if_stge.c revision 213893
1/*	$NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $	*/
2
3/*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Device driver for the Sundance Tech. TC9021 10/100/1000
34 * Ethernet controller.
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/dev/stge/if_stge.c 213893 2010-10-15 14:52:11Z marius $");
39
40#ifdef HAVE_KERNEL_OPTION_HEADERS
41#include "opt_device_polling.h"
42#endif
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/endian.h>
47#include <sys/mbuf.h>
48#include <sys/malloc.h>
49#include <sys/kernel.h>
50#include <sys/module.h>
51#include <sys/socket.h>
52#include <sys/sockio.h>
53#include <sys/sysctl.h>
54#include <sys/taskqueue.h>
55
56#include <net/bpf.h>
57#include <net/ethernet.h>
58#include <net/if.h>
59#include <net/if_dl.h>
60#include <net/if_media.h>
61#include <net/if_types.h>
62#include <net/if_vlan_var.h>
63
64#include <machine/bus.h>
65#include <machine/resource.h>
66#include <sys/bus.h>
67#include <sys/rman.h>
68
69#include <dev/mii/mii.h>
70#include <dev/mii/miivar.h>
71
72#include <dev/pci/pcireg.h>
73#include <dev/pci/pcivar.h>
74
75#include <dev/stge/if_stgereg.h>
76
77#define	STGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
78
79MODULE_DEPEND(stge, pci, 1, 1, 1);
80MODULE_DEPEND(stge, ether, 1, 1, 1);
81MODULE_DEPEND(stge, miibus, 1, 1, 1);
82
83/* "device miibus" required.  See GENERIC if you get errors here. */
84#include "miibus_if.h"
85
86/*
87 * Devices supported by this driver.
88 */
89static struct stge_product {
90	uint16_t	stge_vendorid;
91	uint16_t	stge_deviceid;
92	const char	*stge_name;
93} stge_products[] = {
94	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST1023,
95	  "Sundance ST-1023 Gigabit Ethernet" },
96
97	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST2021,
98	  "Sundance ST-2021 Gigabit Ethernet" },
99
100	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021,
101	  "Tamarack TC9021 Gigabit Ethernet" },
102
103	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021_ALT,
104	  "Tamarack TC9021 Gigabit Ethernet" },
105
106	/*
107	 * The Sundance sample boards use the Sundance vendor ID,
108	 * but the Tamarack product ID.
109	 */
110	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021,
111	  "Sundance TC9021 Gigabit Ethernet" },
112
113	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021_ALT,
114	  "Sundance TC9021 Gigabit Ethernet" },
115
116	{ VENDOR_DLINK,		DEVICEID_DLINK_DL4000,
117	  "D-Link DL-4000 Gigabit Ethernet" },
118
119	{ VENDOR_ANTARES,	DEVICEID_ANTARES_TC9021,
120	  "Antares Gigabit Ethernet" }
121};
122
123static int	stge_probe(device_t);
124static int	stge_attach(device_t);
125static int	stge_detach(device_t);
126static int	stge_shutdown(device_t);
127static int	stge_suspend(device_t);
128static int	stge_resume(device_t);
129
130static int	stge_encap(struct stge_softc *, struct mbuf **);
131static void	stge_start(struct ifnet *);
132static void	stge_start_locked(struct ifnet *);
133static void	stge_watchdog(struct stge_softc *);
134static int	stge_ioctl(struct ifnet *, u_long, caddr_t);
135static void	stge_init(void *);
136static void	stge_init_locked(struct stge_softc *);
137static void	stge_vlan_setup(struct stge_softc *);
138static void	stge_stop(struct stge_softc *);
139static void	stge_start_tx(struct stge_softc *);
140static void	stge_start_rx(struct stge_softc *);
141static void	stge_stop_tx(struct stge_softc *);
142static void	stge_stop_rx(struct stge_softc *);
143
144static void	stge_reset(struct stge_softc *, uint32_t);
145static int	stge_eeprom_wait(struct stge_softc *);
146static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
147static void	stge_tick(void *);
148static void	stge_stats_update(struct stge_softc *);
149static void	stge_set_filter(struct stge_softc *);
150static void	stge_set_multi(struct stge_softc *);
151
152static void	stge_link_task(void *, int);
153static void	stge_intr(void *);
154static __inline int stge_tx_error(struct stge_softc *);
155static void	stge_txeof(struct stge_softc *);
156static int	stge_rxeof(struct stge_softc *);
157static __inline void stge_discard_rxbuf(struct stge_softc *, int);
158static int	stge_newbuf(struct stge_softc *, int);
159#ifndef __NO_STRICT_ALIGNMENT
160static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
161#endif
162
163static void	stge_mii_sync(struct stge_softc *);
164static void	stge_mii_send(struct stge_softc *, uint32_t, int);
165static int	stge_mii_readreg(struct stge_softc *, struct stge_mii_frame *);
166static int	stge_mii_writereg(struct stge_softc *, struct stge_mii_frame *);
167static int	stge_miibus_readreg(device_t, int, int);
168static int	stge_miibus_writereg(device_t, int, int, int);
169static void	stge_miibus_statchg(device_t);
170static int	stge_mediachange(struct ifnet *);
171static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
172
173static void	stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
174static int	stge_dma_alloc(struct stge_softc *);
175static void	stge_dma_free(struct stge_softc *);
176static void	stge_dma_wait(struct stge_softc *);
177static void	stge_init_tx_ring(struct stge_softc *);
178static int	stge_init_rx_ring(struct stge_softc *);
179#ifdef DEVICE_POLLING
180static int	stge_poll(struct ifnet *, enum poll_cmd, int);
181#endif
182
183static void	stge_setwol(struct stge_softc *);
184static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
185static int	sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
186static int	sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
187
188static device_method_t stge_methods[] = {
189	/* Device interface */
190	DEVMETHOD(device_probe,		stge_probe),
191	DEVMETHOD(device_attach,	stge_attach),
192	DEVMETHOD(device_detach,	stge_detach),
193	DEVMETHOD(device_shutdown,	stge_shutdown),
194	DEVMETHOD(device_suspend,	stge_suspend),
195	DEVMETHOD(device_resume,	stge_resume),
196
197	/* MII interface */
198	DEVMETHOD(miibus_readreg,	stge_miibus_readreg),
199	DEVMETHOD(miibus_writereg,	stge_miibus_writereg),
200	DEVMETHOD(miibus_statchg,	stge_miibus_statchg),
201
202	{ 0, 0 }
203
204};
205
206static driver_t stge_driver = {
207	"stge",
208	stge_methods,
209	sizeof(struct stge_softc)
210};
211
212static devclass_t stge_devclass;
213
214DRIVER_MODULE(stge, pci, stge_driver, stge_devclass, 0, 0);
215DRIVER_MODULE(miibus, stge, miibus_driver, miibus_devclass, 0, 0);
216
217static struct resource_spec stge_res_spec_io[] = {
218	{ SYS_RES_IOPORT,	PCIR_BAR(0),	RF_ACTIVE },
219	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
220	{ -1,			0,		0 }
221};
222
223static struct resource_spec stge_res_spec_mem[] = {
224	{ SYS_RES_MEMORY,	PCIR_BAR(1),	RF_ACTIVE },
225	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
226	{ -1,			0,		0 }
227};
228
229#define	MII_SET(x)	\
230	CSR_WRITE_1(sc, STGE_PhyCtrl, CSR_READ_1(sc, STGE_PhyCtrl) | (x))
231#define	MII_CLR(x)	\
232	CSR_WRITE_1(sc, STGE_PhyCtrl, CSR_READ_1(sc, STGE_PhyCtrl) & ~(x))
233
234/*
235 * Sync the PHYs by setting data bit and strobing the clock 32 times.
236 */
237static void
238stge_mii_sync(struct stge_softc	*sc)
239{
240	int i;
241
242	MII_SET(PC_MgmtDir | PC_MgmtData);
243
244	for (i = 0; i < 32; i++) {
245		MII_SET(PC_MgmtClk);
246		DELAY(1);
247		MII_CLR(PC_MgmtClk);
248		DELAY(1);
249	}
250}
251
252/*
253 * Clock a series of bits through the MII.
254 */
255static void
256stge_mii_send(struct stge_softc *sc, uint32_t bits, int cnt)
257{
258	int i;
259
260	MII_CLR(PC_MgmtClk);
261
262	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
263		if (bits & i)
264			MII_SET(PC_MgmtData);
265                else
266			MII_CLR(PC_MgmtData);
267		DELAY(1);
268		MII_CLR(PC_MgmtClk);
269		DELAY(1);
270		MII_SET(PC_MgmtClk);
271	}
272}
273
274/*
275 * Read an PHY register through the MII.
276 */
277static int
278stge_mii_readreg(struct stge_softc *sc, struct stge_mii_frame *frame)
279{
280	int i, ack;
281
282	/*
283	 * Set up frame for RX.
284	 */
285	frame->mii_stdelim = STGE_MII_STARTDELIM;
286	frame->mii_opcode = STGE_MII_READOP;
287	frame->mii_turnaround = 0;
288	frame->mii_data = 0;
289
290	CSR_WRITE_1(sc, STGE_PhyCtrl, 0 | sc->sc_PhyCtrl);
291	/*
292 	 * Turn on data xmit.
293	 */
294	MII_SET(PC_MgmtDir);
295
296	stge_mii_sync(sc);
297
298	/*
299	 * Send command/address info.
300	 */
301	stge_mii_send(sc, frame->mii_stdelim, 2);
302	stge_mii_send(sc, frame->mii_opcode, 2);
303	stge_mii_send(sc, frame->mii_phyaddr, 5);
304	stge_mii_send(sc, frame->mii_regaddr, 5);
305
306	/* Turn off xmit. */
307	MII_CLR(PC_MgmtDir);
308
309	/* Idle bit */
310	MII_CLR((PC_MgmtClk | PC_MgmtData));
311	DELAY(1);
312	MII_SET(PC_MgmtClk);
313	DELAY(1);
314
315	/* Check for ack */
316	MII_CLR(PC_MgmtClk);
317	DELAY(1);
318	ack = CSR_READ_1(sc, STGE_PhyCtrl) & PC_MgmtData;
319	MII_SET(PC_MgmtClk);
320	DELAY(1);
321
322	/*
323	 * Now try reading data bits. If the ack failed, we still
324	 * need to clock through 16 cycles to keep the PHY(s) in sync.
