if_vge.c revision 147027
1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 147027 2005-06-05 22:45:19Z imp $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#include <sys/param.h>
84#include <sys/endian.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/module.h>
90#include <sys/kernel.h>
91#include <sys/socket.h>
92#include <sys/taskqueue.h>
93
94#include <net/if.h>
95#include <net/if_arp.h>
96#include <net/ethernet.h>
97#include <net/if_dl.h>
98#include <net/if_media.h>
99#include <net/if_vlan_var.h>
100
101#include <net/bpf.h>
102
103#include <machine/bus.h>
104#include <machine/resource.h>
105#include <sys/bus.h>
106#include <sys/rman.h>
107
108#include <dev/mii/mii.h>
109#include <dev/mii/miivar.h>
110
111#include <dev/pci/pcireg.h>
112#include <dev/pci/pcivar.h>
113
114MODULE_DEPEND(vge, pci, 1, 1, 1);
115MODULE_DEPEND(vge, ether, 1, 1, 1);
116MODULE_DEPEND(vge, miibus, 1, 1, 1);
117
118/* "controller miibus0" required.  See GENERIC if you get errors here. */
119#include "miibus_if.h"
120
121#include <dev/vge/if_vgereg.h>
122#include <dev/vge/if_vgevar.h>
123
124#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
125
126/*
127 * Various supported device vendors/types and their names.
128 */
129static struct vge_type vge_devs[] = {
130	{ VIA_VENDORID, VIA_DEVICEID_61XX,
131		"VIA Networking Gigabit Ethernet" },
132	{ 0, 0, NULL }
133};
134
135static int vge_probe		(device_t);
136static int vge_attach		(device_t);
137static int vge_detach		(device_t);
138
139static int vge_encap		(struct vge_softc *, struct mbuf *, int);
140
141static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
142static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
143				    bus_size_t, int);
144static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
145				    bus_size_t, int);
146static int vge_allocmem		(device_t, struct vge_softc *);
147static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
148static int vge_rx_list_init	(struct vge_softc *);
149static int vge_tx_list_init	(struct vge_softc *);
150#ifdef VGE_FIXUP_RX
151static __inline void vge_fixup_rx
152				(struct mbuf *);
153#endif
154static void vge_rxeof		(struct vge_softc *);
155static void vge_txeof		(struct vge_softc *);
156static void vge_intr		(void *);
157static void vge_tick		(void *);
158static void vge_tx_task		(void *, int);
159static void vge_start		(struct ifnet *);
160static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
161static void vge_init		(void *);
162static void vge_stop		(struct vge_softc *);
163static void vge_watchdog	(struct ifnet *);
164static int vge_suspend		(device_t);
165static int vge_resume		(device_t);
166static void vge_shutdown	(device_t);
167static int vge_ifmedia_upd	(struct ifnet *);
168static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
169
170#ifdef VGE_EEPROM
171static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
172#endif
173static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
174
175static void vge_miipoll_start	(struct vge_softc *);
176static void vge_miipoll_stop	(struct vge_softc *);
177static int vge_miibus_readreg	(device_t, int, int);
178static int vge_miibus_writereg	(device_t, int, int, int);
179static void vge_miibus_statchg	(device_t);
180
181static void vge_cam_clear	(struct vge_softc *);
182static int vge_cam_set		(struct vge_softc *, uint8_t *);
183#if __FreeBSD_version < 502113
184static uint32_t vge_mchash	(uint8_t *);
185#endif
186static void vge_setmulti	(struct vge_softc *);
187static void vge_reset		(struct vge_softc *);
188
189#define VGE_PCI_LOIO             0x10
190#define VGE_PCI_LOMEM            0x14
191
192static device_method_t vge_methods[] = {
193	/* Device interface */
194	DEVMETHOD(device_probe,		vge_probe),
195	DEVMETHOD(device_attach,	vge_attach),
196	DEVMETHOD(device_detach,	vge_detach),
197	DEVMETHOD(device_suspend,	vge_suspend),
198	DEVMETHOD(device_resume,	vge_resume),
199	DEVMETHOD(device_shutdown,	vge_shutdown),
200
201	/* bus interface */
202	DEVMETHOD(bus_print_child,	bus_generic_print_child),
203	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
204
205	/* MII interface */
206	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
207	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
208	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
209
210	{ 0, 0 }
211};
212
213static driver_t vge_driver = {
214	"vge",
215	vge_methods,
216	sizeof(struct vge_softc)
217};
218
219static devclass_t vge_devclass;
220
221DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
222DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
223DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
224
225#ifdef VGE_EEPROM
226/*
227 * Read a word of data stored in the EEPROM at address 'addr.'
228 */
229static void
230vge_eeprom_getword(sc, addr, dest)
231	struct vge_softc	*sc;
232	int			addr;
233	u_int16_t		*dest;
234{
235	register int		i;
236	u_int16_t		word = 0;
237
238	/*
239	 * Enter EEPROM embedded programming mode. In order to
240	 * access the EEPROM at all, we first have to set the
241	 * EELOAD bit in the CHIPCFG2 register.
242	 */
243	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
244	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
245
246	/* Select the address of the word we want to read */
247	CSR_WRITE_1(sc, VGE_EEADDR, addr);
248
249	/* Issue read command */
250	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
251
252	/* Wait for the done bit to be set. */
253	for (i = 0; i < VGE_TIMEOUT; i++) {
254		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
255			break;
256	}
257
258	if (i == VGE_TIMEOUT) {
259		device_printf(sc->vge_dev, "EEPROM read timed out\n");
260		*dest = 0;
261		return;
262	}
263
264	/* Read the result */
265	word = CSR_READ_2(sc, VGE_EERDDAT);
266
267	/* Turn off EEPROM access mode. */
268	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
269	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
270
271	*dest = word;
272
273	return;
274}
275#endif
276
277/*
278 * Read a sequence of words from the EEPROM.
