1/*	$NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $	*/
2
3/*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Device driver for the Sundance Tech. TC9021 10/100/1000
34 * Ethernet controller.
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD$");
39
40#ifdef HAVE_KERNEL_OPTION_HEADERS
41#include "opt_device_polling.h"
42#endif
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/endian.h>
47#include <sys/mbuf.h>
48#include <sys/malloc.h>
49#include <sys/kernel.h>
50#include <sys/module.h>
51#include <sys/socket.h>
52#include <sys/sockio.h>
53#include <sys/sysctl.h>
54#include <sys/taskqueue.h>
55
56#include <net/bpf.h>
57#include <net/ethernet.h>
58#include <net/if.h>
59#include <net/if_var.h>
60#include <net/if_dl.h>
61#include <net/if_media.h>
62#include <net/if_types.h>
63#include <net/if_vlan_var.h>
64
65#include <machine/bus.h>
66#include <machine/resource.h>
67#include <sys/bus.h>
68#include <sys/rman.h>
69
70#include <dev/mii/mii.h>
71#include <dev/mii/mii_bitbang.h>
72#include <dev/mii/miivar.h>
73
74#include <dev/pci/pcireg.h>
75#include <dev/pci/pcivar.h>
76
77#include <dev/stge/if_stgereg.h>
78
79#define	STGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
80
81MODULE_DEPEND(stge, pci, 1, 1, 1);
82MODULE_DEPEND(stge, ether, 1, 1, 1);
83MODULE_DEPEND(stge, miibus, 1, 1, 1);
84
85/* "device miibus" required.  See GENERIC if you get errors here. */
86#include "miibus_if.h"
87
88/*
89 * Devices supported by this driver.
90 */
91static const struct stge_product {
92	uint16_t	stge_vendorid;
93	uint16_t	stge_deviceid;
94	const char	*stge_name;
95} stge_products[] = {
96	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST1023,
97	  "Sundance ST-1023 Gigabit Ethernet" },
98
99	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST2021,
100	  "Sundance ST-2021 Gigabit Ethernet" },
101
102	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021,
103	  "Tamarack TC9021 Gigabit Ethernet" },
104
105	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021_ALT,
106	  "Tamarack TC9021 Gigabit Ethernet" },
107
108	/*
109	 * The Sundance sample boards use the Sundance vendor ID,
110	 * but the Tamarack product ID.
111	 */
112	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021,
113	  "Sundance TC9021 Gigabit Ethernet" },
114
115	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021_ALT,
116	  "Sundance TC9021 Gigabit Ethernet" },
117
118	{ VENDOR_DLINK,		DEVICEID_DLINK_DL4000,
119	  "D-Link DL-4000 Gigabit Ethernet" },
120
121	{ VENDOR_ANTARES,	DEVICEID_ANTARES_TC9021,
122	  "Antares Gigabit Ethernet" }
123};
124
125static int	stge_probe(device_t);
126static int	stge_attach(device_t);
127static int	stge_detach(device_t);
128static int	stge_shutdown(device_t);
129static int	stge_suspend(device_t);
130static int	stge_resume(device_t);
131
132static int	stge_encap(struct stge_softc *, struct mbuf **);
133static void	stge_start(struct ifnet *);
134static void	stge_start_locked(struct ifnet *);
135static void	stge_watchdog(struct stge_softc *);
136static int	stge_ioctl(struct ifnet *, u_long, caddr_t);
137static void	stge_init(void *);
138static void	stge_init_locked(struct stge_softc *);
139static void	stge_vlan_setup(struct stge_softc *);
140static void	stge_stop(struct stge_softc *);
141static void	stge_start_tx(struct stge_softc *);
142static void	stge_start_rx(struct stge_softc *);
143static void	stge_stop_tx(struct stge_softc *);
144static void	stge_stop_rx(struct stge_softc *);
145
146static void	stge_reset(struct stge_softc *, uint32_t);
147static int	stge_eeprom_wait(struct stge_softc *);
148static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
149static void	stge_tick(void *);
150static void	stge_stats_update(struct stge_softc *);
151static void	stge_set_filter(struct stge_softc *);
152static void	stge_set_multi(struct stge_softc *);
153
154static void	stge_link_task(void *, int);
155static void	stge_intr(void *);
156static __inline int stge_tx_error(struct stge_softc *);
157static void	stge_txeof(struct stge_softc *);
158static int	stge_rxeof(struct stge_softc *);
159static __inline void stge_discard_rxbuf(struct stge_softc *, int);
160static int	stge_newbuf(struct stge_softc *, int);
161#ifndef __NO_STRICT_ALIGNMENT
162static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
163#endif
164
