if_vge.c revision 147256
1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 147256 2005-06-10 16:49:24Z brooks $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#include <sys/param.h>
84#include <sys/endian.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/module.h>
90#include <sys/kernel.h>
91#include <sys/socket.h>
92#include <sys/taskqueue.h>
93
94#include <net/if.h>
95#include <net/if_arp.h>
96#include <net/ethernet.h>
97#include <net/if_dl.h>
98#include <net/if_media.h>
99#include <net/if_types.h>
100#include <net/if_vlan_var.h>
101
102#include <net/bpf.h>
103
104#include <machine/bus.h>
105#include <machine/resource.h>
106#include <sys/bus.h>
107#include <sys/rman.h>
108
109#include <dev/mii/mii.h>
110#include <dev/mii/miivar.h>
111
112#include <dev/pci/pcireg.h>
113#include <dev/pci/pcivar.h>
114
115MODULE_DEPEND(vge, pci, 1, 1, 1);
116MODULE_DEPEND(vge, ether, 1, 1, 1);
117MODULE_DEPEND(vge, miibus, 1, 1, 1);
118
119/* "controller miibus0" required.  See GENERIC if you get errors here. */
120#include "miibus_if.h"
121
122#include <dev/vge/if_vgereg.h>
123#include <dev/vge/if_vgevar.h>
124
125#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
126
127/*
128 * Various supported device vendors/types and their names.
129 */
130static struct vge_type vge_devs[] = {
131	{ VIA_VENDORID, VIA_DEVICEID_61XX,
132		"VIA Networking Gigabit Ethernet" },
133	{ 0, 0, NULL }
134};
135
136static int vge_probe		(device_t);
137static int vge_attach		(device_t);
138static int vge_detach		(device_t);
139
140static int vge_encap		(struct vge_softc *, struct mbuf *, int);
141
142static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
143static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
144				    bus_size_t, int);
145static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
146				    bus_size_t, int);
147static int vge_allocmem		(device_t, struct vge_softc *);
148static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
149static int vge_rx_list_init	(struct vge_softc *);
150static int vge_tx_list_init	(struct vge_softc *);
151#ifdef VGE_FIXUP_RX
152static __inline void vge_fixup_rx
153				(struct mbuf *);
154#endif
155static void vge_rxeof		(struct vge_softc *);
156static void vge_txeof		(struct vge_softc *);
157static void vge_intr		(void *);
158static void vge_tick		(void *);
159static void vge_tx_task		(void *, int);
160static void vge_start		(struct ifnet *);
161static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
162static void vge_init		(void *);
163static void vge_stop		(struct vge_softc *);
164static void vge_watchdog	(struct ifnet *);
165static int vge_suspend		(device_t);
166static int vge_resume		(device_t);
167static void vge_shutdown	(device_t);
168static int vge_ifmedia_upd	(struct ifnet *);
169static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
170
171#ifdef VGE_EEPROM
172static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
173#endif
174static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
175
176static void vge_miipoll_start	(struct vge_softc *);
177static void vge_miipoll_stop	(struct vge_softc *);
178static int vge_miibus_readreg	(device_t, int, int);
179static int vge_miibus_writereg	(device_t, int, int, int);
180static void vge_miibus_statchg	(device_t);
181
182static void vge_cam_clear	(struct vge_softc *);
183static int vge_cam_set		(struct vge_softc *, uint8_t *);
184#if __FreeBSD_version < 502113
185static uint32_t vge_mchash	(uint8_t *);
186#endif
187static void vge_setmulti	(struct vge_softc *);
188static void vge_reset		(struct vge_softc *);
189
190#define VGE_PCI_LOIO             0x10
191#define VGE_PCI_LOMEM            0x14
192
193static device_method_t vge_methods[] = {
194	/* Device interface */
195	DEVMETHOD(device_probe,		vge_probe),
196	DEVMETHOD(device_attach,	vge_attach),
197	DEVMETHOD(device_detach,	vge_detach),
198	DEVMETHOD(device_suspend,	vge_suspend),
199	DEVMETHOD(device_resume,	vge_resume),
200	DEVMETHOD(device_shutdown,	vge_shutdown),
201
202	/* bus interface */
203	DEVMETHOD(bus_print_child,	bus_generic_print_child),
204	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
205
206	/* MII interface */
207	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
208	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
209	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
210
211	{ 0, 0 }
212};
213
214static driver_t vge_driver = {
215	"vge",
216	vge_methods,
217	sizeof(struct vge_softc)
218};
219
220static devclass_t vge_devclass;
221
222DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
223DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
224DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
225
226#ifdef VGE_EEPROM
227/*
228 * Read a word of data stored in the EEPROM at address 'addr.'
229 */
230static void
231vge_eeprom_getword(sc, addr, dest)
232	struct vge_softc	*sc;
233	int			addr;
234	u_int16_t		*dest;
235{
236	register int		i;
237	u_int16_t		word = 0;
238
239	/*
240	 * Enter EEPROM embedded programming mode. In order to
241	 * access the EEPROM at all, we first have to set the
242	 * EELOAD bit in the CHIPCFG2 register.
243	 */
244	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
245	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
246
247	/* Select the address of the word we want to read */
248	CSR_WRITE_1(sc, VGE_EEADDR, addr);
249
250	/* Issue read command */
251	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
252
253	/* Wait for the done bit to be set. */
254	for (i = 0; i < VGE_TIMEOUT; i++) {
255		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
256			break;
257	}
258
259	if (i == VGE_TIMEOUT) {
260		device_printf(sc->vge_dev, "EEPROM read timed out\n");
261		*dest = 0;
262		return;
263	}
264
265	/* Read the result */
266	word = CSR_READ_2(sc, VGE_EERDDAT);
267
268	/* Turn off EEPROM access mode. */
269	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
270	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
271
272	*dest = word;
273
274	return;
275}
276#endif
277
278/*
279 * Read a sequence of words from the EEPROM.