279 */
280static void
281vge_read_eeprom(sc, dest, off, cnt, swap)
282	struct vge_softc	*sc;
283	caddr_t			dest;
284	int			off;
285	int			cnt;
286	int			swap;
287{
288	int			i;
289#ifdef VGE_EEPROM
290	u_int16_t		word = 0, *ptr;
291
292	for (i = 0; i < cnt; i++) {
293		vge_eeprom_getword(sc, off + i, &word);
294		ptr = (u_int16_t *)(dest + (i * 2));
295		if (swap)
296			*ptr = ntohs(word);
297		else
298			*ptr = word;
299	}
300#else
301	for (i = 0; i < ETHER_ADDR_LEN; i++)
302		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
303#endif
304}
305
306static void
307vge_miipoll_stop(sc)
308	struct vge_softc	*sc;
309{
310	int			i;
311
312	CSR_WRITE_1(sc, VGE_MIICMD, 0);
313
314	for (i = 0; i < VGE_TIMEOUT; i++) {
315		DELAY(1);
316		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
317			break;
318	}
319
320	if (i == VGE_TIMEOUT)
321		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
322
323	return;
324}
325
326static void
327vge_miipoll_start(sc)
328	struct vge_softc	*sc;
329{
330	int			i;
331
332	/* First, make sure we're idle. */
333
334	CSR_WRITE_1(sc, VGE_MIICMD, 0);
335	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
336
337	for (i = 0; i < VGE_TIMEOUT; i++) {
338		DELAY(1);
339		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
340			break;
341	}
342
343	if (i == VGE_TIMEOUT) {
344		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
345		return;
346	}
347
348	/* Now enable auto poll mode. */
349
350	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
351
352	/* And make sure it started. */
353
354	for (i = 0; i < VGE_TIMEOUT; i++) {
355		DELAY(1);
356		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
357			break;
358	}
359
360	if (i == VGE_TIMEOUT)
361		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
362
363	return;
364}
365
366static int
367vge_miibus_readreg(dev, phy, reg)
368	device_t		dev;
369	int			phy, reg;
370{
371	struct vge_softc	*sc;
372	int			i;
373	u_int16_t		rval = 0;
374
375	sc = device_get_softc(dev);
376
377	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
378		return(0);
379
380	VGE_LOCK(sc);
381	vge_miipoll_stop(sc);
382
383	/* Specify the register we want to read. */
384	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
385
386	/* Issue read command. */
387	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
388
389	/* Wait for the read command bit to self-clear. */
390	for (i = 0; i < VGE_TIMEOUT; i++) {
391		DELAY(1);
392		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
393			break;
394	}
395
396	if (i == VGE_TIMEOUT)
397		device_printf(sc->vge_dev, "MII read timed out\n");
398	else
399		rval = CSR_READ_2(sc, VGE_MIIDATA);
400
401	vge_miipoll_start(sc);
402	VGE_UNLOCK(sc);
403
404	return (rval);
405}
406
407static int
408vge_miibus_writereg(dev, phy, reg, data)
409	device_t		dev;
410	int			phy, reg, data;
411{
412	struct vge_softc	*sc;
413	int			i, rval = 0;
414
415	sc = device_get_softc(dev);
416
417	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
418		return(0);
419
420	VGE_LOCK(sc);
421	vge_miipoll_stop(sc);
422
423	/* Specify the register we want to write. */
424	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
425
426	/* Specify the data we want to write. */
427	CSR_WRITE_2(sc, VGE_MIIDATA, data);
428
429	/* Issue write command. */
430	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
431
432	/* Wait for the write command bit to self-clear. */
433	for (i = 0; i < VGE_TIMEOUT; i++) {
434		DELAY(1);
435		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
436			break;
437	}
438
439	if (i == VGE_TIMEOUT) {
440		device_printf(sc->vge_dev, "MII write timed out\n");
441		rval = EIO;
442	}
443
444	vge_miipoll_start(sc);
445	VGE_UNLOCK(sc);
446
447	return (rval);
448}
449
450static void
451vge_cam_clear(sc)
452	struct vge_softc	*sc;
453{
454	int			i;
455
456	/*
457	 * Turn off all the mask bits. This tells the chip
458	 * that none of the entries in the CAM filter are valid.
459	 * desired entries will be enabled as we fill the filter in.
460	 */
461
462	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
463	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
464	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
465	for (i = 0; i < 8; i++)
466		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
467
468	/* Clear the VLAN filter too. */
469
470	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
471	for (i = 0; i < 8; i++)
472		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
473
474	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
475	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
476	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
477
478	sc->vge_camidx = 0;
479
480	return;
481}
482
483static int
484vge_cam_set(sc, addr)
485	struct vge_softc	*sc;
486	uint8_t			*addr;
487{
488	int			i, error = 0;
489
490	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
491		return(ENOSPC);
492
493	/* Select the CAM data page. */
494	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
495	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
496
497	/* Set the filter entry we want to update and enable writing. */
498	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
499
500	/* Write the address to the CAM registers */
501	for (i = 0; i < ETHER_ADDR_LEN; i++)
502		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
503
504	/* Issue a write command. */
505	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
506
507	/* Wake for it to clear. */
508	for (i = 0; i < VGE_TIMEOUT; i++) {
509		DELAY(1);
510		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
511			break;
512	}
513
514	if (i == VGE_TIMEOUT) {
515		device_printf(sc->vge_dev, "setting CAM filter failed\n");
516		error = EIO;
517		goto fail;
518	}
519
520	/* Select the CAM mask page. */
521	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
522	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
523
524	/* Set the mask bit that enables this filter. */
525	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
526	    1<<(sc->vge_camidx & 7));
527
528	sc->vge_camidx++;
529
530fail:
531	/* Turn off access to CAM. */
532	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
533	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
534	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
535
536	return (error);
537}
538
539#if __FreeBSD_version < 502113
540static uint32_t
541vge_mchash(addr)
542        uint8_t			*addr;
543{
544	uint32_t		crc, carry;
545	int			idx, bit;
546	uint8_t			data;
547
548	/* Compute CRC for the address value. */
549	crc = 0xFFFFFFFF; /* initial value */
550
551	for (idx = 0; idx < 6; idx++) {
552		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
553			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
554			crc <<= 1;
555			if (carry)
556				crc = (crc ^ 0x04c11db6) | carry;
557		}
558	}
559
560	return(crc);
561}
562#endif
563
564/*
565 * Program the multicast filter. We use the 64-entry CAM filter
566 * for perfect filtering. If there's more than 64 multicast addresses,
567 * we use the hash filter insted.
568 */
569static void
570vge_setmulti(sc)
571	struct vge_softc	*sc;
572{
573	struct ifnet		*ifp;
574	int			error = 0/*, h = 0*/;
575	struct ifmultiaddr	*ifma;
576	u_int32_t		h, hashes[2] = { 0, 0 };
577
578	ifp = &sc->arpcom.ac_if;
579
580	/* First, zot all the multicast entries. */
581	vge_cam_clear(sc);
582	CSR_WRITE_4(sc, VGE_MAR0, 0);
583	CSR_WRITE_4(sc, VGE_MAR1, 0);
584
585	/*
586	 * If the user wants allmulti or promisc mode, enable reception
587	 * of all multicast frames.
588	 */
589	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
590		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
591		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
592		return;
593	}
594
595	/* Now program new ones */
596	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
597		if (ifma->ifma_addr->sa_family != AF_LINK)
598			continue;
599		error = vge_cam_set(sc,
600		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
601		if (error)
602			break;
603	}
604
605	/* If there were too many addresses, use the hash filter. */
606	if (error) {
607		vge_cam_clear(sc);
608
609		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
610			if (ifma->ifma_addr->sa_family != AF_LINK)
611				continue;
612#if __FreeBSD_version < 502113
613			h = vge_mchash(LLADDR((struct sockaddr_dl *)
614			    ifma->ifma_addr)) >> 26;
615#else
616			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
617			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
618#endif
619			if (h < 32)
620				hashes[0] |= (1 << h);
621			else
622				hashes[1] |= (1 << (h - 32));
623		}
624
625		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
626		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
627	}
628
629	return;
630}
631
632static void
633vge_reset(sc)
634	struct vge_softc		*sc;
635{
636	register int		i;
637
638	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
639
640	for (i = 0; i < VGE_TIMEOUT; i++) {
641		DELAY(5);
642		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
643			break;
644	}
645
646	if (i == VGE_TIMEOUT) {
647		device_printf(sc->vge_dev, "soft reset timed out");
648		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
649		DELAY(2000);
650	}
651
652	DELAY(5000);
653
654	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
655
656	for (i = 0; i < VGE_TIMEOUT; i++) {
657		DELAY(5);
658		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
659			break;
660	}
661
662	if (i == VGE_TIMEOUT) {
663		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
664		return;
665	}
666
667	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
668
669	return;
670}
671
672/*
673 * Probe for a VIA gigabit chip. Check the PCI vendor and device
674 * IDs against our list and return a device name if we find a match.
675 */
676static int
677vge_probe(dev)
678	device_t		dev;
679{
680	struct vge_type		*t;
681	struct vge_softc	*sc;
682
683	t = vge_devs;
684	sc = device_get_softc(dev);
685
686	while (t->vge_name != NULL) {
687		if ((pci_get_vendor(dev) == t->vge_vid) &&
688		    (pci_get_device(dev) == t->vge_did)) {
689			device_set_desc(dev, t->vge_name);
690			return (BUS_PROBE_DEFAULT);
691		}
692		t++;
693	}
694
695	return (ENXIO);
696}
697
698static void
699vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
700	void			*arg;
701	bus_dma_segment_t	*segs;
702	int			nseg;
703	bus_size_t		mapsize;
704	int			error;
705{
706
707	struct vge_dmaload_arg	*ctx;
708	struct vge_rx_desc	*d = NULL;
709
710	if (error)
711		return;
712
713	ctx = arg;
714
715	/* Signal error to caller if there's too many segments */
716	if (nseg > ctx->vge_maxsegs) {
717		ctx->vge_maxsegs = 0;
718		return;
719	}
720
721	/*
722	 * Map the segment array into descriptors.
