if_ural.c revision 198099
1/*	$FreeBSD: head/sys/dev/usb/wlan/if_ural.c 198099 2009-10-14 20:30:27Z weongyo $	*/
2
3/*-
4 * Copyright (c) 2005, 2006
5 *	Damien Bergamini <damien.bergamini@free.fr>
6 *
7 * Copyright (c) 2006, 2008
8 *	Hans Petter Selasky <hselasky@FreeBSD.org>
9 *
10 * Permission to use, copy, modify, and distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23#include <sys/cdefs.h>
24__FBSDID("$FreeBSD: head/sys/dev/usb/wlan/if_ural.c 198099 2009-10-14 20:30:27Z weongyo $");
25
26/*-
27 * Ralink Technology RT2500USB chipset driver
28 * http://www.ralinktech.com/
29 */
30
31#include <sys/param.h>
32#include <sys/sockio.h>
33#include <sys/sysctl.h>
34#include <sys/lock.h>
35#include <sys/mutex.h>
36#include <sys/mbuf.h>
37#include <sys/kernel.h>
38#include <sys/socket.h>
39#include <sys/systm.h>
40#include <sys/malloc.h>
41#include <sys/module.h>
42#include <sys/bus.h>
43#include <sys/endian.h>
44#include <sys/kdb.h>
45
46#include <machine/bus.h>
47#include <machine/resource.h>
48#include <sys/rman.h>
49
50#include <net/bpf.h>
51#include <net/if.h>
52#include <net/if_arp.h>
53#include <net/ethernet.h>
54#include <net/if_dl.h>
55#include <net/if_media.h>
56#include <net/if_types.h>
57
58#ifdef INET
59#include <netinet/in.h>
60#include <netinet/in_systm.h>
61#include <netinet/in_var.h>
62#include <netinet/if_ether.h>
63#include <netinet/ip.h>
64#endif
65
66#include <net80211/ieee80211_var.h>
67#include <net80211/ieee80211_regdomain.h>
68#include <net80211/ieee80211_radiotap.h>
69#include <net80211/ieee80211_amrr.h>
70
71#include <dev/usb/usb.h>
72#include <dev/usb/usbdi.h>
73#include "usbdevs.h"
74
75#define	USB_DEBUG_VAR ural_debug
76#include <dev/usb/usb_debug.h>
77
78#include <dev/usb/wlan/if_uralreg.h>
79#include <dev/usb/wlan/if_uralvar.h>
80
81#if USB_DEBUG
82static int ural_debug = 0;
83
84SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
85SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &ural_debug, 0,
86    "Debug level");
87#endif
88
89#define URAL_RSSI(rssi)					\
90	((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?	\
91	 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
92
93/* various supported device vendors/products */
94static const struct usb_device_id ural_devs[] = {
95	{ USB_VP(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_WL167G) },
96	{ USB_VP(USB_VENDOR_ASUS, USB_PRODUCT_RALINK_RT2570) },
97	{ USB_VP(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050) },
98	{ USB_VP(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7051) },
99	{ USB_VP(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_HU200TS) },
100	{ USB_VP(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54G) },
101	{ USB_VP(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GP) },
102	{ USB_VP(USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU) },
103	{ USB_VP(USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122) },
104	{ USB_VP(USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GN54G) },
105	{ USB_VP(USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG) },
106	{ USB_VP(USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254) },
107	{ USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54) },
108	{ USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI) },
109	{ USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB) },
110	{ USB_VP(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI) },
111	{ USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570) },
112	{ USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_2) },
113	{ USB_VP(USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_3) },
114	{ USB_VP(USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_NV902) },
115	{ USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570) },
116	{ USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2) },
117	{ USB_VP(USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_3) },
118	{ USB_VP(USB_VENDOR_SIEMENS2, USB_PRODUCT_SIEMENS2_WL54G) },
119	{ USB_VP(USB_VENDOR_SMC, USB_PRODUCT_SMC_2862WG) },
120	{ USB_VP(USB_VENDOR_SPHAIRON, USB_PRODUCT_SPHAIRON_UB801R) },
121	{ USB_VP(USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2570) },
122	{ USB_VP(USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570) },
123	{ USB_VP(USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_RT2570) },
124};
125
126static usb_callback_t ural_bulk_read_callback;
127static usb_callback_t ural_bulk_write_callback;
128
129static usb_error_t	ural_do_request(struct ural_softc *sc,
130			    struct usb_device_request *req, void *data);
131static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
132			    const char name[IFNAMSIZ], int unit, int opmode,
133			    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
134			    const uint8_t mac[IEEE80211_ADDR_LEN]);
135static void		ural_vap_delete(struct ieee80211vap *);
136static void		ural_tx_free(struct ural_tx_data *, int);
137static void		ural_setup_tx_list(struct ural_softc *);
138static void		ural_unsetup_tx_list(struct ural_softc *);
139static int		ural_newstate(struct ieee80211vap *,
140			    enum ieee80211_state, int);
141static void		ural_setup_tx_desc(struct ural_softc *,
142			    struct ural_tx_desc *, uint32_t, int, int);
143static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
144			    struct ieee80211_node *);
145static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
146			    struct ieee80211_node *);
147static int		ural_tx_data(struct ural_softc *, struct mbuf *,
148			    struct ieee80211_node *);
149static void		ural_start(struct ifnet *);
150static int		ural_ioctl(struct ifnet *, u_long, caddr_t);
151static void		ural_set_testmode(struct ural_softc *);
152static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
153			    int);
154static uint16_t		ural_read(struct ural_softc *, uint16_t);
155static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
156			    int);
157static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
158static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
159			    int) __unused;
160static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
161static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
162static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
163static struct ieee80211_node *ural_node_alloc(struct ieee80211vap *,
164			    const uint8_t mac[IEEE80211_ADDR_LEN]);
165static void		ural_newassoc(struct ieee80211_node *, int);
166static void		ural_scan_start(struct ieee80211com *);
167static void		ural_scan_end(struct ieee80211com *);
168static void		ural_set_channel(struct ieee80211com *);
169static void		ural_set_chan(struct ural_softc *,
170			    struct ieee80211_channel *);
171static void		ural_disable_rf_tune(struct ural_softc *);
172static void		ural_enable_tsf_sync(struct ural_softc *);
173static void 		ural_enable_tsf(struct ural_softc *);
174static void		ural_update_slot(struct ifnet *);
175static void		ural_set_txpreamble(struct ural_softc *);
176static void		ural_set_basicrates(struct ural_softc *,
177			    const struct ieee80211_channel *);
178static void		ural_set_bssid(struct ural_softc *, const uint8_t *);
179static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
180static void		ural_update_promisc(struct ifnet *);
181static void		ural_setpromisc(struct ural_softc *);
182static const char	*ural_get_rf(int);
183static void		ural_read_eeprom(struct ural_softc *);
184static int		ural_bbp_init(struct ural_softc *);
185static void		ural_set_txantenna(struct ural_softc *, int);
186static void		ural_set_rxantenna(struct ural_softc *, int);
187static void		ural_init_locked(struct ural_softc *);
188static void		ural_init(void *);
189static void		ural_stop(struct ural_softc *);
190static int		ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
191			    const struct ieee80211_bpf_params *);
192static void		ural_amrr_start(struct ural_softc *,
193			    struct ieee80211_node *);
194static void		ural_amrr_timeout(void *);
195static void		ural_amrr_task(void *, int);
196static int		ural_pause(struct ural_softc *sc, int timeout);
197
198/*
199 * Default values for MAC registers; values taken from the reference driver.
200 */
201static const struct {
202	uint16_t	reg;
203	uint16_t	val;
204} ural_def_mac[] = {
205	{ RAL_TXRX_CSR5,  0x8c8d },
206	{ RAL_TXRX_CSR6,  0x8b8a },
207	{ RAL_TXRX_CSR7,  0x8687 },
208	{ RAL_TXRX_CSR8,  0x0085 },
209	{ RAL_MAC_CSR13,  0x1111 },
210	{ RAL_MAC_CSR14,  0x1e11 },
211	{ RAL_TXRX_CSR21, 0xe78f },
212	{ RAL_MAC_CSR9,   0xff1d },
213	{ RAL_MAC_CSR11,  0x0002 },
214	{ RAL_MAC_CSR22,  0x0053 },
215	{ RAL_MAC_CSR15,  0x0000 },
216	{ RAL_MAC_CSR8,   RAL_FRAME_SIZE },
217	{ RAL_TXRX_CSR19, 0x0000 },
218	{ RAL_TXRX_CSR18, 0x005a },
219	{ RAL_PHY_CSR2,   0x0000 },
220	{ RAL_TXRX_CSR0,  0x1ec0 },
221	{ RAL_PHY_CSR4,   0x000f }
222};
223
224/*
225 * Default values for BBP registers; values taken from the reference driver.
