1/*	$FreeBSD: stable/11/sys/dev/usb/wlan/if_ural.c 343976 2019-02-10 21:00:02Z avos $	*/
2
3/*-
4 * Copyright (c) 2005, 2006
5 *	Damien Bergamini <damien.bergamini@free.fr>
6 *
7 * Copyright (c) 2006, 2008
8 *	Hans Petter Selasky <hselasky@FreeBSD.org>
9 *
10 * Permission to use, copy, modify, and distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23#include <sys/cdefs.h>
24__FBSDID("$FreeBSD: stable/11/sys/dev/usb/wlan/if_ural.c 343976 2019-02-10 21:00:02Z avos $");
25
26/*-
27 * Ralink Technology RT2500USB chipset driver
28 * http://www.ralinktech.com/
29 */
30
31#include <sys/param.h>
32#include <sys/sockio.h>
33#include <sys/sysctl.h>
34#include <sys/lock.h>
35#include <sys/mutex.h>
36#include <sys/mbuf.h>
37#include <sys/kernel.h>
38#include <sys/socket.h>
39#include <sys/systm.h>
40#include <sys/malloc.h>
41#include <sys/module.h>
42#include <sys/bus.h>
43#include <sys/endian.h>
44#include <sys/kdb.h>
45
46#include <net/bpf.h>
47#include <net/if.h>
48#include <net/if_var.h>
49#include <net/if_arp.h>
50#include <net/ethernet.h>
51#include <net/if_dl.h>
52#include <net/if_media.h>
53#include <net/if_types.h>
54
55#ifdef INET
56#include <netinet/in.h>
57#include <netinet/in_systm.h>
58#include <netinet/in_var.h>
59#include <netinet/if_ether.h>
60#include <netinet/ip.h>
61#endif
62
63#include <net80211/ieee80211_var.h>
64#include <net80211/ieee80211_regdomain.h>
65#include <net80211/ieee80211_radiotap.h>
66#include <net80211/ieee80211_ratectl.h>
67
68#include <dev/usb/usb.h>
69#include <dev/usb/usbdi.h>
70#include "usbdevs.h"
71
72#define	USB_DEBUG_VAR ural_debug
73#include <dev/usb/usb_debug.h>
74
75#include <dev/usb/wlan/if_uralreg.h>
76#include <dev/usb/wlan/if_uralvar.h>
77
78#ifdef USB_DEBUG
79static int ural_debug = 0;
80
81static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
82SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RWTUN, &ural_debug, 0,
83    "Debug level");
84#endif
85
86#define URAL_RSSI(rssi)					\
87	((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ?	\
88	 ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0)
89
90/* various supported device vendors/products */
91static const STRUCT_USB_HOST_ID ural_devs[] = {
92#define	URAL_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
93	URAL_DEV(ASUS, WL167G),
94	URAL_DEV(ASUS, RT2570),
95	URAL_DEV(BELKIN, F5D7050),
96	URAL_DEV(BELKIN, F5D7051),
97	URAL_DEV(CISCOLINKSYS, HU200TS),
98	URAL_DEV(CISCOLINKSYS, WUSB54G),
99	URAL_DEV(CISCOLINKSYS, WUSB54GP),
100	URAL_DEV(CONCEPTRONIC2, C54RU),
101	URAL_DEV(DLINK, DWLG122),
102	URAL_DEV(GIGABYTE, GN54G),
103	URAL_DEV(GIGABYTE, GNWBKG),
104	URAL_DEV(GUILLEMOT, HWGUSB254),
105	URAL_DEV(MELCO, KG54),
106	URAL_DEV(MELCO, KG54AI),
107	URAL_DEV(MELCO, KG54YB),
108	URAL_DEV(MELCO, NINWIFI),
109	URAL_DEV(MSI, RT2570),
110	URAL_DEV(MSI, RT2570_2),
111	URAL_DEV(MSI, RT2570_3),
112	URAL_DEV(NOVATECH, NV902),
113	URAL_DEV(RALINK, RT2570),
114	URAL_DEV(RALINK, RT2570_2),
115	URAL_DEV(RALINK, RT2570_3),
116	URAL_DEV(SIEMENS2, WL54G),
117	URAL_DEV(SMC, 2862WG),
118	URAL_DEV(SPHAIRON, UB801R),
119	URAL_DEV(SURECOM, RT2570),
120	URAL_DEV(VTECH, RT2570),
121	URAL_DEV(ZINWELL, RT2570),
122#undef URAL_DEV
123};
124
125static usb_callback_t ural_bulk_read_callback;
126static usb_callback_t ural_bulk_write_callback;
127
128static usb_error_t	ural_do_request(struct ural_softc *sc,
129			    struct usb_device_request *req, void *data);
130static struct ieee80211vap *ural_vap_create(struct ieee80211com *,
131			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
132			    int, const uint8_t [IEEE80211_ADDR_LEN],
133			    const uint8_t [IEEE80211_ADDR_LEN]);
134static void		ural_vap_delete(struct ieee80211vap *);
135static void		ural_tx_free(struct ural_tx_data *, int);
136static void		ural_setup_tx_list(struct ural_softc *);
137static void		ural_unsetup_tx_list(struct ural_softc *);
138static int		ural_newstate(struct ieee80211vap *,
139			    enum ieee80211_state, int);
140static void		ural_setup_tx_desc(struct ural_softc *,
141			    struct ural_tx_desc *, uint32_t, int, int);
142static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
143			    struct ieee80211_node *);
144static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
145			    struct ieee80211_node *);
146static int		ural_tx_data(struct ural_softc *, struct mbuf *,
147			    struct ieee80211_node *);
148static int		ural_transmit(struct ieee80211com *, struct mbuf *);
149static void		ural_start(struct ural_softc *);
150static void		ural_parent(struct ieee80211com *);
151static void		ural_set_testmode(struct ural_softc *);
152static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
153			    int);
154static uint16_t		ural_read(struct ural_softc *, uint16_t);
155static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
156			    int);
157static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
158static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
159			    int) __unused;
160static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
161static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
162static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
163static void		ural_scan_start(struct ieee80211com *);
164static void		ural_scan_end(struct ieee80211com *);
165static void		ural_getradiocaps(struct ieee80211com *, int, int *,
166			    struct ieee80211_channel[]);
167static void		ural_set_channel(struct ieee80211com *);
168static void		ural_set_chan(struct ural_softc *,
169			    struct ieee80211_channel *);
170static void		ural_disable_rf_tune(struct ural_softc *);
171static void		ural_enable_tsf_sync(struct ural_softc *);
172static void 		ural_enable_tsf(struct ural_softc *);
173static void		ural_update_slot(struct ural_softc *);
174static void		ural_set_txpreamble(struct ural_softc *);
175static void		ural_set_basicrates(struct ural_softc *,
176			    const struct ieee80211_channel *);
177static void		ural_set_bssid(struct ural_softc *, const uint8_t *);
178static void		ural_set_macaddr(struct ural_softc *, const uint8_t *);
179static void		ural_update_promisc(struct ieee80211com *);
180static void		ural_setpromisc(struct ural_softc *);
181static const char	*ural_get_rf(int);
182static void		ural_read_eeprom(struct ural_softc *);
183static int		ural_bbp_init(struct ural_softc *);
184static void		ural_set_txantenna(struct ural_softc *, int);
185static void		ural_set_rxantenna(struct ural_softc *, int);
186static void		ural_init(struct ural_softc *);
187static void		ural_stop(struct ural_softc *);
188static int		ural_raw_xmit(struct ieee80211_node *, struct mbuf *,
189			    const struct ieee80211_bpf_params *);
190static void		ural_ratectl_start(struct ural_softc *,
191			    struct ieee80211_node *);
192static void		ural_ratectl_timeout(void *);
193static void		ural_ratectl_task(void *, int);
194static int		ural_pause(struct ural_softc *sc, int timeout);
195
196/*
197 * Default values for MAC registers; values taken from the reference driver.
198 */
199static const struct {
200	uint16_t	reg;
201	uint16_t	val;
202} ural_def_mac[] = {
203	{ RAL_TXRX_CSR5,  0x8c8d },
204	{ RAL_TXRX_CSR6,  0x8b8a },
205	{ RAL_TXRX_CSR7,  0x8687 },
206	{ RAL_TXRX_CSR8,  0x0085 },
207	{ RAL_MAC_CSR13,  0x1111 },
208	{ RAL_MAC_CSR14,  0x1e11 },
209	{ RAL_TXRX_CSR21, 0xe78f },
210	{ RAL_MAC_CSR9,   0xff1d },
211	{ RAL_MAC_CSR11,  0x0002 },
212	{ RAL_MAC_CSR22,  0x0053 },
213	{ RAL_MAC_CSR15,  0x0000 },
214	{ RAL_MAC_CSR8,   RAL_FRAME_SIZE },
215	{ RAL_TXRX_CSR19, 0x0000 },
216	{ RAL_TXRX_CSR18, 0x005a },
217	{ RAL_PHY_CSR2,   0x0000 },
218	{ RAL_TXRX_CSR0,  0x1ec0 },
219	{ RAL_PHY_CSR4,   0x000f }
220};
221
222/*
223 * Default values for BBP registers; values taken from the reference driver.