325	 */
326	if (ack) {
327		for(i = 0; i < 16; i++) {
328			MII_CLR(PC_MgmtClk);
329			DELAY(1);
330			MII_SET(PC_MgmtClk);
331			DELAY(1);
332		}
333		goto fail;
334	}
335
336	for (i = 0x8000; i; i >>= 1) {
337		MII_CLR(PC_MgmtClk);
338		DELAY(1);
339		if (!ack) {
340			if (CSR_READ_1(sc, STGE_PhyCtrl) & PC_MgmtData)
341				frame->mii_data |= i;
342			DELAY(1);
343		}
344		MII_SET(PC_MgmtClk);
345		DELAY(1);
346	}
347
348fail:
349	MII_CLR(PC_MgmtClk);
350	DELAY(1);
351	MII_SET(PC_MgmtClk);
352	DELAY(1);
353
354	if (ack)
355		return(1);
356	return(0);
357}
358
359/*
360 * Write to a PHY register through the MII.
361 */
362static int
363stge_mii_writereg(struct stge_softc *sc, struct stge_mii_frame *frame)
364{
365
366	/*
367	 * Set up frame for TX.
368	 */
369	frame->mii_stdelim = STGE_MII_STARTDELIM;
370	frame->mii_opcode = STGE_MII_WRITEOP;
371	frame->mii_turnaround = STGE_MII_TURNAROUND;
372
373	/*
374 	 * Turn on data output.
375	 */
376	MII_SET(PC_MgmtDir);
377
378	stge_mii_sync(sc);
379
380	stge_mii_send(sc, frame->mii_stdelim, 2);
381	stge_mii_send(sc, frame->mii_opcode, 2);
382	stge_mii_send(sc, frame->mii_phyaddr, 5);
383	stge_mii_send(sc, frame->mii_regaddr, 5);
384	stge_mii_send(sc, frame->mii_turnaround, 2);
385	stge_mii_send(sc, frame->mii_data, 16);
386
387	/* Idle bit. */
388	MII_SET(PC_MgmtClk);
389	DELAY(1);
390	MII_CLR(PC_MgmtClk);
391	DELAY(1);
392
393	/*
394	 * Turn off xmit.
395	 */
396	MII_CLR(PC_MgmtDir);
397
398	return(0);
399}
400
401/*
402 * sc_miibus_readreg:	[mii interface function]
403 *
404 *	Read a PHY register on the MII of the TC9021.
405 */
406static int
407stge_miibus_readreg(device_t dev, int phy, int reg)
408{
409	struct stge_softc *sc;
410	struct stge_mii_frame frame;
411	int error;
412
413	sc = device_get_softc(dev);
414
415	if (reg == STGE_PhyCtrl) {
416		/* XXX allow ip1000phy read STGE_PhyCtrl register. */
417		STGE_MII_LOCK(sc);
418		error = CSR_READ_1(sc, STGE_PhyCtrl);
419		STGE_MII_UNLOCK(sc);
420		return (error);
421	}
422	bzero(&frame, sizeof(frame));
423	frame.mii_phyaddr = phy;
424	frame.mii_regaddr = reg;
425
426	STGE_MII_LOCK(sc);
427	error = stge_mii_readreg(sc, &frame);
428	STGE_MII_UNLOCK(sc);
429
430	if (error != 0) {
431		/* Don't show errors for PHY probe request */
432		if (reg != 1)
433			device_printf(sc->sc_dev, "phy read fail\n");
434		return (0);
435	}
436	return (frame.mii_data);
437}
438
439/*
440 * stge_miibus_writereg:	[mii interface function]
441 *
442 *	Write a PHY register on the MII of the TC9021.
443 */
444static int
445stge_miibus_writereg(device_t dev, int phy, int reg, int val)
446{
447	struct stge_softc *sc;
448	struct stge_mii_frame frame;
449	int error;
450
451	sc = device_get_softc(dev);
452
453	bzero(&frame, sizeof(frame));
454	frame.mii_phyaddr = phy;
455	frame.mii_regaddr = reg;
456	frame.mii_data = val;
457
458	STGE_MII_LOCK(sc);
459	error = stge_mii_writereg(sc, &frame);
460	STGE_MII_UNLOCK(sc);
461
462	if (error != 0)
463		device_printf(sc->sc_dev, "phy write fail\n");
464	return (0);
465}
466
467/*
468 * stge_miibus_statchg:	[mii interface function]
469 *
470 *	Callback from MII layer when media changes.
471 */
472static void
473stge_miibus_statchg(device_t dev)
474{
475	struct stge_softc *sc;
476
477	sc = device_get_softc(dev);
478	taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task);
479}
480
481/*
482 * stge_mediastatus:	[ifmedia interface function]
483 *
484 *	Get the current interface media status.
485 */
486static void
487stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
488{
489	struct stge_softc *sc;
490	struct mii_data *mii;
491
492	sc = ifp->if_softc;
493	mii = device_get_softc(sc->sc_miibus);
494
495	mii_pollstat(mii);
496	ifmr->ifm_status = mii->mii_media_status;
497	ifmr->ifm_active = mii->mii_media_active;
498}
499
500/*
501 * stge_mediachange:	[ifmedia interface function]
502 *
503 *	Set hardware to newly-selected media.
504 */
505static int
506stge_mediachange(struct ifnet *ifp)
507{
508	struct stge_softc *sc;
509	struct mii_data *mii;
510
511	sc = ifp->if_softc;
512	mii = device_get_softc(sc->sc_miibus);
513	mii_mediachg(mii);
514
515	return (0);
516}
517
518static int
519stge_eeprom_wait(struct stge_softc *sc)
520{
521	int i;
522
523	for (i = 0; i < STGE_TIMEOUT; i++) {
524		DELAY(1000);
525		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
526			return (0);
527	}
528	return (1);
529}
530
531/*
532 * stge_read_eeprom:
533 *
534 *	Read data from the serial EEPROM.
535 */
536static void
537stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
538{
539
540	if (stge_eeprom_wait(sc))
541		device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
542
543	CSR_WRITE_2(sc, STGE_EepromCtrl,
544	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
545	if (stge_eeprom_wait(sc))
546		device_printf(sc->sc_dev, "EEPROM read timed out\n");
547	*data = CSR_READ_2(sc, STGE_EepromData);
548}
549
550
551static int
552stge_probe(device_t dev)
553{
554	struct stge_product *sp;
555	int i;
556	uint16_t vendor, devid;
557
558	vendor = pci_get_vendor(dev);
559	devid = pci_get_device(dev);
560	sp = stge_products;
561	for (i = 0; i < sizeof(stge_products)/sizeof(stge_products[0]);
562	    i++, sp++) {
563		if (vendor == sp->stge_vendorid &&
564		    devid == sp->stge_deviceid) {
565			device_set_desc(dev, sp->stge_name);
566			return (BUS_PROBE_DEFAULT);
567		}
568	}
569
570	return (ENXIO);
571}
572
573static int
574stge_attach(device_t dev)
575{
576	struct stge_softc *sc;
577	struct ifnet *ifp;
578	uint8_t enaddr[ETHER_ADDR_LEN];
579	int error, flags, i;
580	uint16_t cmd;
581	uint32_t val;
582
583	error = 0;
584	sc = device_get_softc(dev);
585	sc->sc_dev = dev;
586
587	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
588	    MTX_DEF);
589	mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF);
590	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
591	TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc);
592
593	/*
594	 * Map the device.
595	 */
596	pci_enable_busmaster(dev);
597	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
598	val = pci_read_config(dev, PCIR_BAR(1), 4);
599	if ((val & 0x01) != 0)
600		sc->sc_spec = stge_res_spec_mem;
601	else {
602		val = pci_read_config(dev, PCIR_BAR(0), 4);
603		if ((val & 0x01) == 0) {
604			device_printf(sc->sc_dev, "couldn't locate IO BAR\n");
605			error = ENXIO;
606			goto fail;
607		}
608		sc->sc_spec = stge_res_spec_io;
609	}
610	error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res);
611	if (error != 0) {
612		device_printf(dev, "couldn't allocate %s resources\n",
613		    sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O");
614		goto fail;
615	}
616	sc->sc_rev = pci_get_revid(dev);
617
618	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
619	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
620	    "rxint_nframe", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_nframe, 0,
621	    sysctl_hw_stge_rxint_nframe, "I", "stge rx interrupt nframe");
622
623	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
624	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
625	    "rxint_dmawait", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_dmawait, 0,
626	    sysctl_hw_stge_rxint_dmawait, "I", "stge rx interrupt dmawait");
627
628	/* Pull in device tunables. */
629	sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
630	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
631	    "rxint_nframe", &sc->sc_rxint_nframe);
632	if (error == 0) {
633		if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN ||
634		    sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) {
635			device_printf(dev, "rxint_nframe value out of range; "
636			    "using default: %d\n", STGE_RXINT_NFRAME_DEFAULT);
637			sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
638		}
639	}
640
641	sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
642	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
643	    "rxint_dmawait", &sc->sc_rxint_dmawait);
644	if (error == 0) {
645		if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN ||
646		    sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) {
647			device_printf(dev, "rxint_dmawait value out of range; "
648			    "using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT);
649			sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
650		}
651	}
652
653	if ((error = stge_dma_alloc(sc) != 0))
654		goto fail;
655
656	/*
657	 * Determine if we're copper or fiber.  It affects how we
658	 * reset the card.
659	 */
660	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
661		sc->sc_usefiber = 1;
662	else
663		sc->sc_usefiber = 0;
664
665	/* Load LED configuration from EEPROM. */
666	stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
667
668	/*
669	 * Reset the chip to a known state.
670	 */
671	STGE_LOCK(sc);
672	stge_reset(sc, STGE_RESET_FULL);
673	STGE_UNLOCK(sc);
674
675	/*
676	 * Reading the station address from the EEPROM doesn't seem
677	 * to work, at least on my sample boards.  Instead, since
678	 * the reset sequence does AutoInit, read it from the station
679	 * address registers. For Sundance 1023 you can only read it
680	 * from EEPROM.