723	 */
724
725	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
726
727	/* If this descriptor is still owned by the chip, bail. */
728
729	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
730		device_printf(ctx->sc->vge_dev,
731		    "tried to map busy descriptor\n");
732		ctx->vge_maxsegs = 0;
733		return;
734	}
735
736	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
737	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
738	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
739	d->vge_sts = 0;
740	d->vge_ctl = 0;
741
742	ctx->vge_maxsegs = 1;
743
744	return;
745}
746
747static void
748vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
749	void			*arg;
750	bus_dma_segment_t	*segs;
751	int			nseg;
752	bus_size_t		mapsize;
753	int			error;
754{
755	struct vge_dmaload_arg	*ctx;
756	struct vge_tx_desc	*d = NULL;
757	struct vge_tx_frag	*f;
758	int			i = 0;
759
760	if (error)
761		return;
762
763	ctx = arg;
764
765	/* Signal error to caller if there's too many segments */
766	if (nseg > ctx->vge_maxsegs) {
767		ctx->vge_maxsegs = 0;
768		return;
769	}
770
771	/* Map the segment array into descriptors. */
772
773	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
774
775	/* If this descriptor is still owned by the chip, bail. */
776
777	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
778		ctx->vge_maxsegs = 0;
779		return;
780	}
781
782	for (i = 0; i < nseg; i++) {
783		f = &d->vge_frag[i];
784		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
785		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
786		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
787	}
788
789	/* Argh. This chip does not autopad short frames */
790
791	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
792		f = &d->vge_frag[i];
793		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
794		    ctx->vge_m0->m_pkthdr.len));
795		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
796		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
797		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
798		i++;
799	}
800
801	/*
802	 * When telling the chip how many segments there are, we
803	 * must use nsegs + 1 instead of just nsegs. Darned if I
804	 * know why.
805	 */
806	i++;
807
808	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
809	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
810
811	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
812		d->vge_ctl |= VGE_TDCTL_JUMBO;
813
814	ctx->vge_maxsegs = nseg;
815
816	return;
817}
818
819/*
820 * Map a single buffer address.
821 */
822
823static void
824vge_dma_map_addr(arg, segs, nseg, error)
825	void			*arg;
826	bus_dma_segment_t	*segs;
827	int			nseg;
828	int			error;
829{
830	bus_addr_t		*addr;
831
832	if (error)
833		return;
834
835	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
836	addr = arg;
837	*addr = segs->ds_addr;
838
839	return;
840}
841
842static int
843vge_allocmem(dev, sc)
844	device_t		dev;
845	struct vge_softc		*sc;
846{
847	int			error;
848	int			nseg;
849	int			i;
850
851	/*
852	 * Allocate map for RX mbufs.
853	 */
854	nseg = 32;
855	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
856	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
857	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
858	    NULL, NULL, &sc->vge_ldata.vge_mtag);
859	if (error) {
860		device_printf(dev, "could not allocate dma tag\n");
861		return (ENOMEM);
862	}
863
864	/*
865	 * Allocate map for TX descriptor list.
866	 */
867	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
868	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
869	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
870	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
871	if (error) {
872		device_printf(dev, "could not allocate dma tag\n");
873		return (ENOMEM);
874	}
875
876	/* Allocate DMA'able memory for the TX ring */
877
878	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
879	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
880	    &sc->vge_ldata.vge_tx_list_map);
881	if (error)
882		return (ENOMEM);
883
884	/* Load the map for the TX ring. */
885
886	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
887	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
888	     VGE_TX_LIST_SZ, vge_dma_map_addr,
889	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
890
891	/* Create DMA maps for TX buffers */
892
893	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
894		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
895			    &sc->vge_ldata.vge_tx_dmamap[i]);
896		if (error) {
897			device_printf(dev, "can't create DMA map for TX\n");
898			return (ENOMEM);
899		}
900	}
901
902	/*
903	 * Allocate map for RX descriptor list.
904	 */
905	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
906	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
907	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
908	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
909	if (error) {
910		device_printf(dev, "could not allocate dma tag\n");
911		return (ENOMEM);
912	}
913
914	/* Allocate DMA'able memory for the RX ring */
915
916	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
917	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
918	    &sc->vge_ldata.vge_rx_list_map);
919	if (error)
920		return (ENOMEM);
921
922	/* Load the map for the RX ring. */
923
924	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
925	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
926	     VGE_TX_LIST_SZ, vge_dma_map_addr,
927	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
928
929	/* Create DMA maps for RX buffers */
930
931	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
932		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
933			    &sc->vge_ldata.vge_rx_dmamap[i]);
934		if (error) {
935			device_printf(dev, "can't create DMA map for RX\n");
936			return (ENOMEM);
937		}
938	}
939
940	return (0);
941}
942
943/*
944 * Attach the interface. Allocate softc structures, do ifmedia
945 * setup and ethernet/BPF attach.
946 */
947static int
948vge_attach(dev)
949	device_t		dev;
950{
951	u_char			eaddr[ETHER_ADDR_LEN];
952	struct vge_softc	*sc;
953	struct ifnet		*ifp;
954	int			unit, error = 0, rid;
955
956	sc = device_get_softc(dev);
957	unit = device_get_unit(dev);
958	sc->vge_dev = dev;
959
960	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
961	    MTX_DEF | MTX_RECURSE);
962	/*
963	 * Map control/status registers.
964	 */
965	pci_enable_busmaster(dev);
966
967	rid = VGE_PCI_LOMEM;
968	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
969	    0, ~0, 1, RF_ACTIVE);
970
971	if (sc->vge_res == NULL) {
972		printf ("vge%d: couldn't map ports/memory\n", unit);
973		error = ENXIO;
974		goto fail;
975	}
976
977	sc->vge_btag = rman_get_bustag(sc->vge_res);
978	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
979
980	/* Allocate interrupt */
981	rid = 0;
982	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
983	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
984
985	if (sc->vge_irq == NULL) {
986		printf("vge%d: couldn't map interrupt\n", unit);
987		error = ENXIO;
988		goto fail;
989	}
990
991	/* Reset the adapter. */
992	vge_reset(sc);
993
994	/*
995	 * Get station address from the EEPROM.
996	 */
997	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
998
999	sc->vge_unit = unit;
1000	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1001
1002#if __FreeBSD_version < 502113
1003	printf("vge%d: Ethernet address: %6D\n", unit, eaddr, ":");
1004#endif
1005
1006	/*
1007	 * Allocate the parent bus DMA tag appropriate for PCI.
1008	 */
1009#define VGE_NSEG_NEW 32
1010	error = bus_dma_tag_create(NULL,	/* parent */
1011			1, 0,			/* alignment, boundary */
1012			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1013			BUS_SPACE_MAXADDR,	/* highaddr */
1014			NULL, NULL,		/* filter, filterarg */
1015			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
1016			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1017			BUS_DMA_ALLOCNOW,	/* flags */
1018			NULL, NULL,		/* lockfunc, lockarg */
1019			&sc->vge_parent_tag);
1020	if (error)
1021		goto fail;
1022
1023	error = vge_allocmem(dev, sc);
1024
1025	if (error)
1026		goto fail;
1027
1028	/* Do MII setup */
1029	if (mii_phy_probe(dev, &sc->vge_miibus,
1030	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1031		printf("vge%d: MII without any phy!\n", sc->vge_unit);
1032		error = ENXIO;
1033		goto fail;
1034	}
1035
1036	ifp = &sc->arpcom.ac_if;
1037	ifp->if_softc = sc;
1038	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1039	ifp->if_mtu = ETHERMTU;
1040	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1041	ifp->if_ioctl = vge_ioctl;
1042	ifp->if_capabilities = IFCAP_VLAN_MTU;
1043	ifp->if_start = vge_start;
1044	ifp->if_hwassist = VGE_CSUM_FEATURES;
1045	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1046#ifdef DEVICE_POLLING
1047#ifdef IFCAP_POLLING
1048	ifp->if_capabilities |= IFCAP_POLLING;
1049#endif
1050#endif
1051	ifp->if_watchdog = vge_watchdog;
1052	ifp->if_init = vge_init;
1053	ifp->if_baudrate = 1000000000;
1054	ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN;
1055	ifp->if_capenable = ifp->if_capabilities;
1056
1057	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1058
1059	/*
1060	 * Call MI attach routine.
