if_vge.c revision 166865
1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 166865 2007-02-21 09:57:27Z brueffer $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96#include <sys/taskqueue.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103#include <net/if_types.h>
104#include <net/if_vlan_var.h>
105
106#include <net/bpf.h>
107
108#include <machine/bus.h>
109#include <machine/resource.h>
110#include <sys/bus.h>
111#include <sys/rman.h>
112
113#include <dev/mii/mii.h>
114#include <dev/mii/miivar.h>
115
116#include <dev/pci/pcireg.h>
117#include <dev/pci/pcivar.h>
118
119MODULE_DEPEND(vge, pci, 1, 1, 1);
120MODULE_DEPEND(vge, ether, 1, 1, 1);
121MODULE_DEPEND(vge, miibus, 1, 1, 1);
122
123/* "device miibus" required.  See GENERIC if you get errors here. */
124#include "miibus_if.h"
125
126#include <dev/vge/if_vgereg.h>
127#include <dev/vge/if_vgevar.h>
128
129#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130
131/*
132 * Various supported device vendors/types and their names.
133 */
134static struct vge_type vge_devs[] = {
135	{ VIA_VENDORID, VIA_DEVICEID_61XX,
136		"VIA Networking Gigabit Ethernet" },
137	{ 0, 0, NULL }
138};
139
140static int vge_probe		(device_t);
141static int vge_attach		(device_t);
142static int vge_detach		(device_t);
143
144static int vge_encap		(struct vge_softc *, struct mbuf *, int);
145
146static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
147static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
148				    bus_size_t, int);
149static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
150				    bus_size_t, int);
151static int vge_allocmem		(device_t, struct vge_softc *);
152static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
153static int vge_rx_list_init	(struct vge_softc *);
154static int vge_tx_list_init	(struct vge_softc *);
155#ifdef VGE_FIXUP_RX
156static __inline void vge_fixup_rx
157				(struct mbuf *);
158#endif
159static void vge_rxeof		(struct vge_softc *);
160static void vge_txeof		(struct vge_softc *);
161static void vge_intr		(void *);
162static void vge_tick		(void *);
163static void vge_tx_task		(void *, int);
164static void vge_start		(struct ifnet *);
165static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
166static void vge_init		(void *);
167static void vge_stop		(struct vge_softc *);
168static void vge_watchdog	(struct ifnet *);
169static int vge_suspend		(device_t);
170static int vge_resume		(device_t);
171static void vge_shutdown	(device_t);
172static int vge_ifmedia_upd	(struct ifnet *);
173static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
174
175#ifdef VGE_EEPROM
176static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
177#endif
178static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
179
180static void vge_miipoll_start	(struct vge_softc *);
181static void vge_miipoll_stop	(struct vge_softc *);
182static int vge_miibus_readreg	(device_t, int, int);
183static int vge_miibus_writereg	(device_t, int, int, int);
184static void vge_miibus_statchg	(device_t);
185
186static void vge_cam_clear	(struct vge_softc *);
187static int vge_cam_set		(struct vge_softc *, uint8_t *);
188static void vge_setmulti	(struct vge_softc *);
189static void vge_reset		(struct vge_softc *);
190
191#define VGE_PCI_LOIO             0x10
192#define VGE_PCI_LOMEM            0x14
193
194static device_method_t vge_methods[] = {
195	/* Device interface */
196	DEVMETHOD(device_probe,		vge_probe),
197	DEVMETHOD(device_attach,	vge_attach),
198	DEVMETHOD(device_detach,	vge_detach),
199	DEVMETHOD(device_suspend,	vge_suspend),
200	DEVMETHOD(device_resume,	vge_resume),
201	DEVMETHOD(device_shutdown,	vge_shutdown),
202
203	/* bus interface */
204	DEVMETHOD(bus_print_child,	bus_generic_print_child),
205	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
206
207	/* MII interface */
208	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
209	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
210	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
211
212	{ 0, 0 }
213};
214
215static driver_t vge_driver = {
216	"vge",
217	vge_methods,
218	sizeof(struct vge_softc)
219};
220
221static devclass_t vge_devclass;
222
223DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
224DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
225DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
226
227#ifdef VGE_EEPROM
228/*
229 * Read a word of data stored in the EEPROM at address 'addr.'
230 */
231static void
232vge_eeprom_getword(sc, addr, dest)
233	struct vge_softc	*sc;
234	int			addr;
235	u_int16_t		*dest;
236{
237	register int		i;
238	u_int16_t		word = 0;
239
240	/*
241	 * Enter EEPROM embedded programming mode. In order to
242	 * access the EEPROM at all, we first have to set the
243	 * EELOAD bit in the CHIPCFG2 register.
244	 */
245	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
246	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
247
248	/* Select the address of the word we want to read */
249	CSR_WRITE_1(sc, VGE_EEADDR, addr);
250
251	/* Issue read command */
252	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
253
254	/* Wait for the done bit to be set. */
255	for (i = 0; i < VGE_TIMEOUT; i++) {
256		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
257			break;
258	}
259
260	if (i == VGE_TIMEOUT) {
261		device_printf(sc->vge_dev, "EEPROM read timed out\n");
262		*dest = 0;
263		return;
264	}
265
266	/* Read the result */
267	word = CSR_READ_2(sc, VGE_EERDDAT);
268
269	/* Turn off EEPROM access mode. */
270	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
271	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
272
273	*dest = word;
274
275	return;
276}
277#endif
278
279/*
280 * Read a sequence of words from the EEPROM.
281 */
282static void
283vge_read_eeprom(sc, dest, off, cnt, swap)
284	struct vge_softc	*sc;
285	caddr_t			dest;
286	int			off;
287	int			cnt;
288	int			swap;
289{
290	int			i;
291#ifdef VGE_EEPROM
292	u_int16_t		word = 0, *ptr;
293
294	for (i = 0; i < cnt; i++) {
295		vge_eeprom_getword(sc, off + i, &word);
296		ptr = (u_int16_t *)(dest + (i * 2));
297		if (swap)
298			*ptr = ntohs(word);
299		else
300			*ptr = word;
301	}
302#else
303	for (i = 0; i < ETHER_ADDR_LEN; i++)
304		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
305#endif
306}
307
308static void
309vge_miipoll_stop(sc)
310	struct vge_softc	*sc;
311{
312	int			i;
313
314	CSR_WRITE_1(sc, VGE_MIICMD, 0);
315
316	for (i = 0; i < VGE_TIMEOUT; i++) {
317		DELAY(1);
318		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
319			break;
320	}
321
322	if (i == VGE_TIMEOUT)
323		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
324
325	return;
326}
327
328static void
329vge_miipoll_start(sc)
330	struct vge_softc	*sc;
331{
332	int			i;
333
334	/* First, make sure we're idle. */
335
336	CSR_WRITE_1(sc, VGE_MIICMD, 0);
337	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
338
339	for (i = 0; i < VGE_TIMEOUT; i++) {
340		DELAY(1);
341		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
342			break;
343	}
344
345	if (i == VGE_TIMEOUT) {
346		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
347		return;
348	}
349
350	/* Now enable auto poll mode. */
351
352	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
353
354	/* And make sure it started. */
355
356	for (i = 0; i < VGE_TIMEOUT; i++) {
357		DELAY(1);
358		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
359			break;
360	}
361
362	if (i == VGE_TIMEOUT)
363		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
364
365	return;
366}
367
368static int
369vge_miibus_readreg(dev, phy, reg)
370	device_t		dev;
371	int			phy, reg;
372{
373	struct vge_softc	*sc;
374	int			i;
375	u_int16_t		rval = 0;
376
377	sc = device_get_softc(dev);
378
379	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
380		return(0);
381
382	VGE_LOCK(sc);
383	vge_miipoll_stop(sc);
384
385	/* Specify the register we want to read. */
386	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
387
388	/* Issue read command. */
389	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
390
391	/* Wait for the read command bit to self-clear. */
392	for (i = 0; i < VGE_TIMEOUT; i++) {
393		DELAY(1);
394		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
395			break;
396	}
397
398	if (i == VGE_TIMEOUT)
399		device_printf(sc->vge_dev, "MII read timed out\n");
400	else
401		rval = CSR_READ_2(sc, VGE_MIIDATA);
402
403	vge_miipoll_start(sc);
404	VGE_UNLOCK(sc);
405
406	return (rval);
407}
408
409static int
410vge_miibus_writereg(dev, phy, reg, data)
411	device_t		dev;
412	int			phy, reg, data;
413{
414	struct vge_softc	*sc;
415	int			i, rval = 0;
416
417	sc = device_get_softc(dev);
418
419	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
420		return(0);
421
422	VGE_LOCK(sc);
423	vge_miipoll_stop(sc);
424
425	/* Specify the register we want to write. */
426	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
427
428	/* Specify the data we want to write. */
429	CSR_WRITE_2(sc, VGE_MIIDATA, data);
430
431	/* Issue write command. */
432	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
433
434	/* Wait for the write command bit to self-clear. */
435	for (i = 0; i < VGE_TIMEOUT; i++) {
436		DELAY(1);
437		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
438			break;
439	}
440
441	if (i == VGE_TIMEOUT) {
442		device_printf(sc->vge_dev, "MII write timed out\n");
443		rval = EIO;
444	}
445
446	vge_miipoll_start(sc);
447	VGE_UNLOCK(sc);
448
449	return (rval);
450}
451
452static void
453vge_cam_clear(sc)
454	struct vge_softc	*sc;
455{
456	int			i;
457
458	/*
459	 * Turn off all the mask bits. This tells the chip
460	 * that none of the entries in the CAM filter are valid.
