if_vge.c revision 153512
1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 153512 2005-12-18 18:24:27Z glebius $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96#include <sys/taskqueue.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103#include <net/if_types.h>
104#include <net/if_vlan_var.h>
105
106#include <net/bpf.h>
107
108#include <machine/bus.h>
109#include <machine/resource.h>
110#include <sys/bus.h>
111#include <sys/rman.h>
112
113#include <dev/mii/mii.h>
114#include <dev/mii/miivar.h>
115
116#include <dev/pci/pcireg.h>
117#include <dev/pci/pcivar.h>
118
119MODULE_DEPEND(vge, pci, 1, 1, 1);
120MODULE_DEPEND(vge, ether, 1, 1, 1);
121MODULE_DEPEND(vge, miibus, 1, 1, 1);
122
123/* "device miibus" required.  See GENERIC if you get errors here. */
124#include "miibus_if.h"
125
126#include <dev/vge/if_vgereg.h>
127#include <dev/vge/if_vgevar.h>
128
129#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130
131/*
132 * Various supported device vendors/types and their names.
133 */
134static struct vge_type vge_devs[] = {
135	{ VIA_VENDORID, VIA_DEVICEID_61XX,
136		"VIA Networking Gigabit Ethernet" },
137	{ 0, 0, NULL }
138};
139
140static int vge_probe		(device_t);
141static int vge_attach		(device_t);
142static int vge_detach		(device_t);
143
144static int vge_encap		(struct vge_softc *, struct mbuf *, int);
145
146static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
147static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
148				    bus_size_t, int);
149static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
150				    bus_size_t, int);
151static int vge_allocmem		(device_t, struct vge_softc *);
152static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
153static int vge_rx_list_init	(struct vge_softc *);
154static int vge_tx_list_init	(struct vge_softc *);
155#ifdef VGE_FIXUP_RX
156static __inline void vge_fixup_rx
157				(struct mbuf *);
158#endif
159static void vge_rxeof		(struct vge_softc *);
160static void vge_txeof		(struct vge_softc *);
161static void vge_intr		(void *);
162static void vge_tick		(void *);
163static void vge_tx_task		(void *, int);
164static void vge_start		(struct ifnet *);
165static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
166static void vge_init		(void *);
167static void vge_stop		(struct vge_softc *);
168static void vge_watchdog	(struct ifnet *);
169static int vge_suspend		(device_t);
170static int vge_resume		(device_t);
171static void vge_shutdown	(device_t);
172static int vge_ifmedia_upd	(struct ifnet *);
173static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
174
175#ifdef VGE_EEPROM
176static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
177#endif
178static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
179
180static void vge_miipoll_start	(struct vge_softc *);
181static void vge_miipoll_stop	(struct vge_softc *);
182static int vge_miibus_readreg	(device_t, int, int);
183static int vge_miibus_writereg	(device_t, int, int, int);
184static void vge_miibus_statchg	(device_t);
185
186static void vge_cam_clear	(struct vge_softc *);
187static int vge_cam_set		(struct vge_softc *, uint8_t *);
188#if __FreeBSD_version < 502113
189static uint32_t vge_mchash	(uint8_t *);
190#endif
191static void vge_setmulti	(struct vge_softc *);
192static void vge_reset		(struct vge_softc *);
193
194#define VGE_PCI_LOIO             0x10
195#define VGE_PCI_LOMEM            0x14
196
197static device_method_t vge_methods[] = {
198	/* Device interface */
199	DEVMETHOD(device_probe,		vge_probe),
200	DEVMETHOD(device_attach,	vge_attach),
201	DEVMETHOD(device_detach,	vge_detach),
202	DEVMETHOD(device_suspend,	vge_suspend),
203	DEVMETHOD(device_resume,	vge_resume),
204	DEVMETHOD(device_shutdown,	vge_shutdown),
205
206	/* bus interface */
207	DEVMETHOD(bus_print_child,	bus_generic_print_child),
208	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
209
210	/* MII interface */
211	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
212	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
213	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
214
215	{ 0, 0 }
216};
217
218static driver_t vge_driver = {
219	"vge",
220	vge_methods,
221	sizeof(struct vge_softc)
222};
223
224static devclass_t vge_devclass;
225
226DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
227DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
228DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
229
230#ifdef VGE_EEPROM
231/*
232 * Read a word of data stored in the EEPROM at address 'addr.'
233 */
234static void
235vge_eeprom_getword(sc, addr, dest)
236	struct vge_softc	*sc;
237	int			addr;
238	u_int16_t		*dest;
239{
240	register int		i;
241	u_int16_t		word = 0;
242
243	/*
244	 * Enter EEPROM embedded programming mode. In order to
245	 * access the EEPROM at all, we first have to set the
246	 * EELOAD bit in the CHIPCFG2 register.
247	 */
248	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
249	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
250
251	/* Select the address of the word we want to read */
252	CSR_WRITE_1(sc, VGE_EEADDR, addr);
253
254	/* Issue read command */
255	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
256
257	/* Wait for the done bit to be set. */
258	for (i = 0; i < VGE_TIMEOUT; i++) {
259		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
260			break;
261	}
262
263	if (i == VGE_TIMEOUT) {
264		device_printf(sc->vge_dev, "EEPROM read timed out\n");
265		*dest = 0;
266		return;
267	}
268
269	/* Read the result */
270	word = CSR_READ_2(sc, VGE_EERDDAT);
271
272	/* Turn off EEPROM access mode. */
273	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
274	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
275
276	*dest = word;
277
278	return;
279}
280#endif
281
282/*
283 * Read a sequence of words from the EEPROM.
284 */
285static void
286vge_read_eeprom(sc, dest, off, cnt, swap)
287	struct vge_softc	*sc;
288	caddr_t			dest;
289	int			off;
290	int			cnt;
291	int			swap;
292{
293	int			i;
294#ifdef VGE_EEPROM
295	u_int16_t		word = 0, *ptr;
296
297	for (i = 0; i < cnt; i++) {
298		vge_eeprom_getword(sc, off + i, &word);
299		ptr = (u_int16_t *)(dest + (i * 2));
300		if (swap)
301			*ptr = ntohs(word);
302		else
303			*ptr = word;
304	}
305#else
306	for (i = 0; i < ETHER_ADDR_LEN; i++)
307		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
308#endif
309}
310
311static void
312vge_miipoll_stop(sc)
313	struct vge_softc	*sc;
314{
315	int			i;
316
317	CSR_WRITE_1(sc, VGE_MIICMD, 0);
318
319	for (i = 0; i < VGE_TIMEOUT; i++) {
320		DELAY(1);
321		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
322			break;
323	}
324
325	if (i == VGE_TIMEOUT)
326		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
327
328	return;
329}
330
331static void
332vge_miipoll_start(sc)
333	struct vge_softc	*sc;
334{
335	int			i;
336
337	/* First, make sure we're idle. */
338
339	CSR_WRITE_1(sc, VGE_MIICMD, 0);
340	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
341
342	for (i = 0; i < VGE_TIMEOUT; i++) {
343		DELAY(1);
344		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
345			break;
346	}
347
348	if (i == VGE_TIMEOUT) {
349		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
350		return;
351	}
352
353	/* Now enable auto poll mode. */
354
355	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
356
357	/* And make sure it started. */
358
359	for (i = 0; i < VGE_TIMEOUT; i++) {
360		DELAY(1);
361		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
362			break;
363	}
364
365	if (i == VGE_TIMEOUT)
366		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
367
368	return;
369}
370
371static int
372vge_miibus_readreg(dev, phy, reg)
373	device_t		dev;
374	int			phy, reg;
375{
376	struct vge_softc	*sc;
377	int			i;
378	u_int16_t		rval = 0;
379
380	sc = device_get_softc(dev);
381
382	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
383		return(0);
384
385	VGE_LOCK(sc);
386	vge_miipoll_stop(sc);
387
388	/* Specify the register we want to read. */
389	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
390
391	/* Issue read command. */
392	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
393
394	/* Wait for the read command bit to self-clear. */
395	for (i = 0; i < VGE_TIMEOUT; i++) {
396		DELAY(1);
397		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
398			break;
399	}
400
401	if (i == VGE_TIMEOUT)
402		device_printf(sc->vge_dev, "MII read timed out\n");
403	else
404		rval = CSR_READ_2(sc, VGE_MIIDATA);
405
406	vge_miipoll_start(sc);
407	VGE_UNLOCK(sc);
408
409	return (rval);
410}
411
412static int
413vge_miibus_writereg(dev, phy, reg, data)
414	device_t		dev;
415	int			phy, reg, data;
416{
417	struct vge_softc	*sc;
418	int			i, rval = 0;
419
420	sc = device_get_softc(dev);
421
422	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
423		return(0);
424
425	VGE_LOCK(sc);
426	vge_miipoll_stop(sc);
427
428	/* Specify the register we want to write. */
429	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
430
431	/* Specify the data we want to write. */
432	CSR_WRITE_2(sc, VGE_MIIDATA, data);
433
434	/* Issue write command. */
435	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
436
437	/* Wait for the write command bit to self-clear. */
438	for (i = 0; i < VGE_TIMEOUT; i++) {
439		DELAY(1);
440		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
441			break;
442	}
443
444	if (i == VGE_TIMEOUT) {
445		device_printf(sc->vge_dev, "MII write timed out\n");
446		rval = EIO;
447	}
448
449	vge_miipoll_start(sc);
450	VGE_UNLOCK(sc);
451
452	return (rval);
453}
454
455static void
456vge_cam_clear(sc)
457	struct vge_softc	*sc;
458{
459	int			i;
460
461	/*
462	 * Turn off all the mask bits. This tells the chip
463	 * that none of the entries in the CAM filter are valid.