226 */
227static const struct {
228	uint8_t	reg;
229	uint8_t	val;
230} ural_def_bbp[] = {
231	{  3, 0x02 },
232	{  4, 0x19 },
233	{ 14, 0x1c },
234	{ 15, 0x30 },
235	{ 16, 0xac },
236	{ 17, 0x48 },
237	{ 18, 0x18 },
238	{ 19, 0xff },
239	{ 20, 0x1e },
240	{ 21, 0x08 },
241	{ 22, 0x08 },
242	{ 23, 0x08 },
243	{ 24, 0x80 },
244	{ 25, 0x50 },
245	{ 26, 0x08 },
246	{ 27, 0x23 },
247	{ 30, 0x10 },
248	{ 31, 0x2b },
249	{ 32, 0xb9 },
250	{ 34, 0x12 },
251	{ 35, 0x50 },
252	{ 39, 0xc4 },
253	{ 40, 0x02 },
254	{ 41, 0x60 },
255	{ 53, 0x10 },
256	{ 54, 0x18 },
257	{ 56, 0x08 },
258	{ 57, 0x10 },
259	{ 58, 0x08 },
260	{ 61, 0x60 },
261	{ 62, 0x10 },
262	{ 75, 0xff }
263};
264
265/*
266 * Default values for RF register R2 indexed by channel numbers.
267 */
268static const uint32_t ural_rf2522_r2[] = {
269	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
270	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
271};
272
273static const uint32_t ural_rf2523_r2[] = {
274	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
275	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
276};
277
278static const uint32_t ural_rf2524_r2[] = {
279	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
280	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
281};
282
283static const uint32_t ural_rf2525_r2[] = {
284	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
285	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
286};
287
288static const uint32_t ural_rf2525_hi_r2[] = {
289	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
290	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
291};
292
293static const uint32_t ural_rf2525e_r2[] = {
294	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
295	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
296};
297
298static const uint32_t ural_rf2526_hi_r2[] = {
299	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
300	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
301};
302
303static const uint32_t ural_rf2526_r2[] = {
304	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
305	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
306};
307
308/*
309 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
310 * values taken from the reference driver.
311 */
312static const struct {
313	uint8_t		chan;
314	uint32_t	r1;
315	uint32_t	r2;
316	uint32_t	r4;
317} ural_rf5222[] = {
318	{   1, 0x08808, 0x0044d, 0x00282 },
319	{   2, 0x08808, 0x0044e, 0x00282 },
320	{   3, 0x08808, 0x0044f, 0x00282 },
321	{   4, 0x08808, 0x00460, 0x00282 },
322	{   5, 0x08808, 0x00461, 0x00282 },
323	{   6, 0x08808, 0x00462, 0x00282 },
324	{   7, 0x08808, 0x00463, 0x00282 },
325	{   8, 0x08808, 0x00464, 0x00282 },
326	{   9, 0x08808, 0x00465, 0x00282 },
327	{  10, 0x08808, 0x00466, 0x00282 },
328	{  11, 0x08808, 0x00467, 0x00282 },
329	{  12, 0x08808, 0x00468, 0x00282 },
330	{  13, 0x08808, 0x00469, 0x00282 },
331	{  14, 0x08808, 0x0046b, 0x00286 },
332
333	{  36, 0x08804, 0x06225, 0x00287 },
334	{  40, 0x08804, 0x06226, 0x00287 },
335	{  44, 0x08804, 0x06227, 0x00287 },
336	{  48, 0x08804, 0x06228, 0x00287 },
337	{  52, 0x08804, 0x06229, 0x00287 },
338	{  56, 0x08804, 0x0622a, 0x00287 },
339	{  60, 0x08804, 0x0622b, 0x00287 },
340	{  64, 0x08804, 0x0622c, 0x00287 },
341
342	{ 100, 0x08804, 0x02200, 0x00283 },
343	{ 104, 0x08804, 0x02201, 0x00283 },
344	{ 108, 0x08804, 0x02202, 0x00283 },
345	{ 112, 0x08804, 0x02203, 0x00283 },
346	{ 116, 0x08804, 0x02204, 0x00283 },
347	{ 120, 0x08804, 0x02205, 0x00283 },
348	{ 124, 0x08804, 0x02206, 0x00283 },
349	{ 128, 0x08804, 0x02207, 0x00283 },
350	{ 132, 0x08804, 0x02208, 0x00283 },
351	{ 136, 0x08804, 0x02209, 0x00283 },
352	{ 140, 0x08804, 0x0220a, 0x00283 },
353
354	{ 149, 0x08808, 0x02429, 0x00281 },
355	{ 153, 0x08808, 0x0242b, 0x00281 },
356	{ 157, 0x08808, 0x0242d, 0x00281 },
357	{ 161, 0x08808, 0x0242f, 0x00281 }
358};
359
360static const struct usb_config ural_config[URAL_N_TRANSFER] = {
361	[URAL_BULK_WR] = {
362		.type = UE_BULK,
363		.endpoint = UE_ADDR_ANY,
364		.direction = UE_DIR_OUT,
365		.bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
366		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
367		.callback = ural_bulk_write_callback,
368		.timeout = 5000,	/* ms */
369	},
370	[URAL_BULK_RD] = {
371		.type = UE_BULK,
372		.endpoint = UE_ADDR_ANY,
373		.direction = UE_DIR_IN,
374		.bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
375		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
376		.callback = ural_bulk_read_callback,
377	},
378};
379
380static device_probe_t ural_match;
381static device_attach_t ural_attach;
382static device_detach_t ural_detach;
383
384static device_method_t ural_methods[] = {
385	/* Device interface */
386	DEVMETHOD(device_probe,		ural_match),
387	DEVMETHOD(device_attach,	ural_attach),
388	DEVMETHOD(device_detach,	ural_detach),
389
390	{ 0, 0 }
391};
392
393static driver_t ural_driver = {
394	.name = "ural",
395	.methods = ural_methods,
396	.size = sizeof(struct ural_softc),
397};
398
399static devclass_t ural_devclass;
400
401DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0);
402MODULE_DEPEND(ural, usb, 1, 1, 1);
403MODULE_DEPEND(ural, wlan, 1, 1, 1);
404MODULE_DEPEND(ural, wlan_amrr, 1, 1, 1);
405
406static int
407ural_match(device_t self)
408{
409	struct usb_attach_arg *uaa = device_get_ivars(self);
410
411	if (uaa->usb_mode != USB_MODE_HOST)
412		return (ENXIO);
413	if (uaa->info.bConfigIndex != 0)
414		return (ENXIO);
415	if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
416		return (ENXIO);
417
418	return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
419}
420
421static int
422ural_attach(device_t self)
423{
424	struct usb_attach_arg *uaa = device_get_ivars(self);
425	struct ural_softc *sc = device_get_softc(self);
426	struct ifnet *ifp;
427	struct ieee80211com *ic;
428	uint8_t iface_index, bands;
429	int error;
430
431	device_set_usb_desc(self);
432	sc->sc_udev = uaa->device;
433	sc->sc_dev = self;
434
435	mtx_init(&sc->sc_mtx, device_get_nameunit(self),
436	    MTX_NETWORK_LOCK, MTX_DEF);
437
438	iface_index = RAL_IFACE_INDEX;
439	error = usbd_transfer_setup(uaa->device,
440	    &iface_index, sc->sc_xfer, ural_config,
441	    URAL_N_TRANSFER, sc, &sc->sc_mtx);
442	if (error) {
443		device_printf(self, "could not allocate USB transfers, "
444		    "err=%s\n", usbd_errstr(error));
445		goto detach;
446	}
447
448	RAL_LOCK(sc);
449	/* retrieve RT2570 rev. no */
450	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
451
452	/* retrieve MAC address and various other things from EEPROM */
453	ural_read_eeprom(sc);
454	RAL_UNLOCK(sc);
455
456	device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
457	    sc->asic_rev, ural_get_rf(sc->rf_rev));
458
459	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
460	if (ifp == NULL) {
461		device_printf(sc->sc_dev, "can not if_alloc()\n");
462		goto detach;
463	}
464	ic = ifp->if_l2com;
465
466	ifp->if_softc = sc;
467	if_initname(ifp, "ural", device_get_unit(sc->sc_dev));
468	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
469	ifp->if_init = ural_init;
470	ifp->if_ioctl = ural_ioctl;
471	ifp->if_start = ural_start;
472	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
473	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
474	IFQ_SET_READY(&ifp->if_snd);
475
476	ic->ic_ifp = ifp;
477	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
478
479	/* set device capabilities */
480	ic->ic_caps =
481	      IEEE80211_C_STA		/* station mode supported */
482	    | IEEE80211_C_IBSS		/* IBSS mode supported */
483	    | IEEE80211_C_MONITOR	/* monitor mode supported */
484	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
485	    | IEEE80211_C_TXPMGT	/* tx power management */
486	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
487	    | IEEE80211_C_SHSLOT	/* short slot time supported */
488	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
489	    | IEEE80211_C_WPA		/* 802.11i */
490	    ;
491
492	bands = 0;
493	setbit(&bands, IEEE80211_MODE_11B);
494	setbit(&bands, IEEE80211_MODE_11G);
495	if (sc->rf_rev == RAL_RF_5222)
496		setbit(&bands, IEEE80211_MODE_11A);
497	ieee80211_init_channels(ic, NULL, &bands);
498
499	ieee80211_ifattach(ic, sc->sc_bssid);
500	ic->ic_update_promisc = ural_update_promisc;
501	ic->ic_newassoc = ural_newassoc;
502	ic->ic_raw_xmit = ural_raw_xmit;
503	ic->ic_node_alloc = ural_node_alloc;
504	ic->ic_scan_start = ural_scan_start;
505	ic->ic_scan_end = ural_scan_end;
506	ic->ic_set_channel = ural_set_channel;
507
508	ic->ic_vap_create = ural_vap_create;
509	ic->ic_vap_delete = ural_vap_delete;
510
511	ieee80211_radiotap_attach(ic,
512	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