224 */
225static const struct {
226	uint8_t	reg;
227	uint8_t	val;
228} ural_def_bbp[] = {
229	{  3, 0x02 },
230	{  4, 0x19 },
231	{ 14, 0x1c },
232	{ 15, 0x30 },
233	{ 16, 0xac },
234	{ 17, 0x48 },
235	{ 18, 0x18 },
236	{ 19, 0xff },
237	{ 20, 0x1e },
238	{ 21, 0x08 },
239	{ 22, 0x08 },
240	{ 23, 0x08 },
241	{ 24, 0x80 },
242	{ 25, 0x50 },
243	{ 26, 0x08 },
244	{ 27, 0x23 },
245	{ 30, 0x10 },
246	{ 31, 0x2b },
247	{ 32, 0xb9 },
248	{ 34, 0x12 },
249	{ 35, 0x50 },
250	{ 39, 0xc4 },
251	{ 40, 0x02 },
252	{ 41, 0x60 },
253	{ 53, 0x10 },
254	{ 54, 0x18 },
255	{ 56, 0x08 },
256	{ 57, 0x10 },
257	{ 58, 0x08 },
258	{ 61, 0x60 },
259	{ 62, 0x10 },
260	{ 75, 0xff }
261};
262
263/*
264 * Default values for RF register R2 indexed by channel numbers.
265 */
266static const uint32_t ural_rf2522_r2[] = {
267	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
268	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
269};
270
271static const uint32_t ural_rf2523_r2[] = {
272	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
273	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
274};
275
276static const uint32_t ural_rf2524_r2[] = {
277	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
278	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
279};
280
281static const uint32_t ural_rf2525_r2[] = {
282	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
283	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
284};
285
286static const uint32_t ural_rf2525_hi_r2[] = {
287	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
288	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
289};
290
291static const uint32_t ural_rf2525e_r2[] = {
292	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
293	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
294};
295
296static const uint32_t ural_rf2526_hi_r2[] = {
297	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
298	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
299};
300
301static const uint32_t ural_rf2526_r2[] = {
302	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
303	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
304};
305
306/*
307 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
308 * values taken from the reference driver.
309 */
310static const struct {
311	uint8_t		chan;
312	uint32_t	r1;
313	uint32_t	r2;
314	uint32_t	r4;
315} ural_rf5222[] = {
316	{   1, 0x08808, 0x0044d, 0x00282 },
317	{   2, 0x08808, 0x0044e, 0x00282 },
318	{   3, 0x08808, 0x0044f, 0x00282 },
319	{   4, 0x08808, 0x00460, 0x00282 },
320	{   5, 0x08808, 0x00461, 0x00282 },
321	{   6, 0x08808, 0x00462, 0x00282 },
322	{   7, 0x08808, 0x00463, 0x00282 },
323	{   8, 0x08808, 0x00464, 0x00282 },
324	{   9, 0x08808, 0x00465, 0x00282 },
325	{  10, 0x08808, 0x00466, 0x00282 },
326	{  11, 0x08808, 0x00467, 0x00282 },
327	{  12, 0x08808, 0x00468, 0x00282 },
328	{  13, 0x08808, 0x00469, 0x00282 },
329	{  14, 0x08808, 0x0046b, 0x00286 },
330
331	{  36, 0x08804, 0x06225, 0x00287 },
332	{  40, 0x08804, 0x06226, 0x00287 },
333	{  44, 0x08804, 0x06227, 0x00287 },
334	{  48, 0x08804, 0x06228, 0x00287 },
335	{  52, 0x08804, 0x06229, 0x00287 },
336	{  56, 0x08804, 0x0622a, 0x00287 },
337	{  60, 0x08804, 0x0622b, 0x00287 },
338	{  64, 0x08804, 0x0622c, 0x00287 },
339
340	{ 100, 0x08804, 0x02200, 0x00283 },
341	{ 104, 0x08804, 0x02201, 0x00283 },
342	{ 108, 0x08804, 0x02202, 0x00283 },
343	{ 112, 0x08804, 0x02203, 0x00283 },
344	{ 116, 0x08804, 0x02204, 0x00283 },
345	{ 120, 0x08804, 0x02205, 0x00283 },
346	{ 124, 0x08804, 0x02206, 0x00283 },
347	{ 128, 0x08804, 0x02207, 0x00283 },
348	{ 132, 0x08804, 0x02208, 0x00283 },
349	{ 136, 0x08804, 0x02209, 0x00283 },
350	{ 140, 0x08804, 0x0220a, 0x00283 },
351
352	{ 149, 0x08808, 0x02429, 0x00281 },
353	{ 153, 0x08808, 0x0242b, 0x00281 },
354	{ 157, 0x08808, 0x0242d, 0x00281 },
355	{ 161, 0x08808, 0x0242f, 0x00281 }
356};
357
358static const uint8_t ural_chan_5ghz[] =
359	{ 36, 40, 44, 48, 52, 56, 60, 64,
360	  100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
361	  149, 153, 157, 161 };
362
363static const struct usb_config ural_config[URAL_N_TRANSFER] = {
364	[URAL_BULK_WR] = {
365		.type = UE_BULK,
366		.endpoint = UE_ADDR_ANY,
367		.direction = UE_DIR_OUT,
368		.bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4),
369		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
370		.callback = ural_bulk_write_callback,
371		.timeout = 5000,	/* ms */
372	},
373	[URAL_BULK_RD] = {
374		.type = UE_BULK,
375		.endpoint = UE_ADDR_ANY,
376		.direction = UE_DIR_IN,
377		.bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE),
378		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
379		.callback = ural_bulk_read_callback,
380	},
381};
382
383static device_probe_t ural_match;
384static device_attach_t ural_attach;
385static device_detach_t ural_detach;
386
387static device_method_t ural_methods[] = {
388	/* Device interface */
389	DEVMETHOD(device_probe,		ural_match),
390	DEVMETHOD(device_attach,	ural_attach),
391	DEVMETHOD(device_detach,	ural_detach),
392	DEVMETHOD_END
393};
394
395static driver_t ural_driver = {
396	.name = "ural",
397	.methods = ural_methods,
398	.size = sizeof(struct ural_softc),
399};
400
401static devclass_t ural_devclass;
402
403DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0);
404MODULE_DEPEND(ural, usb, 1, 1, 1);
405MODULE_DEPEND(ural, wlan, 1, 1, 1);
406MODULE_VERSION(ural, 1);
407USB_PNP_HOST_INFO(ural_devs);
408
409static int
410ural_match(device_t self)
411{
412	struct usb_attach_arg *uaa = device_get_ivars(self);
413
414	if (uaa->usb_mode != USB_MODE_HOST)
415		return (ENXIO);
416	if (uaa->info.bConfigIndex != 0)
417		return (ENXIO);
418	if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX)
419		return (ENXIO);
420
421	return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa));
422}
423
424static int
425ural_attach(device_t self)
426{
427	struct usb_attach_arg *uaa = device_get_ivars(self);
428	struct ural_softc *sc = device_get_softc(self);
429	struct ieee80211com *ic = &sc->sc_ic;
430	uint8_t iface_index;
431	int error;
432
433	device_set_usb_desc(self);
434	sc->sc_udev = uaa->device;
435	sc->sc_dev = self;
436
437	mtx_init(&sc->sc_mtx, device_get_nameunit(self),
438	    MTX_NETWORK_LOCK, MTX_DEF);
439	mbufq_init(&sc->sc_snd, ifqmaxlen);
440
441	iface_index = RAL_IFACE_INDEX;
442	error = usbd_transfer_setup(uaa->device,
443	    &iface_index, sc->sc_xfer, ural_config,
444	    URAL_N_TRANSFER, sc, &sc->sc_mtx);
445	if (error) {
446		device_printf(self, "could not allocate USB transfers, "
447		    "err=%s\n", usbd_errstr(error));
448		goto detach;
449	}
450
451	RAL_LOCK(sc);
452	/* retrieve RT2570 rev. no */
453	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
454
455	/* retrieve MAC address and various other things from EEPROM */
456	ural_read_eeprom(sc);
457	RAL_UNLOCK(sc);
458
459	device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
460	    sc->asic_rev, ural_get_rf(sc->rf_rev));
461
462	ic->ic_softc = sc;
463	ic->ic_name = device_get_nameunit(self);
464	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
465
466	/* set device capabilities */
467	ic->ic_caps =
468	      IEEE80211_C_STA		/* station mode supported */
469	    | IEEE80211_C_IBSS		/* IBSS mode supported */
470	    | IEEE80211_C_MONITOR	/* monitor mode supported */
471	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
472	    | IEEE80211_C_TXPMGT	/* tx power management */
473	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
474	    | IEEE80211_C_SHSLOT	/* short slot time supported */
475	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
476	    | IEEE80211_C_WPA		/* 802.11i */
477	    ;
478
479	ural_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
480	    ic->ic_channels);
481
482	ieee80211_ifattach(ic);
483	ic->ic_update_promisc = ural_update_promisc;
484	ic->ic_raw_xmit = ural_raw_xmit;
485	ic->ic_scan_start = ural_scan_start;
486	ic->ic_scan_end = ural_scan_end;
487	ic->ic_getradiocaps = ural_getradiocaps;
488	ic->ic_set_channel = ural_set_channel;
489	ic->ic_parent = ural_parent;
490	ic->ic_transmit = ural_transmit;
491	ic->ic_vap_create = ural_vap_create;
492	ic->ic_vap_delete = ural_vap_delete;
493
494	ieee80211_radiotap_attach(ic,
495	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
496		RAL_TX_RADIOTAP_PRESENT,
497	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
498		RAL_RX_RADIOTAP_PRESENT);
499
500	if (bootverbose)
501		ieee80211_announce(ic);
502
503	return (0);
504
505detach:
506	ural_detach(self);
507	return (ENXIO);			/* failure */
508}
509
510static int
511ural_detach(device_t self)
512{
513	struct ural_softc *sc = device_get_softc(self);
514	struct ieee80211com *ic = &sc->sc_ic;
515
516	/* prevent further ioctls */
517	RAL_LOCK(sc);
518	sc->sc_detached = 1;
519	RAL_UNLOCK(sc);
520
521	/* stop all USB transfers */
522	usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER);
523
524	/* free TX list, if any */
525	RAL_LOCK(sc);
526	ural_unsetup_tx_list(sc);
527	RAL_UNLOCK(sc);
528
529	if (ic->ic_softc == sc)
530		ieee80211_ifdetach(ic);
531	mbufq_drain(&sc->sc_snd);
532	mtx_destroy(&sc->sc_mtx);
533
534	return (0);
535}
536
537static usb_error_t
538ural_do_request(struct ural_softc *sc,
539    struct usb_device_request *req, void *data)
540{
541	usb_error_t err;
542	int ntries = 10;
543
544	while (ntries--) {
545		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
546		    req, data, 0, NULL, 250 /* ms */);
547		if (err == 0)
548			break;
549
550		DPRINTFN(1, "Control request failed, %s (retrying)\n",
551		    usbd_errstr(err));
552		if (ural_pause(sc, hz / 100))
553			break;
554	}
555	return (err);
556}
557
558static struct ieee80211vap *
559ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
560    enum ieee80211_opmode opmode, int flags,
561    const uint8_t bssid[IEEE80211_ADDR_LEN],
562    const uint8_t mac[IEEE80211_ADDR_LEN])
563{
564	struct ural_softc *sc = ic->ic_softc;
565	struct ural_vap *uvp;
566	struct ieee80211vap *vap;
567
568	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
569		return NULL;
570	uvp = malloc(sizeof(struct ural_vap), M_80211_VAP, M_WAITOK | M_ZERO);
571	vap = &uvp->vap;
572	/* enable s/w bmiss handling for sta mode */
573
574	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
575	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
576		/* out of memory */
577		free(uvp, M_80211_VAP);
578		return (NULL);
579	}
580
581	/* override state transition machine */
582	uvp->newstate = vap->iv_newstate;
583	vap->iv_newstate = ural_newstate;
584
585	usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0);
586	TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp);
587	ieee80211_ratectl_init(vap);
588	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
589
590	/* complete setup */
591	ieee80211_vap_attach(vap, ieee80211_media_change,
592	    ieee80211_media_status, mac);
593	ic->ic_opmode = opmode;
594	return vap;
595}
596
597static void
598ural_vap_delete(struct ieee80211vap *vap)
599{
600	struct ural_vap *uvp = URAL_VAP(vap);
601	struct ieee80211com *ic = vap->iv_ic;
602
603	usb_callout_drain(&uvp->ratectl_ch);
604	ieee80211_draintask(ic, &uvp->ratectl_task);
605	ieee80211_ratectl_deinit(vap);
606	ieee80211_vap_detach(vap);
607	free(uvp, M_80211_VAP);
608}
609
610static void
611ural_tx_free(struct ural_tx_data *data, int txerr)
612{
613	struct ural_softc *sc = data->sc;
614
615	if (data->m != NULL) {
616		ieee80211_tx_complete(data->ni, data->m, txerr);
617		data->m = NULL;
618		data->ni = NULL;
619	}
620	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
621	sc->tx_nfree++;
622}
623
624static void
625ural_setup_tx_list(struct ural_softc *sc)
626{
627	struct ural_tx_data *data;
628	int i;
629
630	sc->tx_nfree = 0;
631	STAILQ_INIT(&sc->tx_q);
632	STAILQ_INIT(&sc->tx_free);
633
634	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
635		data = &sc->tx_data[i];
636
637		data->sc = sc;
638		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
639		sc->tx_nfree++;
640	}
641}
642
643static void
644ural_unsetup_tx_list(struct ural_softc *sc)
645{
646	struct ural_tx_data *data;
647	int i;
648
649	/* make sure any subsequent use of the queues will fail */
650	sc->tx_nfree = 0;
651	STAILQ_INIT(&sc->tx_q);
652	STAILQ_INIT(&sc->tx_free);
653
654	/* free up all node references and mbufs */
655	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
656		data = &sc->tx_data[i];
657
658		if (data->m != NULL) {
659			m_freem(data->m);
660			data->m = NULL;
661		}
662		if (data->ni != NULL) {
663			ieee80211_free_node(data->ni);
664			data->ni = NULL;
665		}
666	}
667}
668
669static int
670ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
671{
672	struct ural_vap *uvp = URAL_VAP(vap);
673	struct ieee80211com *ic = vap->iv_ic;
674	struct ural_softc *sc = ic->ic_softc;
675	const struct ieee80211_txparam *tp;
676	struct ieee80211_node *ni;
677	struct mbuf *m;
678
679	DPRINTF("%s -> %s\n",
680		ieee80211_state_name[vap->iv_state],
681		ieee80211_state_name[nstate]);
682
683	IEEE80211_UNLOCK(ic);
684	RAL_LOCK(sc);
685	usb_callout_stop(&uvp->ratectl_ch);
686
687	switch (nstate) {
688	case IEEE80211_S_INIT:
689		if (vap->iv_state == IEEE80211_S_RUN) {
690			/* abort TSF synchronization */
691			ural_write(sc, RAL_TXRX_CSR19, 0);
692
693			/* force tx led to stop blinking */
694			ural_write(sc, RAL_MAC_CSR20, 0);
695		}
696		break;
697
698	case IEEE80211_S_RUN:
699		ni = ieee80211_ref_node(vap->iv_bss);
700
701		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
702			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
703				goto fail;
704
705			ural_update_slot(sc);
706			ural_set_txpreamble(sc);
707			ural_set_basicrates(sc, ic->ic_bsschan);
708			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
709			ural_set_bssid(sc, sc->sc_bssid);
710		}
711
712		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
713		    vap->iv_opmode == IEEE80211_M_IBSS) {
714			m = ieee80211_beacon_alloc(ni);
715			if (m == NULL) {
716				device_printf(sc->sc_dev,
717				    "could not allocate beacon\n");
718				goto fail;
719			}
720			ieee80211_ref_node(ni);
721			if (ural_tx_bcn(sc, m, ni) != 0) {
722				device_printf(sc->sc_dev,
723				    "could not send beacon\n");
724				goto fail;
725			}
726		}
727
728		/* make tx led blink on tx (controlled by ASIC) */
729		ural_write(sc, RAL_MAC_CSR20, 1);
730
731		if (vap->iv_opmode != IEEE80211_M_MONITOR)
732			ural_enable_tsf_sync(sc);
733		else
734			ural_enable_tsf(sc);
735
736		/* enable automatic rate adaptation */
737		/* XXX should use ic_bsschan but not valid until after newstate call below */
738		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
739		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
740			ural_ratectl_start(sc, ni);
741		ieee80211_free_node(ni);
742		break;
743
744	default:
745		break;
746	}
747	RAL_UNLOCK(sc);
748	IEEE80211_LOCK(ic);
749	return (uvp->newstate(vap, nstate, arg));
750
751fail:
752	RAL_UNLOCK(sc);
753	IEEE80211_LOCK(ic);
754	ieee80211_free_node(ni);
755	return (-1);
756}
757
758
759static void
760ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
761{
762	struct ural_softc *sc = usbd_xfer_softc(xfer);
763	struct ieee80211vap *vap;
764	struct ural_tx_data *data;
765	struct mbuf *m;
766	struct usb_page_cache *pc;
767	int len;
768
769	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
770
771	switch (USB_GET_STATE(xfer)) {
772	case USB_ST_TRANSFERRED:
773		DPRINTFN(11, "transfer complete, %d bytes\n", len);
774
775		/* free resources */
776		data = usbd_xfer_get_priv(xfer);
777		ural_tx_free(data, 0);
778		usbd_xfer_set_priv(xfer, NULL);
779
780		/* FALLTHROUGH */
781	case USB_ST_SETUP:
782tr_setup:
783		data = STAILQ_FIRST(&sc->tx_q);
784		if (data) {
785			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
786			m = data->m;
787
788			if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) {
789				DPRINTFN(0, "data overflow, %u bytes\n",
790				    m->m_pkthdr.len);
791				m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE);
792			}
793			pc = usbd_xfer_get_frame(xfer, 0);
794			usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE);
795			usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0,
796			    m->m_pkthdr.len);
797
798			vap = data->ni->ni_vap;
799			if (ieee80211_radiotap_active_vap(vap)) {
800				struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
801
802				tap->wt_flags = 0;
803				tap->wt_rate = data->rate;
804				tap->wt_antenna = sc->tx_ant;
805
806				ieee80211_radiotap_tx(vap, m);
807			}
808
809			/* xfer length needs to be a multiple of two! */
810			len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1;
811			if ((len % 64) == 0)
812				len += 2;
813
814			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
815			    m->m_pkthdr.len, len);
816
817			usbd_xfer_set_frame_len(xfer, 0, len);
818			usbd_xfer_set_priv(xfer, data);
819
820			usbd_transfer_submit(xfer);
821		}
822		ural_start(sc);
823		break;
824
825	default:			/* Error */