464	 * desired entries will be enabled as we fill the filter in.
465	 */
466
467	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
468	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
469	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
470	for (i = 0; i < 8; i++)
471		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
472
473	/* Clear the VLAN filter too. */
474
475	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
476	for (i = 0; i < 8; i++)
477		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
478
479	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
480	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
481	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
482
483	sc->vge_camidx = 0;
484
485	return;
486}
487
488static int
489vge_cam_set(sc, addr)
490	struct vge_softc	*sc;
491	uint8_t			*addr;
492{
493	int			i, error = 0;
494
495	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
496		return(ENOSPC);
497
498	/* Select the CAM data page. */
499	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
500	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
501
502	/* Set the filter entry we want to update and enable writing. */
503	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
504
505	/* Write the address to the CAM registers */
506	for (i = 0; i < ETHER_ADDR_LEN; i++)
507		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
508
509	/* Issue a write command. */
510	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
511
512	/* Wake for it to clear. */
513	for (i = 0; i < VGE_TIMEOUT; i++) {
514		DELAY(1);
515		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
516			break;
517	}
518
519	if (i == VGE_TIMEOUT) {
520		device_printf(sc->vge_dev, "setting CAM filter failed\n");
521		error = EIO;
522		goto fail;
523	}
524
525	/* Select the CAM mask page. */
526	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
527	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
528
529	/* Set the mask bit that enables this filter. */
530	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
531	    1<<(sc->vge_camidx & 7));
532
533	sc->vge_camidx++;
534
535fail:
536	/* Turn off access to CAM. */
537	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
538	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
539	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
540
541	return (error);
542}
543
544#if __FreeBSD_version < 502113
545static uint32_t
546vge_mchash(addr)
547        uint8_t			*addr;
548{
549	uint32_t		crc, carry;
550	int			idx, bit;
551	uint8_t			data;
552
553	/* Compute CRC for the address value. */
554	crc = 0xFFFFFFFF; /* initial value */
555
556	for (idx = 0; idx < 6; idx++) {
557		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
558			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
559			crc <<= 1;
560			if (carry)
561				crc = (crc ^ 0x04c11db6) | carry;
562		}
563	}
564
565	return(crc);
566}
567#endif
568
569/*
570 * Program the multicast filter. We use the 64-entry CAM filter
571 * for perfect filtering. If there's more than 64 multicast addresses,
572 * we use the hash filter insted.
573 */
574static void
575vge_setmulti(sc)
576	struct vge_softc	*sc;
577{
578	struct ifnet		*ifp;
579	int			error = 0/*, h = 0*/;
580	struct ifmultiaddr	*ifma;
581	u_int32_t		h, hashes[2] = { 0, 0 };
582
583	ifp = sc->vge_ifp;
584
585	/* First, zot all the multicast entries. */
586	vge_cam_clear(sc);
587	CSR_WRITE_4(sc, VGE_MAR0, 0);
588	CSR_WRITE_4(sc, VGE_MAR1, 0);
589
590	/*
591	 * If the user wants allmulti or promisc mode, enable reception
592	 * of all multicast frames.
593	 */
594	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
595		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
596		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
597		return;
598	}
599
600	/* Now program new ones */
601	IF_ADDR_LOCK(ifp);
602	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
603		if (ifma->ifma_addr->sa_family != AF_LINK)
604			continue;
605		error = vge_cam_set(sc,
606		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
607		if (error)
608			break;
609	}
610
611	/* If there were too many addresses, use the hash filter. */
612	if (error) {
613		vge_cam_clear(sc);
614
615		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
616			if (ifma->ifma_addr->sa_family != AF_LINK)
617				continue;
618#if __FreeBSD_version < 502113
619			h = vge_mchash(LLADDR((struct sockaddr_dl *)
620			    ifma->ifma_addr)) >> 26;
621#else
622			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
623			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
624#endif
625			if (h < 32)
626				hashes[0] |= (1 << h);
627			else
628				hashes[1] |= (1 << (h - 32));
629		}
630
631		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
632		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
633	}
634	IF_ADDR_UNLOCK(ifp);
635
636	return;
637}
638
639static void
640vge_reset(sc)
641	struct vge_softc		*sc;
642{
643	register int		i;
644
645	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
646
647	for (i = 0; i < VGE_TIMEOUT; i++) {
648		DELAY(5);
649		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
650			break;
651	}
652
653	if (i == VGE_TIMEOUT) {
654		device_printf(sc->vge_dev, "soft reset timed out");
655		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
656		DELAY(2000);
657	}
658
659	DELAY(5000);
660
661	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
662
663	for (i = 0; i < VGE_TIMEOUT; i++) {
664		DELAY(5);
665		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
666			break;
667	}
668
669	if (i == VGE_TIMEOUT) {
670		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
671		return;
672	}
673
674	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
675
676	return;
677}
678
679/*
680 * Probe for a VIA gigabit chip. Check the PCI vendor and device
681 * IDs against our list and return a device name if we find a match.
682 */
683static int
684vge_probe(dev)
685	device_t		dev;
686{
687	struct vge_type		*t;
688	struct vge_softc	*sc;
689
690	t = vge_devs;
691	sc = device_get_softc(dev);
692
693	while (t->vge_name != NULL) {
694		if ((pci_get_vendor(dev) == t->vge_vid) &&
695		    (pci_get_device(dev) == t->vge_did)) {
696			device_set_desc(dev, t->vge_name);
697			return (BUS_PROBE_DEFAULT);
698		}
699		t++;
700	}
701
702	return (ENXIO);
703}
704
705static void
706vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
707	void			*arg;
708	bus_dma_segment_t	*segs;
709	int			nseg;
710	bus_size_t		mapsize;
711	int			error;
712{
713
714	struct vge_dmaload_arg	*ctx;
715	struct vge_rx_desc	*d = NULL;
716
717	if (error)
718		return;
719
720	ctx = arg;
721
722	/* Signal error to caller if there's too many segments */
723	if (nseg > ctx->vge_maxsegs) {
724		ctx->vge_maxsegs = 0;
725		return;
726	}
727
728	/*
729	 * Map the segment array into descriptors.