513		RAL_TX_RADIOTAP_PRESENT,
514	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
515		RAL_RX_RADIOTAP_PRESENT);
516
517	if (bootverbose)
518		ieee80211_announce(ic);
519
520	return (0);
521
522detach:
523	ural_detach(self);
524	return (ENXIO);			/* failure */
525}
526
527static int
528ural_detach(device_t self)
529{
530	struct ural_softc *sc = device_get_softc(self);
531	struct ifnet *ifp = sc->sc_ifp;
532	struct ieee80211com *ic;
533
534	/* stop all USB transfers */
535	usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
536
537	/* free TX list, if any */
538	RAL_LOCK(sc);
539	ural_unsetup_tx_list(sc);
540	RAL_UNLOCK(sc);
541
542	if (ifp) {
543		ic = ifp->if_l2com;
544		ieee80211_ifdetach(ic);
545		if_free(ifp);
546	}
547	mtx_destroy(&sc->sc_mtx);
548
549	return (0);
550}
551
552static usb_error_t
553ural_do_request(struct ural_softc *sc,
554    struct usb_device_request *req, void *data)
555{
556	usb_error_t err;
557	int ntries = 10;
558
559	while (ntries--) {
560		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
561		    req, data, 0, NULL, 250 /* ms */);
562		if (err == 0)
563			break;
564
565		DPRINTFN(1, "Control request failed, %s (retrying)\n",
566		    usbd_errstr(err));
567		if (ural_pause(sc, hz / 100))
568			break;
569	}
570	return (err);
571}
572
573static struct ieee80211vap *
574ural_vap_create(struct ieee80211com *ic,
575	const char name[IFNAMSIZ], int unit, int opmode, int flags,
576	const uint8_t bssid[IEEE80211_ADDR_LEN],
577	const uint8_t mac[IEEE80211_ADDR_LEN])
578{
579	struct ural_softc *sc = ic->ic_ifp->if_softc;
580	struct ural_vap *uvp;
581	struct ieee80211vap *vap;
582
583	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
584		return NULL;
585	uvp = (struct ural_vap *) malloc(sizeof(struct ural_vap),
586	    M_80211_VAP, M_NOWAIT | M_ZERO);
587	if (uvp == NULL)
588		return NULL;
589	vap = &uvp->vap;
590	/* enable s/w bmiss handling for sta mode */
591	ieee80211_vap_setup(ic, vap, name, unit, opmode,
592	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
593
594	/* override state transition machine */
595	uvp->newstate = vap->iv_newstate;
596	vap->iv_newstate = ural_newstate;
597
598	usb_callout_init_mtx(&uvp->amrr_ch, &sc->sc_mtx, 0);
599	TASK_INIT(&uvp->amrr_task, 0, ural_amrr_task, uvp);
600	ieee80211_amrr_init(&uvp->amrr, vap,
601	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
602	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
603	    1000 /* 1 sec */);
604
605	/* complete setup */
606	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
607	ic->ic_opmode = opmode;
608	return vap;
609}
610
611static void
612ural_vap_delete(struct ieee80211vap *vap)
613{
614	struct ural_vap *uvp = URAL_VAP(vap);
615	struct ieee80211com *ic = vap->iv_ic;
616
617	usb_callout_drain(&uvp->amrr_ch);
618	ieee80211_draintask(ic, &uvp->amrr_task);
619	ieee80211_amrr_cleanup(&uvp->amrr);
620	ieee80211_vap_detach(vap);
621	free(uvp, M_80211_VAP);
622}
623
624static void
625ural_tx_free(struct ural_tx_data *data, int txerr)
626{
627	struct ural_softc *sc = data->sc;
628
629	if (data->m != NULL) {
630		if (data->m->m_flags & M_TXCB)
631			ieee80211_process_callback(data->ni, data->m,
632			    txerr ? ETIMEDOUT : 0);
633		m_freem(data->m);
634		data->m = NULL;
635
636		ieee80211_free_node(data->ni);
637		data->ni = NULL;
638	}
639	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
640	sc->tx_nfree++;
641}
642
643static void
644ural_setup_tx_list(struct ural_softc *sc)
645{
646	struct ural_tx_data *data;
647	int i;
648
649	sc->tx_nfree = 0;
650	STAILQ_INIT(&sc->tx_q);
651	STAILQ_INIT(&sc->tx_free);
652
653	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
654		data = &sc->tx_data[i];
655
656		data->sc = sc;
657		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
658		sc->tx_nfree++;
659	}
660}
661
662static void
663ural_unsetup_tx_list(struct ural_softc *sc)
664{
665	struct ural_tx_data *data;
666	int i;
667
668	/* make sure any subsequent use of the queues will fail */
669	sc->tx_nfree = 0;
670	STAILQ_INIT(&sc->tx_q);
671	STAILQ_INIT(&sc->tx_free);
672
673	/* free up all node references and mbufs */
674	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
675		data = &sc->tx_data[i];
676
677		if (data->m != NULL) {
678			m_freem(data->m);
679			data->m = NULL;
680		}
681		if (data->ni != NULL) {
682			ieee80211_free_node(data->ni);
683			data->ni = NULL;
684		}
685	}
686}
687
688static int
689ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
690{
691	struct ural_vap *uvp = URAL_VAP(vap);
692	struct ieee80211com *ic = vap->iv_ic;
693	struct ural_softc *sc = ic->ic_ifp->if_softc;
694	const struct ieee80211_txparam *tp;
695	struct ieee80211_node *ni;
696	struct mbuf *m;
697
698	DPRINTF("%s -> %s\n",
699		ieee80211_state_name[vap->iv_state],
700		ieee80211_state_name[nstate]);
701
702	IEEE80211_UNLOCK(ic);
703	RAL_LOCK(sc);
704	usb_callout_stop(&uvp->amrr_ch);
705
706	switch (nstate) {
707	case IEEE80211_S_INIT:
708		if (vap->iv_state == IEEE80211_S_RUN) {
709			/* abort TSF synchronization */
710			ural_write(sc, RAL_TXRX_CSR19, 0);
711
712			/* force tx led to stop blinking */
713			ural_write(sc, RAL_MAC_CSR20, 0);
714		}
715		break;
716
717	case IEEE80211_S_RUN:
718		ni = vap->iv_bss;
719
720		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
721			ural_update_slot(ic->ic_ifp);
722			ural_set_txpreamble(sc);
723			ural_set_basicrates(sc, ic->ic_bsschan);
724			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
725			ural_set_bssid(sc, sc->sc_bssid);
726		}
727
728		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
729		    vap->iv_opmode == IEEE80211_M_IBSS) {
730			m = ieee80211_beacon_alloc(ni, &uvp->bo);
731			if (m == NULL) {
732				device_printf(sc->sc_dev,
733				    "could not allocate beacon\n");
734				RAL_UNLOCK(sc);
735				IEEE80211_LOCK(ic);
736				return (-1);
737			}
738			ieee80211_ref_node(ni);
739			if (ural_tx_bcn(sc, m, ni) != 0) {
740				device_printf(sc->sc_dev,
741				    "could not send beacon\n");
742				RAL_UNLOCK(sc);
743				IEEE80211_LOCK(ic);
744				return (-1);
745			}
746		}
747
748		/* make tx led blink on tx (controlled by ASIC) */
749		ural_write(sc, RAL_MAC_CSR20, 1);
750
751		if (vap->iv_opmode != IEEE80211_M_MONITOR)
752			ural_enable_tsf_sync(sc);
753		else
754			ural_enable_tsf(sc);
755
756		/* enable automatic rate adaptation */
757		/* XXX should use ic_bsschan but not valid until after newstate call below */
758		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
759		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
760			ural_amrr_start(sc, ni);
761
762		break;
763
764	default:
765		break;
766	}
767	RAL_UNLOCK(sc);
768	IEEE80211_LOCK(ic);
769	return (uvp->newstate(vap, nstate, arg));
770}
771
772
773static void
774ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
775{
776	struct ural_softc *sc = usbd_xfer_softc(xfer);
777	struct ifnet *ifp = sc->sc_ifp;
778	struct ieee80211vap *vap;
779	struct ural_tx_data *data;
780	struct mbuf *m;
781	struct usb_page_cache *pc;
782	int len;
783
784	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
785
786	switch (USB_GET_STATE(xfer)) {
787	case USB_ST_TRANSFERRED:
788		DPRINTFN(11, "transfer complete, %d bytes\n", len);
789
790		/* free resources */
791		data = usbd_xfer_get_priv(xfer);
792		ural_tx_free(data, 0);
793		usbd_xfer_set_priv(xfer, NULL);
794
795		ifp->if_opackets++;
796		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
797
798		/* FALLTHROUGH */
799	case USB_ST_SETUP:
800tr_setup:
801		data = STAILQ_FIRST(&sc->tx_q);
802		if (data) {
803			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
804			m = data->m;
805
806			if (m->m_pkthdr.len > (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
807				DPRINTFN(0, "data overflow, %u bytes\n",
808				    m->m_pkthdr.len);
809				m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
810			}
811			pc = usbd_xfer_get_frame(xfer, 0);
812			usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
813			usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
814			    m->m_pkthdr.len);
815
816			vap = data->ni->ni_vap;
817			if (ieee80211_radiotap_active_vap(vap)) {
818				struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
819
820				tap->wt_flags = 0;
821				tap->wt_rate = data->rate;
822				tap->wt_antenna = sc->tx_ant;
823
824				ieee80211_radiotap_tx(vap, m);
825			}
826
827			/* xfer length needs to be a multiple of two! */
828			len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
829			if ((len % 64) == 0)
830				len += 2;
831
832			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
833			    m->m_pkthdr.len, len);
834