280 */
281static void
282vge_read_eeprom(sc, dest, off, cnt, swap)
283	struct vge_softc	*sc;
284	caddr_t			dest;
285	int			off;
286	int			cnt;
287	int			swap;
288{
289	int			i;
290#ifdef VGE_EEPROM
291	u_int16_t		word = 0, *ptr;
292
293	for (i = 0; i < cnt; i++) {
294		vge_eeprom_getword(sc, off + i, &word);
295		ptr = (u_int16_t *)(dest + (i * 2));
296		if (swap)
297			*ptr = ntohs(word);
298		else
299			*ptr = word;
300	}
301#else
302	for (i = 0; i < ETHER_ADDR_LEN; i++)
303		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
304#endif
305}
306
307static void
308vge_miipoll_stop(sc)
309	struct vge_softc	*sc;
310{
311	int			i;
312
313	CSR_WRITE_1(sc, VGE_MIICMD, 0);
314
315	for (i = 0; i < VGE_TIMEOUT; i++) {
316		DELAY(1);
317		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
318			break;
319	}
320
321	if (i == VGE_TIMEOUT)
322		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
323
324	return;
325}
326
327static void
328vge_miipoll_start(sc)
329	struct vge_softc	*sc;
330{
331	int			i;
332
333	/* First, make sure we're idle. */
334
335	CSR_WRITE_1(sc, VGE_MIICMD, 0);
336	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
337
338	for (i = 0; i < VGE_TIMEOUT; i++) {
339		DELAY(1);
340		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
341			break;
342	}
343
344	if (i == VGE_TIMEOUT) {
345		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
346		return;
347	}
348
349	/* Now enable auto poll mode. */
350
351	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
352
353	/* And make sure it started. */
354
355	for (i = 0; i < VGE_TIMEOUT; i++) {
356		DELAY(1);
357		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
358			break;
359	}
360
361	if (i == VGE_TIMEOUT)
362		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
363
364	return;
365}
366
367static int
368vge_miibus_readreg(dev, phy, reg)
369	device_t		dev;
370	int			phy, reg;
371{
372	struct vge_softc	*sc;
373	int			i;
374	u_int16_t		rval = 0;
375
376	sc = device_get_softc(dev);
377
378	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
379		return(0);
380
381	VGE_LOCK(sc);
382	vge_miipoll_stop(sc);
383
384	/* Specify the register we want to read. */
385	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
386
387	/* Issue read command. */
388	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
389
390	/* Wait for the read command bit to self-clear. */
391	for (i = 0; i < VGE_TIMEOUT; i++) {
392		DELAY(1);
393		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
394			break;
395	}
396
397	if (i == VGE_TIMEOUT)
398		device_printf(sc->vge_dev, "MII read timed out\n");
399	else
400		rval = CSR_READ_2(sc, VGE_MIIDATA);
401
402	vge_miipoll_start(sc);
403	VGE_UNLOCK(sc);
404
405	return (rval);
406}
407
408static int
409vge_miibus_writereg(dev, phy, reg, data)
410	device_t		dev;
411	int			phy, reg, data;
412{
413	struct vge_softc	*sc;
414	int			i, rval = 0;
415
416	sc = device_get_softc(dev);
417
418	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
419		return(0);
420
421	VGE_LOCK(sc);
422	vge_miipoll_stop(sc);
423
424	/* Specify the register we want to write. */
425	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
426
427	/* Specify the data we want to write. */
428	CSR_WRITE_2(sc, VGE_MIIDATA, data);
429
430	/* Issue write command. */
431	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
432
433	/* Wait for the write command bit to self-clear. */
434	for (i = 0; i < VGE_TIMEOUT; i++) {
435		DELAY(1);
436		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
437			break;
438	}
439
440	if (i == VGE_TIMEOUT) {
441		device_printf(sc->vge_dev, "MII write timed out\n");
442		rval = EIO;
443	}
444
445	vge_miipoll_start(sc);
446	VGE_UNLOCK(sc);
447
448	return (rval);
449}
450
451static void
452vge_cam_clear(sc)
453	struct vge_softc	*sc;
454{
455	int			i;
456
457	/*
458	 * Turn off all the mask bits. This tells the chip
459	 * that none of the entries in the CAM filter are valid.
460	 * desired entries will be enabled as we fill the filter in.
461	 */
462
463	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
464	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
465	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
466	for (i = 0; i < 8; i++)
467		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
468
469	/* Clear the VLAN filter too. */
470
471	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
472	for (i = 0; i < 8; i++)
473		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
474
475	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
476	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
477	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
478
479	sc->vge_camidx = 0;
480
481	return;
482}
483
484static int
485vge_cam_set(sc, addr)
486	struct vge_softc	*sc;
487	uint8_t			*addr;
488{
489	int			i, error = 0;
490
491	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
492		return(ENOSPC);
493
494	/* Select the CAM data page. */
495	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
496	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
497
498	/* Set the filter entry we want to update and enable writing. */
499	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
500
501	/* Write the address to the CAM registers */
502	for (i = 0; i < ETHER_ADDR_LEN; i++)
503		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
504
505	/* Issue a write command. */
506	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
507
508	/* Wake for it to clear. */
509	for (i = 0; i < VGE_TIMEOUT; i++) {
510		DELAY(1);
511		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
512			break;
513	}
514
515	if (i == VGE_TIMEOUT) {
516		device_printf(sc->vge_dev, "setting CAM filter failed\n");
517		error = EIO;
518		goto fail;
519	}
520
521	/* Select the CAM mask page. */
522	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
523	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
524
525	/* Set the mask bit that enables this filter. */
526	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
527	    1<<(sc->vge_camidx & 7));
528
529	sc->vge_camidx++;
530
531fail:
532	/* Turn off access to CAM. */
533	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
534	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
535	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
536
537	return (error);
538}
539
540#if __FreeBSD_version < 502113
541static uint32_t
542vge_mchash(addr)
543        uint8_t			*addr;
544{
545	uint32_t		crc, carry;
546	int			idx, bit;
547	uint8_t			data;
548
549	/* Compute CRC for the address value. */
550	crc = 0xFFFFFFFF; /* initial value */
551
552	for (idx = 0; idx < 6; idx++) {
553		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
554			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
555			crc <<= 1;
556			if (carry)
557				crc = (crc ^ 0x04c11db6) | carry;
558		}
559	}
560
561	return(crc);
562}
563#endif
564
565/*
566 * Program the multicast filter. We use the 64-entry CAM filter
567 * for perfect filtering. If there's more than 64 multicast addresses,
568 * we use the hash filter insted.
569 */
570static void
571vge_setmulti(sc)
572	struct vge_softc	*sc;
573{
574	struct ifnet		*ifp;
575	int			error = 0/*, h = 0*/;
576	struct ifmultiaddr	*ifma;
577	u_int32_t		h, hashes[2] = { 0, 0 };
578
579	ifp = sc->vge_ifp;
580
581	/* First, zot all the multicast entries. */
582	vge_cam_clear(sc);
583	CSR_WRITE_4(sc, VGE_MAR0, 0);
584	CSR_WRITE_4(sc, VGE_MAR1, 0);
585
586	/*
587	 * If the user wants allmulti or promisc mode, enable reception
588	 * of all multicast frames.
589	 */
590	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
591		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
592		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
593		return;
594	}
595
596	/* Now program new ones */
597	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
598		if (ifma->ifma_addr->sa_family != AF_LINK)
599			continue;
600		error = vge_cam_set(sc,
601		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
602		if (error)
603			break;
604	}
605
606	/* If there were too many addresses, use the hash filter. */
607	if (error) {
608		vge_cam_clear(sc);
609
610		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
611			if (ifma->ifma_addr->sa_family != AF_LINK)
612				continue;
613#if __FreeBSD_version < 502113
614			h = vge_mchash(LLADDR((struct sockaddr_dl *)
615			    ifma->ifma_addr)) >> 26;
616#else
617			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
618			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
619#endif
620			if (h < 32)
621				hashes[0] |= (1 << h);
622			else
623				hashes[1] |= (1 << (h - 32));
624		}
625
626		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
627		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
628	}
629
630	return;
631}
632
633static void
634vge_reset(sc)
635	struct vge_softc		*sc;
636{
637	register int		i;
638
639	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
640
641	for (i = 0; i < VGE_TIMEOUT; i++) {
642		DELAY(5);
643		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
644			break;
645	}
646
647	if (i == VGE_TIMEOUT) {
648		device_printf(sc->vge_dev, "soft reset timed out");
649		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
650		DELAY(2000);
651	}
652
653	DELAY(5000);
654
655	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
656
657	for (i = 0; i < VGE_TIMEOUT; i++) {
658		DELAY(5);
659		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
660			break;
661	}
662
663	if (i == VGE_TIMEOUT) {
664		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
665		return;
666	}
667
668	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
669
670	return;
671}
672
673/*
674 * Probe for a VIA gigabit chip. Check the PCI vendor and device
675 * IDs against our list and return a device name if we find a match.
676 */
677static int
678vge_probe(dev)
679	device_t		dev;
680{
681	struct vge_type		*t;
682	struct vge_softc	*sc;
683
684	t = vge_devs;
685	sc = device_get_softc(dev);
686
687	while (t->vge_name != NULL) {
688		if ((pci_get_vendor(dev) == t->vge_vid) &&
689		    (pci_get_device(dev) == t->vge_did)) {
690			device_set_desc(dev, t->vge_name);
691			return (BUS_PROBE_DEFAULT);
692		}
693		t++;
694	}
695
696	return (ENXIO);
697}
698
699static void
700vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
701	void			*arg;
702	bus_dma_segment_t	*segs;
703	int			nseg;
704	bus_size_t		mapsize;
705	int			error;
706{
707
708	struct vge_dmaload_arg	*ctx;
709	struct vge_rx_desc	*d = NULL;
710
711	if (error)
712		return;
713
714	ctx = arg;
715
716	/* Signal error to caller if there's too many segments */
717	if (nseg > ctx->vge_maxsegs) {
718		ctx->vge_maxsegs = 0;
719		return;
720	}
721
722	/*
723	 * Map the segment array into descriptors.