730	 */
731
732	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
733
734	/* If this descriptor is still owned by the chip, bail. */
735
736	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
737		device_printf(ctx->sc->vge_dev,
738		    "tried to map busy descriptor\n");
739		ctx->vge_maxsegs = 0;
740		return;
741	}
742
743	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
744	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
745	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
746	d->vge_sts = 0;
747	d->vge_ctl = 0;
748
749	ctx->vge_maxsegs = 1;
750
751	return;
752}
753
754static void
755vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
756	void			*arg;
757	bus_dma_segment_t	*segs;
758	int			nseg;
759	bus_size_t		mapsize;
760	int			error;
761{
762	struct vge_dmaload_arg	*ctx;
763	struct vge_tx_desc	*d = NULL;
764	struct vge_tx_frag	*f;
765	int			i = 0;
766
767	if (error)
768		return;
769
770	ctx = arg;
771
772	/* Signal error to caller if there's too many segments */
773	if (nseg > ctx->vge_maxsegs) {
774		ctx->vge_maxsegs = 0;
775		return;
776	}
777
778	/* Map the segment array into descriptors. */
779
780	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
781
782	/* If this descriptor is still owned by the chip, bail. */
783
784	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
785		ctx->vge_maxsegs = 0;
786		return;
787	}
788
789	for (i = 0; i < nseg; i++) {
790		f = &d->vge_frag[i];
791		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
792		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
793		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
794	}
795
796	/* Argh. This chip does not autopad short frames */
797
798	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
799		f = &d->vge_frag[i];
800		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
801		    ctx->vge_m0->m_pkthdr.len));
802		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
803		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
804		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
805		i++;
806	}
807
808	/*
809	 * When telling the chip how many segments there are, we
810	 * must use nsegs + 1 instead of just nsegs. Darned if I
811	 * know why.
812	 */
813	i++;
814
815	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
816	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
817
818	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
819		d->vge_ctl |= VGE_TDCTL_JUMBO;
820
821	ctx->vge_maxsegs = nseg;
822
823	return;
824}
825
826/*
827 * Map a single buffer address.
828 */
829
830static void
831vge_dma_map_addr(arg, segs, nseg, error)
832	void			*arg;
833	bus_dma_segment_t	*segs;
834	int			nseg;
835	int			error;
836{
837	bus_addr_t		*addr;
838
839	if (error)
840		return;
841
842	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
843	addr = arg;
844	*addr = segs->ds_addr;
845
846	return;
847}
848
849static int
850vge_allocmem(dev, sc)
851	device_t		dev;
852	struct vge_softc		*sc;
853{
854	int			error;
855	int			nseg;
856	int			i;
857
858	/*
859	 * Allocate map for RX mbufs.
860	 */
861	nseg = 32;
862	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
863	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
864	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
865	    NULL, NULL, &sc->vge_ldata.vge_mtag);
866	if (error) {
867		device_printf(dev, "could not allocate dma tag\n");
868		return (ENOMEM);
869	}
870
871	/*
872	 * Allocate map for TX descriptor list.
873	 */
874	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
875	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
876	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
877	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
878	if (error) {
879		device_printf(dev, "could not allocate dma tag\n");
880		return (ENOMEM);
881	}
882
883	/* Allocate DMA'able memory for the TX ring */
884
885	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
886	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
887	    &sc->vge_ldata.vge_tx_list_map);
888	if (error)
889		return (ENOMEM);
890
891	/* Load the map for the TX ring. */
892
893	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
894	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
895	     VGE_TX_LIST_SZ, vge_dma_map_addr,
896	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
897
898	/* Create DMA maps for TX buffers */
899
900	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
901		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
902			    &sc->vge_ldata.vge_tx_dmamap[i]);
903		if (error) {
904			device_printf(dev, "can't create DMA map for TX\n");
905			return (ENOMEM);
906		}
907	}
908
909	/*
910	 * Allocate map for RX descriptor list.
911	 */
912	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
913	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
914	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
915	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
916	if (error) {
917		device_printf(dev, "could not allocate dma tag\n");
918		return (ENOMEM);
919	}
920
921	/* Allocate DMA'able memory for the RX ring */
922
923	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
924	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
925	    &sc->vge_ldata.vge_rx_list_map);
926	if (error)
927		return (ENOMEM);
928
929	/* Load the map for the RX ring. */
930
931	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
932	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
933	     VGE_TX_LIST_SZ, vge_dma_map_addr,
934	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
935
936	/* Create DMA maps for RX buffers */
937
938	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
939		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
940			    &sc->vge_ldata.vge_rx_dmamap[i]);
941		if (error) {
942			device_printf(dev, "can't create DMA map for RX\n");
943			return (ENOMEM);
944		}
945	}
946
947	return (0);
948}
949
950/*
951 * Attach the interface. Allocate softc structures, do ifmedia
952 * setup and ethernet/BPF attach.
953 */
954static int
955vge_attach(dev)
956	device_t		dev;
957{
958	u_char			eaddr[ETHER_ADDR_LEN];
959	struct vge_softc	*sc;
960	struct ifnet		*ifp;
961	int			unit, error = 0, rid;
962
963	sc = device_get_softc(dev);
964	unit = device_get_unit(dev);
965	sc->vge_dev = dev;
966
967	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
968	    MTX_DEF | MTX_RECURSE);
969	/*
970	 * Map control/status registers.
971	 */
972	pci_enable_busmaster(dev);
973
974	rid = VGE_PCI_LOMEM;
975	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
976	    0, ~0, 1, RF_ACTIVE);
977
978	if (sc->vge_res == NULL) {
979		printf ("vge%d: couldn't map ports/memory\n", unit);
980		error = ENXIO;
981		goto fail;
982	}
983
984	sc->vge_btag = rman_get_bustag(sc->vge_res);
985	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
986
987	/* Allocate interrupt */
988	rid = 0;
989	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
990	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
991
992	if (sc->vge_irq == NULL) {
993		printf("vge%d: couldn't map interrupt\n", unit);
994		error = ENXIO;
995		goto fail;
996	}
997
998	/* Reset the adapter. */
999	vge_reset(sc);
1000
1001	/*
1002	 * Get station address from the EEPROM.
1003	 */
1004	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1005
1006	sc->vge_unit = unit;
1007
1008#if __FreeBSD_version < 502113
1009	printf("vge%d: Ethernet address: %6D\n", unit, eaddr, ":");
1010#endif
1011
1012	/*
1013	 * Allocate the parent bus DMA tag appropriate for PCI.
1014	 */
1015#define VGE_NSEG_NEW 32
1016	error = bus_dma_tag_create(NULL,	/* parent */
1017			1, 0,			/* alignment, boundary */
1018			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1019			BUS_SPACE_MAXADDR,	/* highaddr */
1020			NULL, NULL,		/* filter, filterarg */
1021			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
1022			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1023			BUS_DMA_ALLOCNOW,	/* flags */
1024			NULL, NULL,		/* lockfunc, lockarg */
1025			&sc->vge_parent_tag);
1026	if (error)
1027		goto fail;
1028
1029	error = vge_allocmem(dev, sc);
1030
1031	if (error)
1032		goto fail;
1033
1034	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1035	if (ifp == NULL) {
1036		printf("vge%d: can not if_alloc()\n", sc->vge_unit);
1037		error = ENOSPC;
1038		goto fail;
1039	}
1040
1041	/* Do MII setup */
1042	if (mii_phy_probe(dev, &sc->vge_miibus,
1043	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1044		printf("vge%d: MII without any phy!\n", sc->vge_unit);
1045		error = ENXIO;
1046		goto fail;
1047	}
1048
1049	ifp->if_softc = sc;
1050	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1051	ifp->if_mtu = ETHERMTU;
1052	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1053	ifp->if_ioctl = vge_ioctl;
1054	ifp->if_capabilities = IFCAP_VLAN_MTU;
1055	ifp->if_start = vge_start;
1056	ifp->if_hwassist = VGE_CSUM_FEATURES;
1057	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1058	ifp->if_capenable = ifp->if_capabilities;
1059#ifdef DEVICE_POLLING
1060	ifp->if_capabilities |= IFCAP_POLLING;
1061#endif
1062	ifp->if_watchdog = vge_watchdog;
1063	ifp->if_init = vge_init;
1064	ifp->if_baudrate = 1000000000;
1065	ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN;
1066
1067	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1068
1069	/*
1070	 * Call MI attach routine.