835			usbd_xfer_set_frame_len(xfer, 0, len);
836			usbd_xfer_set_priv(xfer, data);
837
838			usbd_transfer_submit(xfer);
839		}
840		RAL_UNLOCK(sc);
841		ural_start(ifp);
842		RAL_LOCK(sc);
843		break;
844
845	default:			/* Error */
846		DPRINTFN(11, "transfer error, %s\n",
847		    usbd_errstr(error));
848
849		ifp->if_oerrors++;
850		data = usbd_xfer_get_priv(xfer);
851		if (data != NULL) {
852			ural_tx_free(data, error);
853			usbd_xfer_set_priv(xfer, NULL);
854		}
855
856		if (error == USB_ERR_STALLED) {
857			/* try to clear stall first */
858			usbd_xfer_set_stall(xfer);
859			goto tr_setup;
860		}
861		if (error == USB_ERR_TIMEOUT)
862			device_printf(sc->sc_dev, "device timeout\n");
863		break;
864	}
865}
866
867static void
868ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
869{
870	struct ural_softc *sc = usbd_xfer_softc(xfer);
871	struct ifnet *ifp = sc->sc_ifp;
872	struct ieee80211com *ic = ifp->if_l2com;
873	struct ieee80211_node *ni;
874	struct mbuf *m = NULL;
875	struct usb_page_cache *pc;
876	uint32_t flags;
877	int8_t rssi = 0, nf = 0;
878	int len;
879
880	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
881
882	switch (USB_GET_STATE(xfer)) {
883	case USB_ST_TRANSFERRED:
884
885		DPRINTFN(15, "rx done, actlen=%d\n", len);
886
887		if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
888			DPRINTF("%s: xfer too short %d\n",
889			    device_get_nameunit(sc->sc_dev), len);
890			ifp->if_ierrors++;
891			goto tr_setup;
892		}
893
894		len -= RAL_RX_DESC_SIZE;
895		/* rx descriptor is located at the end */
896		pc = usbd_xfer_get_frame(xfer, 0);
897		usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
898
899		rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
900		nf = RAL_NOISE_FLOOR;
901		flags = le32toh(sc->sc_rx_desc.flags);
902		if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
903			/*
904		         * This should not happen since we did not
905		         * request to receive those frames when we
906		         * filled RAL_TXRX_CSR2:
907		         */
908			DPRINTFN(5, "PHY or CRC error\n");
909			ifp->if_ierrors++;
910			goto tr_setup;
911		}
912
913		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
914		if (m == NULL) {
915			DPRINTF("could not allocate mbuf\n");
916			ifp->if_ierrors++;
917			goto tr_setup;
918		}
919		usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
920
921		/* finalize mbuf */
922		m->m_pkthdr.rcvif = ifp;
923		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
924
925		if (ieee80211_radiotap_active(ic)) {
926			struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
927
928			/* XXX set once */
929			tap->wr_flags = 0;
930			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
931			    (flags & RAL_RX_OFDM) ?
932			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
933			tap->wr_antenna = sc->rx_ant;
934			tap->wr_antsignal = nf + rssi;
935			tap->wr_antnoise = nf;
936		}
937		/* Strip trailing 802.11 MAC FCS. */
938		m_adj(m, -IEEE80211_CRC_LEN);
939
940		/* FALLTHROUGH */
941	case USB_ST_SETUP:
942tr_setup:
943		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
944		usbd_transfer_submit(xfer);
945
946		/*
947		 * At the end of a USB callback it is always safe to unlock
948		 * the private mutex of a device! That is why we do the
949		 * "ieee80211_input" here, and not some lines up!
950		 */
951		RAL_UNLOCK(sc);
952		if (m) {
953			ni = ieee80211_find_rxnode(ic,
954			    mtod(m, struct ieee80211_frame_min *));
955			if (ni != NULL) {
956				(void) ieee80211_input(ni, m, rssi, nf);
957				ieee80211_free_node(ni);
958			} else
959				(void) ieee80211_input_all(ic, m, rssi, nf);
960		}
961		if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
962		    !IFQ_IS_EMPTY(&ifp->if_snd))
963			ural_start(ifp);
964		RAL_LOCK(sc);
965		return;
966
967	default:			/* Error */
968		if (error != USB_ERR_CANCELLED) {
969			/* try to clear stall first */
970			usbd_xfer_set_stall(xfer);
971			goto tr_setup;
972		}
973		return;
974	}
975}
976
977static uint8_t
978ural_plcp_signal(int rate)
979{
980	switch (rate) {
981	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
982	case 12:	return 0xb;
983	case 18:	return 0xf;
984	case 24:	return 0xa;
985	case 36:	return 0xe;
986	case 48:	return 0x9;
987	case 72:	return 0xd;
988	case 96:	return 0x8;
989	case 108:	return 0xc;
990
991	/* CCK rates (NB: not IEEE std, device-specific) */
992	case 2:		return 0x0;
993	case 4:		return 0x1;
994	case 11:	return 0x2;
995	case 22:	return 0x3;
996	}
997	return 0xff;		/* XXX unsupported/unknown rate */
998}
999
1000static void
1001ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1002    uint32_t flags, int len, int rate)
1003{
1004	struct ifnet *ifp = sc->sc_ifp;
1005	struct ieee80211com *ic = ifp->if_l2com;
1006	uint16_t plcp_length;
1007	int remainder;
1008
1009	desc->flags = htole32(flags);
1010	desc->flags |= htole32(RAL_TX_NEWSEQ);
1011	desc->flags |= htole32(len << 16);
1012
1013	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1014	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
1015
1016	/* setup PLCP fields */
1017	desc->plcp_signal  = ural_plcp_signal(rate);
1018	desc->plcp_service = 4;
1019
1020	len += IEEE80211_CRC_LEN;
1021	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1022		desc->flags |= htole32(RAL_TX_OFDM);
1023
1024		plcp_length = len & 0xfff;
1025		desc->plcp_length_hi = plcp_length >> 6;
1026		desc->plcp_length_lo = plcp_length & 0x3f;
1027	} else {
1028		plcp_length = (16 * len + rate - 1) / rate;
1029		if (rate == 22) {
1030			remainder = (16 * len) % 22;
1031			if (remainder != 0 && remainder < 7)
1032				desc->plcp_service |= RAL_PLCP_LENGEXT;
1033		}
1034		desc->plcp_length_hi = plcp_length >> 8;
1035		desc->plcp_length_lo = plcp_length & 0xff;
1036
1037		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1038			desc->plcp_signal |= 0x08;
1039	}
1040
1041	desc->iv = 0;
1042	desc->eiv = 0;
1043}
1044
1045#define RAL_TX_TIMEOUT	5000
1046
1047static int
1048ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1049{
1050	struct ieee80211vap *vap = ni->ni_vap;
1051	struct ieee80211com *ic = ni->ni_ic;
1052	struct ifnet *ifp = sc->sc_ifp;
1053	const struct ieee80211_txparam *tp;
1054	struct ural_tx_data *data;
1055
1056	if (sc->tx_nfree == 0) {
1057		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1058		m_freem(m0);
1059		ieee80211_free_node(ni);
1060		return EIO;
1061	}
1062	data = STAILQ_FIRST(&sc->tx_free);
1063	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1064	sc->tx_nfree--;
1065	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1066
1067	data->m = m0;
1068	data->ni = ni;
1069	data->rate = tp->mgmtrate;
1070
1071	ural_setup_tx_desc(sc, &data->desc,
1072	    RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1073	    tp->mgmtrate);
1074
1075	DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1076	    m0->m_pkthdr.len, tp->mgmtrate);
1077
1078	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1079	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1080
1081	return (0);
1082}
1083
1084static int
1085ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1086{
1087	struct ieee80211vap *vap = ni->ni_vap;
1088	struct ieee80211com *ic = ni->ni_ic;
1089	const struct ieee80211_txparam *tp;
1090	struct ural_tx_data *data;
1091	struct ieee80211_frame *wh;
1092	struct ieee80211_key *k;
1093	uint32_t flags;
1094	uint16_t dur;
1095
1096	RAL_LOCK_ASSERT(sc, MA_OWNED);
1097
1098	data = STAILQ_FIRST(&sc->tx_free);
1099	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1100	sc->tx_nfree--;
1101
1102	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1103
1104	wh = mtod(m0, struct ieee80211_frame *);
1105	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1106		k = ieee80211_crypto_encap(ni, m0);
1107		if (k == NULL) {
1108			m_freem(m0);
1109			return ENOBUFS;
1110		}
1111		wh = mtod(m0, struct ieee80211_frame *);
1112	}
1113
1114	data->m = m0;
1115	data->ni = ni;
1116	data->rate = tp->mgmtrate;
1117
1118	flags = 0;
1119	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1120		flags |= RAL_TX_ACK;
1121
1122		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1123		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1124		*(uint16_t *)wh->i_dur = htole16(dur);
1125
1126		/* tell hardware to add timestamp for probe responses */
1127		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1128		    IEEE80211_FC0_TYPE_MGT &&
1129		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1130		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1131			flags |= RAL_TX_TIMESTAMP;
1132	}
1133
1134	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1135