165static int	stge_miibus_readreg(device_t, int, int);
166static int	stge_miibus_writereg(device_t, int, int, int);
167static void	stge_miibus_statchg(device_t);
168static int	stge_mediachange(struct ifnet *);
169static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
170
171static void	stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
172static int	stge_dma_alloc(struct stge_softc *);
173static void	stge_dma_free(struct stge_softc *);
174static void	stge_dma_wait(struct stge_softc *);
175static void	stge_init_tx_ring(struct stge_softc *);
176static int	stge_init_rx_ring(struct stge_softc *);
177#ifdef DEVICE_POLLING
178static int	stge_poll(struct ifnet *, enum poll_cmd, int);
179#endif
180
181static void	stge_setwol(struct stge_softc *);
182static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
183static int	sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
184static int	sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
185
186/*
187 * MII bit-bang glue
188 */
189static uint32_t stge_mii_bitbang_read(device_t);
190static void	stge_mii_bitbang_write(device_t, uint32_t);
191
192static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
193	stge_mii_bitbang_read,
194	stge_mii_bitbang_write,
195	{
196		PC_MgmtData,		/* MII_BIT_MDO */
197		PC_MgmtData,		/* MII_BIT_MDI */
198		PC_MgmtClk,		/* MII_BIT_MDC */
199		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
200		0,			/* MII_BIT_DIR_PHY_HOST */
201	}
202};
203
204static device_method_t stge_methods[] = {
205	/* Device interface */
206	DEVMETHOD(device_probe,		stge_probe),
207	DEVMETHOD(device_attach,	stge_attach),
208	DEVMETHOD(device_detach,	stge_detach),
209	DEVMETHOD(device_shutdown,	stge_shutdown),
210	DEVMETHOD(device_suspend,	stge_suspend),
211	DEVMETHOD(device_resume,	stge_resume),
212
213	/* MII interface */
214	DEVMETHOD(miibus_readreg,	stge_miibus_readreg),
215	DEVMETHOD(miibus_writereg,	stge_miibus_writereg),
216	DEVMETHOD(miibus_statchg,	stge_miibus_statchg),
217
218	DEVMETHOD_END
219};
220
221static driver_t stge_driver = {
222	"stge",
223	stge_methods,
224	sizeof(struct stge_softc)
225};
226
227static devclass_t stge_devclass;
228
229DRIVER_MODULE(stge, pci, stge_driver, stge_devclass, 0, 0);
230DRIVER_MODULE(miibus, stge, miibus_driver, miibus_devclass, 0, 0);
231
232static struct resource_spec stge_res_spec_io[] = {
233	{ SYS_RES_IOPORT,	PCIR_BAR(0),	RF_ACTIVE },
234	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
235	{ -1,			0,		0 }
236};
237
238static struct resource_spec stge_res_spec_mem[] = {
239	{ SYS_RES_MEMORY,	PCIR_BAR(1),	RF_ACTIVE },
240	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
241	{ -1,			0,		0 }
242};
243
244/*
245 * stge_mii_bitbang_read: [mii bit-bang interface function]
246 *
247 *	Read the MII serial port for the MII bit-bang module.
248 */
249static uint32_t
250stge_mii_bitbang_read(device_t dev)
251{
252	struct stge_softc *sc;
253	uint32_t val;
254
255	sc = device_get_softc(dev);
256
257	val = CSR_READ_1(sc, STGE_PhyCtrl);
258	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
259	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
260	return (val);
261}
262
263/*
264 * stge_mii_bitbang_write: [mii big-bang interface function]
265 *
266 *	Write the MII serial port for the MII bit-bang module.
267 */
268static void
269stge_mii_bitbang_write(device_t dev, uint32_t val)
270{
271	struct stge_softc *sc;
272
273	sc = device_get_softc(dev);
274
275	CSR_WRITE_1(sc, STGE_PhyCtrl, val);
276	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
277	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
278}
279
280/*
281 * sc_miibus_readreg:	[mii interface function]
282 *
283 *	Read a PHY register on the MII of the TC9021.
284 */
285static int
286stge_miibus_readreg(device_t dev, int phy, int reg)
287{
288	struct stge_softc *sc;
289	int error, val;
290
291	sc = device_get_softc(dev);
292
293	if (reg == STGE_PhyCtrl) {
294		/* XXX allow ip1000phy read STGE_PhyCtrl register. */
295		STGE_MII_LOCK(sc);
296		error = CSR_READ_1(sc, STGE_PhyCtrl);
297		STGE_MII_UNLOCK(sc);
298		return (error);
299	}
300
301	STGE_MII_LOCK(sc);
302	val = mii_bitbang_readreg(dev, &stge_mii_bitbang_ops, phy, reg);
303	STGE_MII_UNLOCK(sc);
304	return (val);
305}
306
307/*
308 * stge_miibus_writereg:	[mii interface function]
309 *
310 *	Write a PHY register on the MII of the TC9021.