1071	 */
1072	ether_ifattach(ifp, eaddr);
1073
1074	/* Hook interrupt last to avoid having to lock softc */
1075	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1076	    vge_intr, sc, &sc->vge_intrhand);
1077
1078	if (error) {
1079		printf("vge%d: couldn't set up irq\n", unit);
1080		ether_ifdetach(ifp);
1081		goto fail;
1082	}
1083
1084fail:
1085	if (error)
1086		vge_detach(dev);
1087
1088	return (error);
1089}
1090
1091/*
1092 * Shutdown hardware and free up resources. This can be called any
1093 * time after the mutex has been initialized. It is called in both
1094 * the error case in attach and the normal detach case so it needs
1095 * to be careful about only freeing resources that have actually been
1096 * allocated.
1097 */
1098static int
1099vge_detach(dev)
1100	device_t		dev;
1101{
1102	struct vge_softc		*sc;
1103	struct ifnet		*ifp;
1104	int			i;
1105
1106	sc = device_get_softc(dev);
1107	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1108	ifp = sc->vge_ifp;
1109
1110#ifdef DEVICE_POLLING
1111	if (ifp->if_capenable & IFCAP_POLLING)
1112		ether_poll_deregister(ifp);
1113#endif
1114
1115	/* These should only be active if attach succeeded */
1116	if (device_is_attached(dev)) {
1117		vge_stop(sc);
1118		/*
1119		 * Force off the IFF_UP flag here, in case someone
1120		 * still had a BPF descriptor attached to this
1121		 * interface. If they do, ether_ifattach() will cause
1122		 * the BPF code to try and clear the promisc mode
1123		 * flag, which will bubble down to vge_ioctl(),
1124		 * which will try to call vge_init() again. This will
1125		 * turn the NIC back on and restart the MII ticker,
1126		 * which will panic the system when the kernel tries
1127		 * to invoke the vge_tick() function that isn't there
1128		 * anymore.
1129		 */
1130		ifp->if_flags &= ~IFF_UP;
1131		ether_ifdetach(ifp);
1132	}
1133	if (sc->vge_miibus)
1134		device_delete_child(dev, sc->vge_miibus);
1135	bus_generic_detach(dev);
1136
1137	if (sc->vge_intrhand)
1138		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1139	if (sc->vge_irq)
1140		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1141	if (sc->vge_res)
1142		bus_release_resource(dev, SYS_RES_MEMORY,
1143		    VGE_PCI_LOMEM, sc->vge_res);
1144	if (ifp)
1145		if_free(ifp);
1146
1147	/* Unload and free the RX DMA ring memory and map */
1148
1149	if (sc->vge_ldata.vge_rx_list_tag) {
1150		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1151		    sc->vge_ldata.vge_rx_list_map);
1152		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1153		    sc->vge_ldata.vge_rx_list,
1154		    sc->vge_ldata.vge_rx_list_map);
1155		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1156	}
1157
1158	/* Unload and free the TX DMA ring memory and map */
1159
1160	if (sc->vge_ldata.vge_tx_list_tag) {
1161		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1162		    sc->vge_ldata.vge_tx_list_map);
1163		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1164		    sc->vge_ldata.vge_tx_list,
1165		    sc->vge_ldata.vge_tx_list_map);
1166		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1167	}
1168
1169	/* Destroy all the RX and TX buffer maps */
1170
1171	if (sc->vge_ldata.vge_mtag) {
1172		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1173			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1174			    sc->vge_ldata.vge_tx_dmamap[i]);
1175		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1176			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1177			    sc->vge_ldata.vge_rx_dmamap[i]);
1178		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1179	}
1180
1181	if (sc->vge_parent_tag)
1182		bus_dma_tag_destroy(sc->vge_parent_tag);
1183
1184	mtx_destroy(&sc->vge_mtx);
1185
1186	return (0);
1187}
1188
1189static int
1190vge_newbuf(sc, idx, m)
1191	struct vge_softc	*sc;
1192	int			idx;
1193	struct mbuf		*m;
1194{
1195	struct vge_dmaload_arg	arg;
1196	struct mbuf		*n = NULL;
1197	int			i, error;
1198
1199	if (m == NULL) {
1200		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1201		if (n == NULL)
1202			return (ENOBUFS);
1203		m = n;
1204	} else
1205		m->m_data = m->m_ext.ext_buf;
1206
1207
1208#ifdef VGE_FIXUP_RX
1209	/*
1210	 * This is part of an evil trick to deal with non-x86 platforms.
1211	 * The VIA chip requires RX buffers to be aligned on 32-bit
1212	 * boundaries, but that will hose non-x86 machines. To get around
1213	 * this, we leave some empty space at the start of each buffer
1214	 * and for non-x86 hosts, we copy the buffer back two bytes
1215	 * to achieve word alignment. This is slightly more efficient
1216	 * than allocating a new buffer, copying the contents, and
1217	 * discarding the old buffer.
1218	 */
1219	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1220	m_adj(m, VGE_ETHER_ALIGN);
1221#else
1222	m->m_len = m->m_pkthdr.len = MCLBYTES;
1223#endif
1224
1225	arg.sc = sc;
1226	arg.vge_idx = idx;
1227	arg.vge_maxsegs = 1;
1228	arg.vge_flags = 0;
1229
1230	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1231	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1232	    &arg, BUS_DMA_NOWAIT);
1233	if (error || arg.vge_maxsegs != 1) {
1234		if (n != NULL)
1235			m_freem(n);
1236		return (ENOMEM);
1237	}
1238
1239	/*
1240	 * Note: the manual fails to document the fact that for
1241	 * proper opration, the driver needs to replentish the RX
1242	 * DMA ring 4 descriptors at a time (rather than one at a
1243	 * time, like most chips). We can allocate the new buffers
1244	 * but we should not set the OWN bits until we're ready
1245	 * to hand back 4 of them in one shot.
1246	 */
1247
1248#define VGE_RXCHUNK 4
1249	sc->vge_rx_consumed++;
1250	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1251		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1252			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1253			    htole32(VGE_RDSTS_OWN);
1254		sc->vge_rx_consumed = 0;
1255	}
1256
1257	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1258
1259	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1260	    sc->vge_ldata.vge_rx_dmamap[idx],
1261	    BUS_DMASYNC_PREREAD);
1262
1263	return (0);
1264}
1265
1266static int
1267vge_tx_list_init(sc)
1268	struct vge_softc		*sc;
1269{
1270	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1271	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1272	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1273
1274	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1275	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1276	sc->vge_ldata.vge_tx_prodidx = 0;
1277	sc->vge_ldata.vge_tx_considx = 0;
1278	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1279
1280	return (0);
1281}
1282
1283static int
1284vge_rx_list_init(sc)
1285	struct vge_softc		*sc;
1286{
1287	int			i;
1288
1289	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1290	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1291	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1292
1293	sc->vge_rx_consumed = 0;
1294
1295	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1296		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1297			return (ENOBUFS);
1298	}
1299
1300	/* Flush the RX descriptors */
1301
1302	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1303	    sc->vge_ldata.vge_rx_list_map,
1304	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1305
1306	sc->vge_ldata.vge_rx_prodidx = 0;
1307	sc->vge_rx_consumed = 0;
1308	sc->vge_head = sc->vge_tail = NULL;
1309
1310	return (0);
1311}
1312
1313#ifdef VGE_FIXUP_RX
1314static __inline void
1315vge_fixup_rx(m)
1316	struct mbuf		*m;
1317{
1318	int			i;
1319	uint16_t		*src, *dst;
1320
1321	src = mtod(m, uint16_t *);
1322	dst = src - 1;
1323
1324	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1325		*dst++ = *src++;
1326
1327	m->m_data -= ETHER_ALIGN;
1328
1329	return;
1330}
1331#endif
1332
1333/*
1334 * RX handler. We support the reception of jumbo frames that have
1335 * been fragmented across multiple 2K mbuf cluster buffers.