1136	DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1137	    m0->m_pkthdr.len, tp->mgmtrate);
1138
1139	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1140	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1141
1142	return 0;
1143}
1144
1145static int
1146ural_sendprot(struct ural_softc *sc,
1147    const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1148{
1149	struct ieee80211com *ic = ni->ni_ic;
1150	const struct ieee80211_frame *wh;
1151	struct ural_tx_data *data;
1152	struct mbuf *mprot;
1153	int protrate, ackrate, pktlen, flags, isshort;
1154	uint16_t dur;
1155
1156	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1157	    ("protection %d", prot));
1158
1159	wh = mtod(m, const struct ieee80211_frame *);
1160	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1161
1162	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1163	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1164
1165	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1166	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort);
1167	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1168	flags = RAL_TX_RETRY(7);
1169	if (prot == IEEE80211_PROT_RTSCTS) {
1170		/* NB: CTS is the same size as an ACK */
1171		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1172		flags |= RAL_TX_ACK;
1173		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1174	} else {
1175		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1176	}
1177	if (mprot == NULL) {
1178		/* XXX stat + msg */
1179		return ENOBUFS;
1180	}
1181	data = STAILQ_FIRST(&sc->tx_free);
1182	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1183	sc->tx_nfree--;
1184
1185	data->m = mprot;
1186	data->ni = ieee80211_ref_node(ni);
1187	data->rate = protrate;
1188	ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1189
1190	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1191	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1192
1193	return 0;
1194}
1195
1196static int
1197ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1198    const struct ieee80211_bpf_params *params)
1199{
1200	struct ieee80211com *ic = ni->ni_ic;
1201	struct ural_tx_data *data;
1202	uint32_t flags;
1203	int error;
1204	int rate;
1205
1206	RAL_LOCK_ASSERT(sc, MA_OWNED);
1207	KASSERT(params != NULL, ("no raw xmit params"));
1208
1209	rate = params->ibp_rate0;
1210	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1211		m_freem(m0);
1212		return EINVAL;
1213	}
1214	flags = 0;
1215	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1216		flags |= RAL_TX_ACK;
1217	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1218		error = ural_sendprot(sc, m0, ni,
1219		    params->ibp_flags & IEEE80211_BPF_RTS ?
1220			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1221		    rate);
1222		if (error || sc->tx_nfree == 0) {
1223			m_freem(m0);
1224			return ENOBUFS;
1225		}
1226		flags |= RAL_TX_IFS_SIFS;
1227	}
1228
1229	data = STAILQ_FIRST(&sc->tx_free);
1230	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1231	sc->tx_nfree--;
1232
1233	data->m = m0;
1234	data->ni = ni;
1235	data->rate = rate;
1236
1237	/* XXX need to setup descriptor ourself */
1238	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1239
1240	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1241	    m0->m_pkthdr.len, rate);
1242
1243	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1244	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1245
1246	return 0;
1247}
1248
1249static int
1250ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1251{
1252	struct ieee80211vap *vap = ni->ni_vap;
1253	struct ieee80211com *ic = ni->ni_ic;
1254	struct ural_tx_data *data;
1255	struct ieee80211_frame *wh;
1256	const struct ieee80211_txparam *tp;
1257	struct ieee80211_key *k;
1258	uint32_t flags = 0;
1259	uint16_t dur;
1260	int error, rate;
1261
1262	RAL_LOCK_ASSERT(sc, MA_OWNED);
1263
1264	wh = mtod(m0, struct ieee80211_frame *);
1265
1266	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1267	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1268		rate = tp->mcastrate;
1269	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1270		rate = tp->ucastrate;
1271	else
1272		rate = ni->ni_txrate;
1273
1274	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1275		k = ieee80211_crypto_encap(ni, m0);
1276		if (k == NULL) {
1277			m_freem(m0);
1278			return ENOBUFS;
1279		}
1280		/* packet header may have moved, reset our local pointer */
1281		wh = mtod(m0, struct ieee80211_frame *);
1282	}
1283
1284	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1285		int prot = IEEE80211_PROT_NONE;
1286		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1287			prot = IEEE80211_PROT_RTSCTS;
1288		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1289		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1290			prot = ic->ic_protmode;
1291		if (prot != IEEE80211_PROT_NONE) {
1292			error = ural_sendprot(sc, m0, ni, prot, rate);
1293			if (error || sc->tx_nfree == 0) {
1294				m_freem(m0);
1295				return ENOBUFS;
1296			}
1297			flags |= RAL_TX_IFS_SIFS;
1298		}
1299	}
1300
1301	data = STAILQ_FIRST(&sc->tx_free);
1302	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1303	sc->tx_nfree--;
1304
1305	data->m = m0;
1306	data->ni = ni;
1307	data->rate = rate;
1308
1309	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1310		flags |= RAL_TX_ACK;
1311		flags |= RAL_TX_RETRY(7);
1312
1313		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1314		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1315		*(uint16_t *)wh->i_dur = htole16(dur);
1316	}
1317
1318	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1319
1320	DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1321	    m0->m_pkthdr.len, rate);
1322
1323	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1324	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1325
1326	return 0;
1327}
1328
1329static void
1330ural_start(struct ifnet *ifp)
1331{
1332	struct ural_softc *sc = ifp->if_softc;
1333	struct ieee80211_node *ni;
1334	struct mbuf *m;
1335
1336	RAL_LOCK(sc);
1337	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1338		RAL_UNLOCK(sc);
1339		return;
1340	}
1341	for (;;) {
1342		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1343		if (m == NULL)
1344			break;
1345		if (sc->tx_nfree < RAL_TX_MINFREE) {
1346			IFQ_DRV_PREPEND(&ifp->if_snd, m);
1347			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1348			break;
1349		}
1350		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1351		if (ural_tx_data(sc, m, ni) != 0) {
1352			ieee80211_free_node(ni);
1353			ifp->if_oerrors++;
1354			break;
1355		}
1356	}
1357	RAL_UNLOCK(sc);
1358}
1359
1360static int
1361ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1362{
1363	struct ural_softc *sc = ifp->if_softc;
1364	struct ieee80211com *ic = ifp->if_l2com;
1365	struct ifreq *ifr = (struct ifreq *) data;
1366	int error = 0, startall = 0;
1367
1368	switch (cmd) {
1369	case SIOCSIFFLAGS:
1370		RAL_LOCK(sc);
1371		if (ifp->if_flags & IFF_UP) {
1372			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1373				ural_init_locked(sc);
1374				startall = 1;
1375			} else
1376				ural_setpromisc(sc);
1377		} else {
1378			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1379				ural_stop(sc);
1380		}
1381		RAL_UNLOCK(sc);
1382		if (startall)
1383			ieee80211_start_all(ic);
1384		break;
1385	case SIOCGIFMEDIA:
1386	case SIOCSIFMEDIA:
1387		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1388		break;
1389	default:
1390		error = ether_ioctl(ifp, cmd, data);
1391		break;
1392	}
1393	return error;
1394}
1395
1396static void
1397ural_set_testmode(struct ural_softc *sc)
1398{
1399	struct usb_device_request req;
1400	usb_error_t error;
1401
1402	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1403	req.bRequest = RAL_VENDOR_REQUEST;
1404	USETW(req.wValue, 4);
1405	USETW(req.wIndex, 1);
1406	USETW(req.wLength, 0);
1407
1408	error = ural_do_request(sc, &req, NULL);
1409	if (error != 0) {
1410		device_printf(sc->sc_dev, "could not set test mode: %s\n",
1411		    usbd_errstr(error));
1412	}
1413}
1414
1415static void
1416ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1417{
1418	struct usb_device_request req;
1419	usb_error_t error;
1420
1421	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1422	req.bRequest = RAL_READ_EEPROM;
1423	USETW(req.wValue, 0);
1424	USETW(req.wIndex, addr);
1425	USETW(req.wLength, len);
1426
1427	error = ural_do_request(sc, &req, buf);
1428	if (error != 0) {
1429		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1430		    usbd_errstr(error));
1431	}
1432}
1433
1434static uint16_t
1435ural_read(struct ural_softc *sc, uint16_t reg)
1436{
1437	struct usb_device_request req;
1438	usb_error_t error;