826		DPRINTFN(11, "transfer error, %s\n",
827		    usbd_errstr(error));
828
829		data = usbd_xfer_get_priv(xfer);
830		if (data != NULL) {
831			ural_tx_free(data, error);
832			usbd_xfer_set_priv(xfer, NULL);
833		}
834
835		if (error == USB_ERR_STALLED) {
836			/* try to clear stall first */
837			usbd_xfer_set_stall(xfer);
838			goto tr_setup;
839		}
840		if (error == USB_ERR_TIMEOUT)
841			device_printf(sc->sc_dev, "device timeout\n");
842		break;
843	}
844}
845
846static void
847ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
848{
849	struct ural_softc *sc = usbd_xfer_softc(xfer);
850	struct ieee80211com *ic = &sc->sc_ic;
851	struct ieee80211_node *ni;
852	struct mbuf *m = NULL;
853	struct usb_page_cache *pc;
854	uint32_t flags;
855	int8_t rssi = 0, nf = 0;
856	int len;
857
858	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
859
860	switch (USB_GET_STATE(xfer)) {
861	case USB_ST_TRANSFERRED:
862
863		DPRINTFN(15, "rx done, actlen=%d\n", len);
864
865		if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
866			DPRINTF("%s: xfer too short %d\n",
867			    device_get_nameunit(sc->sc_dev), len);
868			counter_u64_add(ic->ic_ierrors, 1);
869			goto tr_setup;
870		}
871
872		len -= RAL_RX_DESC_SIZE;
873		/* rx descriptor is located at the end */
874		pc = usbd_xfer_get_frame(xfer, 0);
875		usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE);
876
877		rssi = URAL_RSSI(sc->sc_rx_desc.rssi);
878		nf = RAL_NOISE_FLOOR;
879		flags = le32toh(sc->sc_rx_desc.flags);
880		if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) {
881			/*
882		         * This should not happen since we did not
883		         * request to receive those frames when we
884		         * filled RAL_TXRX_CSR2:
885		         */
886			DPRINTFN(5, "PHY or CRC error\n");
887			counter_u64_add(ic->ic_ierrors, 1);
888			goto tr_setup;
889		}
890
891		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
892		if (m == NULL) {
893			DPRINTF("could not allocate mbuf\n");
894			counter_u64_add(ic->ic_ierrors, 1);
895			goto tr_setup;
896		}
897		usbd_copy_out(pc, 0, mtod(m, uint8_t *), len);
898
899		/* finalize mbuf */
900		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
901
902		if (ieee80211_radiotap_active(ic)) {
903			struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
904
905			/* XXX set once */
906			tap->wr_flags = 0;
907			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
908			    (flags & RAL_RX_OFDM) ?
909			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
910			tap->wr_antenna = sc->rx_ant;
911			tap->wr_antsignal = nf + rssi;
912			tap->wr_antnoise = nf;
913		}
914		/* Strip trailing 802.11 MAC FCS. */
915		m_adj(m, -IEEE80211_CRC_LEN);
916
917		/* FALLTHROUGH */
918	case USB_ST_SETUP:
919tr_setup:
920		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
921		usbd_transfer_submit(xfer);
922
923		/*
924		 * At the end of a USB callback it is always safe to unlock
925		 * the private mutex of a device! That is why we do the
926		 * "ieee80211_input" here, and not some lines up!
927		 */
928		RAL_UNLOCK(sc);
929		if (m) {
930			ni = ieee80211_find_rxnode(ic,
931			    mtod(m, struct ieee80211_frame_min *));
932			if (ni != NULL) {
933				(void) ieee80211_input(ni, m, rssi, nf);
934				ieee80211_free_node(ni);
935			} else
936				(void) ieee80211_input_all(ic, m, rssi, nf);
937		}
938		RAL_LOCK(sc);
939		ural_start(sc);
940		return;
941
942	default:			/* Error */
943		if (error != USB_ERR_CANCELLED) {
944			/* try to clear stall first */
945			usbd_xfer_set_stall(xfer);
946			goto tr_setup;
947		}
948		return;
949	}
950}
951
952static uint8_t
953ural_plcp_signal(int rate)
954{
955	switch (rate) {
956	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
957	case 12:	return 0xb;
958	case 18:	return 0xf;
959	case 24:	return 0xa;
960	case 36:	return 0xe;
961	case 48:	return 0x9;
962	case 72:	return 0xd;
963	case 96:	return 0x8;
964	case 108:	return 0xc;
965
966	/* CCK rates (NB: not IEEE std, device-specific) */
967	case 2:		return 0x0;
968	case 4:		return 0x1;
969	case 11:	return 0x2;
970	case 22:	return 0x3;
971	}
972	return 0xff;		/* XXX unsupported/unknown rate */
973}
974
975static void
976ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
977    uint32_t flags, int len, int rate)
978{
979	struct ieee80211com *ic = &sc->sc_ic;
980	uint16_t plcp_length;
981	int remainder;
982
983	desc->flags = htole32(flags);
984	desc->flags |= htole32(RAL_TX_NEWSEQ);
985	desc->flags |= htole32(len << 16);
986
987	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
988	desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
989
990	/* setup PLCP fields */
991	desc->plcp_signal  = ural_plcp_signal(rate);
992	desc->plcp_service = 4;
993
994	len += IEEE80211_CRC_LEN;
995	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
996		desc->flags |= htole32(RAL_TX_OFDM);
997
998		plcp_length = len & 0xfff;
999		desc->plcp_length_hi = plcp_length >> 6;
1000		desc->plcp_length_lo = plcp_length & 0x3f;
1001	} else {
1002		if (rate == 0)
1003			rate = 2;	/* avoid division by zero */
1004		plcp_length = howmany(16 * len, rate);
1005		if (rate == 22) {
1006			remainder = (16 * len) % 22;
1007			if (remainder != 0 && remainder < 7)
1008				desc->plcp_service |= RAL_PLCP_LENGEXT;
1009		}
1010		desc->plcp_length_hi = plcp_length >> 8;
1011		desc->plcp_length_lo = plcp_length & 0xff;
1012
1013		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1014			desc->plcp_signal |= 0x08;
1015	}
1016
1017	desc->iv = 0;
1018	desc->eiv = 0;
1019}
1020
1021#define RAL_TX_TIMEOUT	5000
1022
1023static int
1024ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1025{
1026	struct ieee80211vap *vap = ni->ni_vap;
1027	struct ieee80211com *ic = ni->ni_ic;
1028	const struct ieee80211_txparam *tp;
1029	struct ural_tx_data *data;
1030
1031	if (sc->tx_nfree == 0) {
1032		m_freem(m0);
1033		ieee80211_free_node(ni);
1034		return (EIO);
1035	}
1036	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) {
1037		m_freem(m0);
1038		ieee80211_free_node(ni);
1039		return (ENXIO);
1040	}
1041	data = STAILQ_FIRST(&sc->tx_free);
1042	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1043	sc->tx_nfree--;
1044	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
1045
1046	data->m = m0;
1047	data->ni = ni;
1048	data->rate = tp->mgmtrate;
1049
1050	ural_setup_tx_desc(sc, &data->desc,
1051	    RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len,
1052	    tp->mgmtrate);
1053
1054	DPRINTFN(10, "sending beacon frame len=%u rate=%u\n",
1055	    m0->m_pkthdr.len, tp->mgmtrate);
1056
1057	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1058	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1059
1060	return (0);
1061}
1062
1063static int
1064ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1065{
1066	struct ieee80211vap *vap = ni->ni_vap;
1067	struct ieee80211com *ic = ni->ni_ic;
1068	const struct ieee80211_txparam *tp;
1069	struct ural_tx_data *data;
1070	struct ieee80211_frame *wh;
1071	struct ieee80211_key *k;
1072	uint32_t flags;
1073	uint16_t dur;
1074
1075	RAL_LOCK_ASSERT(sc, MA_OWNED);
1076
1077	data = STAILQ_FIRST(&sc->tx_free);
1078	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1079	sc->tx_nfree--;
1080
1081	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1082
1083	wh = mtod(m0, struct ieee80211_frame *);
1084	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1085		k = ieee80211_crypto_encap(ni, m0);
1086		if (k == NULL) {
1087			m_freem(m0);
1088			return ENOBUFS;
1089		}
1090		wh = mtod(m0, struct ieee80211_frame *);
1091	}
1092
1093	data->m = m0;
1094	data->ni = ni;
1095	data->rate = tp->mgmtrate;
1096
1097	flags = 0;
1098	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1099		flags |= RAL_TX_ACK;
1100
1101		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1102		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1103		USETW(wh->i_dur, dur);
1104
1105		/* tell hardware to add timestamp for probe responses */
1106		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1107		    IEEE80211_FC0_TYPE_MGT &&
1108		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1109		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1110			flags |= RAL_TX_TIMESTAMP;
1111	}
1112
1113	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate);
1114
1115	DPRINTFN(10, "sending mgt frame len=%u rate=%u\n",
1116	    m0->m_pkthdr.len, tp->mgmtrate);
1117
1118	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1119	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1120