1336 */
1337static void
1338vge_rxeof(sc)
1339	struct vge_softc	*sc;
1340{
1341	struct mbuf		*m;
1342	struct ifnet		*ifp;
1343	int			i, total_len;
1344	int			lim = 0;
1345	struct vge_rx_desc	*cur_rx;
1346	u_int32_t		rxstat, rxctl;
1347
1348	VGE_LOCK_ASSERT(sc);
1349	ifp = sc->vge_ifp;
1350	i = sc->vge_ldata.vge_rx_prodidx;
1351
1352	/* Invalidate the descriptor memory */
1353
1354	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1355	    sc->vge_ldata.vge_rx_list_map,
1356	    BUS_DMASYNC_POSTREAD);
1357
1358	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1359
1360#ifdef DEVICE_POLLING
1361		if (ifp->if_capenable & IFCAP_POLLING) {
1362			if (sc->rxcycles <= 0)
1363				break;
1364			sc->rxcycles--;
1365		}
1366#endif
1367
1368		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1369		m = sc->vge_ldata.vge_rx_mbuf[i];
1370		total_len = VGE_RXBYTES(cur_rx);
1371		rxstat = le32toh(cur_rx->vge_sts);
1372		rxctl = le32toh(cur_rx->vge_ctl);
1373
1374		/* Invalidate the RX mbuf and unload its map */
1375
1376		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1377		    sc->vge_ldata.vge_rx_dmamap[i],
1378		    BUS_DMASYNC_POSTWRITE);
1379		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1380		    sc->vge_ldata.vge_rx_dmamap[i]);
1381
1382		/*
1383		 * If the 'start of frame' bit is set, this indicates
1384		 * either the first fragment in a multi-fragment receive,
1385		 * or an intermediate fragment. Either way, we want to
1386		 * accumulate the buffers.
1387		 */
1388		if (rxstat & VGE_RXPKT_SOF) {
1389			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1390			if (sc->vge_head == NULL)
1391				sc->vge_head = sc->vge_tail = m;
1392			else {
1393				m->m_flags &= ~M_PKTHDR;
1394				sc->vge_tail->m_next = m;
1395				sc->vge_tail = m;
1396			}
1397			vge_newbuf(sc, i, NULL);
1398			VGE_RX_DESC_INC(i);
1399			continue;
1400		}
1401
1402		/*
1403		 * Bad/error frames will have the RXOK bit cleared.
1404		 * However, there's one error case we want to allow:
1405		 * if a VLAN tagged frame arrives and the chip can't
1406		 * match it against the CAM filter, it considers this
1407		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1408		 * We don't want to drop the frame though: our VLAN
1409		 * filtering is done in software.
1410		 */
1411		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1412		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1413			ifp->if_ierrors++;
1414			/*
1415			 * If this is part of a multi-fragment packet,
1416			 * discard all the pieces.
1417			 */
1418			if (sc->vge_head != NULL) {
1419				m_freem(sc->vge_head);
1420				sc->vge_head = sc->vge_tail = NULL;
1421			}
1422			vge_newbuf(sc, i, m);
1423			VGE_RX_DESC_INC(i);
1424			continue;
1425		}
1426
1427		/*
1428		 * If allocating a replacement mbuf fails,
1429		 * reload the current one.
1430		 */
1431
1432		if (vge_newbuf(sc, i, NULL)) {
1433			ifp->if_ierrors++;
1434			if (sc->vge_head != NULL) {
1435				m_freem(sc->vge_head);
1436				sc->vge_head = sc->vge_tail = NULL;
1437			}
1438			vge_newbuf(sc, i, m);
1439			VGE_RX_DESC_INC(i);
1440			continue;
1441		}
1442
1443		VGE_RX_DESC_INC(i);
1444
1445		if (sc->vge_head != NULL) {
1446			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1447			/*
1448			 * Special case: if there's 4 bytes or less
1449			 * in this buffer, the mbuf can be discarded:
1450			 * the last 4 bytes is the CRC, which we don't
1451			 * care about anyway.
1452			 */
1453			if (m->m_len <= ETHER_CRC_LEN) {
1454				sc->vge_tail->m_len -=
1455				    (ETHER_CRC_LEN - m->m_len);
1456				m_freem(m);
1457			} else {
1458				m->m_len -= ETHER_CRC_LEN;
1459				m->m_flags &= ~M_PKTHDR;
1460				sc->vge_tail->m_next = m;
1461			}
1462			m = sc->vge_head;
1463			sc->vge_head = sc->vge_tail = NULL;
1464			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1465		} else
1466			m->m_pkthdr.len = m->m_len =
1467			    (total_len - ETHER_CRC_LEN);
1468
1469#ifdef VGE_FIXUP_RX
1470		vge_fixup_rx(m);
1471#endif
1472		ifp->if_ipackets++;
1473		m->m_pkthdr.rcvif = ifp;
1474
1475		/* Do RX checksumming if enabled */
1476		if (ifp->if_capenable & IFCAP_RXCSUM) {
1477
1478			/* Check IP header checksum */
1479			if (rxctl & VGE_RDCTL_IPPKT)
1480				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1481			if (rxctl & VGE_RDCTL_IPCSUMOK)
1482				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1483
1484			/* Check TCP/UDP checksum */
1485			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1486			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1487				m->m_pkthdr.csum_flags |=
1488				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1489				m->m_pkthdr.csum_data = 0xffff;
1490			}
1491		}
1492
1493		if (rxstat & VGE_RDSTS_VTAG) {
1494			VLAN_INPUT_TAG(ifp, m,
1495			    ntohs((rxctl & VGE_RDCTL_VLANID)));
1496			if (m == NULL)
1497				continue;
1498		}
1499
1500		VGE_UNLOCK(sc);
1501		(*ifp->if_input)(ifp, m);
1502		VGE_LOCK(sc);
1503
1504		lim++;
1505		if (lim == VGE_RX_DESC_CNT)
1506			break;
1507
1508	}
1509
1510	/* Flush the RX DMA ring */
1511
1512	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1513	    sc->vge_ldata.vge_rx_list_map,
1514	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1515
1516	sc->vge_ldata.vge_rx_prodidx = i;
1517	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1518
1519
1520	return;
1521}
1522
1523static void
1524vge_txeof(sc)
1525	struct vge_softc		*sc;
1526{
1527	struct ifnet		*ifp;
1528	u_int32_t		txstat;
1529	int			idx;
1530
1531	ifp = sc->vge_ifp;
1532	idx = sc->vge_ldata.vge_tx_considx;
1533
1534	/* Invalidate the TX descriptor list */
1535
1536	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1537	    sc->vge_ldata.vge_tx_list_map,
1538	    BUS_DMASYNC_POSTREAD);
1539
1540	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1541
1542		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1543		if (txstat & VGE_TDSTS_OWN)
1544			break;
1545
1546		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1547		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1548		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1549		    sc->vge_ldata.vge_tx_dmamap[idx]);
1550		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1551			ifp->if_collisions++;
1552		if (txstat & VGE_TDSTS_TXERR)
1553			ifp->if_oerrors++;
1554		else
1555			ifp->if_opackets++;
1556
1557		sc->vge_ldata.vge_tx_free++;
1558		VGE_TX_DESC_INC(idx);
1559	}
1560
1561	/* No changes made to the TX ring, so no flush needed */
1562
1563	if (idx != sc->vge_ldata.vge_tx_considx) {
1564		sc->vge_ldata.vge_tx_considx = idx;
1565		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1566		ifp->if_timer = 0;
1567	}
1568
1569	/*
1570	 * If not all descriptors have been released reaped yet,
1571	 * reload the timer so that we will eventually get another
1572	 * interrupt that will cause us to re-enter this routine.