724	 */
725
726	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
727
728	/* If this descriptor is still owned by the chip, bail. */
729
730	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
731		device_printf(ctx->sc->vge_dev,
732		    "tried to map busy descriptor\n");
733		ctx->vge_maxsegs = 0;
734		return;
735	}
736
737	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
738	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
739	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
740	d->vge_sts = 0;
741	d->vge_ctl = 0;
742
743	ctx->vge_maxsegs = 1;
744
745	return;
746}
747
748static void
749vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
750	void			*arg;
751	bus_dma_segment_t	*segs;
752	int			nseg;
753	bus_size_t		mapsize;
754	int			error;
755{
756	struct vge_dmaload_arg	*ctx;
757	struct vge_tx_desc	*d = NULL;
758	struct vge_tx_frag	*f;
759	int			i = 0;
760
761	if (error)
762		return;
763
764	ctx = arg;
765
766	/* Signal error to caller if there's too many segments */
767	if (nseg > ctx->vge_maxsegs) {
768		ctx->vge_maxsegs = 0;
769		return;
770	}
771
772	/* Map the segment array into descriptors. */
773
774	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
775
776	/* If this descriptor is still owned by the chip, bail. */
777
778	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
779		ctx->vge_maxsegs = 0;
780		return;
781	}
782
783	for (i = 0; i < nseg; i++) {
784		f = &d->vge_frag[i];
785		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
786		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
787		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
788	}
789
790	/* Argh. This chip does not autopad short frames */
791
792	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
793		f = &d->vge_frag[i];
794		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
795		    ctx->vge_m0->m_pkthdr.len));
796		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
797		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
798		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
799		i++;
800	}
801
802	/*
803	 * When telling the chip how many segments there are, we
804	 * must use nsegs + 1 instead of just nsegs. Darned if I
805	 * know why.
806	 */
807	i++;
808
809	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
810	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
811
812	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
813		d->vge_ctl |= VGE_TDCTL_JUMBO;
814
815	ctx->vge_maxsegs = nseg;
816
817	return;
818}
819
820/*
821 * Map a single buffer address.
822 */
823
824static void
825vge_dma_map_addr(arg, segs, nseg, error)
826	void			*arg;
827	bus_dma_segment_t	*segs;
828	int			nseg;
829	int			error;
830{
831	bus_addr_t		*addr;
832
833	if (error)
834		return;
835
836	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
837	addr = arg;
838	*addr = segs->ds_addr;
839
840	return;
841}
842
843static int
844vge_allocmem(dev, sc)
845	device_t		dev;
846	struct vge_softc		*sc;
847{
848	int			error;
849	int			nseg;
850	int			i;
851
852	/*
853	 * Allocate map for RX mbufs.
854	 */
855	nseg = 32;
856	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
857	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
858	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
859	    NULL, NULL, &sc->vge_ldata.vge_mtag);
860	if (error) {
861		device_printf(dev, "could not allocate dma tag\n");
862		return (ENOMEM);
863	}
864
865	/*
866	 * Allocate map for TX descriptor list.
867	 */
868	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
869	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
870	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
871	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
872	if (error) {
873		device_printf(dev, "could not allocate dma tag\n");
874		return (ENOMEM);
875	}
876
877	/* Allocate DMA'able memory for the TX ring */
878
879	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
880	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
881	    &sc->vge_ldata.vge_tx_list_map);
882	if (error)
883		return (ENOMEM);
884
885	/* Load the map for the TX ring. */
886
887	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
888	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
889	     VGE_TX_LIST_SZ, vge_dma_map_addr,
890	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
891
892	/* Create DMA maps for TX buffers */
893
894	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
895		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
896			    &sc->vge_ldata.vge_tx_dmamap[i]);
897		if (error) {
898			device_printf(dev, "can't create DMA map for TX\n");
899			return (ENOMEM);
900		}
901	}
902
903	/*
904	 * Allocate map for RX descriptor list.
905	 */
906	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
907	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
908	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
909	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
910	if (error) {
911		device_printf(dev, "could not allocate dma tag\n");
912		return (ENOMEM);
913	}
914
915	/* Allocate DMA'able memory for the RX ring */
916
917	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
918	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
919	    &sc->vge_ldata.vge_rx_list_map);
920	if (error)
921		return (ENOMEM);
922
923	/* Load the map for the RX ring. */
924
925	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
926	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
927	     VGE_TX_LIST_SZ, vge_dma_map_addr,
928	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
929
930	/* Create DMA maps for RX buffers */
931
932	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
933		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
934			    &sc->vge_ldata.vge_rx_dmamap[i]);
935		if (error) {
936			device_printf(dev, "can't create DMA map for RX\n");
937			return (ENOMEM);
938		}
939	}
940
941	return (0);
942}
943
944/*
945 * Attach the interface. Allocate softc structures, do ifmedia
946 * setup and ethernet/BPF attach.
947 */
948static int
949vge_attach(dev)
950	device_t		dev;
951{
952	u_char			eaddr[ETHER_ADDR_LEN];
953	struct vge_softc	*sc;
954	struct ifnet		*ifp;
955	int			unit, error = 0, rid;
956
957	sc = device_get_softc(dev);
958	unit = device_get_unit(dev);
959	sc->vge_dev = dev;
960
961	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
962	    MTX_DEF | MTX_RECURSE);
963	/*
964	 * Map control/status registers.
965	 */
966	pci_enable_busmaster(dev);
967
968	rid = VGE_PCI_LOMEM;
969	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
970	    0, ~0, 1, RF_ACTIVE);
971
972	if (sc->vge_res == NULL) {
973		printf ("vge%d: couldn't map ports/memory\n", unit);
974		error = ENXIO;
975		goto fail;
976	}
977
978	sc->vge_btag = rman_get_bustag(sc->vge_res);
979	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
980
981	/* Allocate interrupt */
982	rid = 0;
983	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
984	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
985
986	if (sc->vge_irq == NULL) {
987		printf("vge%d: couldn't map interrupt\n", unit);
988		error = ENXIO;
989		goto fail;
990	}
991
992	/* Reset the adapter. */
993	vge_reset(sc);
994
995	/*
996	 * Get station address from the EEPROM.
997	 */
998	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
999
1000	sc->vge_unit = unit;
1001
1002#if __FreeBSD_version < 502113
1003	printf("vge%d: Ethernet address: %6D\n", unit, eaddr, ":");
1004#endif
1005
1006	/*
1007	 * Allocate the parent bus DMA tag appropriate for PCI.
1008	 */
1009#define VGE_NSEG_NEW 32
1010	error = bus_dma_tag_create(NULL,	/* parent */
1011			1, 0,			/* alignment, boundary */
1012			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1013			BUS_SPACE_MAXADDR,	/* highaddr */
1014			NULL, NULL,		/* filter, filterarg */
1015			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
1016			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1017			BUS_DMA_ALLOCNOW,	/* flags */
1018			NULL, NULL,		/* lockfunc, lockarg */
1019			&sc->vge_parent_tag);
1020	if (error)
1021		goto fail;
1022
1023	error = vge_allocmem(dev, sc);
1024
1025	if (error)
1026		goto fail;
1027
1028	/* Do MII setup */
1029	if (mii_phy_probe(dev, &sc->vge_miibus,
1030	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1031		printf("vge%d: MII without any phy!\n", sc->vge_unit);
1032		error = ENXIO;
1033		goto fail;
1034	}
1035
1036	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1037	if (ifp == NULL) {
1038		printf("vge%d: can not if_alloc()\n", sc->vge_unit);
1039		error = ENOSPC;
1040		goto fail;
1041	}
1042	ifp->if_softc = sc;
1043	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1044	ifp->if_mtu = ETHERMTU;
1045	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1046	ifp->if_ioctl = vge_ioctl;
1047	ifp->if_capabilities = IFCAP_VLAN_MTU;
1048	ifp->if_start = vge_start;
1049	ifp->if_hwassist = VGE_CSUM_FEATURES;
1050	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1051#ifdef DEVICE_POLLING
1052#ifdef IFCAP_POLLING
1053	ifp->if_capabilities |= IFCAP_POLLING;
1054#endif
1055#endif
1056	ifp->if_watchdog = vge_watchdog;
1057	ifp->if_init = vge_init;
1058	ifp->if_baudrate = 1000000000;
1059	ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN;
1060	ifp->if_capenable = ifp->if_capabilities;
1061
1062	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1063
1064	/*
1065	 * Call MI attach routine.