461	 * desired entries will be enabled as we fill the filter in.
462	 */
463
464	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
465	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
466	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
467	for (i = 0; i < 8; i++)
468		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
469
470	/* Clear the VLAN filter too. */
471
472	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
473	for (i = 0; i < 8; i++)
474		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
475
476	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
477	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
478	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
479
480	sc->vge_camidx = 0;
481
482	return;
483}
484
485static int
486vge_cam_set(sc, addr)
487	struct vge_softc	*sc;
488	uint8_t			*addr;
489{
490	int			i, error = 0;
491
492	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
493		return(ENOSPC);
494
495	/* Select the CAM data page. */
496	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
497	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
498
499	/* Set the filter entry we want to update and enable writing. */
500	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
501
502	/* Write the address to the CAM registers */
503	for (i = 0; i < ETHER_ADDR_LEN; i++)
504		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
505
506	/* Issue a write command. */
507	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
508
509	/* Wake for it to clear. */
510	for (i = 0; i < VGE_TIMEOUT; i++) {
511		DELAY(1);
512		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
513			break;
514	}
515
516	if (i == VGE_TIMEOUT) {
517		device_printf(sc->vge_dev, "setting CAM filter failed\n");
518		error = EIO;
519		goto fail;
520	}
521
522	/* Select the CAM mask page. */
523	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
524	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
525
526	/* Set the mask bit that enables this filter. */
527	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
528	    1<<(sc->vge_camidx & 7));
529
530	sc->vge_camidx++;
531
532fail:
533	/* Turn off access to CAM. */
534	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
535	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
536	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
537
538	return (error);
539}
540
541/*
542 * Program the multicast filter. We use the 64-entry CAM filter
543 * for perfect filtering. If there's more than 64 multicast addresses,
544 * we use the hash filter insted.
545 */
546static void
547vge_setmulti(sc)
548	struct vge_softc	*sc;
549{
550	struct ifnet		*ifp;
551	int			error = 0/*, h = 0*/;
552	struct ifmultiaddr	*ifma;
553	u_int32_t		h, hashes[2] = { 0, 0 };
554
555	ifp = sc->vge_ifp;
556
557	/* First, zot all the multicast entries. */
558	vge_cam_clear(sc);
559	CSR_WRITE_4(sc, VGE_MAR0, 0);
560	CSR_WRITE_4(sc, VGE_MAR1, 0);
561
562	/*
563	 * If the user wants allmulti or promisc mode, enable reception
564	 * of all multicast frames.
565	 */
566	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
567		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
568		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
569		return;
570	}
571
572	/* Now program new ones */
573	IF_ADDR_LOCK(ifp);
574	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
575		if (ifma->ifma_addr->sa_family != AF_LINK)
576			continue;
577		error = vge_cam_set(sc,
578		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
579		if (error)
580			break;
581	}
582
583	/* If there were too many addresses, use the hash filter. */
584	if (error) {
585		vge_cam_clear(sc);
586
587		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
588			if (ifma->ifma_addr->sa_family != AF_LINK)
589				continue;
590			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
591			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
592			if (h < 32)
593				hashes[0] |= (1 << h);
594			else
595				hashes[1] |= (1 << (h - 32));
596		}
597
598		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
599		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
600	}
601	IF_ADDR_UNLOCK(ifp);
602
603	return;
604}
605
606static void
607vge_reset(sc)
608	struct vge_softc		*sc;
609{
610	register int		i;
611
612	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
613
614	for (i = 0; i < VGE_TIMEOUT; i++) {
615		DELAY(5);
616		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
617			break;
618	}
619
620	if (i == VGE_TIMEOUT) {
621		device_printf(sc->vge_dev, "soft reset timed out");
622		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
623		DELAY(2000);
624	}
625
626	DELAY(5000);
627
628	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
629
630	for (i = 0; i < VGE_TIMEOUT; i++) {
631		DELAY(5);
632		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
633			break;
634	}
635
636	if (i == VGE_TIMEOUT) {
637		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
638		return;
639	}
640
641	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
642
643	return;
644}
645
646/*
647 * Probe for a VIA gigabit chip. Check the PCI vendor and device
648 * IDs against our list and return a device name if we find a match.
649 */
650static int
651vge_probe(dev)
652	device_t		dev;
653{
654	struct vge_type		*t;
655	struct vge_softc	*sc;
656
657	t = vge_devs;
658	sc = device_get_softc(dev);
659
660	while (t->vge_name != NULL) {
661		if ((pci_get_vendor(dev) == t->vge_vid) &&
662		    (pci_get_device(dev) == t->vge_did)) {
663			device_set_desc(dev, t->vge_name);
664			return (BUS_PROBE_DEFAULT);
665		}
666		t++;
667	}
668
669	return (ENXIO);
670}
671
672static void
673vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
674	void			*arg;
675	bus_dma_segment_t	*segs;
676	int			nseg;
677	bus_size_t		mapsize;
678	int			error;
679{
680
681	struct vge_dmaload_arg	*ctx;
682	struct vge_rx_desc	*d = NULL;
683
684	if (error)
685		return;
686
687	ctx = arg;
688
689	/* Signal error to caller if there's too many segments */
690	if (nseg > ctx->vge_maxsegs) {
691		ctx->vge_maxsegs = 0;
692		return;
693	}
694
695	/*
696	 * Map the segment array into descriptors.