1573	 * This is done in case the transmitter has gone idle.
1574	 */
1575	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1576		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1577	}
1578
1579	return;
1580}
1581
1582static void
1583vge_tick(xsc)
1584	void			*xsc;
1585{
1586	struct vge_softc	*sc;
1587	struct ifnet		*ifp;
1588	struct mii_data		*mii;
1589
1590	sc = xsc;
1591	ifp = sc->vge_ifp;
1592	VGE_LOCK(sc);
1593	mii = device_get_softc(sc->vge_miibus);
1594
1595	mii_tick(mii);
1596	if (sc->vge_link) {
1597		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1598			sc->vge_link = 0;
1599			if_link_state_change(sc->vge_ifp,
1600			    LINK_STATE_DOWN);
1601		}
1602	} else {
1603		if (mii->mii_media_status & IFM_ACTIVE &&
1604		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1605			sc->vge_link = 1;
1606			if_link_state_change(sc->vge_ifp,
1607			    LINK_STATE_UP);
1608#if __FreeBSD_version < 502114
1609			if (ifp->if_snd.ifq_head != NULL)
1610#else
1611			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1612#endif
1613				taskqueue_enqueue(taskqueue_swi,
1614				    &sc->vge_txtask);
1615		}
1616	}
1617
1618	VGE_UNLOCK(sc);
1619
1620	return;
1621}
1622
1623#ifdef DEVICE_POLLING
1624static void
1625vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1626{
1627	struct vge_softc *sc = ifp->if_softc;
1628
1629	VGE_LOCK(sc);
1630	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1631		goto done;
1632
1633	sc->rxcycles = count;
1634	vge_rxeof(sc);
1635	vge_txeof(sc);
1636
1637#if __FreeBSD_version < 502114
1638	if (ifp->if_snd.ifq_head != NULL)
1639#else
1640	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1641#endif
1642		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1643
1644	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1645		u_int32_t       status;
1646		status = CSR_READ_4(sc, VGE_ISR);
1647		if (status == 0xFFFFFFFF)
1648			goto done;
1649		if (status)
1650			CSR_WRITE_4(sc, VGE_ISR, status);
1651
1652		/*
1653		 * XXX check behaviour on receiver stalls.
1654		 */
1655
1656		if (status & VGE_ISR_TXDMA_STALL ||
1657		    status & VGE_ISR_RXDMA_STALL)
1658			vge_init(sc);
1659
1660		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1661			vge_rxeof(sc);
1662			ifp->if_ierrors++;
1663			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1664			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1665		}
1666	}
1667done:
1668	VGE_UNLOCK(sc);
1669}
1670#endif /* DEVICE_POLLING */
1671
1672static void
1673vge_intr(arg)
1674	void			*arg;
1675{
1676	struct vge_softc	*sc;
1677	struct ifnet		*ifp;
1678	u_int32_t		status;
1679
1680	sc = arg;
1681
1682	if (sc->suspended) {
1683		return;
1684	}
1685
1686	VGE_LOCK(sc);
1687	ifp = sc->vge_ifp;
1688
1689	if (!(ifp->if_flags & IFF_UP)) {
1690		VGE_UNLOCK(sc);
1691		return;
1692	}
1693
1694#ifdef DEVICE_POLLING
1695	if  (ifp->if_capenable & IFCAP_POLLING) {
1696		VGE_UNLOCK(sc);
1697		return;
1698	}
1699#endif
1700
1701	/* Disable interrupts */
1702	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1703
1704	for (;;) {
1705
1706		status = CSR_READ_4(sc, VGE_ISR);
1707		/* If the card has gone away the read returns 0xffff. */
1708		if (status == 0xFFFFFFFF)
1709			break;
1710
1711		if (status)
1712			CSR_WRITE_4(sc, VGE_ISR, status);
1713
1714		if ((status & VGE_INTRS) == 0)
1715			break;
1716
1717		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1718			vge_rxeof(sc);
1719
1720		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1721			vge_rxeof(sc);
1722			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1723			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1724		}
1725
1726		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1727			vge_txeof(sc);
1728
1729		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1730			vge_init(sc);
1731
1732		if (status & VGE_ISR_LINKSTS)
1733			vge_tick(sc);
1734	}
1735
1736	/* Re-enable interrupts */
1737	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1738
1739	VGE_UNLOCK(sc);
1740
1741#if __FreeBSD_version < 502114
1742	if (ifp->if_snd.ifq_head != NULL)
1743#else
1744	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1745#endif
1746		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1747
1748	return;
1749}
1750
1751static int
1752vge_encap(sc, m_head, idx)
1753	struct vge_softc	*sc;
1754	struct mbuf		*m_head;
1755	int			idx;
1756{
1757	struct mbuf		*m_new = NULL;
1758	struct vge_dmaload_arg	arg;
1759	bus_dmamap_t		map;
1760	int			error;
1761	struct m_tag		*mtag;
1762
1763	if (sc->vge_ldata.vge_tx_free <= 2)
1764		return (EFBIG);
1765
1766	arg.vge_flags = 0;
1767
1768	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1769		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1770	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1771		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1772	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1773		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1774
1775	arg.sc = sc;
1776	arg.vge_idx = idx;
1777	arg.vge_m0 = m_head;
1778	arg.vge_maxsegs = VGE_TX_FRAGS;
1779
1780	map = sc->vge_ldata.vge_tx_dmamap[idx];
1781	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1782	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1783
1784	if (error && error != EFBIG) {
1785		printf("vge%d: can't map mbuf (error %d)\n",
1786		    sc->vge_unit, error);
1787		return (ENOBUFS);
1788	}
1789
1790	/* Too many segments to map, coalesce into a single mbuf */
1791
1792	if (error || arg.vge_maxsegs == 0) {
1793		m_new = m_defrag(m_head, M_DONTWAIT);
1794		if (m_new == NULL)
1795			return (1);
1796		else
1797			m_head = m_new;
1798
1799		arg.sc = sc;
1800		arg.vge_m0 = m_head;
1801		arg.vge_idx = idx;
1802		arg.vge_maxsegs = 1;
1803
1804		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1805		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1806		if (error) {
1807			printf("vge%d: can't map mbuf (error %d)\n",
1808			    sc->vge_unit, error);
1809			return (EFBIG);
1810		}
1811	}
1812
1813	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1814	sc->vge_ldata.vge_tx_free--;
1815
1816	/*
1817	 * Set up hardware VLAN tagging.
1818	 */
1819
1820	mtag = VLAN_OUTPUT_TAG(sc->vge_ifp, m_head);
1821	if (mtag != NULL)
1822		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1823		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1824
1825	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1826
1827	return (0);
1828}
1829
1830static void
1831vge_tx_task(arg, npending)
1832	void			*arg;
1833	int			npending;
1834{
1835	struct ifnet		*ifp;
1836
1837	ifp = arg;
1838	vge_start(ifp);
1839
1840	return;
1841}
1842
1843/*
1844 * Main transmit routine.