1066	 */
1067	ether_ifattach(ifp, eaddr);
1068
1069	/* Hook interrupt last to avoid having to lock softc */
1070	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1071	    vge_intr, sc, &sc->vge_intrhand);
1072
1073	if (error) {
1074		printf("vge%d: couldn't set up irq\n", unit);
1075		ether_ifdetach(ifp);
1076		goto fail;
1077	}
1078
1079fail:
1080	if (error)
1081		vge_detach(dev);
1082
1083	return (error);
1084}
1085
1086/*
1087 * Shutdown hardware and free up resources. This can be called any
1088 * time after the mutex has been initialized. It is called in both
1089 * the error case in attach and the normal detach case so it needs
1090 * to be careful about only freeing resources that have actually been
1091 * allocated.
1092 */
1093static int
1094vge_detach(dev)
1095	device_t		dev;
1096{
1097	struct vge_softc		*sc;
1098	struct ifnet		*ifp;
1099	int			i;
1100
1101	sc = device_get_softc(dev);
1102	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1103	ifp = sc->vge_ifp;
1104
1105	/* These should only be active if attach succeeded */
1106	if (device_is_attached(dev)) {
1107		vge_stop(sc);
1108		/*
1109		 * Force off the IFF_UP flag here, in case someone
1110		 * still had a BPF descriptor attached to this
1111		 * interface. If they do, ether_ifattach() will cause
1112		 * the BPF code to try and clear the promisc mode
1113		 * flag, which will bubble down to vge_ioctl(),
1114		 * which will try to call vge_init() again. This will
1115		 * turn the NIC back on and restart the MII ticker,
1116		 * which will panic the system when the kernel tries
1117		 * to invoke the vge_tick() function that isn't there
1118		 * anymore.
1119		 */
1120		ifp->if_flags &= ~IFF_UP;
1121		ether_ifdetach(ifp);
1122		if_free(ifp);
1123	}
1124	if (sc->vge_miibus)
1125		device_delete_child(dev, sc->vge_miibus);
1126	bus_generic_detach(dev);
1127
1128	if (sc->vge_intrhand)
1129		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1130	if (sc->vge_irq)
1131		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1132	if (sc->vge_res)
1133		bus_release_resource(dev, SYS_RES_MEMORY,
1134		    VGE_PCI_LOMEM, sc->vge_res);
1135
1136	/* Unload and free the RX DMA ring memory and map */
1137
1138	if (sc->vge_ldata.vge_rx_list_tag) {
1139		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1140		    sc->vge_ldata.vge_rx_list_map);
1141		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1142		    sc->vge_ldata.vge_rx_list,
1143		    sc->vge_ldata.vge_rx_list_map);
1144		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1145	}
1146
1147	/* Unload and free the TX DMA ring memory and map */
1148
1149	if (sc->vge_ldata.vge_tx_list_tag) {
1150		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1151		    sc->vge_ldata.vge_tx_list_map);
1152		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1153		    sc->vge_ldata.vge_tx_list,
1154		    sc->vge_ldata.vge_tx_list_map);
1155		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1156	}
1157
1158	/* Destroy all the RX and TX buffer maps */
1159
1160	if (sc->vge_ldata.vge_mtag) {
1161		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1162			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1163			    sc->vge_ldata.vge_tx_dmamap[i]);
1164		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1165			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1166			    sc->vge_ldata.vge_rx_dmamap[i]);
1167		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1168	}
1169
1170	if (sc->vge_parent_tag)
1171		bus_dma_tag_destroy(sc->vge_parent_tag);
1172
1173	mtx_destroy(&sc->vge_mtx);
1174
1175	return (0);
1176}
1177
1178static int
1179vge_newbuf(sc, idx, m)
1180	struct vge_softc	*sc;
1181	int			idx;
1182	struct mbuf		*m;
1183{
1184	struct vge_dmaload_arg	arg;
1185	struct mbuf		*n = NULL;
1186	int			i, error;
1187
1188	if (m == NULL) {
1189		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1190		if (n == NULL)
1191			return (ENOBUFS);
1192		m = n;
1193	} else
1194		m->m_data = m->m_ext.ext_buf;
1195
1196
1197#ifdef VGE_FIXUP_RX
1198	/*
1199	 * This is part of an evil trick to deal with non-x86 platforms.
1200	 * The VIA chip requires RX buffers to be aligned on 32-bit
1201	 * boundaries, but that will hose non-x86 machines. To get around
1202	 * this, we leave some empty space at the start of each buffer
1203	 * and for non-x86 hosts, we copy the buffer back two bytes
1204	 * to achieve word alignment. This is slightly more efficient
1205	 * than allocating a new buffer, copying the contents, and
1206	 * discarding the old buffer.
1207	 */
1208	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1209	m_adj(m, VGE_ETHER_ALIGN);
1210#else
1211	m->m_len = m->m_pkthdr.len = MCLBYTES;
1212#endif
1213
1214	arg.sc = sc;
1215	arg.vge_idx = idx;
1216	arg.vge_maxsegs = 1;
1217	arg.vge_flags = 0;
1218
1219	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1220	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1221	    &arg, BUS_DMA_NOWAIT);
1222	if (error || arg.vge_maxsegs != 1) {
1223		if (n != NULL)
1224			m_freem(n);
1225		return (ENOMEM);
1226	}
1227
1228	/*
1229	 * Note: the manual fails to document the fact that for
1230	 * proper opration, the driver needs to replentish the RX
1231	 * DMA ring 4 descriptors at a time (rather than one at a
1232	 * time, like most chips). We can allocate the new buffers
1233	 * but we should not set the OWN bits until we're ready
1234	 * to hand back 4 of them in one shot.
1235	 */
1236
1237#define VGE_RXCHUNK 4
1238	sc->vge_rx_consumed++;
1239	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1240		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1241			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1242			    htole32(VGE_RDSTS_OWN);
1243		sc->vge_rx_consumed = 0;
1244	}
1245
1246	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1247
1248	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1249	    sc->vge_ldata.vge_rx_dmamap[idx],
1250	    BUS_DMASYNC_PREREAD);
1251
1252	return (0);
1253}
1254
1255static int
1256vge_tx_list_init(sc)
1257	struct vge_softc		*sc;
1258{
1259	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1260	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1261	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1262
1263	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1264	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1265	sc->vge_ldata.vge_tx_prodidx = 0;
1266	sc->vge_ldata.vge_tx_considx = 0;
1267	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1268
1269	return (0);
1270}
1271
1272static int
1273vge_rx_list_init(sc)
1274	struct vge_softc		*sc;
1275{
1276	int			i;
1277
1278	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1279	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1280	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1281
1282	sc->vge_rx_consumed = 0;
1283
1284	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1285		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1286			return (ENOBUFS);
1287	}
1288
1289	/* Flush the RX descriptors */
1290
1291	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1292	    sc->vge_ldata.vge_rx_list_map,
1293	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1294
1295	sc->vge_ldata.vge_rx_prodidx = 0;
1296	sc->vge_rx_consumed = 0;
1297	sc->vge_head = sc->vge_tail = NULL;
1298
1299	return (0);
1300}
1301
1302#ifdef VGE_FIXUP_RX
1303static __inline void
1304vge_fixup_rx(m)
1305	struct mbuf		*m;
1306{
1307	int			i;
1308	uint16_t		*src, *dst;
1309
1310	src = mtod(m, uint16_t *);
1311	dst = src - 1;
1312
1313	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1314		*dst++ = *src++;
1315
1316	m->m_data -= ETHER_ALIGN;
1317
1318	return;
1319}
1320#endif
1321
1322/*
1323 * RX handler. We support the reception of jumbo frames that have
1324 * been fragmented across multiple 2K mbuf cluster buffers.