681	 */
682	if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
683		uint16_t v;
684
685		v = CSR_READ_2(sc, STGE_StationAddress0);
686		enaddr[0] = v & 0xff;
687		enaddr[1] = v >> 8;
688		v = CSR_READ_2(sc, STGE_StationAddress1);
689		enaddr[2] = v & 0xff;
690		enaddr[3] = v >> 8;
691		v = CSR_READ_2(sc, STGE_StationAddress2);
692		enaddr[4] = v & 0xff;
693		enaddr[5] = v >> 8;
694		sc->sc_stge1023 = 0;
695	} else {
696		uint16_t myaddr[ETHER_ADDR_LEN / 2];
697		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
698			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
699			    &myaddr[i]);
700			myaddr[i] = le16toh(myaddr[i]);
701		}
702		bcopy(myaddr, enaddr, sizeof(enaddr));
703		sc->sc_stge1023 = 1;
704	}
705
706	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
707	if (ifp == NULL) {
708		device_printf(sc->sc_dev, "failed to if_alloc()\n");
709		error = ENXIO;
710		goto fail;
711	}
712
713	ifp->if_softc = sc;
714	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
715	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
716	ifp->if_ioctl = stge_ioctl;
717	ifp->if_start = stge_start;
718	ifp->if_init = stge_init;
719	ifp->if_mtu = ETHERMTU;
720	ifp->if_snd.ifq_drv_maxlen = STGE_TX_RING_CNT - 1;
721	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
722	IFQ_SET_READY(&ifp->if_snd);
723	/* Revision B3 and earlier chips have checksum bug. */
724	if (sc->sc_rev >= 0x0c) {
725		ifp->if_hwassist = STGE_CSUM_FEATURES;
726		ifp->if_capabilities = IFCAP_HWCSUM;
727	} else {
728		ifp->if_hwassist = 0;
729		ifp->if_capabilities = 0;
730	}
731	ifp->if_capabilities |= IFCAP_WOL_MAGIC;
732	ifp->if_capenable = ifp->if_capabilities;
733
734	/*
735	 * Read some important bits from the PhyCtrl register.
736	 */
737	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
738	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
739
740	/* Set up MII bus. */
741	flags = 0;
742	if (sc->sc_rev >= 0x40 && sc->sc_rev <= 0x4e)
743		flags |= MIIF_MACPRIV0;
744	error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, stge_mediachange,
745	    stge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
746	    flags);
747	if (error != 0) {
748		device_printf(sc->sc_dev, "attaching PHYs failed\n");
749		goto fail;
750	}
751
752	ether_ifattach(ifp, enaddr);
753
754	/* VLAN capability setup */
755	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
756	if (sc->sc_rev >= 0x0c)
757		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
758	ifp->if_capenable = ifp->if_capabilities;
759#ifdef DEVICE_POLLING
760	ifp->if_capabilities |= IFCAP_POLLING;
761#endif
762	/*
763	 * Tell the upper layer(s) we support long frames.
764	 * Must appear after the call to ether_ifattach() because
765	 * ether_ifattach() sets ifi_hdrlen to the default value.
766	 */
767	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
768
769	/*
770	 * The manual recommends disabling early transmit, so we
771	 * do.  It's disabled anyway, if using IP checksumming,
772	 * since the entire packet must be in the FIFO in order
773	 * for the chip to perform the checksum.
774	 */
775	sc->sc_txthresh = 0x0fff;
776
777	/*
778	 * Disable MWI if the PCI layer tells us to.
779	 */
780	sc->sc_DMACtrl = 0;
781	if ((cmd & PCIM_CMD_MWRICEN) == 0)
782		sc->sc_DMACtrl |= DMAC_MWIDisable;
783
784	/*
785	 * Hookup IRQ
786	 */
787	error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE,
788	    NULL, stge_intr, sc, &sc->sc_ih);
789	if (error != 0) {
790		ether_ifdetach(ifp);
791		device_printf(sc->sc_dev, "couldn't set up IRQ\n");
792		sc->sc_ifp = NULL;
793		goto fail;
794	}
795
796fail:
797	if (error != 0)
798		stge_detach(dev);
799
800	return (error);
801}
802
803static int
804stge_detach(device_t dev)
805{
806	struct stge_softc *sc;
807	struct ifnet *ifp;
808
809	sc = device_get_softc(dev);
810
811	ifp = sc->sc_ifp;
812#ifdef DEVICE_POLLING
813	if (ifp && ifp->if_capenable & IFCAP_POLLING)
814		ether_poll_deregister(ifp);
815#endif
816	if (device_is_attached(dev)) {
817		STGE_LOCK(sc);
818		/* XXX */
819		sc->sc_detach = 1;
820		stge_stop(sc);
821		STGE_UNLOCK(sc);
822		callout_drain(&sc->sc_tick_ch);
823		taskqueue_drain(taskqueue_swi, &sc->sc_link_task);
824		ether_ifdetach(ifp);
825	}
826
827	if (sc->sc_miibus != NULL) {
828		device_delete_child(dev, sc->sc_miibus);
829		sc->sc_miibus = NULL;
830	}
831	bus_generic_detach(dev);
832	stge_dma_free(sc);
833
834	if (ifp != NULL) {
835		if_free(ifp);
836		sc->sc_ifp = NULL;
837	}
838
839	if (sc->sc_ih) {
840		bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih);
841		sc->sc_ih = NULL;
842	}
843	bus_release_resources(dev, sc->sc_spec, sc->sc_res);
844
845	mtx_destroy(&sc->sc_mii_mtx);
846	mtx_destroy(&sc->sc_mtx);
847
848	return (0);
849}
850
851struct stge_dmamap_arg {
852	bus_addr_t	stge_busaddr;
853};
854
855static void
856stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
857{
858	struct stge_dmamap_arg *ctx;
859
860	if (error != 0)
861		return;
862
863	ctx = (struct stge_dmamap_arg *)arg;
864	ctx->stge_busaddr = segs[0].ds_addr;
865}
866
867static int
868stge_dma_alloc(struct stge_softc *sc)
869{
870	struct stge_dmamap_arg ctx;
871	struct stge_txdesc *txd;
872	struct stge_rxdesc *rxd;
873	int error, i;
874
875	/* create parent tag. */
876	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */
877		    1, 0,			/* algnmnt, boundary */
878		    STGE_DMA_MAXADDR,		/* lowaddr */
879		    BUS_SPACE_MAXADDR,		/* highaddr */
880		    NULL, NULL,			/* filter, filterarg */
881		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
882		    0,				/* nsegments */
883		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
884		    0,				/* flags */
885		    NULL, NULL,			/* lockfunc, lockarg */
886		    &sc->sc_cdata.stge_parent_tag);
887	if (error != 0) {
888		device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
889		goto fail;
890	}
891	/* create tag for Tx ring. */
892	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
893		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
894		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
895		    BUS_SPACE_MAXADDR,		/* highaddr */
896		    NULL, NULL,			/* filter, filterarg */
897		    STGE_TX_RING_SZ,		/* maxsize */
898		    1,				/* nsegments */
899		    STGE_TX_RING_SZ,		/* maxsegsize */
900		    0,				/* flags */
901		    NULL, NULL,			/* lockfunc, lockarg */
902		    &sc->sc_cdata.stge_tx_ring_tag);
903	if (error != 0) {
904		device_printf(sc->sc_dev,
905		    "failed to allocate Tx ring DMA tag\n");
906		goto fail;
907	}
908
909	/* create tag for Rx ring. */
910	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
911		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
912		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
913		    BUS_SPACE_MAXADDR,		/* highaddr */
914		    NULL, NULL,			/* filter, filterarg */
915		    STGE_RX_RING_SZ,		/* maxsize */
916		    1,				/* nsegments */
917		    STGE_RX_RING_SZ,		/* maxsegsize */
918		    0,				/* flags */
919		    NULL, NULL,			/* lockfunc, lockarg */
920		    &sc->sc_cdata.stge_rx_ring_tag);
921	if (error != 0) {
922		device_printf(sc->sc_dev,
923		    "failed to allocate Rx ring DMA tag\n");
924		goto fail;
925	}
926
927	/* create tag for Tx buffers. */
928	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
929		    1, 0,			/* algnmnt, boundary */
930		    BUS_SPACE_MAXADDR,		/* lowaddr */
931		    BUS_SPACE_MAXADDR,		/* highaddr */
932		    NULL, NULL,			/* filter, filterarg */
933		    MCLBYTES * STGE_MAXTXSEGS,	/* maxsize */
934		    STGE_MAXTXSEGS,		/* nsegments */
935		    MCLBYTES,			/* maxsegsize */
936		    0,				/* flags */
937		    NULL, NULL,			/* lockfunc, lockarg */
938		    &sc->sc_cdata.stge_tx_tag);
939	if (error != 0) {
940		device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
941		goto fail;
942	}
943
944	/* create tag for Rx buffers. */
945	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
946		    1, 0,			/* algnmnt, boundary */
947		    BUS_SPACE_MAXADDR,		/* lowaddr */
948		    BUS_SPACE_MAXADDR,		/* highaddr */
949		    NULL, NULL,			/* filter, filterarg */
950		    MCLBYTES,			/* maxsize */
951		    1,				/* nsegments */
952		    MCLBYTES,			/* maxsegsize */
953		    0,				/* flags */
954		    NULL, NULL,			/* lockfunc, lockarg */
955		    &sc->sc_cdata.stge_rx_tag);
956	if (error != 0) {
957		device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
958		goto fail;
959	}
960
961	/* allocate DMA'able memory and load the DMA map for Tx ring. */
962	error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
963	    (void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
964	    &sc->sc_cdata.stge_tx_ring_map);
965	if (error != 0) {
966		device_printf(sc->sc_dev,
967		    "failed to allocate DMA'able memory for Tx ring\n");
968		goto fail;
969	}
970
971	ctx.stge_busaddr = 0;
972	error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
973	    sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
974	    STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
975	if (error != 0 || ctx.stge_busaddr == 0) {
976		device_printf(sc->sc_dev,
977		    "failed to load DMA'able memory for Tx ring\n");
978		goto fail;
979	}
980	sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
981
982	/* allocate DMA'able memory and load the DMA map for Rx ring. */
983	error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
984	    (void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
985	    &sc->sc_cdata.stge_rx_ring_map);
986	if (error != 0) {
987		device_printf(sc->sc_dev,
988		    "failed to allocate DMA'able memory for Rx ring\n");
989		goto fail;
990	}
991
992	ctx.stge_busaddr = 0;
993	error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
994	    sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
995	    STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
996	if (error != 0 || ctx.stge_busaddr == 0) {
997		device_printf(sc->sc_dev,
998		    "failed to load DMA'able memory for Rx ring\n");
999		goto fail;
1000	}
1001	sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
1002
1003	/* create DMA maps for Tx buffers. */