1845 */
1846
1847static void
1848vge_start(ifp)
1849	struct ifnet		*ifp;
1850{
1851	struct vge_softc	*sc;
1852	struct mbuf		*m_head = NULL;
1853	int			idx, pidx = 0;
1854
1855	sc = ifp->if_softc;
1856	VGE_LOCK(sc);
1857
1858	if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
1859		VGE_UNLOCK(sc);
1860		return;
1861	}
1862
1863#if __FreeBSD_version < 502114
1864	if (ifp->if_snd.ifq_head == NULL) {
1865#else
1866	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1867#endif
1868		VGE_UNLOCK(sc);
1869		return;
1870	}
1871
1872	idx = sc->vge_ldata.vge_tx_prodidx;
1873
1874	pidx = idx - 1;
1875	if (pidx < 0)
1876		pidx = VGE_TX_DESC_CNT - 1;
1877
1878
1879	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1880#if __FreeBSD_version < 502114
1881		IF_DEQUEUE(&ifp->if_snd, m_head);
1882#else
1883		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1884#endif
1885		if (m_head == NULL)
1886			break;
1887
1888		if (vge_encap(sc, m_head, idx)) {
1889#if __FreeBSD_version >= 502114
1890			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1891#else
1892			IF_PREPEND(&ifp->if_snd, m_head);
1893#endif
1894			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1895			break;
1896		}
1897
1898		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1899		    htole16(VGE_TXDESC_Q);
1900
1901		pidx = idx;
1902		VGE_TX_DESC_INC(idx);
1903
1904		/*
1905		 * If there's a BPF listener, bounce a copy of this frame
1906		 * to him.
1907		 */
1908		BPF_MTAP(ifp, m_head);
1909	}
1910
1911	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1912		VGE_UNLOCK(sc);
1913		return;
1914	}
1915
1916	/* Flush the TX descriptors */
1917
1918	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1919	    sc->vge_ldata.vge_tx_list_map,
1920	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1921
1922	/* Issue a transmit command. */
1923	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1924
1925	sc->vge_ldata.vge_tx_prodidx = idx;
1926
1927	/*
1928	 * Use the countdown timer for interrupt moderation.
1929	 * 'TX done' interrupts are disabled. Instead, we reset the
1930	 * countdown timer, which will begin counting until it hits
1931	 * the value in the SSTIMER register, and then trigger an
1932	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1933	 * the timer count is reloaded. Only when the transmitter
1934	 * is idle will the timer hit 0 and an interrupt fire.
1935	 */
1936	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1937
1938	VGE_UNLOCK(sc);
1939
1940	/*
1941	 * Set a timeout in case the chip goes out to lunch.
1942	 */
1943	ifp->if_timer = 5;
1944
1945	return;
1946}
1947
1948static void
1949vge_init(xsc)
1950	void			*xsc;
1951{
1952	struct vge_softc	*sc = xsc;
1953	struct ifnet		*ifp = sc->vge_ifp;
1954	struct mii_data		*mii;
1955	int			i;
1956
1957	VGE_LOCK(sc);
1958	mii = device_get_softc(sc->vge_miibus);
1959
1960	/*
1961	 * Cancel pending I/O and free all RX/TX buffers.
1962	 */
1963	vge_stop(sc);
1964	vge_reset(sc);
1965
1966	/*
1967	 * Initialize the RX and TX descriptors and mbufs.
1968	 */
1969
1970	vge_rx_list_init(sc);
1971	vge_tx_list_init(sc);
1972
1973	/* Set our station address */
1974	for (i = 0; i < ETHER_ADDR_LEN; i++)
1975		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
1976
1977	/*
1978	 * Set receive FIFO threshold. Also allow transmission and
1979	 * reception of VLAN tagged frames.
1980	 */
1981	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1982	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1983
1984	/* Set DMA burst length */
1985	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1986	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1987
1988	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1989
1990	/* Set collision backoff algorithm */
1991	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1992	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1993	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1994
1995	/* Disable LPSEL field in priority resolution */
1996	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1997
1998	/*
1999	 * Load the addresses of the DMA queues into the chip.
2000	 * Note that we only use one transmit queue.
2001	 */
2002
2003	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2004	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
2005	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2006
2007	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2008	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
2009	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2010	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2011
2012	/* Enable and wake up the RX descriptor queue */
2013	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2014	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2015
2016	/* Enable the TX descriptor queue */
2017	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2018
2019	/* Set up the receive filter -- allow large frames for VLANs. */
2020	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
2021
2022	/* If we want promiscuous mode, set the allframes bit. */
2023	if (ifp->if_flags & IFF_PROMISC) {
2024		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2025	}
2026
2027	/* Set capture broadcast bit to capture broadcast frames. */
2028	if (ifp->if_flags & IFF_BROADCAST) {
2029		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
2030	}
2031
2032	/* Set multicast bit to capture multicast frames. */
2033	if (ifp->if_flags & IFF_MULTICAST) {
2034		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
2035	}
2036
2037	/* Init the cam filter. */
2038	vge_cam_clear(sc);
2039
2040	/* Init the multicast filter. */
2041	vge_setmulti(sc);
2042
2043	/* Enable flow control */
2044
2045	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2046
2047	/* Enable jumbo frame reception (if desired) */
2048
2049	/* Start the MAC. */
2050	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2051	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2052	CSR_WRITE_1(sc, VGE_CRS0,
2053	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2054
2055	/*
2056	 * Configure one-shot timer for microsecond
2057	 * resulution and load it for 500 usecs.
2058	 */
2059	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2060	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2061
2062	/*
2063	 * Configure interrupt moderation for receive. Enable
2064	 * the holdoff counter and load it, and set the RX
2065	 * suppression count to the number of descriptors we
2066	 * want to allow before triggering an interrupt.
2067	 * The holdoff timer is in units of 20 usecs.
2068	 */
2069
2070#ifdef notyet
2071	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2072	/* Select the interrupt holdoff timer page. */
2073	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2074	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2075	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2076
2077	/* Enable use of the holdoff timer. */
2078	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2079	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2080
2081	/* Select the RX suppression threshold page. */
2082	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2083	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2084	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2085
2086	/* Restore the page select bits. */
2087	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2088	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2089#endif
2090
2091#ifdef DEVICE_POLLING
2092	/*
2093	 * Disable interrupts if we are polling.
2094	 */
2095	if (ifp->if_capenable & IFCAP_POLLING) {
2096		CSR_WRITE_4(sc, VGE_IMR, 0);
2097		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2098	} else	/* otherwise ... */
2099#endif
2100	{
2101	/*
2102	 * Enable interrupts.
2103	 */
2104		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2105		CSR_WRITE_4(sc, VGE_ISR, 0);
2106		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2107	}
2108
2109	mii_mediachg(mii);
2110
2111	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2112	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2113
2114	sc->vge_if_flags = 0;
2115	sc->vge_link = 0;
2116
2117	VGE_UNLOCK(sc);
2118
2119	return;
2120}
2121
2122/*
2123 * Set media options.
2124 */
2125static int
2126vge_ifmedia_upd(ifp)
2127	struct ifnet		*ifp;
2128{
2129	struct vge_softc	*sc;
2130	struct mii_data		*mii;
2131
2132	sc = ifp->if_softc;
2133	mii = device_get_softc(sc->vge_miibus);
2134	mii_mediachg(mii);
2135
2136	return (0);
2137}
2138
2139/*
2140 * Report current media status.