697	 */
698
699	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
700
701	/* If this descriptor is still owned by the chip, bail. */
702
703	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
704		device_printf(ctx->sc->vge_dev,
705		    "tried to map busy descriptor\n");
706		ctx->vge_maxsegs = 0;
707		return;
708	}
709
710	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
711	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
712	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
713	d->vge_sts = 0;
714	d->vge_ctl = 0;
715
716	ctx->vge_maxsegs = 1;
717
718	return;
719}
720
721static void
722vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
723	void			*arg;
724	bus_dma_segment_t	*segs;
725	int			nseg;
726	bus_size_t		mapsize;
727	int			error;
728{
729	struct vge_dmaload_arg	*ctx;
730	struct vge_tx_desc	*d = NULL;
731	struct vge_tx_frag	*f;
732	int			i = 0;
733
734	if (error)
735		return;
736
737	ctx = arg;
738
739	/* Signal error to caller if there's too many segments */
740	if (nseg > ctx->vge_maxsegs) {
741		ctx->vge_maxsegs = 0;
742		return;
743	}
744
745	/* Map the segment array into descriptors. */
746
747	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
748
749	/* If this descriptor is still owned by the chip, bail. */
750
751	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
752		ctx->vge_maxsegs = 0;
753		return;
754	}
755
756	for (i = 0; i < nseg; i++) {
757		f = &d->vge_frag[i];
758		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
759		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
760		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
761	}
762
763	/* Argh. This chip does not autopad short frames */
764
765	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
766		f = &d->vge_frag[i];
767		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
768		    ctx->vge_m0->m_pkthdr.len));
769		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
770		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
771		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
772		i++;
773	}
774
775	/*
776	 * When telling the chip how many segments there are, we
777	 * must use nsegs + 1 instead of just nsegs. Darned if I
778	 * know why.
779	 */
780	i++;
781
782	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
783	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
784
785	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
786		d->vge_ctl |= VGE_TDCTL_JUMBO;
787
788	ctx->vge_maxsegs = nseg;
789
790	return;
791}
792
793/*
794 * Map a single buffer address.
795 */
796
797static void
798vge_dma_map_addr(arg, segs, nseg, error)
799	void			*arg;
800	bus_dma_segment_t	*segs;
801	int			nseg;
802	int			error;
803{
804	bus_addr_t		*addr;
805
806	if (error)
807		return;
808
809	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
810	addr = arg;
811	*addr = segs->ds_addr;
812
813	return;
814}
815
816static int
817vge_allocmem(dev, sc)
818	device_t		dev;
819	struct vge_softc		*sc;
820{
821	int			error;
822	int			nseg;
823	int			i;
824
825	/*
826	 * Allocate map for RX mbufs.
827	 */
828	nseg = 32;
829	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
830	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
831	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
832	    NULL, NULL, &sc->vge_ldata.vge_mtag);
833	if (error) {
834		device_printf(dev, "could not allocate dma tag\n");
835		return (ENOMEM);
836	}
837
838	/*
839	 * Allocate map for TX descriptor list.
840	 */
841	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
842	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
843	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
844	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
845	if (error) {
846		device_printf(dev, "could not allocate dma tag\n");
847		return (ENOMEM);
848	}
849
850	/* Allocate DMA'able memory for the TX ring */
851
852	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
853	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
854	    &sc->vge_ldata.vge_tx_list_map);
855	if (error)
856		return (ENOMEM);
857
858	/* Load the map for the TX ring. */
859
860	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
861	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
862	     VGE_TX_LIST_SZ, vge_dma_map_addr,
863	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
864
865	/* Create DMA maps for TX buffers */
866
867	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
868		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
869			    &sc->vge_ldata.vge_tx_dmamap[i]);
870		if (error) {
871			device_printf(dev, "can't create DMA map for TX\n");
872			return (ENOMEM);
873		}
874	}
875
876	/*
877	 * Allocate map for RX descriptor list.
878	 */
879	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
880	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
881	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
882	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
883	if (error) {
884		device_printf(dev, "could not allocate dma tag\n");
885		return (ENOMEM);
886	}
887
888	/* Allocate DMA'able memory for the RX ring */
889
890	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
891	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
892	    &sc->vge_ldata.vge_rx_list_map);
893	if (error)
894		return (ENOMEM);
895
896	/* Load the map for the RX ring. */
897
898	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
899	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
900	     VGE_TX_LIST_SZ, vge_dma_map_addr,
901	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
902
903	/* Create DMA maps for RX buffers */
904
905	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
906		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
907			    &sc->vge_ldata.vge_rx_dmamap[i]);
908		if (error) {
909			device_printf(dev, "can't create DMA map for RX\n");
910			return (ENOMEM);
911		}
912	}
913
914	return (0);
915}
916
917/*
918 * Attach the interface. Allocate softc structures, do ifmedia
919 * setup and ethernet/BPF attach.
920 */
921static int
922vge_attach(dev)
923	device_t		dev;
924{
925	u_char			eaddr[ETHER_ADDR_LEN];
926	struct vge_softc	*sc;
927	struct ifnet		*ifp;
928	int			unit, error = 0, rid;
929
930	sc = device_get_softc(dev);
931	unit = device_get_unit(dev);
932	sc->vge_dev = dev;
933
934	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
935	    MTX_DEF | MTX_RECURSE);
936	/*
937	 * Map control/status registers.
938	 */
939	pci_enable_busmaster(dev);
940
941	rid = VGE_PCI_LOMEM;
942	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
943	    0, ~0, 1, RF_ACTIVE);
944
945	if (sc->vge_res == NULL) {
946		printf ("vge%d: couldn't map ports/memory\n", unit);
947		error = ENXIO;
948		goto fail;
949	}
950
951	sc->vge_btag = rman_get_bustag(sc->vge_res);
952	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
953
954	/* Allocate interrupt */
955	rid = 0;
956	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
957	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
958
959	if (sc->vge_irq == NULL) {
960		printf("vge%d: couldn't map interrupt\n", unit);
961		error = ENXIO;
962		goto fail;
963	}
964
965	/* Reset the adapter. */
966	vge_reset(sc);
967
968	/*
969	 * Get station address from the EEPROM.
970	 */
971	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
972
973	sc->vge_unit = unit;
974
975	/*
976	 * Allocate the parent bus DMA tag appropriate for PCI.
977	 */
978#define VGE_NSEG_NEW 32
979	error = bus_dma_tag_create(NULL,	/* parent */
980			1, 0,			/* alignment, boundary */
981			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
982			BUS_SPACE_MAXADDR,	/* highaddr */
983			NULL, NULL,		/* filter, filterarg */
984			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
985			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
986			BUS_DMA_ALLOCNOW,	/* flags */
987			NULL, NULL,		/* lockfunc, lockarg */
988			&sc->vge_parent_tag);
989	if (error)
990		goto fail;
991
992	error = vge_allocmem(dev, sc);
993
994	if (error)
995		goto fail;
996
997	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
998	if (ifp == NULL) {
999		printf("vge%d: can not if_alloc()\n", sc->vge_unit);
1000		error = ENOSPC;
1001		goto fail;
1002	}
1003
1004	/* Do MII setup */
1005	if (mii_phy_probe(dev, &sc->vge_miibus,
1006	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1007		printf("vge%d: MII without any phy!\n", sc->vge_unit);
1008		error = ENXIO;
1009		goto fail;
1010	}
1011
1012	ifp->if_softc = sc;
1013	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1014	ifp->if_mtu = ETHERMTU;
1015	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1016	ifp->if_ioctl = vge_ioctl;
1017	ifp->if_capabilities = IFCAP_VLAN_MTU;
1018	ifp->if_start = vge_start;
1019	ifp->if_hwassist = VGE_CSUM_FEATURES;
1020	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1021	ifp->if_capenable = ifp->if_capabilities;
1022#ifdef DEVICE_POLLING
1023	ifp->if_capabilities |= IFCAP_POLLING;
1024#endif
1025	ifp->if_watchdog = vge_watchdog;
1026	ifp->if_init = vge_init;
1027	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
1028	ifp->if_snd.ifq_drv_maxlen = VGE_IFQ_MAXLEN;
1029	IFQ_SET_READY(&ifp->if_snd);
1030
1031	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1032
1033	/*
1034	 * Call MI attach routine.