1004	for (i = 0; i < STGE_TX_RING_CNT; i++) {
1005		txd = &sc->sc_cdata.stge_txdesc[i];
1006		txd->tx_m = NULL;
1007		txd->tx_dmamap = 0;
1008		error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
1009		    &txd->tx_dmamap);
1010		if (error != 0) {
1011			device_printf(sc->sc_dev,
1012			    "failed to create Tx dmamap\n");
1013			goto fail;
1014		}
1015	}
1016	/* create DMA maps for Rx buffers. */
1017	if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
1018	    &sc->sc_cdata.stge_rx_sparemap)) != 0) {
1019		device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
1020		goto fail;
1021	}
1022	for (i = 0; i < STGE_RX_RING_CNT; i++) {
1023		rxd = &sc->sc_cdata.stge_rxdesc[i];
1024		rxd->rx_m = NULL;
1025		rxd->rx_dmamap = 0;
1026		error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
1027		    &rxd->rx_dmamap);
1028		if (error != 0) {
1029			device_printf(sc->sc_dev,
1030			    "failed to create Rx dmamap\n");
1031			goto fail;
1032		}
1033	}
1034
1035fail:
1036	return (error);
1037}
1038
1039static void
1040stge_dma_free(struct stge_softc *sc)
1041{
1042	struct stge_txdesc *txd;
1043	struct stge_rxdesc *rxd;
1044	int i;
1045
1046	/* Tx ring */
1047	if (sc->sc_cdata.stge_tx_ring_tag) {
1048		if (sc->sc_cdata.stge_tx_ring_map)
1049			bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
1050			    sc->sc_cdata.stge_tx_ring_map);
1051		if (sc->sc_cdata.stge_tx_ring_map &&
1052		    sc->sc_rdata.stge_tx_ring)
1053			bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
1054			    sc->sc_rdata.stge_tx_ring,
1055			    sc->sc_cdata.stge_tx_ring_map);
1056		sc->sc_rdata.stge_tx_ring = NULL;
1057		sc->sc_cdata.stge_tx_ring_map = 0;
1058		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
1059		sc->sc_cdata.stge_tx_ring_tag = NULL;
1060	}
1061	/* Rx ring */
1062	if (sc->sc_cdata.stge_rx_ring_tag) {
1063		if (sc->sc_cdata.stge_rx_ring_map)
1064			bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
1065			    sc->sc_cdata.stge_rx_ring_map);
1066		if (sc->sc_cdata.stge_rx_ring_map &&
1067		    sc->sc_rdata.stge_rx_ring)
1068			bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
1069			    sc->sc_rdata.stge_rx_ring,
1070			    sc->sc_cdata.stge_rx_ring_map);
1071		sc->sc_rdata.stge_rx_ring = NULL;
1072		sc->sc_cdata.stge_rx_ring_map = 0;
1073		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
1074		sc->sc_cdata.stge_rx_ring_tag = NULL;
1075	}
1076	/* Tx buffers */
1077	if (sc->sc_cdata.stge_tx_tag) {
1078		for (i = 0; i < STGE_TX_RING_CNT; i++) {
1079			txd = &sc->sc_cdata.stge_txdesc[i];
1080			if (txd->tx_dmamap) {
1081				bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
1082				    txd->tx_dmamap);
1083				txd->tx_dmamap = 0;
1084			}
1085		}
1086		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
1087		sc->sc_cdata.stge_tx_tag = NULL;
1088	}
1089	/* Rx buffers */
1090	if (sc->sc_cdata.stge_rx_tag) {
1091		for (i = 0; i < STGE_RX_RING_CNT; i++) {
1092			rxd = &sc->sc_cdata.stge_rxdesc[i];
1093			if (rxd->rx_dmamap) {
1094				bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
1095				    rxd->rx_dmamap);
1096				rxd->rx_dmamap = 0;
1097			}
1098		}
1099		if (sc->sc_cdata.stge_rx_sparemap) {
1100			bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
1101			    sc->sc_cdata.stge_rx_sparemap);
1102			sc->sc_cdata.stge_rx_sparemap = 0;
1103		}
1104		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
1105		sc->sc_cdata.stge_rx_tag = NULL;
1106	}
1107
1108	if (sc->sc_cdata.stge_parent_tag) {
1109		bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
1110		sc->sc_cdata.stge_parent_tag = NULL;
1111	}
1112}
1113
1114/*
1115 * stge_shutdown:
1116 *
1117 *	Make sure the interface is stopped at reboot time.
1118 */
1119static int
1120stge_shutdown(device_t dev)
1121{
1122
1123	return (stge_suspend(dev));
1124}
1125
1126static void
1127stge_setwol(struct stge_softc *sc)
1128{
1129	struct ifnet *ifp;
1130	uint8_t v;
1131
1132	STGE_LOCK_ASSERT(sc);
1133
1134	ifp = sc->sc_ifp;
1135	v = CSR_READ_1(sc, STGE_WakeEvent);
1136	/* Disable all WOL bits. */
1137	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1138	    WE_WakeOnLanEnable);
1139	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1140		v |= WE_MagicPktEnable | WE_WakeOnLanEnable;
1141	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1142	/* Reset Tx and prevent transmission. */
1143	CSR_WRITE_4(sc, STGE_AsicCtrl,
1144	    CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset);
1145	/*
1146	 * TC9021 automatically reset link speed to 100Mbps when it's put
1147	 * into sleep so there is no need to try to resetting link speed.
1148	 */
1149}
1150
1151static int
1152stge_suspend(device_t dev)
1153{
1154	struct stge_softc *sc;
1155
1156	sc = device_get_softc(dev);
1157
1158	STGE_LOCK(sc);
1159	stge_stop(sc);
1160	sc->sc_suspended = 1;
1161	stge_setwol(sc);
1162	STGE_UNLOCK(sc);
1163
1164	return (0);
1165}
1166
1167static int
1168stge_resume(device_t dev)
1169{
1170	struct stge_softc *sc;
1171	struct ifnet *ifp;
1172	uint8_t v;
1173
1174	sc = device_get_softc(dev);
1175
1176	STGE_LOCK(sc);
1177	/*
1178	 * Clear WOL bits, so special frames wouldn't interfere
1179	 * normal Rx operation anymore.
1180	 */
1181	v = CSR_READ_1(sc, STGE_WakeEvent);
1182	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1183	    WE_WakeOnLanEnable);
1184	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1185	ifp = sc->sc_ifp;
1186	if (ifp->if_flags & IFF_UP)
1187		stge_init_locked(sc);
1188
1189	sc->sc_suspended = 0;
1190	STGE_UNLOCK(sc);
1191
1192	return (0);
1193}
1194
1195static void
1196stge_dma_wait(struct stge_softc *sc)
1197{
1198	int i;
1199
1200	for (i = 0; i < STGE_TIMEOUT; i++) {
1201		DELAY(2);
1202		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
1203			break;
1204	}
1205
1206	if (i == STGE_TIMEOUT)
1207		device_printf(sc->sc_dev, "DMA wait timed out\n");
1208}
1209
1210static int
1211stge_encap(struct stge_softc *sc, struct mbuf **m_head)
1212{
1213	struct stge_txdesc *txd;
1214	struct stge_tfd *tfd;
1215	struct mbuf *m;
1216	bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
1217	int error, i, nsegs, si;
1218	uint64_t csum_flags, tfc;
1219
1220	STGE_LOCK_ASSERT(sc);
1221
1222	if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
1223		return (ENOBUFS);
1224
1225	error =  bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1226	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1227	if (error == EFBIG) {
1228		m = m_collapse(*m_head, M_DONTWAIT, STGE_MAXTXSEGS);
1229		if (m == NULL) {
1230			m_freem(*m_head);
1231			*m_head = NULL;
1232			return (ENOMEM);
1233		}
1234		*m_head = m;
1235		error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1236		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1237		if (error != 0) {
1238			m_freem(*m_head);
1239			*m_head = NULL;
1240			return (error);
1241		}
1242	} else if (error != 0)
1243		return (error);
1244	if (nsegs == 0) {
1245		m_freem(*m_head);
1246		*m_head = NULL;
1247		return (EIO);
1248	}
1249
1250	m = *m_head;
1251	csum_flags = 0;
1252	if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
1253		if (m->m_pkthdr.csum_flags & CSUM_IP)
1254			csum_flags |= TFD_IPChecksumEnable;
1255		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1256			csum_flags |= TFD_TCPChecksumEnable;
1257		else if (m->m_pkthdr.csum_flags & CSUM_UDP)
1258			csum_flags |= TFD_UDPChecksumEnable;
1259	}
1260
1261	si = sc->sc_cdata.stge_tx_prod;
1262	tfd = &sc->sc_rdata.stge_tx_ring[si];
1263	for (i = 0; i < nsegs; i++)
1264		tfd->tfd_frags[i].frag_word0 =
1265		    htole64(FRAG_ADDR(txsegs[i].ds_addr) |
1266		    FRAG_LEN(txsegs[i].ds_len));
1267	sc->sc_cdata.stge_tx_cnt++;
1268
1269	tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
1270	    TFD_FragCount(nsegs) | csum_flags;
1271	if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
1272		tfc |= TFD_TxDMAIndicate;
1273
1274	/* Update producer index. */
1275	sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
1276
1277	/* Check if we have a VLAN tag to insert. */
1278	if (m->m_flags & M_VLANTAG)
1279		tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag));
1280	tfd->tfd_control = htole64(tfc);
1281
1282	/* Update Tx Queue. */
1283	STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
1284	STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
1285	txd->tx_m = m;
1286
1287	/* Sync descriptors. */
1288	bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1289	    BUS_DMASYNC_PREWRITE);
1290	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1291	    sc->sc_cdata.stge_tx_ring_map,
1292	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1293
1294	return (0);
1295}
1296
1297/*
1298 * stge_start:		[ifnet interface function]
1299 *
1300 *	Start packet transmission on the interface.
1301 */
1302static void
1303stge_start(struct ifnet *ifp)
1304{
1305	struct stge_softc *sc;
1306
1307	sc = ifp->if_softc;
1308	STGE_LOCK(sc);
1309	stge_start_locked(ifp);
1310	STGE_UNLOCK(sc);
1311}
1312
1313static void
1314stge_start_locked(struct ifnet *ifp)
1315{
1316        struct stge_softc *sc;
1317        struct mbuf *m_head;
1318	int enq;
1319
1320	sc = ifp->if_softc;
1321
1322	STGE_LOCK_ASSERT(sc);
1323
1324	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1325	    IFF_DRV_RUNNING || sc->sc_link == 0)
1326		return;
1327
1328	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1329		if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
1330			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1331			break;
1332		}
1333
1334		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1335		if (m_head == NULL)
1336			break;
1337		/*
1338		 * Pack the data into the transmit ring. If we
1339		 * don't have room, set the OACTIVE flag and wait
1340		 * for the NIC to drain the ring.
1341		 */
1342		if (stge_encap(sc, &m_head)) {
1343			if (m_head == NULL)
1344				break;
1345			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1346			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1347			break;
1348		}
1349
1350		enq++;
1351		/*
1352		 * If there's a BPF listener, bounce a copy of this frame
1353		 * to him.