1325 */
1326static void
1327vge_rxeof(sc)
1328	struct vge_softc	*sc;
1329{
1330	struct mbuf		*m;
1331	struct ifnet		*ifp;
1332	int			i, total_len;
1333	int			lim = 0;
1334	struct vge_rx_desc	*cur_rx;
1335	u_int32_t		rxstat, rxctl;
1336
1337	VGE_LOCK_ASSERT(sc);
1338	ifp = sc->vge_ifp;
1339	i = sc->vge_ldata.vge_rx_prodidx;
1340
1341	/* Invalidate the descriptor memory */
1342
1343	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1344	    sc->vge_ldata.vge_rx_list_map,
1345	    BUS_DMASYNC_POSTREAD);
1346
1347	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1348
1349#ifdef DEVICE_POLLING
1350		if (ifp->if_flags & IFF_POLLING) {
1351			if (sc->rxcycles <= 0)
1352				break;
1353			sc->rxcycles--;
1354		}
1355#endif /* DEVICE_POLLING */
1356
1357		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1358		m = sc->vge_ldata.vge_rx_mbuf[i];
1359		total_len = VGE_RXBYTES(cur_rx);
1360		rxstat = le32toh(cur_rx->vge_sts);
1361		rxctl = le32toh(cur_rx->vge_ctl);
1362
1363		/* Invalidate the RX mbuf and unload its map */
1364
1365		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1366		    sc->vge_ldata.vge_rx_dmamap[i],
1367		    BUS_DMASYNC_POSTWRITE);
1368		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1369		    sc->vge_ldata.vge_rx_dmamap[i]);
1370
1371		/*
1372		 * If the 'start of frame' bit is set, this indicates
1373		 * either the first fragment in a multi-fragment receive,
1374		 * or an intermediate fragment. Either way, we want to
1375		 * accumulate the buffers.
1376		 */
1377		if (rxstat & VGE_RXPKT_SOF) {
1378			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1379			if (sc->vge_head == NULL)
1380				sc->vge_head = sc->vge_tail = m;
1381			else {
1382				m->m_flags &= ~M_PKTHDR;
1383				sc->vge_tail->m_next = m;
1384				sc->vge_tail = m;
1385			}
1386			vge_newbuf(sc, i, NULL);
1387			VGE_RX_DESC_INC(i);
1388			continue;
1389		}
1390
1391		/*
1392		 * Bad/error frames will have the RXOK bit cleared.
1393		 * However, there's one error case we want to allow:
1394		 * if a VLAN tagged frame arrives and the chip can't
1395		 * match it against the CAM filter, it considers this
1396		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1397		 * We don't want to drop the frame though: our VLAN
1398		 * filtering is done in software.
1399		 */
1400		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1401		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1402			ifp->if_ierrors++;
1403			/*
1404			 * If this is part of a multi-fragment packet,
1405			 * discard all the pieces.
1406			 */
1407			if (sc->vge_head != NULL) {
1408				m_freem(sc->vge_head);
1409				sc->vge_head = sc->vge_tail = NULL;
1410			}
1411			vge_newbuf(sc, i, m);
1412			VGE_RX_DESC_INC(i);
1413			continue;
1414		}
1415
1416		/*
1417		 * If allocating a replacement mbuf fails,
1418		 * reload the current one.
1419		 */
1420
1421		if (vge_newbuf(sc, i, NULL)) {
1422			ifp->if_ierrors++;
1423			if (sc->vge_head != NULL) {
1424				m_freem(sc->vge_head);
1425				sc->vge_head = sc->vge_tail = NULL;
1426			}
1427			vge_newbuf(sc, i, m);
1428			VGE_RX_DESC_INC(i);
1429			continue;
1430		}
1431
1432		VGE_RX_DESC_INC(i);
1433
1434		if (sc->vge_head != NULL) {
1435			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1436			/*
1437			 * Special case: if there's 4 bytes or less
1438			 * in this buffer, the mbuf can be discarded:
1439			 * the last 4 bytes is the CRC, which we don't
1440			 * care about anyway.
1441			 */
1442			if (m->m_len <= ETHER_CRC_LEN) {
1443				sc->vge_tail->m_len -=
1444				    (ETHER_CRC_LEN - m->m_len);
1445				m_freem(m);
1446			} else {
1447				m->m_len -= ETHER_CRC_LEN;
1448				m->m_flags &= ~M_PKTHDR;
1449				sc->vge_tail->m_next = m;
1450			}
1451			m = sc->vge_head;
1452			sc->vge_head = sc->vge_tail = NULL;
1453			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1454		} else
1455			m->m_pkthdr.len = m->m_len =
1456			    (total_len - ETHER_CRC_LEN);
1457
1458#ifdef VGE_FIXUP_RX
1459		vge_fixup_rx(m);
1460#endif
1461		ifp->if_ipackets++;
1462		m->m_pkthdr.rcvif = ifp;
1463
1464		/* Do RX checksumming if enabled */
1465		if (ifp->if_capenable & IFCAP_RXCSUM) {
1466
1467			/* Check IP header checksum */
1468			if (rxctl & VGE_RDCTL_IPPKT)
1469				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1470			if (rxctl & VGE_RDCTL_IPCSUMOK)
1471				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1472
1473			/* Check TCP/UDP checksum */
1474			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1475			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1476				m->m_pkthdr.csum_flags |=
1477				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1478				m->m_pkthdr.csum_data = 0xffff;
1479			}
1480		}
1481
1482		if (rxstat & VGE_RDSTS_VTAG)
1483			VLAN_INPUT_TAG(ifp, m,
1484			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1485
1486		VGE_UNLOCK(sc);
1487		(*ifp->if_input)(ifp, m);
1488		VGE_LOCK(sc);
1489
1490		lim++;
1491		if (lim == VGE_RX_DESC_CNT)
1492			break;
1493
1494	}
1495
1496	/* Flush the RX DMA ring */
1497
1498	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1499	    sc->vge_ldata.vge_rx_list_map,
1500	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1501
1502	sc->vge_ldata.vge_rx_prodidx = i;
1503	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1504
1505
1506	return;
1507}
1508
1509static void
1510vge_txeof(sc)
1511	struct vge_softc		*sc;
1512{
1513	struct ifnet		*ifp;
1514	u_int32_t		txstat;
1515	int			idx;
1516
1517	ifp = sc->vge_ifp;
1518	idx = sc->vge_ldata.vge_tx_considx;
1519
1520	/* Invalidate the TX descriptor list */
1521
1522	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1523	    sc->vge_ldata.vge_tx_list_map,
1524	    BUS_DMASYNC_POSTREAD);
1525
1526	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1527
1528		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1529		if (txstat & VGE_TDSTS_OWN)
1530			break;
1531
1532		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1533		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1534		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1535		    sc->vge_ldata.vge_tx_dmamap[idx]);
1536		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1537			ifp->if_collisions++;
1538		if (txstat & VGE_TDSTS_TXERR)
1539			ifp->if_oerrors++;
1540		else
1541			ifp->if_opackets++;
1542
1543		sc->vge_ldata.vge_tx_free++;
1544		VGE_TX_DESC_INC(idx);
1545	}
1546
1547	/* No changes made to the TX ring, so no flush needed */
1548
1549	if (idx != sc->vge_ldata.vge_tx_considx) {
1550		sc->vge_ldata.vge_tx_considx = idx;
1551		ifp->if_flags &= ~IFF_OACTIVE;
1552		ifp->if_timer = 0;
1553	}
1554
1555	/*
1556	 * If not all descriptors have been released reaped yet,
1557	 * reload the timer so that we will eventually get another
1558	 * interrupt that will cause us to re-enter this routine.