1035	 */
1036	ether_ifattach(ifp, eaddr);
1037
1038	/* Hook interrupt last to avoid having to lock softc */
1039	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1040	    vge_intr, sc, &sc->vge_intrhand);
1041
1042	if (error) {
1043		printf("vge%d: couldn't set up irq\n", unit);
1044		ether_ifdetach(ifp);
1045		goto fail;
1046	}
1047
1048fail:
1049	if (error)
1050		vge_detach(dev);
1051
1052	return (error);
1053}
1054
1055/*
1056 * Shutdown hardware and free up resources. This can be called any
1057 * time after the mutex has been initialized. It is called in both
1058 * the error case in attach and the normal detach case so it needs
1059 * to be careful about only freeing resources that have actually been
1060 * allocated.
1061 */
1062static int
1063vge_detach(dev)
1064	device_t		dev;
1065{
1066	struct vge_softc		*sc;
1067	struct ifnet		*ifp;
1068	int			i;
1069
1070	sc = device_get_softc(dev);
1071	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1072	ifp = sc->vge_ifp;
1073
1074#ifdef DEVICE_POLLING
1075	if (ifp->if_capenable & IFCAP_POLLING)
1076		ether_poll_deregister(ifp);
1077#endif
1078
1079	/* These should only be active if attach succeeded */
1080	if (device_is_attached(dev)) {
1081		vge_stop(sc);
1082		/*
1083		 * Force off the IFF_UP flag here, in case someone
1084		 * still had a BPF descriptor attached to this
1085		 * interface. If they do, ether_ifattach() will cause
1086		 * the BPF code to try and clear the promisc mode
1087		 * flag, which will bubble down to vge_ioctl(),
1088		 * which will try to call vge_init() again. This will
1089		 * turn the NIC back on and restart the MII ticker,
1090		 * which will panic the system when the kernel tries
1091		 * to invoke the vge_tick() function that isn't there
1092		 * anymore.
1093		 */
1094		ifp->if_flags &= ~IFF_UP;
1095		ether_ifdetach(ifp);
1096	}
1097	if (sc->vge_miibus)
1098		device_delete_child(dev, sc->vge_miibus);
1099	bus_generic_detach(dev);
1100
1101	if (sc->vge_intrhand)
1102		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1103	if (sc->vge_irq)
1104		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1105	if (sc->vge_res)
1106		bus_release_resource(dev, SYS_RES_MEMORY,
1107		    VGE_PCI_LOMEM, sc->vge_res);
1108	if (ifp)
1109		if_free(ifp);
1110
1111	/* Unload and free the RX DMA ring memory and map */
1112
1113	if (sc->vge_ldata.vge_rx_list_tag) {
1114		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1115		    sc->vge_ldata.vge_rx_list_map);
1116		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1117		    sc->vge_ldata.vge_rx_list,
1118		    sc->vge_ldata.vge_rx_list_map);
1119		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1120	}
1121
1122	/* Unload and free the TX DMA ring memory and map */
1123
1124	if (sc->vge_ldata.vge_tx_list_tag) {
1125		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1126		    sc->vge_ldata.vge_tx_list_map);
1127		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1128		    sc->vge_ldata.vge_tx_list,
1129		    sc->vge_ldata.vge_tx_list_map);
1130		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1131	}
1132
1133	/* Destroy all the RX and TX buffer maps */
1134
1135	if (sc->vge_ldata.vge_mtag) {
1136		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1137			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1138			    sc->vge_ldata.vge_tx_dmamap[i]);
1139		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1140			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1141			    sc->vge_ldata.vge_rx_dmamap[i]);
1142		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1143	}
1144
1145	if (sc->vge_parent_tag)
1146		bus_dma_tag_destroy(sc->vge_parent_tag);
1147
1148	mtx_destroy(&sc->vge_mtx);
1149
1150	return (0);
1151}
1152
1153static int
1154vge_newbuf(sc, idx, m)
1155	struct vge_softc	*sc;
1156	int			idx;
1157	struct mbuf		*m;
1158{
1159	struct vge_dmaload_arg	arg;
1160	struct mbuf		*n = NULL;
1161	int			i, error;
1162
1163	if (m == NULL) {
1164		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1165		if (n == NULL)
1166			return (ENOBUFS);
1167		m = n;
1168	} else
1169		m->m_data = m->m_ext.ext_buf;
1170
1171
1172#ifdef VGE_FIXUP_RX
1173	/*
1174	 * This is part of an evil trick to deal with non-x86 platforms.
1175	 * The VIA chip requires RX buffers to be aligned on 32-bit
1176	 * boundaries, but that will hose non-x86 machines. To get around
1177	 * this, we leave some empty space at the start of each buffer
1178	 * and for non-x86 hosts, we copy the buffer back two bytes
1179	 * to achieve word alignment. This is slightly more efficient
1180	 * than allocating a new buffer, copying the contents, and
1181	 * discarding the old buffer.
1182	 */
1183	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1184	m_adj(m, VGE_ETHER_ALIGN);
1185#else
1186	m->m_len = m->m_pkthdr.len = MCLBYTES;
1187#endif
1188
1189	arg.sc = sc;
1190	arg.vge_idx = idx;
1191	arg.vge_maxsegs = 1;
1192	arg.vge_flags = 0;
1193
1194	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1195	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1196	    &arg, BUS_DMA_NOWAIT);
1197	if (error || arg.vge_maxsegs != 1) {
1198		if (n != NULL)
1199			m_freem(n);
1200		return (ENOMEM);
1201	}
1202
1203	/*
1204	 * Note: the manual fails to document the fact that for
1205	 * proper opration, the driver needs to replentish the RX
1206	 * DMA ring 4 descriptors at a time (rather than one at a
1207	 * time, like most chips). We can allocate the new buffers
1208	 * but we should not set the OWN bits until we're ready
1209	 * to hand back 4 of them in one shot.
1210	 */
1211
1212#define VGE_RXCHUNK 4
1213	sc->vge_rx_consumed++;
1214	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1215		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1216			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1217			    htole32(VGE_RDSTS_OWN);
1218		sc->vge_rx_consumed = 0;
1219	}
1220
1221	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1222
1223	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1224	    sc->vge_ldata.vge_rx_dmamap[idx],
1225	    BUS_DMASYNC_PREREAD);
1226
1227	return (0);
1228}
1229
1230static int
1231vge_tx_list_init(sc)
1232	struct vge_softc		*sc;
1233{
1234	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1235	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1236	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1237
1238	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1239	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1240	sc->vge_ldata.vge_tx_prodidx = 0;
1241	sc->vge_ldata.vge_tx_considx = 0;
1242	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1243
1244	return (0);
1245}
1246
1247static int
1248vge_rx_list_init(sc)
1249	struct vge_softc		*sc;
1250{
1251	int			i;
1252
1253	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1254	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1255	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1256
1257	sc->vge_rx_consumed = 0;
1258
1259	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1260		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1261			return (ENOBUFS);
1262	}
1263
1264	/* Flush the RX descriptors */
1265
1266	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1267	    sc->vge_ldata.vge_rx_list_map,
1268	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1269
1270	sc->vge_ldata.vge_rx_prodidx = 0;
1271	sc->vge_rx_consumed = 0;
1272	sc->vge_head = sc->vge_tail = NULL;
1273
1274	return (0);
1275}
1276
1277#ifdef VGE_FIXUP_RX
1278static __inline void
1279vge_fixup_rx(m)
1280	struct mbuf		*m;
1281{
1282	int			i;
1283	uint16_t		*src, *dst;
1284
1285	src = mtod(m, uint16_t *);
1286	dst = src - 1;
1287
1288	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1289		*dst++ = *src++;
1290
1291	m->m_data -= ETHER_ALIGN;
1292
1293	return;
1294}
1295#endif
1296
1297/*
1298 * RX handler. We support the reception of jumbo frames that have
1299 * been fragmented across multiple 2K mbuf cluster buffers.