1121	return 0;
1122}
1123
1124static int
1125ural_sendprot(struct ural_softc *sc,
1126    const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1127{
1128	struct ieee80211com *ic = ni->ni_ic;
1129	const struct ieee80211_frame *wh;
1130	struct ural_tx_data *data;
1131	struct mbuf *mprot;
1132	int protrate, ackrate, pktlen, flags, isshort;
1133	uint16_t dur;
1134
1135	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1136	    ("protection %d", prot));
1137
1138	wh = mtod(m, const struct ieee80211_frame *);
1139	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1140
1141	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1142	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1143
1144	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1145	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
1146	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1147	flags = RAL_TX_RETRY(7);
1148	if (prot == IEEE80211_PROT_RTSCTS) {
1149		/* NB: CTS is the same size as an ACK */
1150		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1151		flags |= RAL_TX_ACK;
1152		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1153	} else {
1154		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1155	}
1156	if (mprot == NULL) {
1157		/* XXX stat + msg */
1158		return ENOBUFS;
1159	}
1160	data = STAILQ_FIRST(&sc->tx_free);
1161	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1162	sc->tx_nfree--;
1163
1164	data->m = mprot;
1165	data->ni = ieee80211_ref_node(ni);
1166	data->rate = protrate;
1167	ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate);
1168
1169	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1170	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1171
1172	return 0;
1173}
1174
1175static int
1176ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1177    const struct ieee80211_bpf_params *params)
1178{
1179	struct ieee80211com *ic = ni->ni_ic;
1180	struct ural_tx_data *data;
1181	uint32_t flags;
1182	int error;
1183	int rate;
1184
1185	RAL_LOCK_ASSERT(sc, MA_OWNED);
1186	KASSERT(params != NULL, ("no raw xmit params"));
1187
1188	rate = params->ibp_rate0;
1189	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1190		m_freem(m0);
1191		return EINVAL;
1192	}
1193	flags = 0;
1194	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1195		flags |= RAL_TX_ACK;
1196	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1197		error = ural_sendprot(sc, m0, ni,
1198		    params->ibp_flags & IEEE80211_BPF_RTS ?
1199			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1200		    rate);
1201		if (error || sc->tx_nfree == 0) {
1202			m_freem(m0);
1203			return ENOBUFS;
1204		}
1205		flags |= RAL_TX_IFS_SIFS;
1206	}
1207
1208	data = STAILQ_FIRST(&sc->tx_free);
1209	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1210	sc->tx_nfree--;
1211
1212	data->m = m0;
1213	data->ni = ni;
1214	data->rate = rate;
1215
1216	/* XXX need to setup descriptor ourself */
1217	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1218
1219	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1220	    m0->m_pkthdr.len, rate);
1221
1222	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1223	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1224
1225	return 0;
1226}
1227
1228static int
1229ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1230{
1231	struct ieee80211vap *vap = ni->ni_vap;
1232	struct ieee80211com *ic = ni->ni_ic;
1233	struct ural_tx_data *data;
1234	struct ieee80211_frame *wh;
1235	const struct ieee80211_txparam *tp;
1236	struct ieee80211_key *k;
1237	uint32_t flags = 0;
1238	uint16_t dur;
1239	int error, rate;
1240
1241	RAL_LOCK_ASSERT(sc, MA_OWNED);
1242
1243	wh = mtod(m0, struct ieee80211_frame *);
1244
1245	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1246	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1247		rate = tp->mcastrate;
1248	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1249		rate = tp->ucastrate;
1250	else
1251		rate = ni->ni_txrate;
1252
1253	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1254		k = ieee80211_crypto_encap(ni, m0);
1255		if (k == NULL) {
1256			m_freem(m0);
1257			return ENOBUFS;
1258		}
1259		/* packet header may have moved, reset our local pointer */
1260		wh = mtod(m0, struct ieee80211_frame *);
1261	}
1262
1263	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1264		int prot = IEEE80211_PROT_NONE;
1265		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1266			prot = IEEE80211_PROT_RTSCTS;
1267		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1268		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1269			prot = ic->ic_protmode;
1270		if (prot != IEEE80211_PROT_NONE) {
1271			error = ural_sendprot(sc, m0, ni, prot, rate);
1272			if (error || sc->tx_nfree == 0) {
1273				m_freem(m0);
1274				return ENOBUFS;
1275			}
1276			flags |= RAL_TX_IFS_SIFS;
1277		}
1278	}
1279
1280	data = STAILQ_FIRST(&sc->tx_free);
1281	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1282	sc->tx_nfree--;
1283
1284	data->m = m0;
1285	data->ni = ni;
1286	data->rate = rate;
1287
1288	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1289		flags |= RAL_TX_ACK;
1290		flags |= RAL_TX_RETRY(7);
1291
1292		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1293		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1294		USETW(wh->i_dur, dur);
1295	}
1296
1297	ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate);
1298
1299	DPRINTFN(10, "sending data frame len=%u rate=%u\n",
1300	    m0->m_pkthdr.len, rate);
1301
1302	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1303	usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]);
1304
1305	return 0;
1306}
1307
1308static int
1309ural_transmit(struct ieee80211com *ic, struct mbuf *m)
1310{
1311	struct ural_softc *sc = ic->ic_softc;
1312	int error;
1313
1314	RAL_LOCK(sc);
1315	if (!sc->sc_running) {
1316		RAL_UNLOCK(sc);
1317		return (ENXIO);
1318	}
1319	error = mbufq_enqueue(&sc->sc_snd, m);
1320	if (error) {
1321		RAL_UNLOCK(sc);
1322		return (error);
1323	}
1324	ural_start(sc);
1325	RAL_UNLOCK(sc);
1326
1327	return (0);
1328}
1329
1330static void
1331ural_start(struct ural_softc *sc)
1332{
1333	struct ieee80211_node *ni;
1334	struct mbuf *m;
1335
1336	RAL_LOCK_ASSERT(sc, MA_OWNED);
1337
1338	if (sc->sc_running == 0)
1339		return;
1340
1341	while (sc->tx_nfree >= RAL_TX_MINFREE &&
1342	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1343		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1344		if (ural_tx_data(sc, m, ni) != 0) {
1345			if_inc_counter(ni->ni_vap->iv_ifp,
1346			     IFCOUNTER_OERRORS, 1);
1347			ieee80211_free_node(ni);
1348			break;
1349		}
1350	}
1351}
1352
1353static void
1354ural_parent(struct ieee80211com *ic)
1355{
1356	struct ural_softc *sc = ic->ic_softc;
1357	int startall = 0;
1358
1359	RAL_LOCK(sc);
1360	if (sc->sc_detached) {
1361		RAL_UNLOCK(sc);
1362		return;
1363	}
1364	if (ic->ic_nrunning > 0) {
1365		if (sc->sc_running == 0) {
1366			ural_init(sc);
1367			startall = 1;
1368		} else
1369			ural_setpromisc(sc);
1370	} else if (sc->sc_running)
1371		ural_stop(sc);
1372	RAL_UNLOCK(sc);
1373	if (startall)
1374		ieee80211_start_all(ic);
1375}
1376
1377static void
1378ural_set_testmode(struct ural_softc *sc)
1379{
1380	struct usb_device_request req;
1381	usb_error_t error;
1382
1383	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1384	req.bRequest = RAL_VENDOR_REQUEST;
1385	USETW(req.wValue, 4);
1386	USETW(req.wIndex, 1);
1387	USETW(req.wLength, 0);
1388
1389	error = ural_do_request(sc, &req, NULL);
1390	if (error != 0) {
1391		device_printf(sc->sc_dev, "could not set test mode: %s\n",
1392		    usbd_errstr(error));
1393	}
1394}
1395
1396static void
1397ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1398{
1399	struct usb_device_request req;
1400	usb_error_t error;
1401
1402	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1403	req.bRequest = RAL_READ_EEPROM;
1404	USETW(req.wValue, 0);
1405	USETW(req.wIndex, addr);
1406	USETW(req.wLength, len);
1407
1408	error = ural_do_request(sc, &req, buf);
1409	if (error != 0) {
1410		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1411		    usbd_errstr(error));
1412	}
1413}
1414
1415static uint16_t
1416ural_read(struct ural_softc *sc, uint16_t reg)
1417{
1418	struct usb_device_request req;
1419	usb_error_t error;
1420	uint16_t val;
1421
1422	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1423	req.bRequest = RAL_READ_MAC;
1424	USETW(req.wValue, 0);
1425	USETW(req.wIndex, reg);
