error = ether_ioctl(ifp, command, data);
2240		break;
2241	}
2242
2243	return (error);
2244}
2245
2246static void
2247vge_watchdog(ifp)
2248	struct ifnet		*ifp;
2249{
2250	struct vge_softc		*sc;
2251
2252	sc = ifp->if_softc;
2253	VGE_LOCK(sc);
2254	printf("vge%d: watchdog timeout\n", sc->vge_unit);
2255	ifp->if_oerrors++;
2256
2257	vge_txeof(sc);
2258	vge_rxeof(sc);
2259
2260	vge_init(sc);
2261
2262	VGE_UNLOCK(sc);
2263
2264	return;
2265}
2266
2267/*
2268 * Stop the adapter and free any mbufs allocated to the
2269 * RX and TX lists.
2270 */
2271static void
2272vge_stop(sc)
2273	struct vge_softc		*sc;
2274{
2275	register int		i;
2276	struct ifnet		*ifp;
2277
2278	VGE_LOCK(sc);
2279	ifp = sc->vge_ifp;
2280	ifp->if_timer = 0;
2281
2282	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2283
2284	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2285	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2286	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2287	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2288	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2289	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2290
2291	if (sc->vge_head != NULL) {
2292		m_freem(sc->vge_head);
2293		sc->vge_head = sc->vge_tail = NULL;
2294	}
2295
2296	/* Free the TX list buffers. */
2297
2298	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2299		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2300			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2301			    sc->vge_ldata.vge_tx_dmamap[i]);
2302			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2303			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2304		}
2305	}
2306
2307	/* Free the RX list buffers. */
2308
2309	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2310		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2311			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2312			    sc->vge_ldata.vge_rx_dmamap[i]);
2313			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2314			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2315		}
2316	}
2317
2318	VGE_UNLOCK(sc);
2319
2320	return;
2321}
2322
2323/*
2324 * Device suspend routine.  Stop the interface and save some PCI
2325 * settings in case the BIOS doesn't restore them properly on
2326 * resume.
2327 */
2328static int
2329vge_suspend(dev)
2330	device_t		dev;
2331{
2332	struct vge_softc	*sc;
2333
2334	sc = device_get_softc(dev);
2335
2336	vge_stop(sc);
2337
2338	sc->suspended = 1;
2339
2340	return (0);
2341}
2342
2343/*
2344 * Device resume routine.  Restore some PCI settings in case the BIOS
2345 * doesn't, re-enable busmastering, and restart the interface if
2346 * appropriate.
2347 */
2348static int
2349vge_resume(dev)
2350	device_t		dev;
2351{
2352	struct vge_softc	*sc;
2353	struct ifnet		*ifp;
2354
2355	sc = device_get_softc(dev);
2356	ifp = sc->vge_ifp;
2357
2358	/* reenable busmastering */
2359	pci_enable_busmaster(dev);
2360	pci_enable_io(dev, SYS_RES_MEMORY);
2361
2362	/* reinitialize interface if necessary */
2363	if (ifp->if_flags & IFF_UP)
2364		vge_init(sc);
2365
2366	sc->suspended = 0;
2367
2368	return (0);
2369}
2370
2371/*
2372 * Stop all chip I/O so that the kernel's probe routines don't
2373 * get confused by errant DMAs when rebooting.
2374 */
2375static void
2376vge_shutdown(dev)
2377	device_t		dev;
2378{
2379	struct vge_softc		*sc;
2380
2381	sc = device_get_softc(dev);
2382
2383	vge_stop(sc);
2384}
2385