1061	 */
1062	ether_ifattach(ifp, eaddr);
1063
1064	/* Hook interrupt last to avoid having to lock softc */
1065	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1066	    vge_intr, sc, &sc->vge_intrhand);
1067
1068	if (error) {
1069		printf("vge%d: couldn't set up irq\n", unit);
1070		ether_ifdetach(ifp);
1071		goto fail;
1072	}
1073
1074fail:
1075	if (error)
1076		vge_detach(dev);
1077
1078	return (error);
1079}
1080
1081/*
1082 * Shutdown hardware and free up resources. This can be called any
1083 * time after the mutex has been initialized. It is called in both
1084 * the error case in attach and the normal detach case so it needs
1085 * to be careful about only freeing resources that have actually been
1086 * allocated.
1087 */
1088static int
1089vge_detach(dev)
1090	device_t		dev;
1091{
1092	struct vge_softc		*sc;
1093	struct ifnet		*ifp;
1094	int			i;
1095
1096	sc = device_get_softc(dev);
1097	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1098	ifp = &sc->arpcom.ac_if;
1099
1100	/* These should only be active if attach succeeded */
1101	if (device_is_attached(dev)) {
1102		vge_stop(sc);
1103		/*
1104		 * Force off the IFF_UP flag here, in case someone
1105		 * still had a BPF descriptor attached to this
1106		 * interface. If they do, ether_ifattach() will cause
1107		 * the BPF code to try and clear the promisc mode
1108		 * flag, which will bubble down to vge_ioctl(),
1109		 * which will try to call vge_init() again. This will
1110		 * turn the NIC back on and restart the MII ticker,
1111		 * which will panic the system when the kernel tries
1112		 * to invoke the vge_tick() function that isn't there
1113		 * anymore.
1114		 */
1115		ifp->if_flags &= ~IFF_UP;
1116		ether_ifdetach(ifp);
1117	}
1118	if (sc->vge_miibus)
1119		device_delete_child(dev, sc->vge_miibus);
1120	bus_generic_detach(dev);
1121
1122	if (sc->vge_intrhand)
1123		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1124	if (sc->vge_irq)
1125		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1126	if (sc->vge_res)
1127		bus_release_resource(dev, SYS_RES_MEMORY,
1128		    VGE_PCI_LOMEM, sc->vge_res);
1129
1130	/* Unload and free the RX DMA ring memory and map */
1131
1132	if (sc->vge_ldata.vge_rx_list_tag) {
1133		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1134		    sc->vge_ldata.vge_rx_list_map);
1135		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1136		    sc->vge_ldata.vge_rx_list,
1137		    sc->vge_ldata.vge_rx_list_map);
1138		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1139	}
1140
1141	/* Unload and free the TX DMA ring memory and map */
1142
1143	if (sc->vge_ldata.vge_tx_list_tag) {
1144		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1145		    sc->vge_ldata.vge_tx_list_map);
1146		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1147		    sc->vge_ldata.vge_tx_list,
1148		    sc->vge_ldata.vge_tx_list_map);
1149		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1150	}
1151
1152	/* Destroy all the RX and TX buffer maps */
1153
1154	if (sc->vge_ldata.vge_mtag) {
1155		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1156			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1157			    sc->vge_ldata.vge_tx_dmamap[i]);
1158		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1159			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1160			    sc->vge_ldata.vge_rx_dmamap[i]);
1161		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1162	}
1163
1164	if (sc->vge_parent_tag)
1165		bus_dma_tag_destroy(sc->vge_parent_tag);
1166
1167	mtx_destroy(&sc->vge_mtx);
1168
1169	return (0);
1170}
1171
1172static int
1173vge_newbuf(sc, idx, m)
1174	struct vge_softc	*sc;
1175	int			idx;
1176	struct mbuf		*m;
1177{
1178	struct vge_dmaload_arg	arg;
1179	struct mbuf		*n = NULL;
1180	int			i, error;
1181
1182	if (m == NULL) {
1183		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1184		if (n == NULL)
1185			return (ENOBUFS);
1186		m = n;
1187	} else
1188		m->m_data = m->m_ext.ext_buf;
1189
1190
1191#ifdef VGE_FIXUP_RX
1192	/*
1193	 * This is part of an evil trick to deal with non-x86 platforms.
1194	 * The VIA chip requires RX buffers to be aligned on 32-bit
1195	 * boundaries, but that will hose non-x86 machines. To get around
1196	 * this, we leave some empty space at the start of each buffer
1197	 * and for non-x86 hosts, we copy the buffer back two bytes
1198	 * to achieve word alignment. This is slightly more efficient
1199	 * than allocating a new buffer, copying the contents, and
1200	 * discarding the old buffer.
1201	 */
1202	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1203	m_adj(m, VGE_ETHER_ALIGN);
1204#else
1205	m->m_len = m->m_pkthdr.len = MCLBYTES;
1206#endif
1207
1208	arg.sc = sc;
1209	arg.vge_idx = idx;
1210	arg.vge_maxsegs = 1;
1211	arg.vge_flags = 0;
1212
1213	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1214	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1215	    &arg, BUS_DMA_NOWAIT);
1216	if (error || arg.vge_maxsegs != 1) {
1217		if (n != NULL)
1218			m_freem(n);
1219		return (ENOMEM);
1220	}
1221
1222	/*
1223	 * Note: the manual fails to document the fact that for
1224	 * proper opration, the driver needs to replentish the RX
1225	 * DMA ring 4 descriptors at a time (rather than one at a
1226	 * time, like most chips). We can allocate the new buffers
1227	 * but we should not set the OWN bits until we're ready
1228	 * to hand back 4 of them in one shot.
1229	 */
1230
1231#define VGE_RXCHUNK 4
1232	sc->vge_rx_consumed++;
1233	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1234		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1235			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1236			    htole32(VGE_RDSTS_OWN);
1237		sc->vge_rx_consumed = 0;
1238	}
1239
1240	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1241
1242	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1243	    sc->vge_ldata.vge_rx_dmamap[idx],
1244	    BUS_DMASYNC_PREREAD);
1245
1246	return (0);
1247}
1248
1249static int
1250vge_tx_list_init(sc)
1251	struct vge_softc		*sc;
1252{
1253	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1254	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1255	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1256
1257	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1258	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1259	sc->vge_ldata.vge_tx_prodidx = 0;
1260	sc->vge_ldata.vge_tx_considx = 0;
1261	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1262
1263	return (0);
1264}
1265
1266static int
1267vge_rx_list_init(sc)
1268	struct vge_softc		*sc;
1269{
1270	int			i;
1271
1272	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1273	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1274	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1275
1276	sc->vge_rx_consumed = 0;
1277
1278	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1279		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1280			return (ENOBUFS);
1281	}
1282
1283	/* Flush the RX descriptors */
1284
1285	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1286	    sc->vge_ldata.vge_rx_list_map,
1287	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1288
1289	sc->vge_ldata.vge_rx_prodidx = 0;
1290	sc->vge_rx_consumed = 0;
1291	sc->vge_head = sc->vge_tail = NULL;
1292
1293	return (0);
1294}
1295
1296#ifdef VGE_FIXUP_RX
1297static __inline void
1298vge_fixup_rx(m)
1299	struct mbuf		*m;
1300{
1301	int			i;
1302	uint16_t		*src, *dst;
1303
1304	src = mtod(m, uint16_t *);
1305	dst = src - 1;
1306
1307	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1308		*dst++ = *src++;
1309
1310	m->m_data -= ETHER_ALIGN;
1311
1312	return;
1313}
1314#endif
1315
1316/*
1317 * RX handler. We support the reception of jumbo frames that have
1318 * been fragmented across multiple 2K mbuf cluster buffers.