1300 */
1301static void
1302vge_rxeof(sc)
1303	struct vge_softc	*sc;
1304{
1305	struct mbuf		*m;
1306	struct ifnet		*ifp;
1307	int			i, total_len;
1308	int			lim = 0;
1309	struct vge_rx_desc	*cur_rx;
1310	u_int32_t		rxstat, rxctl;
1311
1312	VGE_LOCK_ASSERT(sc);
1313	ifp = sc->vge_ifp;
1314	i = sc->vge_ldata.vge_rx_prodidx;
1315
1316	/* Invalidate the descriptor memory */
1317
1318	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1319	    sc->vge_ldata.vge_rx_list_map,
1320	    BUS_DMASYNC_POSTREAD);
1321
1322	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1323
1324#ifdef DEVICE_POLLING
1325		if (ifp->if_capenable & IFCAP_POLLING) {
1326			if (sc->rxcycles <= 0)
1327				break;
1328			sc->rxcycles--;
1329		}
1330#endif
1331
1332		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1333		m = sc->vge_ldata.vge_rx_mbuf[i];
1334		total_len = VGE_RXBYTES(cur_rx);
1335		rxstat = le32toh(cur_rx->vge_sts);
1336		rxctl = le32toh(cur_rx->vge_ctl);
1337
1338		/* Invalidate the RX mbuf and unload its map */
1339
1340		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1341		    sc->vge_ldata.vge_rx_dmamap[i],
1342		    BUS_DMASYNC_POSTWRITE);
1343		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1344		    sc->vge_ldata.vge_rx_dmamap[i]);
1345
1346		/*
1347		 * If the 'start of frame' bit is set, this indicates
1348		 * either the first fragment in a multi-fragment receive,
1349		 * or an intermediate fragment. Either way, we want to
1350		 * accumulate the buffers.
1351		 */
1352		if (rxstat & VGE_RXPKT_SOF) {
1353			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1354			if (sc->vge_head == NULL)
1355				sc->vge_head = sc->vge_tail = m;
1356			else {
1357				m->m_flags &= ~M_PKTHDR;
1358				sc->vge_tail->m_next = m;
1359				sc->vge_tail = m;
1360			}
1361			vge_newbuf(sc, i, NULL);
1362			VGE_RX_DESC_INC(i);
1363			continue;
1364		}
1365
1366		/*
1367		 * Bad/error frames will have the RXOK bit cleared.
1368		 * However, there's one error case we want to allow:
1369		 * if a VLAN tagged frame arrives and the chip can't
1370		 * match it against the CAM filter, it considers this
1371		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1372		 * We don't want to drop the frame though: our VLAN
1373		 * filtering is done in software.
1374		 */
1375		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1376		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1377			ifp->if_ierrors++;
1378			/*
1379			 * If this is part of a multi-fragment packet,
1380			 * discard all the pieces.
1381			 */
1382			if (sc->vge_head != NULL) {
1383				m_freem(sc->vge_head);
1384				sc->vge_head = sc->vge_tail = NULL;
1385			}
1386			vge_newbuf(sc, i, m);
1387			VGE_RX_DESC_INC(i);
1388			continue;
1389		}
1390
1391		/*
1392		 * If allocating a replacement mbuf fails,
1393		 * reload the current one.
1394		 */
1395
1396		if (vge_newbuf(sc, i, NULL)) {
1397			ifp->if_ierrors++;
1398			if (sc->vge_head != NULL) {
1399				m_freem(sc->vge_head);
1400				sc->vge_head = sc->vge_tail = NULL;
1401			}
1402			vge_newbuf(sc, i, m);
1403			VGE_RX_DESC_INC(i);
1404			continue;
1405		}
1406
1407		VGE_RX_DESC_INC(i);
1408
1409		if (sc->vge_head != NULL) {
1410			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1411			/*
1412			 * Special case: if there's 4 bytes or less
1413			 * in this buffer, the mbuf can be discarded:
1414			 * the last 4 bytes is the CRC, which we don't
1415			 * care about anyway.
1416			 */
1417			if (m->m_len <= ETHER_CRC_LEN) {
1418				sc->vge_tail->m_len -=
1419				    (ETHER_CRC_LEN - m->m_len);
1420				m_freem(m);
1421			} else {
1422				m->m_len -= ETHER_CRC_LEN;
1423				m->m_flags &= ~M_PKTHDR;
1424				sc->vge_tail->m_next = m;
1425			}
1426			m = sc->vge_head;
1427			sc->vge_head = sc->vge_tail = NULL;
1428			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1429		} else
1430			m->m_pkthdr.len = m->m_len =
1431			    (total_len - ETHER_CRC_LEN);
1432
1433#ifdef VGE_FIXUP_RX
1434		vge_fixup_rx(m);
1435#endif
1436		ifp->if_ipackets++;
1437		m->m_pkthdr.rcvif = ifp;
1438
1439		/* Do RX checksumming if enabled */
1440		if (ifp->if_capenable & IFCAP_RXCSUM) {
1441
1442			/* Check IP header checksum */
1443			if (rxctl & VGE_RDCTL_IPPKT)
1444				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1445			if (rxctl & VGE_RDCTL_IPCSUMOK)
1446				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1447
1448			/* Check TCP/UDP checksum */
1449			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1450			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1451				m->m_pkthdr.csum_flags |=
1452				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1453				m->m_pkthdr.csum_data = 0xffff;
1454			}
1455		}
1456
1457		if (rxstat & VGE_RDSTS_VTAG) {
1458			/*
1459			 * The 32-bit rxctl register is stored in little-endian.
1460			 * However, the 16-bit vlan tag is stored in big-endian,
1461			 * so we have to byte swap it.
1462			 */
1463			m->m_pkthdr.ether_vtag =
1464			    bswap16(rxctl & VGE_RDCTL_VLANID);
1465			m->m_flags |= M_VLANTAG;
1466		}
1467
1468		VGE_UNLOCK(sc);
1469		(*ifp->if_input)(ifp, m);
1470		VGE_LOCK(sc);
1471
1472		lim++;
1473		if (lim == VGE_RX_DESC_CNT)
1474			break;
1475
1476	}
1477
1478	/* Flush the RX DMA ring */
1479
1480	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1481	    sc->vge_ldata.vge_rx_list_map,
1482	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1483
1484	sc->vge_ldata.vge_rx_prodidx = i;
1485	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1486
1487
1488	return;
1489}
1490
1491static void
1492vge_txeof(sc)
1493	struct vge_softc		*sc;
1494{
1495	struct ifnet		*ifp;
1496	u_int32_t		txstat;
1497	int			idx;
1498
1499	ifp = sc->vge_ifp;
1500	idx = sc->vge_ldata.vge_tx_considx;
1501
1502	/* Invalidate the TX descriptor list */
1503
1504	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1505	    sc->vge_ldata.vge_tx_list_map,
1506	    BUS_DMASYNC_POSTREAD);
1507
1508	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1509
1510		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1511		if (txstat & VGE_TDSTS_OWN)
1512			break;
1513
1514		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1515		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1516		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1517		    sc->vge_ldata.vge_tx_dmamap[idx]);
1518		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1519			ifp->if_collisions++;
1520		if (txstat & VGE_TDSTS_TXERR)
1521			ifp->if_oerrors++;
1522		else
1523			ifp->if_opackets++;
1524
1525		sc->vge_ldata.vge_tx_free++;
1526		VGE_TX_DESC_INC(idx);
1527	}
1528
1529	/* No changes made to the TX ring, so no flush needed */
1530
1531	if (idx != sc->vge_ldata.vge_tx_considx) {
1532		sc->vge_ldata.vge_tx_considx = idx;
1533		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1534		ifp->if_timer = 0;
1535	}
1536
1537	/*
1538	 * If not all descriptors have been released reaped yet,
1539	 * reload the timer so that we will eventually get another
1540	 * interrupt that will cause us to re-enter this routine.