1426	USETW(req.wLength, sizeof (uint16_t));
1427
1428	error = ural_do_request(sc, &req, &val);
1429	if (error != 0) {
1430		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1431		    usbd_errstr(error));
1432		return 0;
1433	}
1434
1435	return le16toh(val);
1436}
1437
1438static void
1439ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1440{
1441	struct usb_device_request req;
1442	usb_error_t error;
1443
1444	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1445	req.bRequest = RAL_READ_MULTI_MAC;
1446	USETW(req.wValue, 0);
1447	USETW(req.wIndex, reg);
1448	USETW(req.wLength, len);
1449
1450	error = ural_do_request(sc, &req, buf);
1451	if (error != 0) {
1452		device_printf(sc->sc_dev, "could not read MAC register: %s\n",
1453		    usbd_errstr(error));
1454	}
1455}
1456
1457static void
1458ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1459{
1460	struct usb_device_request req;
1461	usb_error_t error;
1462
1463	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1464	req.bRequest = RAL_WRITE_MAC;
1465	USETW(req.wValue, val);
1466	USETW(req.wIndex, reg);
1467	USETW(req.wLength, 0);
1468
1469	error = ural_do_request(sc, &req, NULL);
1470	if (error != 0) {
1471		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1472		    usbd_errstr(error));
1473	}
1474}
1475
1476static void
1477ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1478{
1479	struct usb_device_request req;
1480	usb_error_t error;
1481
1482	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1483	req.bRequest = RAL_WRITE_MULTI_MAC;
1484	USETW(req.wValue, 0);
1485	USETW(req.wIndex, reg);
1486	USETW(req.wLength, len);
1487
1488	error = ural_do_request(sc, &req, buf);
1489	if (error != 0) {
1490		device_printf(sc->sc_dev, "could not write MAC register: %s\n",
1491		    usbd_errstr(error));
1492	}
1493}
1494
1495static void
1496ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1497{
1498	uint16_t tmp;
1499	int ntries;
1500
1501	for (ntries = 0; ntries < 100; ntries++) {
1502		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1503			break;
1504		if (ural_pause(sc, hz / 100))
1505			break;
1506	}
1507	if (ntries == 100) {
1508		device_printf(sc->sc_dev, "could not write to BBP\n");
1509		return;
1510	}
1511
1512	tmp = reg << 8 | val;
1513	ural_write(sc, RAL_PHY_CSR7, tmp);
1514}
1515
1516static uint8_t
1517ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1518{
1519	uint16_t val;
1520	int ntries;
1521
1522	val = RAL_BBP_WRITE | reg << 8;
1523	ural_write(sc, RAL_PHY_CSR7, val);
1524
1525	for (ntries = 0; ntries < 100; ntries++) {
1526		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1527			break;
1528		if (ural_pause(sc, hz / 100))
1529			break;
1530	}
1531	if (ntries == 100) {
1532		device_printf(sc->sc_dev, "could not read BBP\n");
1533		return 0;
1534	}
1535
1536	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1537}
1538
1539static void
1540ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1541{
1542	uint32_t tmp;
1543	int ntries;
1544
1545	for (ntries = 0; ntries < 100; ntries++) {
1546		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1547			break;
1548		if (ural_pause(sc, hz / 100))
1549			break;
1550	}
1551	if (ntries == 100) {
1552		device_printf(sc->sc_dev, "could not write to RF\n");
1553		return;
1554	}
1555
1556	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1557	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1558	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1559
1560	/* remember last written value in sc */
1561	sc->rf_regs[reg] = val;
1562
1563	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
1564}
1565
1566static void
1567ural_scan_start(struct ieee80211com *ic)
1568{
1569	struct ural_softc *sc = ic->ic_softc;
1570
1571	RAL_LOCK(sc);
1572	ural_write(sc, RAL_TXRX_CSR19, 0);
1573	ural_set_bssid(sc, ieee80211broadcastaddr);
1574	RAL_UNLOCK(sc);
1575}
1576
1577static void
1578ural_scan_end(struct ieee80211com *ic)
1579{
1580	struct ural_softc *sc = ic->ic_softc;
1581
1582	RAL_LOCK(sc);
1583	ural_enable_tsf_sync(sc);
1584	ural_set_bssid(sc, sc->sc_bssid);
1585	RAL_UNLOCK(sc);
1586
1587}
1588
1589static void
1590ural_getradiocaps(struct ieee80211com *ic,
1591    int maxchans, int *nchans, struct ieee80211_channel chans[])
1592{
1593	struct ural_softc *sc = ic->ic_softc;
1594	uint8_t bands[IEEE80211_MODE_BYTES];
1595
1596	memset(bands, 0, sizeof(bands));
1597	setbit(bands, IEEE80211_MODE_11B);
1598	setbit(bands, IEEE80211_MODE_11G);
1599	ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
1600
1601	if (sc->rf_rev == RAL_RF_5222) {
1602		setbit(bands, IEEE80211_MODE_11A);
1603		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
1604		    ural_chan_5ghz, nitems(ural_chan_5ghz), bands, 0);
1605	}
1606}
1607
1608static void
1609ural_set_channel(struct ieee80211com *ic)
1610{
1611	struct ural_softc *sc = ic->ic_softc;
1612
1613	RAL_LOCK(sc);
1614	ural_set_chan(sc, ic->ic_curchan);
1615	RAL_UNLOCK(sc);
1616}
1617
1618static void
1619ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1620{
1621	struct ieee80211com *ic = &sc->sc_ic;
1622	uint8_t power, tmp;
1623	int i, chan;
1624
1625	chan = ieee80211_chan2ieee(ic, c);
1626	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1627		return;
1628
1629	if (IEEE80211_IS_CHAN_2GHZ(c))
1630		power = min(sc->txpow[chan - 1], 31);
1631	else
1632		power = 31;
1633
1634	/* adjust txpower using ifconfig settings */
1635	power -= (100 - ic->ic_txpowlimit) / 8;
1636
1637	DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power);
1638
1639	switch (sc->rf_rev) {
1640	case RAL_RF_2522:
1641		ural_rf_write(sc, RAL_RF1, 0x00814);
1642		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1643		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1644		break;
1645
1646	case RAL_RF_2523:
1647		ural_rf_write(sc, RAL_RF1, 0x08804);
1648		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1649		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1650		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1651		break;
1652
1653	case RAL_RF_2524:
1654		ural_rf_write(sc, RAL_RF1, 0x0c808);
1655		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1656		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1657		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1658		break;
1659
1660	case RAL_RF_2525:
1661		ural_rf_write(sc, RAL_RF1, 0x08808);
1662		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1663		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1664		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1665
1666		ural_rf_write(sc, RAL_RF1, 0x08808);
1667		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1668		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1669		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1670		break;
1671
1672	case RAL_RF_2525E:
1673		ural_rf_write(sc, RAL_RF1, 0x08808);
1674		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1675		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1676		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1677		break;
1678
1679	case RAL_RF_2526:
1680		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1681		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1682		ural_rf_write(sc, RAL_RF1, 0x08804);
1683
1684		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1685		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1686		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1687		break;
1688
1689	/* dual-band RF */
1690	case RAL_RF_5222:
1691		for (i = 0; ural_rf5222[i].chan != chan; i++);
1692
1693		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1694		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1695		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1696		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1697		break;
1698	}
1699
1700	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1701	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1702		/* set Japan filter bit for channel 14 */
1703		tmp = ural_bbp_read(sc, 70);
1704
1705		tmp &= ~RAL_JAPAN_FILTER;
1706		if (chan == 14)
1707			tmp |= RAL_JAPAN_FILTER;
1708
1709		ural_bbp_write(sc, 70, tmp);
1710
1711		/* clear CRC errors */
1712		ural_read(sc, RAL_STA_CSR0);
1713
1714		ural_pause(sc, hz / 100);
1715		ural_disable_rf_tune(sc);
1716	}
1717
1718	/* XXX doesn't belong here */
1719	/* update basic rate set */
1720	ural_set_basicrates(sc, c);
1721
1722	/* give the hardware some time to do the switchover */
1723	ural_pause(sc, hz / 100);
1724}
1725
1726/*
1727 * Disable RF auto-tuning.