1319 */
1320static void
1321vge_rxeof(sc)
1322	struct vge_softc	*sc;
1323{
1324	struct mbuf		*m;
1325	struct ifnet		*ifp;
1326	int			i, total_len;
1327	int			lim = 0;
1328	struct vge_rx_desc	*cur_rx;
1329	u_int32_t		rxstat, rxctl;
1330
1331	VGE_LOCK_ASSERT(sc);
1332	ifp = &sc->arpcom.ac_if;
1333	i = sc->vge_ldata.vge_rx_prodidx;
1334
1335	/* Invalidate the descriptor memory */
1336
1337	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1338	    sc->vge_ldata.vge_rx_list_map,
1339	    BUS_DMASYNC_POSTREAD);
1340
1341	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1342
1343#ifdef DEVICE_POLLING
1344		if (ifp->if_flags & IFF_POLLING) {
1345			if (sc->rxcycles <= 0)
1346				break;
1347			sc->rxcycles--;
1348		}
1349#endif /* DEVICE_POLLING */
1350
1351		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1352		m = sc->vge_ldata.vge_rx_mbuf[i];
1353		total_len = VGE_RXBYTES(cur_rx);
1354		rxstat = le32toh(cur_rx->vge_sts);
1355		rxctl = le32toh(cur_rx->vge_ctl);
1356
1357		/* Invalidate the RX mbuf and unload its map */
1358
1359		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1360		    sc->vge_ldata.vge_rx_dmamap[i],
1361		    BUS_DMASYNC_POSTWRITE);
1362		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1363		    sc->vge_ldata.vge_rx_dmamap[i]);
1364
1365		/*
1366		 * If the 'start of frame' bit is set, this indicates
1367		 * either the first fragment in a multi-fragment receive,
1368		 * or an intermediate fragment. Either way, we want to
1369		 * accumulate the buffers.
1370		 */
1371		if (rxstat & VGE_RXPKT_SOF) {
1372			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1373			if (sc->vge_head == NULL)
1374				sc->vge_head = sc->vge_tail = m;
1375			else {
1376				m->m_flags &= ~M_PKTHDR;
1377				sc->vge_tail->m_next = m;
1378				sc->vge_tail = m;
1379			}
1380			vge_newbuf(sc, i, NULL);
1381			VGE_RX_DESC_INC(i);
1382			continue;
1383		}
1384
1385		/*
1386		 * Bad/error frames will have the RXOK bit cleared.
1387		 * However, there's one error case we want to allow:
1388		 * if a VLAN tagged frame arrives and the chip can't
1389		 * match it against the CAM filter, it considers this
1390		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1391		 * We don't want to drop the frame though: our VLAN
1392		 * filtering is done in software.
1393		 */
1394		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1395		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1396			ifp->if_ierrors++;
1397			/*
1398			 * If this is part of a multi-fragment packet,
1399			 * discard all the pieces.
1400			 */
1401			if (sc->vge_head != NULL) {
1402				m_freem(sc->vge_head);
1403				sc->vge_head = sc->vge_tail = NULL;
1404			}
1405			vge_newbuf(sc, i, m);
1406			VGE_RX_DESC_INC(i);
1407			continue;
1408		}
1409
1410		/*
1411		 * If allocating a replacement mbuf fails,
1412		 * reload the current one.
1413		 */
1414
1415		if (vge_newbuf(sc, i, NULL)) {
1416			ifp->if_ierrors++;
1417			if (sc->vge_head != NULL) {
1418				m_freem(sc->vge_head);
1419				sc->vge_head = sc->vge_tail = NULL;
1420			}
1421			vge_newbuf(sc, i, m);
1422			VGE_RX_DESC_INC(i);
1423			continue;
1424		}
1425
1426		VGE_RX_DESC_INC(i);
1427
1428		if (sc->vge_head != NULL) {
1429			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1430			/*
1431			 * Special case: if there's 4 bytes or less
1432			 * in this buffer, the mbuf can be discarded:
1433			 * the last 4 bytes is the CRC, which we don't
1434			 * care about anyway.
1435			 */
1436			if (m->m_len <= ETHER_CRC_LEN) {
1437				sc->vge_tail->m_len -=
1438				    (ETHER_CRC_LEN - m->m_len);
1439				m_freem(m);
1440			} else {
1441				m->m_len -= ETHER_CRC_LEN;
1442				m->m_flags &= ~M_PKTHDR;
1443				sc->vge_tail->m_next = m;
1444			}
1445			m = sc->vge_head;
1446			sc->vge_head = sc->vge_tail = NULL;
1447			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1448		} else
1449			m->m_pkthdr.len = m->m_len =
1450			    (total_len - ETHER_CRC_LEN);
1451
1452#ifdef VGE_FIXUP_RX
1453		vge_fixup_rx(m);
1454#endif
1455		ifp->if_ipackets++;
1456		m->m_pkthdr.rcvif = ifp;
1457
1458		/* Do RX checksumming if enabled */
1459		if (ifp->if_capenable & IFCAP_RXCSUM) {
1460
1461			/* Check IP header checksum */
1462			if (rxctl & VGE_RDCTL_IPPKT)
1463				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1464			if (rxctl & VGE_RDCTL_IPCSUMOK)
1465				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1466
1467			/* Check TCP/UDP checksum */
1468			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1469			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1470				m->m_pkthdr.csum_flags |=
1471				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1472				m->m_pkthdr.csum_data = 0xffff;
1473			}
1474		}
1475
1476		if (rxstat & VGE_RDSTS_VTAG)
1477			VLAN_INPUT_TAG(ifp, m,
1478			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1479
1480		VGE_UNLOCK(sc);
1481		(*ifp->if_input)(ifp, m);
1482		VGE_LOCK(sc);
1483
1484		lim++;
1485		if (lim == VGE_RX_DESC_CNT)
1486			break;
1487
1488	}
1489
1490	/* Flush the RX DMA ring */
1491
1492	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1493	    sc->vge_ldata.vge_rx_list_map,
1494	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1495
1496	sc->vge_ldata.vge_rx_prodidx = i;
1497	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1498
1499
1500	return;
1501}
1502
1503static void
1504vge_txeof(sc)
1505	struct vge_softc		*sc;
1506{
1507	struct ifnet		*ifp;
1508	u_int32_t		txstat;
1509	int			idx;
1510
1511	ifp = &sc->arpcom.ac_if;
1512	idx = sc->vge_ldata.vge_tx_considx;
1513
1514	/* Invalidate the TX descriptor list */
1515
1516	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1517	    sc->vge_ldata.vge_tx_list_map,
1518	    BUS_DMASYNC_POSTREAD);
1519
1520	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1521
1522		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1523		if (txstat & VGE_TDSTS_OWN)
1524			break;
1525
1526		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1527		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1528		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1529		    sc->vge_ldata.vge_tx_dmamap[idx]);
1530		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1531			ifp->if_collisions++;
1532		if (txstat & VGE_TDSTS_TXERR)
1533			ifp->if_oerrors++;
1534		else
1535			ifp->if_opackets++;
1536
1537		sc->vge_ldata.vge_tx_free++;
1538		VGE_TX_DESC_INC(idx);
1539	}
1540
1541	/* No changes made to the TX ring, so no flush needed */
1542
1543	if (idx != sc->vge_ldata.vge_tx_considx) {
1544		sc->vge_ldata.vge_tx_considx = idx;
1545		ifp->if_flags &= ~IFF_OACTIVE;
1546		ifp->if_timer = 0;
1547	}
1548
1549	/*
1550	 * If not all descriptors have been released reaped yet,
1551	 * reload the timer so that we will eventually get another
1552	 * interrupt that will cause us to re-enter this routine.