1541	 * This is done in case the transmitter has gone idle.
1542	 */
1543	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1544		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1545	}
1546
1547	return;
1548}
1549
1550static void
1551vge_tick(xsc)
1552	void			*xsc;
1553{
1554	struct vge_softc	*sc;
1555	struct ifnet		*ifp;
1556	struct mii_data		*mii;
1557
1558	sc = xsc;
1559	ifp = sc->vge_ifp;
1560	VGE_LOCK(sc);
1561	mii = device_get_softc(sc->vge_miibus);
1562
1563	mii_tick(mii);
1564	if (sc->vge_link) {
1565		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1566			sc->vge_link = 0;
1567			if_link_state_change(sc->vge_ifp,
1568			    LINK_STATE_DOWN);
1569		}
1570	} else {
1571		if (mii->mii_media_status & IFM_ACTIVE &&
1572		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1573			sc->vge_link = 1;
1574			if_link_state_change(sc->vge_ifp,
1575			    LINK_STATE_UP);
1576			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1577				taskqueue_enqueue(taskqueue_swi,
1578				    &sc->vge_txtask);
1579		}
1580	}
1581
1582	VGE_UNLOCK(sc);
1583
1584	return;
1585}
1586
1587#ifdef DEVICE_POLLING
1588static void
1589vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1590{
1591	struct vge_softc *sc = ifp->if_softc;
1592
1593	VGE_LOCK(sc);
1594	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1595		goto done;
1596
1597	sc->rxcycles = count;
1598	vge_rxeof(sc);
1599	vge_txeof(sc);
1600
1601	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1602		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1603
1604	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1605		u_int32_t       status;
1606		status = CSR_READ_4(sc, VGE_ISR);
1607		if (status == 0xFFFFFFFF)
1608			goto done;
1609		if (status)
1610			CSR_WRITE_4(sc, VGE_ISR, status);
1611
1612		/*
1613		 * XXX check behaviour on receiver stalls.
1614		 */
1615
1616		if (status & VGE_ISR_TXDMA_STALL ||
1617		    status & VGE_ISR_RXDMA_STALL)
1618			vge_init(sc);
1619
1620		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1621			vge_rxeof(sc);
1622			ifp->if_ierrors++;
1623			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1624			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1625		}
1626	}
1627done:
1628	VGE_UNLOCK(sc);
1629}
1630#endif /* DEVICE_POLLING */
1631
1632static void
1633vge_intr(arg)
1634	void			*arg;
1635{
1636	struct vge_softc	*sc;
1637	struct ifnet		*ifp;
1638	u_int32_t		status;
1639
1640	sc = arg;
1641
1642	if (sc->suspended) {
1643		return;
1644	}
1645
1646	VGE_LOCK(sc);
1647	ifp = sc->vge_ifp;
1648
1649	if (!(ifp->if_flags & IFF_UP)) {
1650		VGE_UNLOCK(sc);
1651		return;
1652	}
1653
1654#ifdef DEVICE_POLLING
1655	if  (ifp->if_capenable & IFCAP_POLLING) {
1656		VGE_UNLOCK(sc);
1657		return;
1658	}
1659#endif
1660
1661	/* Disable interrupts */
1662	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1663
1664	for (;;) {
1665
1666		status = CSR_READ_4(sc, VGE_ISR);
1667		/* If the card has gone away the read returns 0xffff. */
1668		if (status == 0xFFFFFFFF)
1669			break;
1670
1671		if (status)
1672			CSR_WRITE_4(sc, VGE_ISR, status);
1673
1674		if ((status & VGE_INTRS) == 0)
1675			break;
1676
1677		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1678			vge_rxeof(sc);
1679
1680		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1681			vge_rxeof(sc);
1682			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1683			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1684		}
1685
1686		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1687			vge_txeof(sc);
1688
1689		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1690			vge_init(sc);
1691
1692		if (status & VGE_ISR_LINKSTS)
1693			vge_tick(sc);
1694	}
1695
1696	/* Re-enable interrupts */
1697	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1698
1699	VGE_UNLOCK(sc);
1700
1701	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1702		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1703
1704	return;
1705}
1706
1707static int
1708vge_encap(sc, m_head, idx)
1709	struct vge_softc	*sc;
1710	struct mbuf		*m_head;
1711	int			idx;
1712{
1713	struct mbuf		*m_new = NULL;
1714	struct vge_dmaload_arg	arg;
1715	bus_dmamap_t		map;
1716	int			error;
1717
1718	if (sc->vge_ldata.vge_tx_free <= 2)
1719		return (EFBIG);
1720
1721	arg.vge_flags = 0;
1722
1723	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1724		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1725	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1726		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1727	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1728		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1729
1730	arg.sc = sc;
1731	arg.vge_idx = idx;
1732	arg.vge_m0 = m_head;
1733	arg.vge_maxsegs = VGE_TX_FRAGS;
1734
1735	map = sc->vge_ldata.vge_tx_dmamap[idx];
1736	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1737	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1738
1739	if (error && error != EFBIG) {
1740		printf("vge%d: can't map mbuf (error %d)\n",
1741		    sc->vge_unit, error);
1742		return (ENOBUFS);
1743	}
1744
1745	/* Too many segments to map, coalesce into a single mbuf */
1746
1747	if (error || arg.vge_maxsegs == 0) {
1748		m_new = m_defrag(m_head, M_DONTWAIT);
1749		if (m_new == NULL)
1750			return (1);
1751		else
1752			m_head = m_new;
1753
1754		arg.sc = sc;
1755		arg.vge_m0 = m_head;
1756		arg.vge_idx = idx;
1757		arg.vge_maxsegs = 1;
1758
1759		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1760		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1761		if (error) {
1762			printf("vge%d: can't map mbuf (error %d)\n",
1763			    sc->vge_unit, error);
1764			return (EFBIG);
1765		}
1766	}
1767
1768	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1769	sc->vge_ldata.vge_tx_free--;
1770
1771	/*
1772	 * Set up hardware VLAN tagging.
1773	 */
1774
1775	if (m_head->m_flags & M_VLANTAG)
1776		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1777		    htole32(m_head->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG);
1778
1779	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1780
1781	return (0);
1782}
1783
1784static void
1785vge_tx_task(arg, npending)
1786	void			*arg;
1787	int			npending;
1788{
1789	struct ifnet		*ifp;
1790
1791	ifp = arg;
1792	vge_start(ifp);
1793
1794	return;
1795}
1796
1797/*
1798 * Main transmit routine.