1354		 */
1355		ETHER_BPF_MTAP(ifp, m_head);
1356	}
1357
1358	if (enq > 0) {
1359		/* Transmit */
1360		CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
1361
1362		/* Set a timeout in case the chip goes out to lunch. */
1363		sc->sc_watchdog_timer = 5;
1364	}
1365}
1366
1367/*
1368 * stge_watchdog:
1369 *
1370 *	Watchdog timer handler.
1371 */
1372static void
1373stge_watchdog(struct stge_softc *sc)
1374{
1375	struct ifnet *ifp;
1376
1377	STGE_LOCK_ASSERT(sc);
1378
1379	if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
1380		return;
1381
1382	ifp = sc->sc_ifp;
1383	if_printf(sc->sc_ifp, "device timeout\n");
1384	ifp->if_oerrors++;
1385	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1386	stge_init_locked(sc);
1387	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1388		stge_start_locked(ifp);
1389}
1390
1391/*
1392 * stge_ioctl:		[ifnet interface function]
1393 *
1394 *	Handle control requests from the operator.
1395 */
1396static int
1397stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1398{
1399	struct stge_softc *sc;
1400	struct ifreq *ifr;
1401	struct mii_data *mii;
1402	int error, mask;
1403
1404	sc = ifp->if_softc;
1405	ifr = (struct ifreq *)data;
1406	error = 0;
1407	switch (cmd) {
1408	case SIOCSIFMTU:
1409		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
1410			error = EINVAL;
1411		else if (ifp->if_mtu != ifr->ifr_mtu) {
1412			ifp->if_mtu = ifr->ifr_mtu;
1413			STGE_LOCK(sc);
1414			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1415				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1416				stge_init_locked(sc);
1417			}
1418			STGE_UNLOCK(sc);
1419		}
1420		break;
1421	case SIOCSIFFLAGS:
1422		STGE_LOCK(sc);
1423		if ((ifp->if_flags & IFF_UP) != 0) {
1424			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1425				if (((ifp->if_flags ^ sc->sc_if_flags)
1426				    & IFF_PROMISC) != 0)
1427					stge_set_filter(sc);
1428			} else {
1429				if (sc->sc_detach == 0)
1430					stge_init_locked(sc);
1431			}
1432		} else {
1433			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1434				stge_stop(sc);
1435		}
1436		sc->sc_if_flags = ifp->if_flags;
1437		STGE_UNLOCK(sc);
1438		break;
1439	case SIOCADDMULTI:
1440	case SIOCDELMULTI:
1441		STGE_LOCK(sc);
1442		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1443			stge_set_multi(sc);
1444		STGE_UNLOCK(sc);
1445		break;
1446	case SIOCSIFMEDIA:
1447	case SIOCGIFMEDIA:
1448		mii = device_get_softc(sc->sc_miibus);
1449		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1450		break;
1451	case SIOCSIFCAP:
1452		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1453#ifdef DEVICE_POLLING
1454		if ((mask & IFCAP_POLLING) != 0) {
1455			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1456				error = ether_poll_register(stge_poll, ifp);
1457				if (error != 0)
1458					break;
1459				STGE_LOCK(sc);
1460				CSR_WRITE_2(sc, STGE_IntEnable, 0);
1461				ifp->if_capenable |= IFCAP_POLLING;
1462				STGE_UNLOCK(sc);
1463			} else {
1464				error = ether_poll_deregister(ifp);
1465				if (error != 0)
1466					break;
1467				STGE_LOCK(sc);
1468				CSR_WRITE_2(sc, STGE_IntEnable,
1469				    sc->sc_IntEnable);
1470				ifp->if_capenable &= ~IFCAP_POLLING;
1471				STGE_UNLOCK(sc);
1472			}
1473		}
1474#endif
1475		if ((mask & IFCAP_HWCSUM) != 0) {
1476			ifp->if_capenable ^= IFCAP_HWCSUM;
1477			if ((IFCAP_HWCSUM & ifp->if_capenable) != 0 &&
1478			    (IFCAP_HWCSUM & ifp->if_capabilities) != 0)
1479				ifp->if_hwassist = STGE_CSUM_FEATURES;
1480			else
1481				ifp->if_hwassist = 0;
1482		}
1483		if ((mask & IFCAP_WOL) != 0 &&
1484		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
1485			if ((mask & IFCAP_WOL_MAGIC) != 0)
1486				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1487		}
1488		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
1489			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1490			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1491				STGE_LOCK(sc);
1492				stge_vlan_setup(sc);
1493				STGE_UNLOCK(sc);
1494			}
1495		}
1496		VLAN_CAPABILITIES(ifp);
1497		break;
1498	default:
1499		error = ether_ioctl(ifp, cmd, data);
1500		break;
1501	}
1502
1503	return (error);
1504}
1505
1506static void
1507stge_link_task(void *arg, int pending)
1508{
1509	struct stge_softc *sc;
1510	struct mii_data *mii;
1511	uint32_t v, ac;
1512	int i;
1513
1514	sc = (struct stge_softc *)arg;
1515	STGE_LOCK(sc);
1516
1517	mii = device_get_softc(sc->sc_miibus);
1518	if (mii->mii_media_status & IFM_ACTIVE) {
1519		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1520			sc->sc_link = 1;
1521	} else
1522		sc->sc_link = 0;
1523
1524	sc->sc_MACCtrl = 0;
1525	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
1526		sc->sc_MACCtrl |= MC_DuplexSelect;
1527	if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) != 0)
1528		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1529	if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) != 0)
1530		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1531	/*
1532	 * Update STGE_MACCtrl register depending on link status.
1533	 * (duplex, flow control etc)
1534	 */
1535	v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
1536	v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
1537	v |= sc->sc_MACCtrl;
1538	CSR_WRITE_4(sc, STGE_MACCtrl, v);
1539	if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
1540		/* Duplex setting changed, reset Tx/Rx functions. */
1541		ac = CSR_READ_4(sc, STGE_AsicCtrl);
1542		ac |= AC_TxReset | AC_RxReset;
1543		CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1544		for (i = 0; i < STGE_TIMEOUT; i++) {
1545			DELAY(100);
1546			if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1547				break;
1548		}
1549		if (i == STGE_TIMEOUT)
1550			device_printf(sc->sc_dev, "reset failed to complete\n");
1551	}
1552	STGE_UNLOCK(sc);
1553}
1554
1555static __inline int
1556stge_tx_error(struct stge_softc *sc)
1557{
1558	uint32_t txstat;
1559	int error;
1560
1561	for (error = 0;;) {
1562		txstat = CSR_READ_4(sc, STGE_TxStatus);
1563		if ((txstat & TS_TxComplete) == 0)
1564			break;
1565		/* Tx underrun */
1566		if ((txstat & TS_TxUnderrun) != 0) {
1567			/*
1568			 * XXX
1569			 * There should be a more better way to recover
1570			 * from Tx underrun instead of a full reset.
1571			 */
1572			if (sc->sc_nerr++ < STGE_MAXERR)
1573				device_printf(sc->sc_dev, "Tx underrun, "
1574				    "resetting...\n");
1575			if (sc->sc_nerr == STGE_MAXERR)
1576				device_printf(sc->sc_dev, "too many errors; "
1577				    "not reporting any more\n");
1578			error = -1;
1579			break;
1580		}
1581		/* Maximum/Late collisions, Re-enable Tx MAC. */
1582		if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
1583			CSR_WRITE_4(sc, STGE_MACCtrl,
1584			    (CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
1585			    MC_TxEnable);
1586	}
1587
1588	return (error);
1589}
1590
1591/*
1592 * stge_intr:
1593 *
1594 *	Interrupt service routine.
1595 */
1596static void
1597stge_intr(void *arg)
1598{
1599	struct stge_softc *sc;
1600	struct ifnet *ifp;
1601	int reinit;
1602	uint16_t status;
1603
1604	sc = (struct stge_softc *)arg;
1605	ifp = sc->sc_ifp;
1606
1607	STGE_LOCK(sc);
1608
1609#ifdef DEVICE_POLLING
1610	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1611		goto done_locked;
1612#endif
1613	status = CSR_READ_2(sc, STGE_IntStatus);
1614	if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
1615		goto done_locked;
1616
1617	/* Disable interrupts. */
1618	for (reinit = 0;;) {
1619		status = CSR_READ_2(sc, STGE_IntStatusAck);
1620		status &= sc->sc_IntEnable;
1621		if (status == 0)
1622			break;
1623		/* Host interface errors. */
1624		if ((status & IS_HostError) != 0) {
1625			device_printf(sc->sc_dev,
1626			    "Host interface error, resetting...\n");
1627			reinit = 1;
1628			goto force_init;
1629		}
1630
1631		/* Receive interrupts. */
1632		if ((status & IS_RxDMAComplete) != 0) {
1633			stge_rxeof(sc);
1634			if ((status & IS_RFDListEnd) != 0)
1635				CSR_WRITE_4(sc, STGE_DMACtrl,
1636				    DMAC_RxDMAPollNow);
1637		}
1638
1639		/* Transmit interrupts. */
1640		if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
1641			stge_txeof(sc);
1642
1643		/* Transmission errors.*/
1644		if ((status & IS_TxComplete) != 0) {
1645			if ((reinit = stge_tx_error(sc)) != 0)
1646				break;
1647		}
1648	}
1649
1650force_init:
1651	if (reinit != 0) {
1652		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1653		stge_init_locked(sc);
1654	}
1655
1656	/* Re-enable interrupts. */
1657	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1658
1659	/* Try to get more packets going. */
1660	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1661		stge_start_locked(ifp);
1662
1663done_locked:
1664	STGE_UNLOCK(sc);
1665}
1666
1667/*
1668 * stge_txeof:
1669 *
1670 *	Helper; handle transmit interrupts.
1671 */
1672static void
1673stge_txeof(struct stge_softc *sc)
1674{
1675	struct ifnet *ifp;
1676	struct stge_txdesc *txd;
1677	uint64_t control;
1678	int cons;
1679
1680	STGE_LOCK_ASSERT(sc);
1681
1682	ifp = sc->sc_ifp;
1683
1684	txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1685	if (txd == NULL)
1686		return;
1687	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1688	    sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
1689
1690	/*
1691	 * Go through our Tx list and free mbufs for those
1692	 * frames which have been transmitted.