1559	 * This is done in case the transmitter has gone idle.
1560	 */
1561	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1562		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1563	}
1564
1565	return;
1566}
1567
1568static void
1569vge_tick(xsc)
1570	void			*xsc;
1571{
1572	struct vge_softc	*sc;
1573	struct ifnet		*ifp;
1574	struct mii_data		*mii;
1575
1576	sc = xsc;
1577	ifp = sc->vge_ifp;
1578	VGE_LOCK(sc);
1579	mii = device_get_softc(sc->vge_miibus);
1580
1581	mii_tick(mii);
1582	if (sc->vge_link) {
1583		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1584			sc->vge_link = 0;
1585			if_link_state_change(sc->vge_ifp,
1586			    LINK_STATE_DOWN);
1587		}
1588	} else {
1589		if (mii->mii_media_status & IFM_ACTIVE &&
1590		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1591			sc->vge_link = 1;
1592			if_link_state_change(sc->vge_ifp,
1593			    LINK_STATE_UP);
1594#if __FreeBSD_version < 502114
1595			if (ifp->if_snd.ifq_head != NULL)
1596#else
1597			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1598#endif
1599				taskqueue_enqueue(taskqueue_swi,
1600				    &sc->vge_txtask);
1601		}
1602	}
1603
1604	VGE_UNLOCK(sc);
1605
1606	return;
1607}
1608
1609#ifdef DEVICE_POLLING
1610static void
1611vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1612{
1613	struct vge_softc *sc = ifp->if_softc;
1614
1615	VGE_LOCK(sc);
1616#ifdef IFCAP_POLLING
1617	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1618		ether_poll_deregister(ifp);
1619		cmd = POLL_DEREGISTER;
1620	}
1621#endif
1622	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1623		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1624		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1625		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1626		goto done;
1627	}
1628
1629	sc->rxcycles = count;
1630	vge_rxeof(sc);
1631	vge_txeof(sc);
1632
1633#if __FreeBSD_version < 502114
1634	if (ifp->if_snd.ifq_head != NULL)
1635#else
1636	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1637#endif
1638		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1639
1640	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1641		u_int32_t       status;
1642		status = CSR_READ_4(sc, VGE_ISR);
1643		if (status == 0xFFFFFFFF)
1644			goto done;
1645		if (status)
1646			CSR_WRITE_4(sc, VGE_ISR, status);
1647
1648		/*
1649		 * XXX check behaviour on receiver stalls.
1650		 */
1651
1652		if (status & VGE_ISR_TXDMA_STALL ||
1653		    status & VGE_ISR_RXDMA_STALL)
1654			vge_init(sc);
1655
1656		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1657			vge_rxeof(sc);
1658			ifp->if_ierrors++;
1659			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1660			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1661		}
1662	}
1663done:
1664	VGE_UNLOCK(sc);
1665}
1666#endif /* DEVICE_POLLING */
1667
1668static void
1669vge_intr(arg)
1670	void			*arg;
1671{
1672	struct vge_softc	*sc;
1673	struct ifnet		*ifp;
1674	u_int32_t		status;
1675
1676	sc = arg;
1677
1678	if (sc->suspended) {
1679		return;
1680	}
1681
1682	VGE_LOCK(sc);
1683	ifp = sc->vge_ifp;
1684
1685	if (!(ifp->if_flags & IFF_UP)) {
1686		VGE_UNLOCK(sc);
1687		return;
1688	}
1689
1690#ifdef DEVICE_POLLING
1691	if  (ifp->if_flags & IFF_POLLING)
1692		goto done;
1693	if (
1694#ifdef IFCAP_POLLING
1695	    (ifp->if_capenable & IFCAP_POLLING) &&
1696#endif
1697	    ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
1698		CSR_WRITE_4(sc, VGE_IMR, 0);
1699		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1700		vge_poll(ifp, 0, 1);
1701		goto done;
1702	}
1703
1704#endif /* DEVICE_POLLING */
1705
1706	/* Disable interrupts */
1707	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1708
1709	for (;;) {
1710
1711		status = CSR_READ_4(sc, VGE_ISR);
1712		/* If the card has gone away the read returns 0xffff. */
1713		if (status == 0xFFFFFFFF)
1714			break;
1715
1716		if (status)
1717			CSR_WRITE_4(sc, VGE_ISR, status);
1718
1719		if ((status & VGE_INTRS) == 0)
1720			break;
1721
1722		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1723			vge_rxeof(sc);
1724
1725		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1726			vge_rxeof(sc);
1727			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1728			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1729		}
1730
1731		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1732			vge_txeof(sc);
1733
1734		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1735			vge_init(sc);
1736
1737		if (status & VGE_ISR_LINKSTS)
1738			vge_tick(sc);
1739	}
1740
1741	/* Re-enable interrupts */
1742	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1743
1744#ifdef DEVICE_POLLING
1745done:
1746#endif
1747	VGE_UNLOCK(sc);
1748
1749#if __FreeBSD_version < 502114
1750	if (ifp->if_snd.ifq_head != NULL)
1751#else
1752	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1753#endif
1754		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1755
1756	return;
1757}
1758
1759static int
1760vge_encap(sc, m_head, idx)
1761	struct vge_softc	*sc;
1762	struct mbuf		*m_head;
1763	int			idx;
1764{
1765	struct mbuf		*m_new = NULL;
1766	struct vge_dmaload_arg	arg;
1767	bus_dmamap_t		map;
1768	int			error;
1769	struct m_tag		*mtag;
1770
1771	if (sc->vge_ldata.vge_tx_free <= 2)
1772		return (EFBIG);
1773
1774	arg.vge_flags = 0;
1775
1776	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1777		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1778	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1779		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1780	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1781		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1782
1783	arg.sc = sc;
1784	arg.vge_idx = idx;
1785	arg.vge_m0 = m_head;
1786	arg.vge_maxsegs = VGE_TX_FRAGS;
1787
1788	map = sc->vge_ldata.vge_tx_dmamap[idx];
1789	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1790	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1791
1792	if (error && error != EFBIG) {
1793		printf("vge%d: can't map mbuf (error %d)\n",
1794		    sc->vge_unit, error);
1795		return (ENOBUFS);
1796	}
1797
1798	/* Too many segments to map, coalesce into a single mbuf */
1799
1800	if (error || arg.vge_maxsegs == 0) {
1801		m_new = m_defrag(m_head, M_DONTWAIT);
1802		if (m_new == NULL)
1803			return (1);
1804		else
1805			m_head = m_new;
1806
1807		arg.sc = sc;
1808		arg.vge_m0 = m_head;
1809		arg.vge_idx = idx;
1810		arg.vge_maxsegs = 1;
1811
1812		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1813		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1814		if (error) {
1815			printf("vge%d: can't map mbuf (error %d)\n",
1816			    sc->vge_unit, error);
1817			return (EFBIG);
1818		}
1819	}
1820
1821	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1822	sc->vge_ldata.vge_tx_free--;
1823
1824	/*
1825	 * Set up hardware VLAN tagging.
1826	 */
1827
1828	mtag = VLAN_OUTPUT_TAG(sc->vge_ifp, m_head);
1829	if (mtag != NULL)
1830		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1831		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1832
1833	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1834
1835	return (0);
1836}
1837
1838static void
1839vge_tx_task(arg, npending)
1840	void			*arg;
1841	int			npending;
1842{
1843	struct ifnet		*ifp;
1844
1845	ifp = arg;
1846	vge_start(ifp);
1847
1848	return;
1849}
1850
1851/*
1852 * Main transmit routine.