1799 */
1800
1801static void
1802vge_start(ifp)
1803	struct ifnet		*ifp;
1804{
1805	struct vge_softc	*sc;
1806	struct mbuf		*m_head = NULL;
1807	int			idx, pidx = 0;
1808
1809	sc = ifp->if_softc;
1810	VGE_LOCK(sc);
1811
1812	if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
1813		VGE_UNLOCK(sc);
1814		return;
1815	}
1816
1817	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1818		VGE_UNLOCK(sc);
1819		return;
1820	}
1821
1822	idx = sc->vge_ldata.vge_tx_prodidx;
1823
1824	pidx = idx - 1;
1825	if (pidx < 0)
1826		pidx = VGE_TX_DESC_CNT - 1;
1827
1828
1829	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1830		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1831		if (m_head == NULL)
1832			break;
1833
1834		if (vge_encap(sc, m_head, idx)) {
1835			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1836			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1837			break;
1838		}
1839
1840		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1841		    htole16(VGE_TXDESC_Q);
1842
1843		pidx = idx;
1844		VGE_TX_DESC_INC(idx);
1845
1846		/*
1847		 * If there's a BPF listener, bounce a copy of this frame
1848		 * to him.
1849		 */
1850		BPF_MTAP(ifp, m_head);
1851	}
1852
1853	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1854		VGE_UNLOCK(sc);
1855		return;
1856	}
1857
1858	/* Flush the TX descriptors */
1859
1860	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1861	    sc->vge_ldata.vge_tx_list_map,
1862	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1863
1864	/* Issue a transmit command. */
1865	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1866
1867	sc->vge_ldata.vge_tx_prodidx = idx;
1868
1869	/*
1870	 * Use the countdown timer for interrupt moderation.
1871	 * 'TX done' interrupts are disabled. Instead, we reset the
1872	 * countdown timer, which will begin counting until it hits
1873	 * the value in the SSTIMER register, and then trigger an
1874	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1875	 * the timer count is reloaded. Only when the transmitter
1876	 * is idle will the timer hit 0 and an interrupt fire.
1877	 */
1878	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1879
1880	VGE_UNLOCK(sc);
1881
1882	/*
1883	 * Set a timeout in case the chip goes out to lunch.
1884	 */
1885	ifp->if_timer = 5;
1886
1887	return;
1888}
1889
1890static void
1891vge_init(xsc)
1892	void			*xsc;
1893{
1894	struct vge_softc	*sc = xsc;
1895	struct ifnet		*ifp = sc->vge_ifp;
1896	struct mii_data		*mii;
1897	int			i;
1898
1899	VGE_LOCK(sc);
1900	mii = device_get_softc(sc->vge_miibus);
1901
1902	/*
1903	 * Cancel pending I/O and free all RX/TX buffers.
1904	 */
1905	vge_stop(sc);
1906	vge_reset(sc);
1907
1908	/*
1909	 * Initialize the RX and TX descriptors and mbufs.
1910	 */
1911
1912	vge_rx_list_init(sc);
1913	vge_tx_list_init(sc);
1914
1915	/* Set our station address */
1916	for (i = 0; i < ETHER_ADDR_LEN; i++)
1917		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
1918
1919	/*
1920	 * Set receive FIFO threshold. Also allow transmission and
1921	 * reception of VLAN tagged frames.
1922	 */
1923	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1924	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1925
1926	/* Set DMA burst length */
1927	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1928	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1929
1930	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1931
1932	/* Set collision backoff algorithm */
1933	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1934	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1935	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1936
1937	/* Disable LPSEL field in priority resolution */
1938	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1939
1940	/*
1941	 * Load the addresses of the DMA queues into the chip.
1942	 * Note that we only use one transmit queue.
1943	 */
1944
1945	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1946	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1947	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1948
1949	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1950	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1951	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1952	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1953
1954	/* Enable and wake up the RX descriptor queue */
1955	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1956	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1957
1958	/* Enable the TX descriptor queue */
1959	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1960
1961	/* Set up the receive filter -- allow large frames for VLANs. */
1962	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1963
1964	/* If we want promiscuous mode, set the allframes bit. */
1965	if (ifp->if_flags & IFF_PROMISC) {
1966		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1967	}
1968
1969	/* Set capture broadcast bit to capture broadcast frames. */
1970	if (ifp->if_flags & IFF_BROADCAST) {
1971		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1972	}
1973
1974	/* Set multicast bit to capture multicast frames. */
1975	if (ifp->if_flags & IFF_MULTICAST) {
1976		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1977	}
1978
1979	/* Init the cam filter. */
1980	vge_cam_clear(sc);
1981
1982	/* Init the multicast filter. */
1983	vge_setmulti(sc);
1984
1985	/* Enable flow control */
1986
1987	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1988
1989	/* Enable jumbo frame reception (if desired) */
1990
1991	/* Start the MAC. */
1992	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1993	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1994	CSR_WRITE_1(sc, VGE_CRS0,
1995	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1996
1997	/*
1998	 * Configure one-shot timer for microsecond
1999	 * resulution and load it for 500 usecs.
2000	 */
2001	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2002	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2003
2004	/*
2005	 * Configure interrupt moderation for receive. Enable
2006	 * the holdoff counter and load it, and set the RX
2007	 * suppression count to the number of descriptors we
2008	 * want to allow before triggering an interrupt.
2009	 * The holdoff timer is in units of 20 usecs.
2010	 */
2011
2012#ifdef notyet
2013	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2014	/* Select the interrupt holdoff timer page. */
2015	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2016	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2017	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2018
2019	/* Enable use of the holdoff timer. */
2020	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2021	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2022
2023	/* Select the RX suppression threshold page. */
2024	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2025	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2026	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2027
2028	/* Restore the page select bits. */
2029	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2030	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2031#endif
2032
2033#ifdef DEVICE_POLLING
2034	/*
2035	 * Disable interrupts if we are polling.
2036	 */
2037	if (ifp->if_capenable & IFCAP_POLLING) {
2038		CSR_WRITE_4(sc, VGE_IMR, 0);
2039		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2040	} else	/* otherwise ... */
2041#endif
2042	{
2043	/*
2044	 * Enable interrupts.
2045	 */
2046		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2047		CSR_WRITE_4(sc, VGE_ISR, 0);
2048		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2049	}
2050
2051	mii_mediachg(mii);
2052
2053	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2054	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2055
2056	sc->vge_if_flags = 0;
2057	sc->vge_link = 0;
2058
2059	VGE_UNLOCK(sc);
2060
2061	return;
2062}
2063
2064/*
2065 * Set media options.
2066 */
2067static int
2068vge_ifmedia_upd(ifp)
2069	struct ifnet		*ifp;
2070{
2071	struct vge_softc	*sc;
2072	struct mii_data		*mii;
2073
2074	sc = ifp->if_softc;
2075	VGE_LOCK(sc);
2076	mii = device_get_softc(sc->vge_miibus);
2077	mii_mediachg(mii);
2078	VGE_UNLOCK(sc);
2079
2080	return (0);
2081}
2082
2083/*
2084 * Report current media status.
2085 */
2086static void
2087vge_ifmedia_sts(ifp, ifmr)
2088	struct ifnet		*ifp;
2089	struct ifmediareq	*ifmr;
2090{
2091	struct vge_softc	*sc;
2092	struct mii_data		*mii;
2093
2094	sc = ifp->if_softc;
2095	mii = device_get_softc(sc->vge_miibus);
2096
2097	mii_pollstat(mii);
2098	ifmr->ifm_active = mii->mii_media_active;
2099	ifmr->ifm_status = mii->mii_media_status;
2100
2101	return;
2102}
2103
2104static void
2105vge_miibus_statchg(dev)
2106	device_t		dev;
2107{
2108	struct vge_softc	*sc;
2109	struct mii_data		*mii;
2110	struct ifmedia_entry	*ife;
2111
2112	sc = device_get_softc(dev);
2113	mii = device_get_softc(sc->vge_miibus);
2114	ife = mii->mii_media.ifm_cur;
2115
2116	/*
2117	 * If the user manually selects a media mode, we need to turn
2118	 * on the forced MAC mode bit in the DIAGCTL register. If the
2119	 * user happens to choose a full duplex mode, we also need to
2120	 * set the 'force full duplex' bit. This applies only to
2121	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2122	 * mode is disabled, and in 1000baseT mode, full duplex is
2123	 * always implied, so we turn on the forced mode bit but leave
2124	 * the FDX bit cleared.