1439	uint16_t val;
1440
1441	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1442	req.bRequest = RAL_READ_MAC;
1443	USETW(req.wValue, 0);
1444	USETW(req.wIndex, reg);
1445	USETW(req.wLength, sizeof (uint16_t));
1446
1447	error = ural_do_request(sc, &req, &val);
1448	if (error != 0) {
1449		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1450		    usbd_errstr(error));
1451		return 0;
1452	}
1453
1454	return le16toh(val);
1455}
1456
1457static void
1458ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1459{
1460	struct usb_device_request req;
1461	usb_error_t error;
1462
1463	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1464	req.bRequest = RAL_READ_MULTI_MAC;
1465	USETW(req.wValue, 0);
1466	USETW(req.wIndex, reg);
1467	USETW(req.wLength, len);
1468
1469	error = ural_do_request(sc, &req, buf);
1470	if (error != 0) {
1471		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1472		    usbd_errstr(error));
1473	}
1474}
1475
1476static void
1477ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1478{
1479	struct usb_device_request req;
1480	usb_error_t error;
1481
1482	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1483	req.bRequest = RAL_WRITE_MAC;
1484	USETW(req.wValue, val);
1485	USETW(req.wIndex, reg);
1486	USETW(req.wLength, 0);
1487
1488	error = ural_do_request(sc, &req, NULL);
1489	if (error != 0) {
1490		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1491		    usbd_errstr(error));
1492	}
1493}
1494
1495static void
1496ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1497{
1498	struct usb_device_request req;
1499	usb_error_t error;
1500
1501	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1502	req.bRequest = RAL_WRITE_MULTI_MAC;
1503	USETW(req.wValue, 0);
1504	USETW(req.wIndex, reg);
1505	USETW(req.wLength, len);
1506
1507	error = ural_do_request(sc, &req, buf);
1508	if (error != 0) {
1509		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1510		    usbd_errstr(error));
1511	}
1512}
1513
1514static void
1515ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1516{
1517	uint16_t tmp;
1518	int ntries;
1519
1520	for (ntries = 0; ntries < 100; ntries++) {
1521		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1522			break;
1523		if (ural_pause(sc, hz / 100))
1524			break;
1525	}
1526	if (ntries == 100) {
1527		device_printf(sc->sc_dev, "could not write to BBP\n");
1528		return;
1529	}
1530
1531	tmp = reg << 8 | val;
1532	ural_write(sc, RAL_PHY_CSR7, tmp);
1533}
1534
1535static uint8_t
1536ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1537{
1538	uint16_t val;
1539	int ntries;
1540
1541	val = RAL_BBP_WRITE | reg << 8;
1542	ural_write(sc, RAL_PHY_CSR7, val);
1543
1544	for (ntries = 0; ntries < 100; ntries++) {
1545		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1546			break;
1547		if (ural_pause(sc, hz / 100))
1548			break;
1549	}
1550	if (ntries == 100) {
1551		device_printf(sc->sc_dev, "could not read BBP\n");
1552		return 0;
1553	}
1554
1555	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1556}
1557
1558static void
1559ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1560{
1561	uint32_t tmp;
1562	int ntries;
1563
1564	for (ntries = 0; ntries < 100; ntries++) {
1565		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1566			break;
1567		if (ural_pause(sc, hz / 100))
1568			break;
1569	}
1570	if (ntries == 100) {
1571		device_printf(sc->sc_dev, "could not write to RF\n");
1572		return;
1573	}
1574
1575	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1576	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1577	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1578
1579	/* remember last written value in sc */
1580	sc->rf_regs[reg] = val;
1581
1582	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1583}
1584
1585/* ARGUSED */
1586static struct ieee80211_node *
1587ural_node_alloc(struct ieee80211vap *vap __unused,
1588	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1589{
1590	struct ural_node *un;
1591
1592	un = malloc(sizeof(struct ural_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1593	return un != NULL ? &un->ni : NULL;
1594}
1595
1596static void
1597ural_newassoc(struct ieee80211_node *ni, int isnew)
1598{
1599	struct ieee80211vap *vap = ni->ni_vap;
1600
1601	ieee80211_amrr_node_init(&URAL_VAP(vap)->amrr, &URAL_NODE(ni)->amn, ni);
1602}
1603
1604static void
1605ural_scan_start(struct ieee80211com *ic)
1606{
1607	struct ifnet *ifp = ic->ic_ifp;
1608	struct ural_softc *sc = ifp->if_softc;
1609
1610	RAL_LOCK(sc);
1611	ural_write(sc, RAL_TXRX_CSR19, 0);
1612	ural_set_bssid(sc, ifp->if_broadcastaddr);
1613	RAL_UNLOCK(sc);
1614}
1615
1616static void
1617ural_scan_end(struct ieee80211com *ic)
1618{
1619	struct ural_softc *sc = ic->ic_ifp->if_softc;
1620
1621	RAL_LOCK(sc);
1622	ural_enable_tsf_sync(sc);
1623	ural_set_bssid(sc, sc->sc_bssid);
1624	RAL_UNLOCK(sc);
1625
1626}
1627
1628static void
1629ural_set_channel(struct ieee80211com *ic)
1630{
1631	struct ural_softc *sc = ic->ic_ifp->if_softc;
1632
1633	RAL_LOCK(sc);
1634	ural_set_chan(sc, ic->ic_curchan);
1635	RAL_UNLOCK(sc);
1636}
1637
1638static void
1639ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1640{
1641	struct ifnet *ifp = sc->sc_ifp;
1642	struct ieee80211com *ic = ifp->if_l2com;
1643	uint8_t power, tmp;
1644	int i, chan;
1645
1646	chan = ieee80211_chan2ieee(ic, c);
1647	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1648		return;
1649
1650	if (IEEE80211_IS_CHAN_2GHZ(c))
1651		power = min(sc->txpow[chan - 1], 31);
1652	else
1653		power = 31;
1654
1655	/* adjust txpower using ifconfig settings */
1656	power -= (100 - ic->ic_txpowlimit) / 8;
1657
1658	DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1659
1660	switch (sc->rf_rev) {
1661	case RAL_RF_2522:
1662		ural_rf_write(sc, RAL_RF1, 0x00814);
1663		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1664		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1665		break;
1666
1667	case RAL_RF_2523:
1668		ural_rf_write(sc, RAL_RF1, 0x08804);
1669		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1670		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1671		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1672		break;
1673
1674	case RAL_RF_2524:
1675		ural_rf_write(sc, RAL_RF1, 0x0c808);
1676		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1677		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1678		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1679		break;
1680
1681	case RAL_RF_2525:
1682		ural_rf_write(sc, RAL_RF1, 0x08808);
1683		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1684		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1685		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1686
1687		ural_rf_write(sc, RAL_RF1, 0x08808);
1688		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1689		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1690		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1691		break;
1692
1693	case RAL_RF_2525E:
1694		ural_rf_write(sc, RAL_RF1, 0x08808);
1695		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1696		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1697		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1698		break;
1699
1700	case RAL_RF_2526:
1701		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1702		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1703		ural_rf_write(sc, RAL_RF1, 0x08804);
1704
1705		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1706		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1707		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1708		break;
1709
1710	/* dual-band RF */
1711	case RAL_RF_5222:
1712		for (i = 0; ural_rf5222[i].chan != chan; i++);
1713
1714		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1715		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1716		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1717		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1718		break;
1719	}
1720
1721	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1722	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1723		/* set Japan filter bit for channel 14 */
1724		tmp = ural_bbp_read(sc, 70);
1725
1726		tmp &= ~RAL_JAPAN_FILTER;
1727		if (chan == 14)
1728			tmp |= RAL_JAPAN_FILTER;
1729
1730		ural_bbp_write(sc, 70, tmp);
1731
1732		/* clear CRC errors */
1733		ural_read(sc, RAL_STA_CSR0);
1734
1735		ural_pause(sc, hz / 100);
1736		ural_disable_rf_tune(sc);
1737	}
1738
1739	/* XXX doesn't belong here */
1740	/* update basic rate set */
1741	ural_set_basicrates(sc, c);
1742
1743	/* give the hardware some time to do the switchover */
1744	ural_pause(sc, hz / 100);
1745}
1746
1747/*
1748 * Disable RF auto-tuning.