1693	 */
1694	for (cons = sc->sc_cdata.stge_tx_cons;;
1695	    cons = (cons + 1) % STGE_TX_RING_CNT) {
1696		if (sc->sc_cdata.stge_tx_cnt <= 0)
1697			break;
1698		control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
1699		if ((control & TFD_TFDDone) == 0)
1700			break;
1701		sc->sc_cdata.stge_tx_cnt--;
1702		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1703
1704		bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1705		    BUS_DMASYNC_POSTWRITE);
1706		bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
1707
1708		/* Output counter is updated with statistics register */
1709		m_freem(txd->tx_m);
1710		txd->tx_m = NULL;
1711		STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
1712		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
1713		txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1714	}
1715	sc->sc_cdata.stge_tx_cons = cons;
1716	if (sc->sc_cdata.stge_tx_cnt == 0)
1717		sc->sc_watchdog_timer = 0;
1718
1719        bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1720	    sc->sc_cdata.stge_tx_ring_map,
1721	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1722}
1723
1724static __inline void
1725stge_discard_rxbuf(struct stge_softc *sc, int idx)
1726{
1727	struct stge_rfd *rfd;
1728
1729	rfd = &sc->sc_rdata.stge_rx_ring[idx];
1730	rfd->rfd_status = 0;
1731}
1732
1733#ifndef __NO_STRICT_ALIGNMENT
1734/*
1735 * It seems that TC9021's DMA engine has alignment restrictions in
1736 * DMA scatter operations. The first DMA segment has no address
1737 * alignment restrictins but the rest should be aligned on 4(?) bytes
1738 * boundary. Otherwise it would corrupt random memory. Since we don't
1739 * know which one is used for the first segment in advance we simply
1740 * don't align at all.
1741 * To avoid copying over an entire frame to align, we allocate a new
1742 * mbuf and copy ethernet header to the new mbuf. The new mbuf is
1743 * prepended into the existing mbuf chain.
1744 */
1745static __inline struct mbuf *
1746stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
1747{
1748	struct mbuf *n;
1749
1750	n = NULL;
1751	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
1752		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
1753		m->m_data += ETHER_HDR_LEN;
1754		n = m;
1755	} else {
1756		MGETHDR(n, M_DONTWAIT, MT_DATA);
1757		if (n != NULL) {
1758			bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
1759			m->m_data += ETHER_HDR_LEN;
1760			m->m_len -= ETHER_HDR_LEN;
1761			n->m_len = ETHER_HDR_LEN;
1762			M_MOVE_PKTHDR(n, m);
1763			n->m_next = m;
1764		} else
1765			m_freem(m);
1766	}
1767
1768	return (n);
1769}
1770#endif
1771
1772/*
1773 * stge_rxeof:
1774 *
1775 *	Helper; handle receive interrupts.
1776 */
1777static int
1778stge_rxeof(struct stge_softc *sc)
1779{
1780	struct ifnet *ifp;
1781	struct stge_rxdesc *rxd;
1782	struct mbuf *mp, *m;
1783	uint64_t status64;
1784	uint32_t status;
1785	int cons, prog, rx_npkts;
1786
1787	STGE_LOCK_ASSERT(sc);
1788
1789	rx_npkts = 0;
1790	ifp = sc->sc_ifp;
1791
1792	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1793	    sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
1794
1795	prog = 0;
1796	for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
1797	    prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
1798		status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
1799		status = RFD_RxStatus(status64);
1800		if ((status & RFD_RFDDone) == 0)
1801			break;
1802#ifdef DEVICE_POLLING
1803		if (ifp->if_capenable & IFCAP_POLLING) {
1804			if (sc->sc_cdata.stge_rxcycles <= 0)
1805				break;
1806			sc->sc_cdata.stge_rxcycles--;
1807		}
1808#endif
1809		prog++;
1810		rxd = &sc->sc_cdata.stge_rxdesc[cons];
1811		mp = rxd->rx_m;
1812
1813		/*
1814		 * If the packet had an error, drop it.  Note we count
1815		 * the error later in the periodic stats update.
1816		 */
1817		if ((status & RFD_FrameEnd) != 0 && (status &
1818		    (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1819		    RFD_RxAlignmentError | RFD_RxFCSError |
1820		    RFD_RxLengthError)) != 0) {
1821			stge_discard_rxbuf(sc, cons);
1822			if (sc->sc_cdata.stge_rxhead != NULL) {
1823				m_freem(sc->sc_cdata.stge_rxhead);
1824				STGE_RXCHAIN_RESET(sc);
1825			}
1826			continue;
1827		}
1828		/*
1829		 * Add a new receive buffer to the ring.
1830		 */
1831		if (stge_newbuf(sc, cons) != 0) {
1832			ifp->if_iqdrops++;
1833			stge_discard_rxbuf(sc, cons);
1834			if (sc->sc_cdata.stge_rxhead != NULL) {
1835				m_freem(sc->sc_cdata.stge_rxhead);
1836				STGE_RXCHAIN_RESET(sc);
1837			}
1838			continue;
1839		}
1840
1841		if ((status & RFD_FrameEnd) != 0)
1842			mp->m_len = RFD_RxDMAFrameLen(status) -
1843			    sc->sc_cdata.stge_rxlen;
1844		sc->sc_cdata.stge_rxlen += mp->m_len;
1845
1846		/* Chain mbufs. */
1847		if (sc->sc_cdata.stge_rxhead == NULL) {
1848			sc->sc_cdata.stge_rxhead = mp;
1849			sc->sc_cdata.stge_rxtail = mp;
1850		} else {
1851			mp->m_flags &= ~M_PKTHDR;
1852			sc->sc_cdata.stge_rxtail->m_next = mp;
1853			sc->sc_cdata.stge_rxtail = mp;
1854		}
1855
1856		if ((status & RFD_FrameEnd) != 0) {
1857			m = sc->sc_cdata.stge_rxhead;
1858			m->m_pkthdr.rcvif = ifp;
1859			m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
1860
1861			if (m->m_pkthdr.len > sc->sc_if_framesize) {
1862				m_freem(m);
1863				STGE_RXCHAIN_RESET(sc);
1864				continue;
1865			}
1866			/*
1867			 * Set the incoming checksum information for
1868			 * the packet.
1869			 */
1870			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1871				if ((status & RFD_IPDetected) != 0) {
1872					m->m_pkthdr.csum_flags |=
1873						CSUM_IP_CHECKED;
1874					if ((status & RFD_IPError) == 0)
1875						m->m_pkthdr.csum_flags |=
1876						    CSUM_IP_VALID;
1877				}
1878				if (((status & RFD_TCPDetected) != 0 &&
1879				    (status & RFD_TCPError) == 0) ||
1880				    ((status & RFD_UDPDetected) != 0 &&
1881				    (status & RFD_UDPError) == 0)) {
1882					m->m_pkthdr.csum_flags |=
1883					    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1884					m->m_pkthdr.csum_data = 0xffff;
1885				}
1886			}
1887
1888#ifndef __NO_STRICT_ALIGNMENT
1889			if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
1890				if ((m = stge_fixup_rx(sc, m)) == NULL) {
1891					STGE_RXCHAIN_RESET(sc);
1892					continue;
1893				}
1894			}
1895#endif
1896			/* Check for VLAN tagged packets. */
1897			if ((status & RFD_VLANDetected) != 0 &&
1898			    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1899				m->m_pkthdr.ether_vtag = RFD_TCI(status64);
1900				m->m_flags |= M_VLANTAG;
1901			}
1902
1903			STGE_UNLOCK(sc);
1904			/* Pass it on. */
1905			(*ifp->if_input)(ifp, m);
1906			STGE_LOCK(sc);
1907			rx_npkts++;
1908
1909			STGE_RXCHAIN_RESET(sc);
1910		}
1911	}
1912
1913	if (prog > 0) {
1914		/* Update the consumer index. */
1915		sc->sc_cdata.stge_rx_cons = cons;
1916		bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1917		    sc->sc_cdata.stge_rx_ring_map,
1918		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1919	}
1920	return (rx_npkts);
1921}
1922
1923#ifdef DEVICE_POLLING
1924static int
1925stge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1926{
1927	struct stge_softc *sc;
1928	uint16_t status;
1929	int rx_npkts;
1930
1931	rx_npkts = 0;
1932	sc = ifp->if_softc;
1933	STGE_LOCK(sc);
1934	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1935		STGE_UNLOCK(sc);
1936		return (rx_npkts);
1937	}
1938
1939	sc->sc_cdata.stge_rxcycles = count;
1940	rx_npkts = stge_rxeof(sc);
1941	stge_txeof(sc);
1942
1943	if (cmd == POLL_AND_CHECK_STATUS) {
1944		status = CSR_READ_2(sc, STGE_IntStatus);
1945		status &= sc->sc_IntEnable;
1946		if (status != 0) {
1947			if ((status & IS_HostError) != 0) {
1948				device_printf(sc->sc_dev,
1949				    "Host interface error, resetting...\n");
1950				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1951				stge_init_locked(sc);
1952			}
1953			if ((status & IS_TxComplete) != 0) {
1954				if (stge_tx_error(sc) != 0) {
1955					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1956					stge_init_locked(sc);
1957				}
1958			}
1959		}
1960
1961	}
1962
1963	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1964		stge_start_locked(ifp);
1965
1966	STGE_UNLOCK(sc);
1967	return (rx_npkts);
1968}
1969#endif	/* DEVICE_POLLING */
1970
1971/*
1972 * stge_tick:
1973 *
1974 *	One second timer, used to tick the MII.
1975 */
1976static void
1977stge_tick(void *arg)
1978{
1979	struct stge_softc *sc;
1980	struct mii_data *mii;
1981
1982	sc = (struct stge_softc *)arg;
1983
1984	STGE_LOCK_ASSERT(sc);
1985
1986	mii = device_get_softc(sc->sc_miibus);
1987	mii_tick(mii);
1988
1989	/* Update statistics counters. */
1990	stge_stats_update(sc);
1991
1992	/*
1993	 * Relcaim any pending Tx descriptors to release mbufs in a
1994	 * timely manner as we don't generate Tx completion interrupts
1995	 * for every frame. This limits the delay to a maximum of one
1996	 * second.
1997	 */
1998	if (sc->sc_cdata.stge_tx_cnt != 0)
1999		stge_txeof(sc);
2000
2001	stge_watchdog(sc);
2002
2003	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
2004}
2005
2006/*
2007 * stge_stats_update:
2008 *
2009 *	Read the TC9021 statistics counters.