1728 */
1729static void
1730ural_disable_rf_tune(struct ural_softc *sc)
1731{
1732	uint32_t tmp;
1733
1734	if (sc->rf_rev != RAL_RF_2523) {
1735		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1736		ural_rf_write(sc, RAL_RF1, tmp);
1737	}
1738
1739	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1740	ural_rf_write(sc, RAL_RF3, tmp);
1741
1742	DPRINTFN(2, "disabling RF autotune\n");
1743}
1744
1745/*
1746 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1747 * synchronization.
1748 */
1749static void
1750ural_enable_tsf_sync(struct ural_softc *sc)
1751{
1752	struct ieee80211com *ic = &sc->sc_ic;
1753	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1754	uint16_t logcwmin, preload, tmp;
1755
1756	/* first, disable TSF synchronization */
1757	ural_write(sc, RAL_TXRX_CSR19, 0);
1758
1759	tmp = (16 * vap->iv_bss->ni_intval) << 4;
1760	ural_write(sc, RAL_TXRX_CSR18, tmp);
1761
1762	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1763	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1764	tmp = logcwmin << 12 | preload;
1765	ural_write(sc, RAL_TXRX_CSR20, tmp);
1766
1767	/* finally, enable TSF synchronization */
1768	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1769	if (ic->ic_opmode == IEEE80211_M_STA)
1770		tmp |= RAL_ENABLE_TSF_SYNC(1);
1771	else
1772		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1773	ural_write(sc, RAL_TXRX_CSR19, tmp);
1774
1775	DPRINTF("enabling TSF synchronization\n");
1776}
1777
1778static void
1779ural_enable_tsf(struct ural_softc *sc)
1780{
1781	/* first, disable TSF synchronization */
1782	ural_write(sc, RAL_TXRX_CSR19, 0);
1783	ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2));
1784}
1785
1786#define RAL_RXTX_TURNAROUND	5	/* us */
1787static void
1788ural_update_slot(struct ural_softc *sc)
1789{
1790	struct ieee80211com *ic = &sc->sc_ic;
1791	uint16_t slottime, sifs, eifs;
1792
1793	slottime = IEEE80211_GET_SLOTTIME(ic);
1794
1795	/*
1796	 * These settings may sound a bit inconsistent but this is what the
1797	 * reference driver does.
1798	 */
1799	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1800		sifs = 16 - RAL_RXTX_TURNAROUND;
1801		eifs = 364;
1802	} else {
1803		sifs = 10 - RAL_RXTX_TURNAROUND;
1804		eifs = 64;
1805	}
1806
1807	ural_write(sc, RAL_MAC_CSR10, slottime);
1808	ural_write(sc, RAL_MAC_CSR11, sifs);
1809	ural_write(sc, RAL_MAC_CSR12, eifs);
1810}
1811
1812static void
1813ural_set_txpreamble(struct ural_softc *sc)
1814{
1815	struct ieee80211com *ic = &sc->sc_ic;
1816	uint16_t tmp;
1817
1818	tmp = ural_read(sc, RAL_TXRX_CSR10);
1819
1820	tmp &= ~RAL_SHORT_PREAMBLE;
1821	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1822		tmp |= RAL_SHORT_PREAMBLE;
1823
1824	ural_write(sc, RAL_TXRX_CSR10, tmp);
1825}
1826
1827static void
1828ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c)
1829{
1830	/* XXX wrong, take from rate set */
1831	/* update basic rate set */
1832	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1833		/* 11a basic rates: 6, 12, 24Mbps */
1834		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1835	} else if (IEEE80211_IS_CHAN_ANYG(c)) {
1836		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1837		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1838	} else {
1839		/* 11b basic rates: 1, 2Mbps */
1840		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1841	}
1842}
1843
1844static void
1845ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid)
1846{
1847	uint16_t tmp;
1848
1849	tmp = bssid[0] | bssid[1] << 8;
1850	ural_write(sc, RAL_MAC_CSR5, tmp);
1851
1852	tmp = bssid[2] | bssid[3] << 8;
1853	ural_write(sc, RAL_MAC_CSR6, tmp);
1854
1855	tmp = bssid[4] | bssid[5] << 8;
1856	ural_write(sc, RAL_MAC_CSR7, tmp);
1857
1858	DPRINTF("setting BSSID to %6D\n", bssid, ":");
1859}
1860
1861static void
1862ural_set_macaddr(struct ural_softc *sc, const uint8_t *addr)
1863{
1864	uint16_t tmp;
1865
1866	tmp = addr[0] | addr[1] << 8;
1867	ural_write(sc, RAL_MAC_CSR2, tmp);
1868
1869	tmp = addr[2] | addr[3] << 8;
1870	ural_write(sc, RAL_MAC_CSR3, tmp);
1871
1872	tmp = addr[4] | addr[5] << 8;
1873	ural_write(sc, RAL_MAC_CSR4, tmp);
1874
1875	DPRINTF("setting MAC address to %6D\n", addr, ":");
1876}
1877
1878static void
1879ural_setpromisc(struct ural_softc *sc)
1880{
1881	uint32_t tmp;
1882
1883	tmp = ural_read(sc, RAL_TXRX_CSR2);
1884
1885	tmp &= ~RAL_DROP_NOT_TO_ME;
1886	if (sc->sc_ic.ic_promisc == 0)
1887		tmp |= RAL_DROP_NOT_TO_ME;
1888
1889	ural_write(sc, RAL_TXRX_CSR2, tmp);