1749 */
1750static void
1751ural_disable_rf_tune(struct ural_softc *sc)
1752{
1753	uint32_t tmp;
1754
1755	if (sc->rf_rev != RAL_RF_2523) {
1756		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1757		ural_rf_write(sc, RAL_RF1, tmp);
1758	}
1759
1760	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1761	ural_rf_write(sc, RAL_RF3, tmp);
1762
1763	DPRINTFN(2, "disabling RF autotune\n");
1764}
1765
1766/*
1767 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1768 * synchronization.
1769 */
1770static void
1771ural_enable_tsf_sync(struct ural_softc *sc)
1772{
1773	struct ifnet *ifp = sc->sc_ifp;
1774	struct ieee80211com *ic = ifp->if_l2com;
1775	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1776	uint16_t logcwmin, preload, tmp;
1777
1778	/* first, disable TSF synchronization */
1779	ural_write(sc, RAL_TXRX_CSR19, 0);
1780
1781	tmp = (16 * vap->iv_bss->ni_intval) << 4;
1782	ural_write(sc, RAL_TXRX_CSR18, tmp);
1783
1784	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1785	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1786	tmp = logcwmin << 12 | preload;
1787	ural_write(sc, RAL_TXRX_CSR20, tmp);
1788
1789	/* finally, enable TSF synchronization */
1790	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1791	if (ic->ic_opmode == IEEE80211_M_STA)
1792		tmp |= RAL_ENABLE_TSF_SYNC(1);
1793	else
1794		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1795	ural_write(sc, RAL_TXRX_CSR19, tmp);
1796
1797	DPRINTF("enabling TSF synchronization\n");
1798}
1799
1800static void
1801ural_enable_tsf(struct ural_softc *sc)
1802{
1803	/* first, disable TSF synchronization */
1804	ural_write(sc, RAL_TXRX_CSR19, 0);
1805	ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1806}
1807
1808#define RAL_RXTX_TURNAROUND	5	/* us */
1809static void
1810ural_update_slot(struct ifnet *ifp)
1811{
1812	struct ural_softc *sc = ifp->if_softc;
1813	struct ieee80211com *ic = ifp->if_l2com;
1814	uint16_t slottime, sifs, eifs;
1815
1816	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1817
1818	/*
1819	 * These settings may sound a bit inconsistent but this is what the
1820	 * reference driver does.
1821	 */
1822	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1823		sifs = 16 - RAL_RXTX_TURNAROUND;
1824		eifs = 364;
1825	} else {
1826		sifs = 10 - RAL_RXTX_TURNAROUND;
1827		eifs = 64;
1828	}
1829
1830	ural_write(sc, RAL_MAC_CSR10, slottime);
1831	ural_write(sc, RAL_MAC_CSR11, sifs);
1832	ural_write(sc, RAL_MAC_CSR12, eifs);
1833}
1834
1835static void
1836ural_set_txpreamble(struct ural_softc *sc)
1837{
1838	struct ifnet *ifp = sc->sc_ifp;
1839	struct ieee80211com *ic = ifp->if_l2com;
1840	uint16_t tmp;
1841
1842	tmp = ural_read(sc, RAL_TXRX_CSR10);
1843
1844	tmp &= ~RAL_SHORT_PREAMBLE;
1845	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1846		tmp |= RAL_SHORT_PREAMBLE;
1847
1848	ural_write(sc, RAL_TXRX_CSR10, tmp);
1849}
1850
1851static void
1852ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1853{
1854	/* XXX wrong, take from rate set */
1855	/* update basic rate set */
1856	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1857		/* 11a basic rates: 6, 12, 24Mbps */
1858		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1859	} else if (IEEE80211_IS_CHAN_ANYG(c)) {
1860		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1861		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1862	} else {
1863		/* 11b basic rates: 1, 2Mbps */
1864		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1865	}
1866}
1867
1868static void
1869ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1870{
1871	uint16_t tmp;
1872
1873	tmp = bssid[0] | bssid[1] << 8;
1874	ural_write(sc, RAL_MAC_CSR5, tmp);
1875
1876	tmp = bssid[2] | bssid[3] << 8;
1877	ural_write(sc, RAL_MAC_CSR6, tmp);
1878
1879	tmp = bssid[4] | bssid[5] << 8;
1880	ural_write(sc, RAL_MAC_CSR7, tmp);
1881
1882	DPRINTF("setting BSSID to %6D\n", bssid, ":");
1883}
1884
1885static void
1886ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1887{
1888	uint16_t tmp;
1889
1890	tmp = addr[0] | addr[1] << 8;
1891	ural_write(sc, RAL_MAC_CSR2, tmp);
1892
1893	tmp = addr[2] | addr[3] << 8;
1894	ural_write(sc, RAL_MAC_CSR3, tmp);
1895
1896	tmp = addr[4] | addr[5] << 8;
1897	ural_write(sc, RAL_MAC_CSR4, tmp);
1898
1899	DPRINTF("setting MAC address to %6D\n", addr, ":");
1900}
1901
1902static void
1903ural_setpromisc(struct ural_softc *sc)
1904{
1905	struct ifnet *ifp = sc->sc_ifp;
1906	uint32_t tmp;
1907
1908	tmp = ural_read(sc, RAL_TXRX_CSR2);
1909
1910	tmp &= ~RAL_DROP_NOT_TO_ME;
1911	if (!(ifp->if_flags & IFF_PROMISC))
1912		tmp |= RAL_DROP_NOT_TO_ME;
1913
1914	ural_write(sc, RAL_TXRX_CSR2, tmp);
1915
1916	DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1917	    "entering" : "leaving");
1918}
1919
1920static void
1921ural_update_promisc(struct ifnet *ifp)
1922{
1923	struct ural_softc *sc = ifp->if_softc;
1924
1925	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1926		return;
1927
1928	RAL_LOCK(sc);
1929	ural_setpromisc(sc);
1930	RAL_UNLOCK(sc);
1931}
1932
1933static const char *
1934ural_get_rf(int rev)
1935{
1936	switch (rev) {
1937	case RAL_RF_2522:	return "RT2522";
1938	case RAL_RF_2523:	return "RT2523";
1939	case RAL_RF_2524:	return "RT2524";
1940	case RAL_RF_2525:	return "RT2525";
1941	case RAL_RF_2525E:	return "RT2525e";
1942	case RAL_RF_2526:	return "RT2526";
1943	case RAL_RF_5222:	return "RT5222";
1944	default:		return "unknown";
1945	}
1946}
1947
1948static void
1949ural_read_eeprom(struct ural_softc *sc)
1950{
1951	uint16_t val;
1952
1953	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1954	val = le16toh(val);
1955	sc->rf_rev =   (val >> 11) & 0x7;
1956	sc->hw_radio = (val >> 10) & 0x1;
1957	sc->led_mode = (val >> 6)  & 0x7;
1958	sc->rx_ant =   (val >> 4)  & 0x3;
1959	sc->tx_ant =   (val >> 2)  & 0x3;
1960	sc->nb_ant =   val & 0x3;
1961
1962	/* read MAC address */
1963	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, sc->sc_bssid, 6);
1964
1965	/* read default values for BBP registers */
1966	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1967
1968	/* read Tx power for all b/g channels */
1969	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1970}
1971
1972static int
1973ural_bbp_init(struct ural_softc *sc)
1974{
1975#define N(a)	(sizeof (a) / sizeof ((a)[0]))
1976	int i, ntries;
1977
1978	/* wait for BBP to be ready */
1979	for (ntries = 0; ntries < 100; ntries++) {
1980		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1981			break;
1982		if (ural_pause(sc, hz / 100))
1983			break;
1984	}
1985	if (ntries == 100) {
1986		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1987		return EIO;
1988	}
1989
1990	/* initialize BBP registers to default values */
1991	for (i = 0; i < N(ural_def_bbp); i++)
1992		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1993
1994#if 0
1995	/* initialize BBP registers to values stored in EEPROM */
1996	for (i = 0; i < 16; i++) {
1997		if (sc->bbp_prom[i].reg == 0xff)
1998			continue;
1999		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2000	}
2001#endif
2002
2003	return 0;
2004#undef N
2005}
2006
2007static void
2008ural_set_txantenna(struct ural_softc *sc, int antenna)
2009{
2010	uint16_t tmp;
2011	uint8_t tx;
2012
2013	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2014	if (antenna == 1)
2015		tx |= RAL_BBP_ANTA;
2016	else if (antenna == 2)
2017		tx |= RAL_BBP_ANTB;
2018	else
2019		tx |= RAL_BBP_DIVERSITY;
2020
2021	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2022	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2023	    sc->rf_rev == RAL_RF_5222)