2010 */
2011static void
2012stge_stats_update(struct stge_softc *sc)
2013{
2014	struct ifnet *ifp;
2015
2016	STGE_LOCK_ASSERT(sc);
2017
2018	ifp = sc->sc_ifp;
2019
2020	CSR_READ_4(sc,STGE_OctetRcvOk);
2021
2022	ifp->if_ipackets += CSR_READ_4(sc, STGE_FramesRcvdOk);
2023
2024	ifp->if_ierrors += CSR_READ_2(sc, STGE_FramesLostRxErrors);
2025
2026	CSR_READ_4(sc, STGE_OctetXmtdOk);
2027
2028	ifp->if_opackets += CSR_READ_4(sc, STGE_FramesXmtdOk);
2029
2030	ifp->if_collisions +=
2031	    CSR_READ_4(sc, STGE_LateCollisions) +
2032	    CSR_READ_4(sc, STGE_MultiColFrames) +
2033	    CSR_READ_4(sc, STGE_SingleColFrames);
2034
2035	ifp->if_oerrors +=
2036	    CSR_READ_2(sc, STGE_FramesAbortXSColls) +
2037	    CSR_READ_2(sc, STGE_FramesWEXDeferal);
2038}
2039
2040/*
2041 * stge_reset:
2042 *
2043 *	Perform a soft reset on the TC9021.
2044 */
2045static void
2046stge_reset(struct stge_softc *sc, uint32_t how)
2047{
2048	uint32_t ac;
2049	uint8_t v;
2050	int i, dv;
2051
2052	STGE_LOCK_ASSERT(sc);
2053
2054	dv = 5000;
2055	ac = CSR_READ_4(sc, STGE_AsicCtrl);
2056	switch (how) {
2057	case STGE_RESET_TX:
2058		ac |= AC_TxReset | AC_FIFO;
2059		dv = 100;
2060		break;
2061	case STGE_RESET_RX:
2062		ac |= AC_RxReset | AC_FIFO;
2063		dv = 100;
2064		break;
2065	case STGE_RESET_FULL:
2066	default:
2067		/*
2068		 * Only assert RstOut if we're fiber.  We need GMII clocks
2069		 * to be present in order for the reset to complete on fiber
2070		 * cards.
2071		 */
2072		ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
2073		    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
2074		    (sc->sc_usefiber ? AC_RstOut : 0);
2075		break;
2076	}
2077
2078	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
2079
2080	/* Account for reset problem at 10Mbps. */
2081	DELAY(dv);
2082
2083	for (i = 0; i < STGE_TIMEOUT; i++) {
2084		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
2085			break;
2086		DELAY(dv);
2087	}
2088
2089	if (i == STGE_TIMEOUT)
2090		device_printf(sc->sc_dev, "reset failed to complete\n");
2091
2092	/* Set LED, from Linux IPG driver. */
2093	ac = CSR_READ_4(sc, STGE_AsicCtrl);
2094	ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
2095	if ((sc->sc_led & 0x01) != 0)
2096		ac |= AC_LEDMode;
2097	if ((sc->sc_led & 0x03) != 0)
2098		ac |= AC_LEDModeBit1;
2099	if ((sc->sc_led & 0x08) != 0)
2100		ac |= AC_LEDSpeed;
2101	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
2102
2103	/* Set PHY, from Linux IPG driver */
2104	v = CSR_READ_1(sc, STGE_PhySet);
2105	v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
2106	v |= ((sc->sc_led & 0x70) >> 4);
2107	CSR_WRITE_1(sc, STGE_PhySet, v);
2108}
2109
2110/*
2111 * stge_init:		[ ifnet interface function ]
2112 *
2113 *	Initialize the interface.
2114 */
2115static void
2116stge_init(void *xsc)
2117{
2118	struct stge_softc *sc;
2119
2120	sc = (struct stge_softc *)xsc;
2121	STGE_LOCK(sc);
2122	stge_init_locked(sc);
2123	STGE_UNLOCK(sc);
2124}
2125
2126static void
2127stge_init_locked(struct stge_softc *sc)
2128{
2129	struct ifnet *ifp;
2130	struct mii_data *mii;
2131	uint16_t eaddr[3];
2132	uint32_t v;
2133	int error;
2134
2135	STGE_LOCK_ASSERT(sc);
2136
2137	ifp = sc->sc_ifp;
2138	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2139		return;
2140	mii = device_get_softc(sc->sc_miibus);
2141
2142	/*
2143	 * Cancel any pending I/O.
2144	 */
2145	stge_stop(sc);
2146
2147	/*
2148	 * Reset the chip to a known state.
2149	 */
2150	stge_reset(sc, STGE_RESET_FULL);
2151
2152	/* Init descriptors. */
2153	error = stge_init_rx_ring(sc);
2154        if (error != 0) {
2155                device_printf(sc->sc_dev,
2156                    "initialization failed: no memory for rx buffers\n");
2157                stge_stop(sc);
2158		goto out;
2159        }
2160	stge_init_tx_ring(sc);
2161
2162	/* Set the station address. */
2163	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2164	CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
2165	CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
2166	CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
2167
2168	/*
2169	 * Set the statistics masks.  Disable all the RMON stats,
2170	 * and disable selected stats in the non-RMON stats registers.
2171	 */
2172	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
2173	CSR_WRITE_4(sc, STGE_StatisticsMask,
2174	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
2175	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
2176	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
2177	    (1U << 21));
2178
2179	/* Set up the receive filter. */
2180	stge_set_filter(sc);
2181	/* Program multicast filter. */
2182	stge_set_multi(sc);
2183
2184	/*
2185	 * Give the transmit and receive ring to the chip.
2186	 */
2187	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
2188	    STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
2189	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
2190	    STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
2191
2192	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
2193	    STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
2194	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
2195	    STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
2196
2197	/*
2198	 * Initialize the Tx auto-poll period.  It's OK to make this number
2199	 * large (255 is the max, but we use 127) -- we explicitly kick the
2200	 * transmit engine when there's actually a packet.
2201	 */
2202	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2203
2204	/* ..and the Rx auto-poll period. */
2205	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2206
2207	/* Initialize the Tx start threshold. */
2208	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
2209
2210	/* Rx DMA thresholds, from Linux */
2211	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
2212	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
2213
2214	/* Rx early threhold, from Linux */
2215	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
2216
2217	/* Tx DMA thresholds, from Linux */
2218	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
2219	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
2220
2221	/*
2222	 * Initialize the Rx DMA interrupt control register.  We
2223	 * request an interrupt after every incoming packet, but
2224	 * defer it for sc_rxint_dmawait us. When the number of
2225	 * interrupts pending reaches STGE_RXINT_NFRAME, we stop
2226	 * deferring the interrupt, and signal it immediately.
2227	 */
2228	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
2229	    RDIC_RxFrameCount(sc->sc_rxint_nframe) |
2230	    RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
2231
2232	/*
2233	 * Initialize the interrupt mask.
2234	 */
2235	sc->sc_IntEnable = IS_HostError | IS_TxComplete |
2236	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
2237#ifdef DEVICE_POLLING
2238	/* Disable interrupts if we are polling. */
2239	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2240		CSR_WRITE_2(sc, STGE_IntEnable, 0);
2241	else
2242#endif
2243	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
2244
2245	/*
2246	 * Configure the DMA engine.
2247	 * XXX Should auto-tune TxBurstLimit.
2248	 */
2249	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
2250
2251	/*
2252	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
2253	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
2254	 * in the Rx FIFO.
2255	 */
2256	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
2257	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
2258
2259	/*
2260	 * Set the maximum frame size.
2261	 */
2262	sc->sc_if_framesize = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2263	CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
2264
2265	/*
2266	 * Initialize MacCtrl -- do it before setting the media,
2267	 * as setting the media will actually program the register.
2268	 *
2269	 * Note: We have to poke the IFS value before poking
2270	 * anything else.
2271	 */
2272	/* Tx/Rx MAC should be disabled before programming IFS.*/
2273	CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
2274
2275	stge_vlan_setup(sc);
2276
2277	if (sc->sc_rev >= 6) {		/* >= B.2 */
2278		/* Multi-frag frame bug work-around. */
2279		CSR_WRITE_2(sc, STGE_DebugCtrl,
2280		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
2281
2282		/* Tx Poll Now bug work-around. */
2283		CSR_WRITE_2(sc, STGE_DebugCtrl,
2284		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
2285		/* Tx Poll Now bug work-around. */
2286		CSR_WRITE_2(sc, STGE_DebugCtrl,
2287		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
2288	}
2289
2290	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2291	v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
2292	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2293	/*
2294	 * It seems that transmitting frames without checking the state of
2295	 * Rx/Tx MAC wedge the hardware.
2296	 */
2297	stge_start_tx(sc);
2298	stge_start_rx(sc);
2299
2300	sc->sc_link = 0;
2301	/*
2302	 * Set the current media.
2303	 */
2304	mii_mediachg(mii);
2305
2306	/*
2307	 * Start the one second MII clock.
2308	 */
2309	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
2310
2311	/*
2312	 * ...all done!
2313	 */
2314	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2315	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2316
2317 out:
2318	if (error != 0)
2319		device_printf(sc->sc_dev, "interface not running\n");
2320}
2321
2322static void
2323stge_vlan_setup(struct stge_softc *sc)
2324{
2325	struct ifnet *ifp;
2326	uint32_t v;
2327
2328	ifp = sc->sc_ifp;
2329	/*
2330	 * The NIC always copy a VLAN tag regardless of STGE_MACCtrl
2331	 * MC_AutoVLANuntagging bit.
2332	 * MC_AutoVLANtagging bit selects which VLAN source to use
2333	 * between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
2334	 * bit has priority over MC_AutoVLANtagging bit. So we always
2335	 * use TFC instead of STGE_VLANTag register.
2336	 */
2337	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2338	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2339		v |= MC_AutoVLANuntagging;
2340	else
2341		v &= ~MC_AutoVLANuntagging;
2342	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2343}
2344
2345/*
2346 *	Stop transmission on the interface.
2347 */
2348static void
2349stge_stop(struct stge_softc *sc)
2350{
2351	struct ifnet *ifp;
2352	struct stge_txdesc *txd;
2353	struct stge_rxdesc *rxd;
2354	uint32_t v;
2355	int i;
2356
2357	STGE_LOCK_ASSERT(sc);
2358	/*
2359	 * Stop the one second clock.
2360	 */
2361	callout_stop(&sc->sc_tick_ch);
2362	sc->sc_watchdog_timer = 0;
2363
2364	/*
2365	 * Disable interrupts.
2366	 */
2367	CSR_WRITE_2(sc, STGE_IntEnable, 0);
2368
2369	/*
2370	 * Stop receiver, transmitter, and stats update.