1553	 * This is done in case the transmitter has gone idle.
1554	 */
1555	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1556		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1557	}
1558
1559	return;
1560}
1561
1562static void
1563vge_tick(xsc)
1564	void			*xsc;
1565{
1566	struct vge_softc	*sc;
1567	struct ifnet		*ifp;
1568	struct mii_data		*mii;
1569
1570	sc = xsc;
1571	ifp = &sc->arpcom.ac_if;
1572	VGE_LOCK(sc);
1573	mii = device_get_softc(sc->vge_miibus);
1574
1575	mii_tick(mii);
1576	if (sc->vge_link) {
1577		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1578			sc->vge_link = 0;
1579			if_link_state_change(&sc->arpcom.ac_if,
1580			    LINK_STATE_DOWN);
1581		}
1582	} else {
1583		if (mii->mii_media_status & IFM_ACTIVE &&
1584		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1585			sc->vge_link = 1;
1586			if_link_state_change(&sc->arpcom.ac_if,
1587			    LINK_STATE_UP);
1588#if __FreeBSD_version < 502114
1589			if (ifp->if_snd.ifq_head != NULL)
1590#else
1591			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1592#endif
1593				taskqueue_enqueue(taskqueue_swi,
1594				    &sc->vge_txtask);
1595		}
1596	}
1597
1598	VGE_UNLOCK(sc);
1599
1600	return;
1601}
1602
1603#ifdef DEVICE_POLLING
1604static void
1605vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1606{
1607	struct vge_softc *sc = ifp->if_softc;
1608
1609	VGE_LOCK(sc);
1610#ifdef IFCAP_POLLING
1611	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1612		ether_poll_deregister(ifp);
1613		cmd = POLL_DEREGISTER;
1614	}
1615#endif
1616	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1617		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1618		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1619		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1620		goto done;
1621	}
1622
1623	sc->rxcycles = count;
1624	vge_rxeof(sc);
1625	vge_txeof(sc);
1626
1627#if __FreeBSD_version < 502114
1628	if (ifp->if_snd.ifq_head != NULL)
1629#else
1630	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1631#endif
1632		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1633
1634	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1635		u_int32_t       status;
1636		status = CSR_READ_4(sc, VGE_ISR);
1637		if (status == 0xFFFFFFFF)
1638			goto done;
1639		if (status)
1640			CSR_WRITE_4(sc, VGE_ISR, status);
1641
1642		/*
1643		 * XXX check behaviour on receiver stalls.
1644		 */
1645
1646		if (status & VGE_ISR_TXDMA_STALL ||
1647		    status & VGE_ISR_RXDMA_STALL)
1648			vge_init(sc);
1649
1650		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1651			vge_rxeof(sc);
1652			ifp->if_ierrors++;
1653			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1654			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1655		}
1656	}
1657done:
1658	VGE_UNLOCK(sc);
1659}
1660#endif /* DEVICE_POLLING */
1661
1662static void
1663vge_intr(arg)
1664	void			*arg;
1665{
1666	struct vge_softc	*sc;
1667	struct ifnet		*ifp;
1668	u_int32_t		status;
1669
1670	sc = arg;
1671
1672	if (sc->suspended) {
1673		return;
1674	}
1675
1676	VGE_LOCK(sc);
1677	ifp = &sc->arpcom.ac_if;
1678
1679	if (!(ifp->if_flags & IFF_UP)) {
1680		VGE_UNLOCK(sc);
1681		return;
1682	}
1683
1684#ifdef DEVICE_POLLING
1685	if  (ifp->if_flags & IFF_POLLING)
1686		goto done;
1687	if (
1688#ifdef IFCAP_POLLING
1689	    (ifp->if_capenable & IFCAP_POLLING) &&
1690#endif
1691	    ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
1692		CSR_WRITE_4(sc, VGE_IMR, 0);
1693		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1694		vge_poll(ifp, 0, 1);
1695		goto done;
1696	}
1697
1698#endif /* DEVICE_POLLING */
1699
1700	/* Disable interrupts */
1701	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1702
1703	for (;;) {
1704
1705		status = CSR_READ_4(sc, VGE_ISR);
1706		/* If the card has gone away the read returns 0xffff. */
1707		if (status == 0xFFFFFFFF)
1708			break;
1709
1710		if (status)
1711			CSR_WRITE_4(sc, VGE_ISR, status);
1712
1713		if ((status & VGE_INTRS) == 0)
1714			break;
1715
1716		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1717			vge_rxeof(sc);
1718
1719		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1720			vge_rxeof(sc);
1721			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1722			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1723		}
1724
1725		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1726			vge_txeof(sc);
1727
1728		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1729			vge_init(sc);
1730
1731		if (status & VGE_ISR_LINKSTS)
1732			vge_tick(sc);
1733	}
1734
1735	/* Re-enable interrupts */
1736	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1737
1738#ifdef DEVICE_POLLING
1739done:
1740#endif
1741	VGE_UNLOCK(sc);
1742
1743#if __FreeBSD_version < 502114
1744	if (ifp->if_snd.ifq_head != NULL)
1745#else
1746	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1747#endif
1748		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1749
1750	return;
1751}
1752
1753static int
1754vge_encap(sc, m_head, idx)
1755	struct vge_softc	*sc;
1756	struct mbuf		*m_head;
1757	int			idx;
1758{
1759	struct mbuf		*m_new = NULL;
1760	struct vge_dmaload_arg	arg;
1761	bus_dmamap_t		map;
1762	int			error;
1763	struct m_tag		*mtag;
1764
1765	if (sc->vge_ldata.vge_tx_free <= 2)
1766		return (EFBIG);
1767
1768	arg.vge_flags = 0;
1769
1770	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1771		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1772	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1773		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1774	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1775		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1776
1777	arg.sc = sc;
1778	arg.vge_idx = idx;
1779	arg.vge_m0 = m_head;
1780	arg.vge_maxsegs = VGE_TX_FRAGS;
1781
1782	map = sc->vge_ldata.vge_tx_dmamap[idx];
1783	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1784	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1785
1786	if (error && error != EFBIG) {
1787		printf("vge%d: can't map mbuf (error %d)\n",
1788		    sc->vge_unit, error);
1789		return (ENOBUFS);
1790	}
1791
1792	/* Too many segments to map, coalesce into a single mbuf */
1793
1794	if (error || arg.vge_maxsegs == 0) {
1795		m_new = m_defrag(m_head, M_DONTWAIT);
1796		if (m_new == NULL)
1797			return (1);
1798		else
1799			m_head = m_new;
1800
1801		arg.sc = sc;
1802		arg.vge_m0 = m_head;
1803		arg.vge_idx = idx;
1804		arg.vge_maxsegs = 1;
1805
1806		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1807		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1808		if (error) {
1809			printf("vge%d: can't map mbuf (error %d)\n",
1810			    sc->vge_unit, error);
1811			return (EFBIG);
1812		}
1813	}
1814
1815	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1816	sc->vge_ldata.vge_tx_free--;
1817
1818	/*
1819	 * Set up hardware VLAN tagging.
1820	 */
1821
1822	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1823	if (mtag != NULL)
1824		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1825		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1826
1827	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1828
1829	return (0);
1830}
1831
1832static void
1833vge_tx_task(arg, npending)
1834	void			*arg;
1835	int			npending;
1836{
1837	struct ifnet		*ifp;
1838
1839	ifp = arg;
1840	vge_start(ifp);
1841
1842	return;
1843}
1844
1845/*
1846 * Main transmit routine.