2024		tx |= RAL_BBP_FLIPIQ;
2025
2026	ural_bbp_write(sc, RAL_BBP_TX, tx);
2027
2028	/* update values in PHY_CSR5 and PHY_CSR6 */
2029	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2030	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2031
2032	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2033	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2034}
2035
2036static void
2037ural_set_rxantenna(struct ural_softc *sc, int antenna)
2038{
2039	uint8_t rx;
2040
2041	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2042	if (antenna == 1)
2043		rx |= RAL_BBP_ANTA;
2044	else if (antenna == 2)
2045		rx |= RAL_BBP_ANTB;
2046	else
2047		rx |= RAL_BBP_DIVERSITY;
2048
2049	/* need to force no I/Q flip for RF 2525e and 2526 */
2050	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2051		rx &= ~RAL_BBP_FLIPIQ;
2052
2053	ural_bbp_write(sc, RAL_BBP_RX, rx);
2054}
2055
2056static void
2057ural_init_locked(struct ural_softc *sc)
2058{
2059#define N(a)	(sizeof (a) / sizeof ((a)[0]))
2060	struct ifnet *ifp = sc->sc_ifp;
2061	struct ieee80211com *ic = ifp->if_l2com;
2062	uint16_t tmp;
2063	int i, ntries;
2064
2065	RAL_LOCK_ASSERT(sc, MA_OWNED);
2066
2067	ural_set_testmode(sc);
2068	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2069
2070	ural_stop(sc);
2071
2072	/* initialize MAC registers to default values */
2073	for (i = 0; i < N(ural_def_mac); i++)
2074		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2075
2076	/* wait for BBP and RF to wake up (this can take a long time!) */
2077	for (ntries = 0; ntries < 100; ntries++) {
2078		tmp = ural_read(sc, RAL_MAC_CSR17);
2079		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2080		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2081			break;
2082		if (ural_pause(sc, hz / 100))
2083			break;
2084	}
2085	if (ntries == 100) {
2086		device_printf(sc->sc_dev,
2087		    "timeout waiting for BBP/RF to wakeup\n");
2088		goto fail;
2089	}
2090
2091	/* we're ready! */
2092	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2093
2094	/* set basic rate set (will be updated later) */
2095	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2096
2097	if (ural_bbp_init(sc) != 0)
2098		goto fail;
2099
2100	ural_set_chan(sc, ic->ic_curchan);
2101
2102	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2103	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2104
2105	ural_set_txantenna(sc, sc->tx_ant);
2106	ural_set_rxantenna(sc, sc->rx_ant);
2107
2108	ural_set_macaddr(sc, IF_LLADDR(ifp));
2109
2110	/*
2111	 * Allocate Tx and Rx xfer queues.
2112	 */
2113	ural_setup_tx_list(sc);
2114
2115	/* kick Rx */
2116	tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2117	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2118		tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2119		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2120			tmp |= RAL_DROP_TODS;
2121		if (!(ifp->if_flags & IFF_PROMISC))
2122			tmp |= RAL_DROP_NOT_TO_ME;
2123	}
2124	ural_write(sc, RAL_TXRX_CSR2, tmp);
2125
2126	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2127	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2128	usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2129	usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2130	return;
2131
2132fail:	ural_stop(sc);
2133#undef N
2134}
2135
2136static void
2137ural_init(void *priv)
2138{
2139	struct ural_softc *sc = priv;
2140	struct ifnet *ifp = sc->sc_ifp;
2141	struct ieee80211com *ic = ifp->if_l2com;
2142
2143	RAL_LOCK(sc);
2144	ural_init_locked(sc);
2145	RAL_UNLOCK(sc);
2146
2147	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2148		ieee80211_start_all(ic);		/* start all vap's */
2149}
2150
2151static void
2152ural_stop(struct ural_softc *sc)
2153{
2154	struct ifnet *ifp = sc->sc_ifp;
2155
2156	RAL_LOCK_ASSERT(sc, MA_OWNED);
2157
2158	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2159
2160	/*
2161	 * Drain all the transfers, if not already drained:
2162	 */
2163	RAL_UNLOCK(sc);
2164	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2165	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2166	RAL_LOCK(sc);
2167
2168	ural_unsetup_tx_list(sc);
2169
2170	/* disable Rx */
2171	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2172	/* reset ASIC and BBP (but won't reset MAC registers!) */
2173	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2174	/* wait a little */
2175	ural_pause(sc, hz / 10);
2176	ural_write(sc, RAL_MAC_CSR1, 0);
2177	/* wait a little */
2178	ural_pause(sc, hz / 10);
2179}
2180
2181static int
2182ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2183	const struct ieee80211_bpf_params *params)
2184{
2185	struct ieee80211com *ic = ni->ni_ic;
2186	struct ifnet *ifp = ic->ic_ifp;
2187	struct ural_softc *sc = ifp->if_softc;
2188
2189	RAL_LOCK(sc);
2190	/* prevent management frames from being sent if we're not ready */
2191	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2192		RAL_UNLOCK(sc);
2193		m_freem(m);
2194		ieee80211_free_node(ni);
2195		return ENETDOWN;
2196	}
2197	if (sc->tx_nfree < RAL_TX_MINFREE) {
2198		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2199		RAL_UNLOCK(sc);
2200		m_freem(m);
2201		ieee80211_free_node(ni);
2202		return EIO;
2203	}
2204
2205	ifp->if_opackets++;
2206
2207	if (params == NULL) {
2208		/*
2209		 * Legacy path; interpret frame contents to decide
2210		 * precisely how to send the frame.
2211		 */
2212		if (ural_tx_mgt(sc, m, ni) != 0)
2213			goto bad;
2214	} else {
2215		/*
2216		 * Caller supplied explicit parameters to use in
2217		 * sending the frame.
2218		 */
2219		if (ural_tx_raw(sc, m, ni, params) != 0)
2220			goto bad;
2221	}
2222	RAL_UNLOCK(sc);
2223	return 0;
2224bad:
2225	ifp->if_oerrors++;
2226	RAL_UNLOCK(sc);
2227	ieee80211_free_node(ni);
2228	return EIO;		/* XXX */
2229}
2230
2231static void
2232ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2233{
2234	struct ieee80211vap *vap = ni->ni_vap;
2235	struct ural_vap *uvp = URAL_VAP(vap);
2236
2237	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2238	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2239
2240	ieee80211_amrr_node_init(&uvp->amrr, &URAL_NODE(ni)->amn, ni);
2241
2242	usb_callout_reset(&uvp->amrr_ch, hz, ural_amrr_timeout, uvp);
2243}
2244
2245static void
2246ural_amrr_timeout(void *arg)
2247{
2248	struct ural_vap *uvp = arg;
2249	struct ieee80211vap *vap = &uvp->vap;
2250	struct ieee80211com *ic = vap->iv_ic;
2251
2252	ieee80211_runtask(ic, &uvp->amrr_task);
2253}
2254
2255static void
2256ural_amrr_task(void *arg, int pending)
2257{
2258	struct ural_vap *uvp = arg;
2259	struct ieee80211vap *vap = &uvp->vap;
2260	struct ieee80211com *ic = vap->iv_ic;
2261	struct ifnet *ifp = ic->ic_ifp;
2262	struct ural_softc *sc = ifp->if_softc;
2263	struct ieee80211_node *ni = vap->iv_bss;
2264	int ok, fail;
2265
2266	RAL_LOCK(sc);
2267	/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2268	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2269
2270	ok = sc->sta[7] +		/* TX ok w/o retry */
2271	     sc->sta[8];		/* TX ok w/ retry */
2272	fail = sc->sta[9];		/* TX retry-fail count */
2273
2274	ieee80211_amrr_tx_update(&URAL_NODE(ni)->amn,
2275	    ok+fail, ok, sc->sta[8] + fail);
2276	(void) ieee80211_amrr_choose(ni, &URAL_NODE(ni)->amn);
2277
2278	ifp->if_oerrors += fail;	/* count TX retry-fail as Tx errors */
2279
2280	usb_callout_reset(&uvp->amrr_ch, hz, ural_amrr_timeout, uvp);
2281	RAL_UNLOCK(sc);
2282}
2283
2284static int
2285ural_pause(struct ural_softc *sc, int timeout)
2286{
2287
2288	usb_pause_mtx(&sc->sc_mtx, timeout);
2289	return (0);
2290}
2291