2141 */
2142static void
2143vge_ifmedia_sts(ifp, ifmr)
2144	struct ifnet		*ifp;
2145	struct ifmediareq	*ifmr;
2146{
2147	struct vge_softc	*sc;
2148	struct mii_data		*mii;
2149
2150	sc = ifp->if_softc;
2151	mii = device_get_softc(sc->vge_miibus);
2152
2153	mii_pollstat(mii);
2154	ifmr->ifm_active = mii->mii_media_active;
2155	ifmr->ifm_status = mii->mii_media_status;
2156
2157	return;
2158}
2159
2160static void
2161vge_miibus_statchg(dev)
2162	device_t		dev;
2163{
2164	struct vge_softc	*sc;
2165	struct mii_data		*mii;
2166	struct ifmedia_entry	*ife;
2167
2168	sc = device_get_softc(dev);
2169	mii = device_get_softc(sc->vge_miibus);
2170	ife = mii->mii_media.ifm_cur;
2171
2172	/*
2173	 * If the user manually selects a media mode, we need to turn
2174	 * on the forced MAC mode bit in the DIAGCTL register. If the
2175	 * user happens to choose a full duplex mode, we also need to
2176	 * set the 'force full duplex' bit. This applies only to
2177	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2178	 * mode is disabled, and in 1000baseT mode, full duplex is
2179	 * always implied, so we turn on the forced mode bit but leave
2180	 * the FDX bit cleared.
2181	 */
2182
2183	switch (IFM_SUBTYPE(ife->ifm_media)) {
2184	case IFM_AUTO:
2185		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2186		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2187		break;
2188	case IFM_1000_T:
2189		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2190		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2191		break;
2192	case IFM_100_TX:
2193	case IFM_10_T:
2194		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2195		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2196			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2197		} else {
2198			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2199		}
2200		break;
2201	default:
2202		device_printf(dev, "unknown media type: %x\n",
2203		    IFM_SUBTYPE(ife->ifm_media));
2204		break;
2205	}
2206
2207	return;
2208}
2209
2210static int
2211vge_ioctl(ifp, command, data)
2212	struct ifnet		*ifp;
2213	u_long			command;
2214	caddr_t			data;
2215{
2216	struct vge_softc	*sc = ifp->if_softc;
2217	struct ifreq		*ifr = (struct ifreq *) data;
2218	struct mii_data		*mii;
2219	int			error = 0;
2220
2221	switch (command) {
2222	case SIOCSIFMTU:
2223		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2224			error = EINVAL;
2225		ifp->if_mtu = ifr->ifr_mtu;
2226		break;
2227	case SIOCSIFFLAGS:
2228		if (ifp->if_flags & IFF_UP) {
2229			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2230			    ifp->if_flags & IFF_PROMISC &&
2231			    !(sc->vge_if_flags & IFF_PROMISC)) {
2232				CSR_SETBIT_1(sc, VGE_RXCTL,
2233				    VGE_RXCTL_RX_PROMISC);
2234				vge_setmulti(sc);
2235			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2236			    !(ifp->if_flags & IFF_PROMISC) &&
2237			    sc->vge_if_flags & IFF_PROMISC) {
2238				CSR_CLRBIT_1(sc, VGE_RXCTL,
2239				    VGE_RXCTL_RX_PROMISC);
2240				vge_setmulti(sc);
2241                        } else
2242				vge_init(sc);
2243		} else {
2244			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2245				vge_stop(sc);
2246		}
2247		sc->vge_if_flags = ifp->if_flags;
2248		break;
2249	case SIOCADDMULTI:
2250	case SIOCDELMULTI:
2251		vge_setmulti(sc);
2252		break;
2253	case SIOCGIFMEDIA:
2254	case SIOCSIFMEDIA:
2255		mii = device_get_softc(sc->vge_miibus);
2256		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2257		break;
2258	case SIOCSIFCAP:
2259	    {
2260		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2261#ifdef DEVICE_POLLING
2262		if (mask & IFCAP_POLLING) {
2263			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2264				error = ether_poll_register(vge_poll, ifp);
2265				if (error)
2266					return(error);
2267				VGE_LOCK(sc);
2268					/* Disable interrupts */
2269				CSR_WRITE_4(sc, VGE_IMR, 0);
2270				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2271				ifp->if_capenable |= IFCAP_POLLING;
2272				VGE_UNLOCK(sc);
2273			} else {
2274				error = ether_poll_deregister(ifp);
2275				/* Enable interrupts. */
2276				VGE_LOCK(sc);
2277				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2278				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2279				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2280				ifp->if_capenable &= ~IFCAP_POLLING;
2281				VGE_UNLOCK(sc);
2282			}
2283		}
2284#endif /* DEVICE_POLLING */
2285		if (mask & IFCAP_HWCSUM) {
2286			ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM);
2287			if (ifp->if_capenable & IFCAP_TXCSUM)
2288				ifp->if_hwassist = VGE_CSUM_FEATURES;
2289			else
2290				ifp->if_hwassist = 0;
2291			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2292				vge_init(sc);
2293		}
2294	    }
2295		break;
2296	default:
2297		error = ether_ioctl(ifp, command, data);
2298		break;
2299	}
2300
2301	return (error);
2302}
2303
2304static void
2305vge_watchdog(ifp)
2306	struct ifnet		*ifp;
2307{
2308	struct vge_softc		*sc;
2309
2310	sc = ifp->if_softc;
2311	VGE_LOCK(sc);
2312	printf("vge%d: watchdog timeout\n", sc->vge_unit);
2313	ifp->if_oerrors++;
2314
2315	vge_txeof(sc);
2316	vge_rxeof(sc);
2317
2318	vge_init(sc);
2319
2320	VGE_UNLOCK(sc);
2321
2322	return;
2323}
2324
2325/*
2326 * Stop the adapter and free any mbufs allocated to the
2327 * RX and TX lists.
2328 */
2329static void
2330vge_stop(sc)
2331	struct vge_softc		*sc;
2332{
2333	register int		i;
2334	struct ifnet		*ifp;
2335
2336	VGE_LOCK(sc);
2337	ifp = sc->vge_ifp;
2338	ifp->if_timer = 0;
2339
2340	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2341
2342	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2343	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2344	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2345	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2346	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2347	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2348
2349	if (sc->vge_head != NULL) {
2350		m_freem(sc->vge_head);
2351		sc->vge_head = sc->vge_tail = NULL;
2352	}
2353
2354	/* Free the TX list buffers. */
2355
2356	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2357		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2358			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2359			    sc->vge_ldata.vge_tx_dmamap[i]);
2360			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2361			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2362		}
2363	}
2364
2365	/* Free the RX list buffers. */
2366
2367	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2368		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2369			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2370			    sc->vge_ldata.vge_rx_dmamap[i]);
2371			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2372			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2373		}
2374	}
2375
2376	VGE_UNLOCK(sc);
2377
2378	return;
2379}
2380
2381/*
2382 * Device suspend routine.  Stop the interface and save some PCI
2383 * settings in case the BIOS doesn't restore them properly on
2384 * resume.
2385 */
2386static int
2387vge_suspend(dev)
2388	device_t		dev;
2389{
2390	struct vge_softc	*sc;
2391
2392	sc = device_get_softc(dev);
2393
2394	vge_stop(sc);
2395
2396	sc->suspended = 1;
2397
2398	return (0);
2399}
2400
2401/*
2402 * Device resume routine.  Restore some PCI settings in case the BIOS
2403 * doesn't, re-enable busmastering, and restart the interface if
2404 * appropriate.
2405 */
2406static int
2407vge_resume(dev)
2408	device_t		dev;
2409{
2410	struct vge_softc	*sc;
2411	struct ifnet		*ifp;
2412
2413	sc = device_get_softc(dev);
2414	ifp = sc->vge_ifp;
2415
2416	/* reenable busmastering */
2417	pci_enable_busmaster(dev);
2418	pci_enable_io(dev, SYS_RES_MEMORY);
2419
2420	/* reinitialize interface if necessary */
2421	if (ifp->if_flags & IFF_UP)
2422		vge_init(sc);
2423
2424	sc->suspended = 0;
2425
2426	return (0);
2427}
2428
2429/*
2430 * Stop all chip I/O so that the kernel's probe routines don't
2431 * get confused by errant DMAs when rebooting.
2432 */
2433static void
2434vge_shutdown(dev)
2435	device_t		dev;
2436{
2437	struct vge_softc		*sc;
2438
2439	sc = device_get_softc(dev);
2440
2441	vge_stop(sc);
2442}
2443