1847 */
1848
1849static void
1850vge_start(ifp)
1851	struct ifnet		*ifp;
1852{
1853	struct vge_softc	*sc;
1854	struct mbuf		*m_head = NULL;
1855	int			idx, pidx = 0;
1856
1857	sc = ifp->if_softc;
1858	VGE_LOCK(sc);
1859
1860	if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE) {
1861		VGE_UNLOCK(sc);
1862		return;
1863	}
1864
1865#if __FreeBSD_version < 502114
1866	if (ifp->if_snd.ifq_head == NULL) {
1867#else
1868	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1869#endif
1870		VGE_UNLOCK(sc);
1871		return;
1872	}
1873
1874	idx = sc->vge_ldata.vge_tx_prodidx;
1875
1876	pidx = idx - 1;
1877	if (pidx < 0)
1878		pidx = VGE_TX_DESC_CNT - 1;
1879
1880
1881	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1882#if __FreeBSD_version < 502114
1883		IF_DEQUEUE(&ifp->if_snd, m_head);
1884#else
1885		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1886#endif
1887		if (m_head == NULL)
1888			break;
1889
1890		if (vge_encap(sc, m_head, idx)) {
1891#if __FreeBSD_version >= 502114
1892			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1893#else
1894			IF_PREPEND(&ifp->if_snd, m_head);
1895#endif
1896			ifp->if_flags |= IFF_OACTIVE;
1897			break;
1898		}
1899
1900		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1901		    htole16(VGE_TXDESC_Q);
1902
1903		pidx = idx;
1904		VGE_TX_DESC_INC(idx);
1905
1906		/*
1907		 * If there's a BPF listener, bounce a copy of this frame
1908		 * to him.
1909		 */
1910		BPF_MTAP(ifp, m_head);
1911	}
1912
1913	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1914		VGE_UNLOCK(sc);
1915		return;
1916	}
1917
1918	/* Flush the TX descriptors */
1919
1920	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1921	    sc->vge_ldata.vge_tx_list_map,
1922	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1923
1924	/* Issue a transmit command. */
1925	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1926
1927	sc->vge_ldata.vge_tx_prodidx = idx;
1928
1929	/*
1930	 * Use the countdown timer for interrupt moderation.
1931	 * 'TX done' interrupts are disabled. Instead, we reset the
1932	 * countdown timer, which will begin counting until it hits
1933	 * the value in the SSTIMER register, and then trigger an
1934	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1935	 * the timer count is reloaded. Only when the transmitter
1936	 * is idle will the timer hit 0 and an interrupt fire.
1937	 */
1938	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1939
1940	VGE_UNLOCK(sc);
1941
1942	/*
1943	 * Set a timeout in case the chip goes out to lunch.
1944	 */
1945	ifp->if_timer = 5;
1946
1947	return;
1948}
1949
1950static void
1951vge_init(xsc)
1952	void			*xsc;
1953{
1954	struct vge_softc	*sc = xsc;
1955	struct ifnet		*ifp = &sc->arpcom.ac_if;
1956	struct mii_data		*mii;
1957	int			i;
1958
1959	VGE_LOCK(sc);
1960	mii = device_get_softc(sc->vge_miibus);
1961
1962	/*
1963	 * Cancel pending I/O and free all RX/TX buffers.
1964	 */
1965	vge_stop(sc);
1966	vge_reset(sc);
1967
1968	/*
1969	 * Initialize the RX and TX descriptors and mbufs.
1970	 */
1971
1972	vge_rx_list_init(sc);
1973	vge_tx_list_init(sc);
1974
1975	/* Set our station address */
1976	for (i = 0; i < ETHER_ADDR_LEN; i++)
1977		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1978
1979	/*
1980	 * Set receive FIFO threshold. Also allow transmission and
1981	 * reception of VLAN tagged frames.
1982	 */
1983	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1984	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1985
1986	/* Set DMA burst length */
1987	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1988	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1989
1990	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1991
1992	/* Set collision backoff algorithm */
1993	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1994	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1995	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1996
1997	/* Disable LPSEL field in priority resolution */
1998	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1999
2000	/*
2001	 * Load the addresses of the DMA queues into the chip.
2002	 * Note that we only use one transmit queue.
2003	 */
2004
2005	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2006	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
2007	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2008
2009	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2010	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
2011	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2012	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2013
2014	/* Enable and wake up the RX descriptor queue */
2015	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2016	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2017
2018	/* Enable the TX descriptor queue */
2019	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2020
2021	/* Set up the receive filter -- allow large frames for VLANs. */
2022	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
2023
2024	/* If we want promiscuous mode, set the allframes bit. */
2025	if (ifp->if_flags & IFF_PROMISC) {
2026		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2027	}
2028
2029	/* Set capture broadcast bit to capture broadcast frames. */
2030	if (ifp->if_flags & IFF_BROADCAST) {
2031		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
2032	}
2033
2034	/* Set multicast bit to capture multicast frames. */
2035	if (ifp->if_flags & IFF_MULTICAST) {
2036		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
2037	}
2038
2039	/* Init the cam filter. */
2040	vge_cam_clear(sc);
2041
2042	/* Init the multicast filter. */
2043	vge_setmulti(sc);
2044
2045	/* Enable flow control */
2046
2047	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2048
2049	/* Enable jumbo frame reception (if desired) */
2050
2051	/* Start the MAC. */
2052	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2053	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2054	CSR_WRITE_1(sc, VGE_CRS0,
2055	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2056
2057	/*
2058	 * Configure one-shot timer for microsecond
2059	 * resulution and load it for 500 usecs.
2060	 */
2061	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2062	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2063
2064	/*
2065	 * Configure interrupt moderation for receive. Enable
2066	 * the holdoff counter and load it, and set the RX
2067	 * suppression count to the number of descriptors we
2068	 * want to allow before triggering an interrupt.
2069	 * The holdoff timer is in units of 20 usecs.
2070	 */
2071
2072#ifdef notyet
2073	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2074	/* Select the interrupt holdoff timer page. */
2075	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2076	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2077	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2078
2079	/* Enable use of the holdoff timer. */
2080	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2081	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2082
2083	/* Select the RX suppression threshold page. */
2084	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2085	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2086	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2087
2088	/* Restore the page select bits. */
2089	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2090	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2091#endif
2092
2093#ifdef DEVICE_POLLING
2094	/*
2095	 * Disable interrupts if we are polling.
2096	 */
2097	if (ifp->if_flags & IFF_POLLING) {
2098		CSR_WRITE_4(sc, VGE_IMR, 0);
2099		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2100	} else	/* otherwise ... */
2101#endif /* DEVICE_POLLING */
2102	{
2103	/*
2104	 * Enable interrupts.
2105	 */
2106		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2107		CSR_WRITE_4(sc, VGE_ISR, 0);
2108		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2109	}
2110
2111	mii_mediachg(mii);
2112
2113	ifp->if_flags |= IFF_RUNNING;
2114	ifp->if_flags &= ~IFF_OACTIVE;
2115
2116	sc->vge_if_flags = 0;
2117	sc->vge_link = 0;
2118
2119	VGE_UNLOCK(sc);
2120
2121	return;
2122}
2123
2124/*
2125 * Set media options.
2126 */
2127static int
2128vge_ifmedia_upd(ifp)
2129	struct ifnet		*ifp;
2130{
2131	struct vge_softc	*sc;
2132	struct mii_data		*mii;
2133
2134	sc = ifp->if_softc;
2135	mii = device_get_softc(sc->vge_miibus);
2136	mii_mediachg(mii);
2137
2138	return (0);
2139}
2140
2141/*
2142 * Report current media status.