1890
1891	DPRINTF("%s promiscuous mode\n", sc->sc_ic.ic_promisc ?
1892	    "entering" : "leaving");
1893}
1894
1895static void
1896ural_update_promisc(struct ieee80211com *ic)
1897{
1898	struct ural_softc *sc = ic->ic_softc;
1899
1900	RAL_LOCK(sc);
1901	if (sc->sc_running)
1902		ural_setpromisc(sc);
1903	RAL_UNLOCK(sc);
1904}
1905
1906static const char *
1907ural_get_rf(int rev)
1908{
1909	switch (rev) {
1910	case RAL_RF_2522:	return "RT2522";
1911	case RAL_RF_2523:	return "RT2523";
1912	case RAL_RF_2524:	return "RT2524";
1913	case RAL_RF_2525:	return "RT2525";
1914	case RAL_RF_2525E:	return "RT2525e";
1915	case RAL_RF_2526:	return "RT2526";
1916	case RAL_RF_5222:	return "RT5222";
1917	default:		return "unknown";
1918	}
1919}
1920
1921static void
1922ural_read_eeprom(struct ural_softc *sc)
1923{
1924	struct ieee80211com *ic = &sc->sc_ic;
1925	uint16_t val;
1926
1927	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1928	val = le16toh(val);
1929	sc->rf_rev =   (val >> 11) & 0x7;
1930	sc->hw_radio = (val >> 10) & 0x1;
1931	sc->led_mode = (val >> 6)  & 0x7;
1932	sc->rx_ant =   (val >> 4)  & 0x3;
1933	sc->tx_ant =   (val >> 2)  & 0x3;
1934	sc->nb_ant =   val & 0x3;
1935
1936	/* read MAC address */
1937	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_macaddr, 6);
1938
1939	/* read default values for BBP registers */
1940	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1941
1942	/* read Tx power for all b/g channels */
1943	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1944}
1945
1946static int
1947ural_bbp_init(struct ural_softc *sc)
1948{
1949	int i, ntries;
1950
1951	/* wait for BBP to be ready */
1952	for (ntries = 0; ntries < 100; ntries++) {
1953		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
1954			break;
1955		if (ural_pause(sc, hz / 100))
1956			break;
1957	}
1958	if (ntries == 100) {
1959		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
1960		return EIO;
1961	}
1962
1963	/* initialize BBP registers to default values */
1964	for (i = 0; i < nitems(ural_def_bbp); i++)
1965		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
1966
1967#if 0
1968	/* initialize BBP registers to values stored in EEPROM */
1969	for (i = 0; i < 16; i++) {
1970		if (sc->bbp_prom[i].reg == 0xff)
1971			continue;
1972		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1973	}
1974#endif
1975
1976	return 0;
1977}
1978
1979static void
1980ural_set_txantenna(struct ural_softc *sc, int antenna)
1981{
1982	uint16_t tmp;
1983	uint8_t tx;
1984
1985	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
1986	if (antenna == 1)
1987		tx |= RAL_BBP_ANTA;
1988	else if (antenna == 2)
1989		tx |= RAL_BBP_ANTB;
1990	else
1991		tx |= RAL_BBP_DIVERSITY;
1992
1993	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
1994	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
1995	    sc->rf_rev == RAL_RF_5222)
1996		tx |= RAL_BBP_FLIPIQ;
1997
1998	ural_bbp_write(sc, RAL_BBP_TX, tx);
1999
2000	/* update values in PHY_CSR5 and PHY_CSR6 */
2001	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2002	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2003
2004	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2005	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2006}
2007
2008static void
2009ural_set_rxantenna(struct ural_softc *sc, int antenna)
2010{
2011	uint8_t rx;
2012
2013	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2014	if (antenna == 1)
2015		rx |= RAL_BBP_ANTA;
2016	else if (antenna == 2)
2017		rx |= RAL_BBP_ANTB;
2018	else
2019		rx |= RAL_BBP_DIVERSITY;
2020
2021	/* need to force no I/Q flip for RF 2525e and 2526 */
2022	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2023		rx &= ~RAL_BBP_FLIPIQ;
2024
2025	ural_bbp_write(sc, RAL_BBP_RX, rx);
2026}
2027
2028static void
2029ural_init(struct ural_softc *sc)
2030{
2031	struct ieee80211com *ic = &sc->sc_ic;
2032	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2033	uint16_t tmp;
2034	int i, ntries;
2035
2036	RAL_LOCK_ASSERT(sc, MA_OWNED);
2037
2038	ural_set_testmode(sc);
2039	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2040
2041	ural_stop(sc);
2042
2043	/* initialize MAC registers to default values */
2044	for (i = 0; i < nitems(ural_def_mac); i++)
2045		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2046
2047	/* wait for BBP and RF to wake up (this can take a long time!) */
2048	for (ntries = 0; ntries < 100; ntries++) {
2049		tmp = ural_read(sc, RAL_MAC_CSR17);
2050		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2051		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2052			break;
2053		if (ural_pause(sc, hz / 100))
2054			break;
2055	}
2056	if (ntries == 100) {
2057		device_printf(sc->sc_dev,
2058		    "timeout waiting for BBP/RF to wakeup\n");
2059		goto fail;
2060	}
2061
2062	/* we're ready! */
2063	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2064
2065	/* set basic rate set (will be updated later) */
2066	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2067
2068	if (ural_bbp_init(sc) != 0)
2069		goto fail;
2070
2071	ural_set_chan(sc, ic->ic_curchan);
2072
2073	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2074	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2075
2076	ural_set_txantenna(sc, sc->tx_ant);
2077	ural_set_rxantenna(sc, sc->rx_ant);
2078
2079	ural_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2080
2081	/*
2082	 * Allocate Tx and Rx xfer queues.
2083	 */
2084	ural_setup_tx_list(sc);
2085
2086	/* kick Rx */
2087	tmp = RAL_DROP_PHY | RAL_DROP_CRC;
2088	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2089		tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
2090		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2091			tmp |= RAL_DROP_TODS;
2092		if (ic->ic_promisc == 0)
2093			tmp |= RAL_DROP_NOT_TO_ME;
2094	}
2095	ural_write(sc, RAL_TXRX_CSR2, tmp);
2096
2097	sc->sc_running = 1;
2098	usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]);
2099	usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]);
2100	return;
2101
2102fail:	ural_stop(sc);
2103}
2104
2105static void
2106ural_stop(struct ural_softc *sc)
2107{
2108
2109	RAL_LOCK_ASSERT(sc, MA_OWNED);
2110
2111	sc->sc_running = 0;
2112
2113	/*
2114	 * Drain all the transfers, if not already drained:
2115	 */
2116	RAL_UNLOCK(sc);
2117	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]);
2118	usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]);
2119	RAL_LOCK(sc);
2120
2121	ural_unsetup_tx_list(sc);
2122
2123	/* disable Rx */
2124	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2125	/* reset ASIC and BBP (but won't reset MAC registers!) */
2126	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2127	/* wait a little */
2128	ural_pause(sc, hz / 10);
2129	ural_write(sc, RAL_MAC_CSR1, 0);
2130	/* wait a little */
2131	ural_pause(sc, hz / 10);
2132}
2133
2134static int
2135ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2136	const struct ieee80211_bpf_params *params)
2137{
2138	struct ieee80211com *ic = ni->ni_ic;
2139	struct ural_softc *sc = ic->ic_softc;
2140
2141	RAL_LOCK(sc);
2142	/* prevent management frames from being sent if we're not ready */
2143	if (!sc->sc_running) {
2144		RAL_UNLOCK(sc);
2145		m_freem(m);
2146		return ENETDOWN;
2147	}
2148	if (sc->tx_nfree < RAL_TX_MINFREE) {
2149		RAL_UNLOCK(sc);
2150		m_freem(m);
2151		return EIO;
2152	}
2153
2154	if (params == NULL) {
2155		/*
2156		 * Legacy path; interpret frame contents to decide
2157		 * precisely how to send the frame.
2158		 */
2159		if (ural_tx_mgt(sc, m, ni) != 0)
2160			goto bad;
2161	} else {
2162		/*
2163		 * Caller supplied explicit parameters to use in
2164		 * sending the frame.
2165		 */
2166		if (ural_tx_raw(sc, m, ni, params) != 0)
2167			goto bad;
2168	}
2169	RAL_UNLOCK(sc);
2170	return 0;
2171bad:
2172	RAL_UNLOCK(sc);
2173	return EIO;		/* XXX */
2174}
2175
2176static void
2177ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni)
2178{
2179	struct ieee80211vap *vap = ni->ni_vap;
2180	struct ural_vap *uvp = URAL_VAP(vap);
2181
2182	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2183	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
2184
2185	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2186}
2187
2188static void
2189ural_ratectl_timeout(void *arg)
2190{
2191	struct ural_vap *uvp = arg;
2192	struct ieee80211vap *vap = &uvp->vap;
2193	struct ieee80211com *ic = vap->iv_ic;
2194
2195	ieee80211_runtask(ic, &uvp->ratectl_task);
2196}
2197
2198static void
2199ural_ratectl_task(void *arg, int pending)
2200{
2201	struct ural_vap *uvp = arg;
2202	struct ieee80211vap *vap = &uvp->vap;
2203	struct ieee80211com *ic = vap->iv_ic;
2204	struct ural_softc *sc = ic->ic_softc;
2205	struct ieee80211_node *ni;
2206	int ok, fail;
2207	int sum, retrycnt;
2208
2209	ni = ieee80211_ref_node(vap->iv_bss);
2210	RAL_LOCK(sc);
2211	/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
2212	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2213
2214	ok = sc->sta[7] +		/* TX ok w/o retry */
2215	     sc->sta[8];		/* TX ok w/ retry */
2216	fail = sc->sta[9];		/* TX retry-fail count */
2217	sum = ok+fail;
2218	retrycnt = sc->sta[8] + fail;
2219
2220	ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt);
2221	(void) ieee80211_ratectl_rate(ni, NULL, 0);
2222
2223	/* count TX retry-fail as Tx errors */
2224	if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, fail);
2225
2226	usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp);
2227	RAL_UNLOCK(sc);
2228	ieee80211_free_node(ni);
2229}
2230
2231static int
2232ural_pause(struct ural_softc *sc, int timeout)
2233{
2234
2235	usb_pause_mtx(&sc->sc_mtx, timeout);
2236	return (0);
2237}
2238