2371	 */
2372	stge_stop_rx(sc);
2373	stge_stop_tx(sc);
2374	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2375	v |= MC_StatisticsDisable;
2376	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2377
2378	/*
2379	 * Stop the transmit and receive DMA.
2380	 */
2381	stge_dma_wait(sc);
2382	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
2383	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
2384	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
2385	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
2386
2387	/*
2388	 * Free RX and TX mbufs still in the queues.
2389	 */
2390	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2391		rxd = &sc->sc_cdata.stge_rxdesc[i];
2392		if (rxd->rx_m != NULL) {
2393			bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
2394			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2395			bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
2396			    rxd->rx_dmamap);
2397			m_freem(rxd->rx_m);
2398			rxd->rx_m = NULL;
2399		}
2400        }
2401	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2402		txd = &sc->sc_cdata.stge_txdesc[i];
2403		if (txd->tx_m != NULL) {
2404			bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
2405			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2406			bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
2407			    txd->tx_dmamap);
2408			m_freem(txd->tx_m);
2409			txd->tx_m = NULL;
2410		}
2411        }
2412
2413	/*
2414	 * Mark the interface down and cancel the watchdog timer.
2415	 */
2416	ifp = sc->sc_ifp;
2417	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2418	sc->sc_link = 0;
2419}
2420
2421static void
2422stge_start_tx(struct stge_softc *sc)
2423{
2424	uint32_t v;
2425	int i;
2426
2427	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2428	if ((v & MC_TxEnabled) != 0)
2429		return;
2430	v |= MC_TxEnable;
2431	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2432	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2433	for (i = STGE_TIMEOUT; i > 0; i--) {
2434		DELAY(10);
2435		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2436		if ((v & MC_TxEnabled) != 0)
2437			break;
2438	}
2439	if (i == 0)
2440		device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
2441}
2442
2443static void
2444stge_start_rx(struct stge_softc *sc)
2445{
2446	uint32_t v;
2447	int i;
2448
2449	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2450	if ((v & MC_RxEnabled) != 0)
2451		return;
2452	v |= MC_RxEnable;
2453	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2454	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2455	for (i = STGE_TIMEOUT; i > 0; i--) {
2456		DELAY(10);
2457		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2458		if ((v & MC_RxEnabled) != 0)
2459			break;
2460	}
2461	if (i == 0)
2462		device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
2463}
2464
2465static void
2466stge_stop_tx(struct stge_softc *sc)
2467{
2468	uint32_t v;
2469	int i;
2470
2471	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2472	if ((v & MC_TxEnabled) == 0)
2473		return;
2474	v |= MC_TxDisable;
2475	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2476	for (i = STGE_TIMEOUT; i > 0; i--) {
2477		DELAY(10);
2478		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2479		if ((v & MC_TxEnabled) == 0)
2480			break;
2481	}
2482	if (i == 0)
2483		device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
2484}
2485
2486static void
2487stge_stop_rx(struct stge_softc *sc)
2488{
2489	uint32_t v;
2490	int i;
2491
2492	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2493	if ((v & MC_RxEnabled) == 0)
2494		return;
2495	v |= MC_RxDisable;
2496	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2497	for (i = STGE_TIMEOUT; i > 0; i--) {
2498		DELAY(10);
2499		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2500		if ((v & MC_RxEnabled) == 0)
2501			break;
2502	}
2503	if (i == 0)
2504		device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
2505}
2506
2507static void
2508stge_init_tx_ring(struct stge_softc *sc)
2509{
2510	struct stge_ring_data *rd;
2511	struct stge_txdesc *txd;
2512	bus_addr_t addr;
2513	int i;
2514
2515	STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
2516	STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
2517
2518	sc->sc_cdata.stge_tx_prod = 0;
2519	sc->sc_cdata.stge_tx_cons = 0;
2520	sc->sc_cdata.stge_tx_cnt = 0;
2521
2522	rd = &sc->sc_rdata;
2523	bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
2524	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2525		if (i == (STGE_TX_RING_CNT - 1))
2526			addr = STGE_TX_RING_ADDR(sc, 0);
2527		else
2528			addr = STGE_TX_RING_ADDR(sc, i + 1);
2529		rd->stge_tx_ring[i].tfd_next = htole64(addr);
2530		rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
2531		txd = &sc->sc_cdata.stge_txdesc[i];
2532		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
2533	}
2534
2535	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
2536	    sc->sc_cdata.stge_tx_ring_map,
2537	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2538
2539}
2540
2541static int
2542stge_init_rx_ring(struct stge_softc *sc)
2543{
2544	struct stge_ring_data *rd;
2545	bus_addr_t addr;
2546	int i;
2547
2548	sc->sc_cdata.stge_rx_cons = 0;
2549	STGE_RXCHAIN_RESET(sc);
2550
2551	rd = &sc->sc_rdata;
2552	bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
2553	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2554		if (stge_newbuf(sc, i) != 0)
2555			return (ENOBUFS);
2556		if (i == (STGE_RX_RING_CNT - 1))
2557			addr = STGE_RX_RING_ADDR(sc, 0);
2558		else
2559			addr = STGE_RX_RING_ADDR(sc, i + 1);
2560		rd->stge_rx_ring[i].rfd_next = htole64(addr);
2561		rd->stge_rx_ring[i].rfd_status = 0;
2562	}
2563
2564	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
2565	    sc->sc_cdata.stge_rx_ring_map,
2566	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2567
2568	return (0);
2569}
2570
2571/*
2572 * stge_newbuf:
2573 *
2574 *	Add a receive buffer to the indicated descriptor.
2575 */
2576static int
2577stge_newbuf(struct stge_softc *sc, int idx)
2578{
2579	struct stge_rxdesc *rxd;
2580	struct stge_rfd *rfd;
2581	struct mbuf *m;
2582	bus_dma_segment_t segs[1];
2583	bus_dmamap_t map;
2584	int nsegs;
2585
2586	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2587	if (m == NULL)
2588		return (ENOBUFS);
2589	m->m_len = m->m_pkthdr.len = MCLBYTES;
2590	/*
2591	 * The hardware requires 4bytes aligned DMA address when JUMBO
2592	 * frame is used.
2593	 */
2594	if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
2595		m_adj(m, ETHER_ALIGN);
2596
2597	if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag,
2598	    sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2599		m_freem(m);
2600		return (ENOBUFS);
2601	}
2602	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2603
2604	rxd = &sc->sc_cdata.stge_rxdesc[idx];
2605	if (rxd->rx_m != NULL) {
2606		bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2607		    BUS_DMASYNC_POSTREAD);
2608		bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
2609	}
2610	map = rxd->rx_dmamap;
2611	rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
2612	sc->sc_cdata.stge_rx_sparemap = map;
2613	bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2614	    BUS_DMASYNC_PREREAD);
2615	rxd->rx_m = m;
2616
2617	rfd = &sc->sc_rdata.stge_rx_ring[idx];
2618	rfd->rfd_frag.frag_word0 =
2619	    htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
2620	rfd->rfd_status = 0;
2621
2622	return (0);
2623}
2624
2625/*
2626 * stge_set_filter:
2627 *
2628 *	Set up the receive filter.
2629 */
2630static void
2631stge_set_filter(struct stge_softc *sc)
2632{
2633	struct ifnet *ifp;
2634	uint16_t mode;
2635
2636	STGE_LOCK_ASSERT(sc);
2637
2638	ifp = sc->sc_ifp;
2639
2640	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2641	mode |= RM_ReceiveUnicast;
2642	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2643		mode |= RM_ReceiveBroadcast;
2644	else
2645		mode &= ~RM_ReceiveBroadcast;
2646	if ((ifp->if_flags & IFF_PROMISC) != 0)
2647		mode |= RM_ReceiveAllFrames;
2648	else
2649		mode &= ~RM_ReceiveAllFrames;
2650
2651	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2652}
2653
2654static void
2655stge_set_multi(struct stge_softc *sc)
2656{
2657	struct ifnet *ifp;
2658	struct ifmultiaddr *ifma;
2659	uint32_t crc;
2660	uint32_t mchash[2];
2661	uint16_t mode;
2662	int count;
2663
2664	STGE_LOCK_ASSERT(sc);
2665
2666	ifp = sc->sc_ifp;
2667
2668	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2669	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2670		if ((ifp->if_flags & IFF_PROMISC) != 0)
2671			mode |= RM_ReceiveAllFrames;
2672		else if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2673			mode |= RM_ReceiveMulticast;
2674		CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2675		return;
2676	}
2677
2678	/* clear existing filters. */
2679	CSR_WRITE_4(sc, STGE_HashTable0, 0);
2680	CSR_WRITE_4(sc, STGE_HashTable1, 0);
2681
2682	/*
2683	 * Set up the multicast address filter by passing all multicast
2684	 * addresses through a CRC generator, and then using the low-order
2685	 * 6 bits as an index into the 64 bit multicast hash table.  The
2686	 * high order bits select the register, while the rest of the bits
2687	 * select the bit within the register.
2688	 */
2689
2690	bzero(mchash, sizeof(mchash));
2691
2692	count = 0;
2693	if_maddr_rlock(sc->sc_ifp);
2694	TAILQ_FOREACH(ifma, &sc->sc_ifp->if_multiaddrs, ifma_link) {
2695		if (ifma->ifma_addr->sa_family != AF_LINK)
2696			continue;
2697		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2698		    ifma->ifma_addr), ETHER_ADDR_LEN);
2699
2700		/* Just want the 6 least significant bits. */
2701		crc &= 0x3f;
2702
2703		/* Set the corresponding bit in the hash table. */
2704		mchash[crc >> 5] |= 1 << (crc & 0x1f);
2705		count++;
2706	}
2707	if_maddr_runlock(ifp);
2708
2709	mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
2710	if (count > 0)
2711		mode |= RM_ReceiveMulticastHash;
2712	else
2713		mode &= ~RM_ReceiveMulticastHash;
2714
2715	CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
2716	CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
2717	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2718}
2719
2720static int
2721sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2722{
2723	int error, value;
2724
2725	if (!arg1)
2726		return (EINVAL);
2727	value = *(int *)arg1;
2728	error = sysctl_handle_int(oidp, &value, 0, req);
2729	if (error || !req->newptr)
2730		return (error);
2731	if (value < low || value > high)
2732		return (EINVAL);
2733        *(int *)arg1 = value;
2734
2735        return (0);
2736}
2737
2738static int
2739sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
2740{
2741	return (sysctl_int_range(oidp, arg1, arg2, req,
2742	    STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
2743}
2744
2745static int
2746sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
2747{
2748	return (sysctl_int_range(oidp, arg1, arg2, req,
2749	    STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));
2750}
2751