1853 */
1854
1855static void
1856vge_start(ifp)
1857	struct ifnet		*ifp;
1858{
1859	struct vge_softc	*sc;
1860	struct mbuf		*m_head = NULL;
1861	int			idx, pidx = 0;
1862
1863	sc = ifp->if_softc;
1864	VGE_LOCK(sc);
1865
1866	if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE) {
1867		VGE_UNLOCK(sc);
1868		return;
1869	}
1870
1871#if __FreeBSD_version < 502114
1872	if (ifp->if_snd.ifq_head == NULL) {
1873#else
1874	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1875#endif
1876		VGE_UNLOCK(sc);
1877		return;
1878	}
1879
1880	idx = sc->vge_ldata.vge_tx_prodidx;
1881
1882	pidx = idx - 1;
1883	if (pidx < 0)
1884		pidx = VGE_TX_DESC_CNT - 1;
1885
1886
1887	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1888#if __FreeBSD_version < 502114
1889		IF_DEQUEUE(&ifp->if_snd, m_head);
1890#else
1891		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1892#endif
1893		if (m_head == NULL)
1894			break;
1895
1896		if (vge_encap(sc, m_head, idx)) {
1897#if __FreeBSD_version >= 502114
1898			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1899#else
1900			IF_PREPEND(&ifp->if_snd, m_head);
1901#endif
1902			ifp->if_flags |= IFF_OACTIVE;
1903			break;
1904		}
1905
1906		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1907		    htole16(VGE_TXDESC_Q);
1908
1909		pidx = idx;
1910		VGE_TX_DESC_INC(idx);
1911
1912		/*
1913		 * If there's a BPF listener, bounce a copy of this frame
1914		 * to him.
1915		 */
1916		BPF_MTAP(ifp, m_head);
1917	}
1918
1919	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1920		VGE_UNLOCK(sc);
1921		return;
1922	}
1923
1924	/* Flush the TX descriptors */
1925
1926	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1927	    sc->vge_ldata.vge_tx_list_map,
1928	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1929
1930	/* Issue a transmit command. */
1931	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1932
1933	sc->vge_ldata.vge_tx_prodidx = idx;
1934
1935	/*
1936	 * Use the countdown timer for interrupt moderation.
1937	 * 'TX done' interrupts are disabled. Instead, we reset the
1938	 * countdown timer, which will begin counting until it hits
1939	 * the value in the SSTIMER register, and then trigger an
1940	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1941	 * the timer count is reloaded. Only when the transmitter
1942	 * is idle will the timer hit 0 and an interrupt fire.
1943	 */
1944	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1945
1946	VGE_UNLOCK(sc);
1947
1948	/*
1949	 * Set a timeout in case the chip goes out to lunch.
1950	 */
1951	ifp->if_timer = 5;
1952
1953	return;
1954}
1955
1956static void
1957vge_init(xsc)
1958	void			*xsc;
1959{
1960	struct vge_softc	*sc = xsc;
1961	struct ifnet		*ifp = sc->vge_ifp;
1962	struct mii_data		*mii;
1963	int			i;
1964
1965	VGE_LOCK(sc);
1966	mii = device_get_softc(sc->vge_miibus);
1967
1968	/*
1969	 * Cancel pending I/O and free all RX/TX buffers.
1970	 */
1971	vge_stop(sc);
1972	vge_reset(sc);
1973
1974	/*
1975	 * Initialize the RX and TX descriptors and mbufs.
1976	 */
1977
1978	vge_rx_list_init(sc);
1979	vge_tx_list_init(sc);
1980
1981	/* Set our station address */
1982	for (i = 0; i < ETHER_ADDR_LEN; i++)
1983		CSR_WRITE_1(sc, VGE_PAR0 + i, IFP2ENADDR(sc->vge_ifp)[i]);
1984
1985	/*
1986	 * Set receive FIFO threshold. Also allow transmission and
1987	 * reception of VLAN tagged frames.
1988	 */
1989	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1990	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1991
1992	/* Set DMA burst length */
1993	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1994	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1995
1996	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1997
1998	/* Set collision backoff algorithm */
1999	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2000	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2001	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2002
2003	/* Disable LPSEL field in priority resolution */
2004	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2005
2006	/*
2007	 * Load the addresses of the DMA queues into the chip.
2008	 * Note that we only use one transmit queue.
2009	 */
2010
2011	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2012	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
2013	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2014
2015	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2016	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
2017	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2018	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2019
2020	/* Enable and wake up the RX descriptor queue */
2021	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2022	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2023
2024	/* Enable the TX descriptor queue */
2025	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2026
2027	/* Set up the receive filter -- allow large frames for VLANs. */
2028	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
2029
2030	/* If we want promiscuous mode, set the allframes bit. */
2031	if (ifp->if_flags & IFF_PROMISC) {
2032		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2033	}
2034
2035	/* Set capture broadcast bit to capture broadcast frames. */
2036	if (ifp->if_flags & IFF_BROADCAST) {
2037		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
2038	}
2039
2040	/* Set multicast bit to capture multicast frames. */
2041	if (ifp->if_flags & IFF_MULTICAST) {
2042		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
2043	}
2044
2045	/* Init the cam filter. */
2046	vge_cam_clear(sc);
2047
2048	/* Init the multicast filter. */
2049	vge_setmulti(sc);
2050
2051	/* Enable flow control */
2052
2053	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2054
2055	/* Enable jumbo frame reception (if desired) */
2056
2057	/* Start the MAC. */
2058	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2059	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2060	CSR_WRITE_1(sc, VGE_CRS0,
2061	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2062
2063	/*
2064	 * Configure one-shot timer for microsecond
2065	 * resulution and load it for 500 usecs.
2066	 */
2067	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2068	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2069
2070	/*
2071	 * Configure interrupt moderation for receive. Enable
2072	 * the holdoff counter and load it, and set the RX
2073	 * suppression count to the number of descriptors we
2074	 * want to allow before triggering an interrupt.
2075	 * The holdoff timer is in units of 20 usecs.
2076	 */
2077
2078#ifdef notyet
2079	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2080	/* Select the interrupt holdoff timer page. */
2081	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2082	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2083	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2084
2085	/* Enable use of the holdoff timer. */
2086	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2087	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2088
2089	/* Select the RX suppression threshold page. */
2090	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2091	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2092	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2093
2094	/* Restore the page select bits. */
2095	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2096	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2097#endif
2098
2099#ifdef DEVICE_POLLING
2100	/*
2101	 * Disable interrupts if we are polling.
2102	 */
2103	if (ifp->if_flags & IFF_POLLING) {
2104		CSR_WRITE_4(sc, VGE_IMR, 0);
2105		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2106	} else	/* otherwise ... */
2107#endif /* DEVICE_POLLING */
2108	{
2109	/*
2110	 * Enable interrupts.
2111	 */
2112		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2113		CSR_WRITE_4(sc, VGE_ISR, 0);
2114		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2115	}
2116
2117	mii_mediachg(mii);
2118
2119	ifp->if_flags |= IFF_RUNNING;
2120	ifp->if_flags &= ~IFF_OACTIVE;
2121
2122	sc->vge_if_flags = 0;
2123	sc->vge_link = 0;
2124
2125	VGE_UNLOCK(sc);
2126
2127	return;
2128}
2129
2130/*
2131 * Set media options.
2132 */
2133static int
2134vge_ifmedia_upd(ifp)
2135	struct ifnet		*ifp;
2136{
2137	struct vge_softc	*sc;
2138	struct mii_data		*mii;
2139
2140	sc = ifp->if_softc;
2141	mii = device_get_softc(sc->vge_miibus);
2142	mii_mediachg(mii);
2143
2144	return (0);
2145}
2146
2147/*
2148 * Report current media status.