2143 */
2144static void
2145vge_ifmedia_sts(ifp, ifmr)
2146	struct ifnet		*ifp;
2147	struct ifmediareq	*ifmr;
2148{
2149	struct vge_softc	*sc;
2150	struct mii_data		*mii;
2151
2152	sc = ifp->if_softc;
2153	mii = device_get_softc(sc->vge_miibus);
2154
2155	mii_pollstat(mii);
2156	ifmr->ifm_active = mii->mii_media_active;
2157	ifmr->ifm_status = mii->mii_media_status;
2158
2159	return;
2160}
2161
2162static void
2163vge_miibus_statchg(dev)
2164	device_t		dev;
2165{
2166	struct vge_softc	*sc;
2167	struct mii_data		*mii;
2168	struct ifmedia_entry	*ife;
2169
2170	sc = device_get_softc(dev);
2171	mii = device_get_softc(sc->vge_miibus);
2172	ife = mii->mii_media.ifm_cur;
2173
2174	/*
2175	 * If the user manually selects a media mode, we need to turn
2176	 * on the forced MAC mode bit in the DIAGCTL register. If the
2177	 * user happens to choose a full duplex mode, we also need to
2178	 * set the 'force full duplex' bit. This applies only to
2179	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2180	 * mode is disabled, and in 1000baseT mode, full duplex is
2181	 * always implied, so we turn on the forced mode bit but leave
2182	 * the FDX bit cleared.
2183	 */
2184
2185	switch (IFM_SUBTYPE(ife->ifm_media)) {
2186	case IFM_AUTO:
2187		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2188		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2189		break;
2190	case IFM_1000_T:
2191		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2192		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2193		break;
2194	case IFM_100_TX:
2195	case IFM_10_T:
2196		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2197		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2198			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2199		} else {
2200			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2201		}
2202		break;
2203	default:
2204		device_printf(dev, "unknown media type: %x\n",
2205		    IFM_SUBTYPE(ife->ifm_media));
2206		break;
2207	}
2208
2209	return;
2210}
2211
2212static int
2213vge_ioctl(ifp, command, data)
2214	struct ifnet		*ifp;
2215	u_long			command;
2216	caddr_t			data;
2217{
2218	struct vge_softc	*sc = ifp->if_softc;
2219	struct ifreq		*ifr = (struct ifreq *) data;
2220	struct mii_data		*mii;
2221	int			error = 0;
2222
2223	switch (command) {
2224	case SIOCSIFMTU:
2225		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2226			error = EINVAL;
2227		ifp->if_mtu = ifr->ifr_mtu;
2228		break;
2229	case SIOCSIFFLAGS:
2230		if (ifp->if_flags & IFF_UP) {
2231			if (ifp->if_flags & IFF_RUNNING &&
2232			    ifp->if_flags & IFF_PROMISC &&
2233			    !(sc->vge_if_flags & IFF_PROMISC)) {
2234				CSR_SETBIT_1(sc, VGE_RXCTL,
2235				    VGE_RXCTL_RX_PROMISC);
2236				vge_setmulti(sc);
2237			} else if (ifp->if_flags & IFF_RUNNING &&
2238			    !(ifp->if_flags & IFF_PROMISC) &&
2239			    sc->vge_if_flags & IFF_PROMISC) {
2240				CSR_CLRBIT_1(sc, VGE_RXCTL,
2241				    VGE_RXCTL_RX_PROMISC);
2242				vge_setmulti(sc);
2243                        } else
2244				vge_init(sc);
2245		} else {
2246			if (ifp->if_flags & IFF_RUNNING)
2247				vge_stop(sc);
2248		}
2249		sc->vge_if_flags = ifp->if_flags;
2250		break;
2251	case SIOCADDMULTI:
2252	case SIOCDELMULTI:
2253		vge_setmulti(sc);
2254		break;
2255	case SIOCGIFMEDIA:
2256	case SIOCSIFMEDIA:
2257		mii = device_get_softc(sc->vge_miibus);
2258		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2259		break;
2260	case SIOCSIFCAP:
2261#ifdef IFCAP_POLLING
2262		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2263#else
2264		ifp->if_capenable &= ~(IFCAP_HWCSUM);
2265#endif
2266		ifp->if_capenable |=
2267#ifdef IFCAP_POLLING
2268		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2269#else
2270		    ifr->ifr_reqcap & (IFCAP_HWCSUM);
2271#endif
2272		if (ifp->if_capenable & IFCAP_TXCSUM)
2273			ifp->if_hwassist = VGE_CSUM_FEATURES;
2274		else
2275			ifp->if_hwassist = 0;
2276		if (ifp->if_flags & IFF_RUNNING)
2277			vge_init(sc);
2278		break;
2279	default:
2280		error = ether_ioctl(ifp, command, data);
2281		break;
2282	}
2283
2284	return (error);
2285}
2286
2287static void
2288vge_watchdog(ifp)
2289	struct ifnet		*ifp;
2290{
2291	struct vge_softc		*sc;
2292
2293	sc = ifp->if_softc;
2294	VGE_LOCK(sc);
2295	printf("vge%d: watchdog timeout\n", sc->vge_unit);
2296	ifp->if_oerrors++;
2297
2298	vge_txeof(sc);
2299	vge_rxeof(sc);
2300
2301	vge_init(sc);
2302
2303	VGE_UNLOCK(sc);
2304
2305	return;
2306}
2307
2308/*
2309 * Stop the adapter and free any mbufs allocated to the
2310 * RX and TX lists.
2311 */
2312static void
2313vge_stop(sc)
2314	struct vge_softc		*sc;
2315{
2316	register int		i;
2317	struct ifnet		*ifp;
2318
2319	VGE_LOCK(sc);
2320	ifp = &sc->arpcom.ac_if;
2321	ifp->if_timer = 0;
2322
2323	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2324#ifdef DEVICE_POLLING
2325	ether_poll_deregister(ifp);
2326#endif /* DEVICE_POLLING */
2327
2328	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2329	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2330	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2331	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2332	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2333	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2334
2335	if (sc->vge_head != NULL) {
2336		m_freem(sc->vge_head);
2337		sc->vge_head = sc->vge_tail = NULL;
2338	}
2339
2340	/* Free the TX list buffers. */
2341
2342	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2343		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2344			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2345			    sc->vge_ldata.vge_tx_dmamap[i]);
2346			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2347			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2348		}
2349	}
2350
2351	/* Free the RX list buffers. */
2352
2353	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2354		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2355			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2356			    sc->vge_ldata.vge_rx_dmamap[i]);
2357			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2358			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2359		}
2360	}
2361
2362	VGE_UNLOCK(sc);
2363
2364	return;
2365}
2366
2367/*
2368 * Device suspend routine.  Stop the interface and save some PCI
2369 * settings in case the BIOS doesn't restore them properly on
2370 * resume.
2371 */
2372static int
2373vge_suspend(dev)
2374	device_t		dev;
2375{
2376	struct vge_softc	*sc;
2377	int			i;
2378
2379	sc = device_get_softc(dev);
2380
2381	vge_stop(sc);
2382
2383	sc->suspended = 1;
2384
2385	return (0);
2386}
2387
2388/*
2389 * Device resume routine.  Restore some PCI settings in case the BIOS
2390 * doesn't, re-enable busmastering, and restart the interface if
2391 * appropriate.
2392 */
2393static int
2394vge_resume(dev)
2395	device_t		dev;
2396{
2397	struct vge_softc	*sc;
2398	struct ifnet		*ifp;
2399	int			i;
2400
2401	sc = device_get_softc(dev);
2402	ifp = &sc->arpcom.ac_if;
2403
2404	/* reenable busmastering */
2405	pci_enable_busmaster(dev);
2406	pci_enable_io(dev, SYS_RES_MEMORY);
2407
2408	/* reinitialize interface if necessary */
2409	if (ifp->if_flags & IFF_UP)
2410		vge_init(sc);
2411
2412	sc->suspended = 0;
2413
2414	return (0);
2415}
2416
2417/*
2418 * Stop all chip I/O so that the kernel's probe routines don't
2419 * get confused by errant DMAs when rebooting.
2420 */
2421static void
2422vge_shutdown(dev)
2423	device_t		dev;
2424{
2425	struct vge_softc		*sc;
2426
2427	sc = device_get_softc(dev);
2428
2429	vge_stop(sc);
2430}
2431