2125	 */
2126
2127	switch (IFM_SUBTYPE(ife->ifm_media)) {
2128	case IFM_AUTO:
2129		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2130		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2131		break;
2132	case IFM_1000_T:
2133		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2134		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2135		break;
2136	case IFM_100_TX:
2137	case IFM_10_T:
2138		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2139		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2140			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2141		} else {
2142			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2143		}
2144		break;
2145	default:
2146		device_printf(dev, "unknown media type: %x\n",
2147		    IFM_SUBTYPE(ife->ifm_media));
2148		break;
2149	}
2150
2151	return;
2152}
2153
2154static int
2155vge_ioctl(ifp, command, data)
2156	struct ifnet		*ifp;
2157	u_long			command;
2158	caddr_t			data;
2159{
2160	struct vge_softc	*sc = ifp->if_softc;
2161	struct ifreq		*ifr = (struct ifreq *) data;
2162	struct mii_data		*mii;
2163	int			error = 0;
2164
2165	switch (command) {
2166	case SIOCSIFMTU:
2167		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2168			error = EINVAL;
2169		ifp->if_mtu = ifr->ifr_mtu;
2170		break;
2171	case SIOCSIFFLAGS:
2172		if (ifp->if_flags & IFF_UP) {
2173			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2174			    ifp->if_flags & IFF_PROMISC &&
2175			    !(sc->vge_if_flags & IFF_PROMISC)) {
2176				CSR_SETBIT_1(sc, VGE_RXCTL,
2177				    VGE_RXCTL_RX_PROMISC);
2178				vge_setmulti(sc);
2179			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2180			    !(ifp->if_flags & IFF_PROMISC) &&
2181			    sc->vge_if_flags & IFF_PROMISC) {
2182				CSR_CLRBIT_1(sc, VGE_RXCTL,
2183				    VGE_RXCTL_RX_PROMISC);
2184				vge_setmulti(sc);
2185                        } else
2186				vge_init(sc);
2187		} else {
2188			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2189				vge_stop(sc);
2190		}
2191		sc->vge_if_flags = ifp->if_flags;
2192		break;
2193	case SIOCADDMULTI:
2194	case SIOCDELMULTI:
2195		vge_setmulti(sc);
2196		break;
2197	case SIOCGIFMEDIA:
2198	case SIOCSIFMEDIA:
2199		mii = device_get_softc(sc->vge_miibus);
2200		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2201		break;
2202	case SIOCSIFCAP:
2203	    {
2204		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2205#ifdef DEVICE_POLLING
2206		if (mask & IFCAP_POLLING) {
2207			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2208				error = ether_poll_register(vge_poll, ifp);
2209				if (error)
2210					return(error);
2211				VGE_LOCK(sc);
2212					/* Disable interrupts */
2213				CSR_WRITE_4(sc, VGE_IMR, 0);
2214				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2215				ifp->if_capenable |= IFCAP_POLLING;
2216				VGE_UNLOCK(sc);
2217			} else {
2218				error = ether_poll_deregister(ifp);
2219				/* Enable interrupts. */
2220				VGE_LOCK(sc);
2221				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2222				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2223				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2224				ifp->if_capenable &= ~IFCAP_POLLING;
2225				VGE_UNLOCK(sc);
2226			}
2227		}
2228#endif /* DEVICE_POLLING */
2229		if (mask & IFCAP_HWCSUM) {
2230			ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM);
2231			if (ifp->if_capenable & IFCAP_TXCSUM)
2232				ifp->if_hwassist = VGE_CSUM_FEATURES;
2233			else
2234				ifp->if_hwassist = 0;
2235			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2236				vge_init(sc);
2237		}
2238	    }
2239		break;
2240	default:
2241		error = ether_ioctl(ifp, command, data);
2242		break;
2243	}
2244
2245	return (error);
2246}
2247
2248static void
2249vge_watchdog(ifp)
2250	struct ifnet		*ifp;
2251{
2252	struct vge_softc		*sc;
2253
2254	sc = ifp->if_softc;
2255	VGE_LOCK(sc);
2256	printf("vge%d: watchdog timeout\n", sc->vge_unit);
2257	ifp->if_oerrors++;
2258
2259	vge_txeof(sc);
2260	vge_rxeof(sc);
2261
2262	vge_init(sc);
2263
2264	VGE_UNLOCK(sc);
2265
2266	return;
2267}
2268
2269/*
2270 * Stop the adapter and free any mbufs allocated to the
2271 * RX and TX lists.
2272 */
2273static void
2274vge_stop(sc)
2275	struct vge_softc		*sc;
2276{
2277	register int		i;
2278	struct ifnet		*ifp;
2279
2280	VGE_LOCK(sc);
2281	ifp = sc->vge_ifp;
2282	ifp->if_timer = 0;
2283
2284	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2285
2286	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2287	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2288	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2289	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2290	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2291	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2292
2293	if (sc->vge_head != NULL) {
2294		m_freem(sc->vge_head);
2295		sc->vge_head = sc->vge_tail = NULL;
2296	}
2297
2298	/* Free the TX list buffers. */
2299
2300	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2301		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2302			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2303			    sc->vge_ldata.vge_tx_dmamap[i]);
2304			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2305			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2306		}
2307	}
2308
2309	/* Free the RX list buffers. */
2310
2311	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2312		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2313			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2314			    sc->vge_ldata.vge_rx_dmamap[i]);
2315			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2316			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2317		}
2318	}
2319
2320	VGE_UNLOCK(sc);
2321
2322	return;
2323}
2324
2325/*
2326 * Device suspend routine.  Stop the interface and save some PCI
2327 * settings in case the BIOS doesn't restore them properly on
2328 * resume.
2329 */
2330static int
2331vge_suspend(dev)
2332	device_t		dev;
2333{
2334	struct vge_softc	*sc;
2335
2336	sc = device_get_softc(dev);
2337
2338	vge_stop(sc);
2339
2340	sc->suspended = 1;
2341
2342	return (0);
2343}
2344
2345/*
2346 * Device resume routine.  Restore some PCI settings in case the BIOS
2347 * doesn't, re-enable busmastering, and restart the interface if
2348 * appropriate.
2349 */
2350static int
2351vge_resume(dev)
2352	device_t		dev;
2353{
2354	struct vge_softc	*sc;
2355	struct ifnet		*ifp;
2356
2357	sc = device_get_softc(dev);
2358	ifp = sc->vge_ifp;
2359
2360	/* reenable busmastering */
2361	pci_enable_busmaster(dev);
2362	pci_enable_io(dev, SYS_RES_MEMORY);
2363
2364	/* reinitialize interface if necessary */
2365	if (ifp->if_flags & IFF_UP)
2366		vge_init(sc);
2367
2368	sc->suspended = 0;
2369
2370	return (0);
2371}
2372
2373/*
2374 * Stop all chip I/O so that the kernel's probe routines don't
2375 * get confused by errant DMAs when rebooting.
2376 */
2377static void
2378vge_shutdown(dev)
2379	device_t		dev;
2380{
2381	struct vge_softc		*sc;
2382
2383	sc = device_get_softc(dev);
2384
2385	vge_stop(sc);
2386}
2387