2149 */
2150static void
2151vge_ifmedia_sts(ifp, ifmr)
2152	struct ifnet		*ifp;
2153	struct ifmediareq	*ifmr;
2154{
2155	struct vge_softc	*sc;
2156	struct mii_data		*mii;
2157
2158	sc = ifp->if_softc;
2159	mii = device_get_softc(sc->vge_miibus);
2160
2161	mii_pollstat(mii);
2162	ifmr->ifm_active = mii->mii_media_active;
2163	ifmr->ifm_status = mii->mii_media_status;
2164
2165	return;
2166}
2167
2168static void
2169vge_miibus_statchg(dev)
2170	device_t		dev;
2171{
2172	struct vge_softc	*sc;
2173	struct mii_data		*mii;
2174	struct ifmedia_entry	*ife;
2175
2176	sc = device_get_softc(dev);
2177	mii = device_get_softc(sc->vge_miibus);
2178	ife = mii->mii_media.ifm_cur;
2179
2180	/*
2181	 * If the user manually selects a media mode, we need to turn
2182	 * on the forced MAC mode bit in the DIAGCTL register. If the
2183	 * user happens to choose a full duplex mode, we also need to
2184	 * set the 'force full duplex' bit. This applies only to
2185	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2186	 * mode is disabled, and in 1000baseT mode, full duplex is
2187	 * always implied, so we turn on the forced mode bit but leave
2188	 * the FDX bit cleared.
2189	 */
2190
2191	switch (IFM_SUBTYPE(ife->ifm_media)) {
2192	case IFM_AUTO:
2193		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2194		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2195		break;
2196	case IFM_1000_T:
2197		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2198		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2199		break;
2200	case IFM_100_TX:
2201	case IFM_10_T:
2202		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2203		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2204			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2205		} else {
2206			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2207		}
2208		break;
2209	default:
2210		device_printf(dev, "unknown media type: %x\n",
2211		    IFM_SUBTYPE(ife->ifm_media));
2212		break;
2213	}
2214
2215	return;
2216}
2217
2218static int
2219vge_ioctl(ifp, command, data)
2220	struct ifnet		*ifp;
2221	u_long			command;
2222	caddr_t			data;
2223{
2224	struct vge_softc	*sc = ifp->if_softc;
2225	struct ifreq		*ifr = (struct ifreq *) data;
2226	struct mii_data		*mii;
2227	int			error = 0;
2228
2229	switch (command) {
2230	case SIOCSIFMTU:
2231		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2232			error = EINVAL;
2233		ifp->if_mtu = ifr->ifr_mtu;
2234		break;
2235	case SIOCSIFFLAGS:
2236		if (ifp->if_flags & IFF_UP) {
2237			if (ifp->if_flags & IFF_RUNNING &&
2238			    ifp->if_flags & IFF_PROMISC &&
2239			    !(sc->vge_if_flags & IFF_PROMISC)) {
2240				CSR_SETBIT_1(sc, VGE_RXCTL,
2241				    VGE_RXCTL_RX_PROMISC);
2242				vge_setmulti(sc);
2243			} else if (ifp->if_flags & IFF_RUNNING &&
2244			    !(ifp->if_flags & IFF_PROMISC) &&
2245			    sc->vge_if_flags & IFF_PROMISC) {
2246				CSR_CLRBIT_1(sc, VGE_RXCTL,
2247				    VGE_RXCTL_RX_PROMISC);
2248				vge_setmulti(sc);
2249                        } else
2250				vge_init(sc);
2251		} else {
2252			if (ifp->if_flags & IFF_RUNNING)
2253				vge_stop(sc);
2254		}
2255		sc->vge_if_flags = ifp->if_flags;
2256		break;
2257	case SIOCADDMULTI:
2258	case SIOCDELMULTI:
2259		vge_setmulti(sc);
2260		break;
2261	case SIOCGIFMEDIA:
2262	case SIOCSIFMEDIA:
2263		mii = device_get_softc(sc->vge_miibus);
2264		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2265		break;
2266	case SIOCSIFCAP:
2267#ifdef IFCAP_POLLING
2268		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2269#else
2270		ifp->if_capenable &= ~(IFCAP_HWCSUM);
2271#endif
2272		ifp->if_capenable |=
2273#ifdef IFCAP_POLLING
2274		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2275#else
2276		    ifr->ifr_reqcap & (IFCAP_HWCSUM);
2277#endif
2278		if (ifp->if_capenable & IFCAP_TXCSUM)
2279			ifp->if_hwassist = VGE_CSUM_FEATURES;
2280		else
2281			ifp->if_hwassist = 0;
2282		if (ifp->if_flags & IFF_RUNNING)
2283			vge_init(sc);
2284		break;
2285	default:
2286		error = ether_ioctl(ifp, command, data);
2287		break;
2288	}
2289
2290	return (error);
2291}
2292
2293static void
2294vge_watchdog(ifp)
2295	struct ifnet		*ifp;
2296{
2297	struct vge_softc		*sc;
2298
2299	sc = ifp->if_softc;
2300	VGE_LOCK(sc);
2301	printf("vge%d: watchdog timeout\n", sc->vge_unit);
2302	ifp->if_oerrors++;
2303
2304	vge_txeof(sc);
2305	vge_rxeof(sc);
2306
2307	vge_init(sc);
2308
2309	VGE_UNLOCK(sc);
2310
2311	return;
2312}
2313
2314/*
2315 * Stop the adapter and free any mbufs allocated to the
2316 * RX and TX lists.
2317 */
2318static void
2319vge_stop(sc)
2320	struct vge_softc		*sc;
2321{
2322	register int		i;
2323	struct ifnet		*ifp;
2324
2325	VGE_LOCK(sc);
2326	ifp = sc->vge_ifp;
2327	ifp->if_timer = 0;
2328
2329	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2330#ifdef DEVICE_POLLING
2331	ether_poll_deregister(ifp);
2332#endif /* DEVICE_POLLING */
2333
2334	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2335	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2336	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2337	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2338	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2339	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2340
2341	if (sc->vge_head != NULL) {
2342		m_freem(sc->vge_head);
2343		sc->vge_head = sc->vge_tail = NULL;
2344	}
2345
2346	/* Free the TX list buffers. */
2347
2348	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2349		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2350			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2351			    sc->vge_ldata.vge_tx_dmamap[i]);
2352			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2353			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2354		}
2355	}
2356
2357	/* Free the RX list buffers. */
2358
2359	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2360		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2361			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2362			    sc->vge_ldata.vge_rx_dmamap[i]);
2363			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2364			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2365		}
2366	}
2367
2368	VGE_UNLOCK(sc);
2369
2370	return;
2371}
2372
2373/*
2374 * Device suspend routine.  Stop the interface and save some PCI
2375 * settings in case the BIOS doesn't restore them properly on
2376 * resume.
2377 */
2378static int
2379vge_suspend(dev)
2380	device_t		dev;
2381{
2382	struct vge_softc	*sc;
2383
2384	sc = device_get_softc(dev);
2385
2386	vge_stop(sc);
2387
2388	sc->suspended = 1;
2389
2390	return (0);
2391}
2392
2393/*
2394 * Device resume routine.  Restore some PCI settings in case the BIOS
2395 * doesn't, re-enable busmastering, and restart the interface if
2396 * appropriate.
2397 */
2398static int
2399vge_resume(dev)
2400	device_t		dev;
2401{
2402	struct vge_softc	*sc;
2403	struct ifnet		*ifp;
2404
2405	sc = device_get_softc(dev);
2406	ifp = sc->vge_ifp;
2407
2408	/* reenable busmastering */
2409	pci_enable_busmaster(dev);
2410	pci_enable_io(dev, SYS_RES_MEMORY);
2411
2412	/* reinitialize interface if necessary */
2413	if (ifp->if_flags & IFF_UP)
2414		vge_init(sc);
2415
2416	sc->suspended = 0;
2417
2418	return (0);
2419}
2420
2421/*
2422 * Stop all chip I/O so that the kernel's probe routines don't
2423 * get confused by errant DMAs when rebooting.
2424 */
2425static void
2426vge_shutdown(dev)
2427	device_t		dev;
2428{
2429	struct vge_softc		*sc;
2430
2431	sc = device_get_softc(dev);
2432
2433	vge_stop(sc);
2434}
2435