311 */
312static int
313stge_miibus_writereg(device_t dev, int phy, int reg, int val)
314{
315	struct stge_softc *sc;
316
317	sc = device_get_softc(dev);
318
319	STGE_MII_LOCK(sc);
320	mii_bitbang_writereg(dev, &stge_mii_bitbang_ops, phy, reg, val);
321	STGE_MII_UNLOCK(sc);
322	return (0);
323}
324
325/*
326 * stge_miibus_statchg:	[mii interface function]
327 *
328 *	Callback from MII layer when media changes.
329 */
330static void
331stge_miibus_statchg(device_t dev)
332{
333	struct stge_softc *sc;
334
335	sc = device_get_softc(dev);
336	taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task);
337}
338
339/*
340 * stge_mediastatus:	[ifmedia interface function]
341 *
342 *	Get the current interface media status.
343 */
344static void
345stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
346{
347	struct stge_softc *sc;
348	struct mii_data *mii;
349
350	sc = ifp->if_softc;
351	mii = device_get_softc(sc->sc_miibus);
352
353	mii_pollstat(mii);
354	ifmr->ifm_status = mii->mii_media_status;
355	ifmr->ifm_active = mii->mii_media_active;
356}
357
358/*
359 * stge_mediachange:	[ifmedia interface function]
360 *
361 *	Set hardware to newly-selected media.
362 */
363static int
364stge_mediachange(struct ifnet *ifp)
365{
366	struct stge_softc *sc;
367	struct mii_data *mii;
368
369	sc = ifp->if_softc;
370	mii = device_get_softc(sc->sc_miibus);
371	mii_mediachg(mii);
372
373	return (0);
374}
375
376static int
377stge_eeprom_wait(struct stge_softc *sc)
378{
379	int i;
380
381	for (i = 0; i < STGE_TIMEOUT; i++) {
382		DELAY(1000);
383		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
384			return (0);
385	}
386	return (1);
387}
388
389/*
390 * stge_read_eeprom:
391 *
392 *	Read data from the serial EEPROM.
393 */
394static void
395stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
396{
397
398	if (stge_eeprom_wait(sc))
399		device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
400
401	CSR_WRITE_2(sc, STGE_EepromCtrl,
402	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
403	if (stge_eeprom_wait(sc))
404		device_printf(sc->sc_dev, "EEPROM read timed out\n");
405	*data = CSR_READ_2(sc, STGE_EepromData);
406}
407
408
409static int
410stge_probe(device_t dev)
411{
412	const struct stge_product *sp;
413	int i;
414	uint16_t vendor, devid;
415
416	vendor = pci_get_vendor(dev);
417	devid = pci_get_device(dev);
418	sp = stge_products;
419	for (i = 0; i < nitems(stge_products); i++, sp++) {
420		if (vendor == sp->stge_vendorid &&
421		    devid == sp->stge_deviceid) {
422			device_set_desc(dev, sp->stge_name);
423			return (BUS_PROBE_DEFAULT);
424		}
425	}
426
427	return (ENXIO);
428}
429
430static int
431stge_attach(device_t dev)
432{
433	struct stge_softc *sc;
434	struct ifnet *ifp;
435	uint8_t enaddr[ETHER_ADDR_LEN];
436	int error, flags, i;
437	uint16_t cmd;
438	uint32_t val;
439
440	error = 0;
441	sc = device_get_softc(dev);
442	sc->sc_dev = dev;
443
444	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
445	    MTX_DEF);
446	mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF);
447	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
448	TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc);
449
450	/*
451	 * Map the device.
452	 */
453	pci_enable_busmaster(dev);
454	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
455	val = pci_read_config(dev, PCIR_BAR(1), 4);
456	if (PCI_BAR_IO(val))
457		sc->sc_spec = stge_res_spec_mem;
458	else {
459		val = pci_read_config(dev, PCIR_BAR(0), 4);
460		if (!PCI_BAR_IO(val)) {
461			device_printf(sc->sc_dev, "couldn't locate IO BAR\n");
462			error = ENXIO;
463			goto fail;
464		}
465		sc->sc_spec = stge_res_spec_io;
466	}
467	error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res);
468	if (error != 0) {
469		device_printf(dev, "couldn't allocate %s resources\n",
470		    sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O");
471		goto fail;
472	}
473	sc->sc_rev = pci_get_revid(dev);
474
475	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
476	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
477	    "rxint_nframe", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_nframe, 0,
478	    sysctl_hw_stge_rxint_nframe, "I", "stge rx interrupt nframe");
479
480	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
481	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
482	    "rxint_dmawait", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_dmawait, 0,
483	    sysctl_hw_stge_rxint_dmawait, "I", "stge rx interrupt dmawait");
484
485	/* Pull in device tunables. */
486	sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
487	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
488	    "rxint_nframe", &sc->sc_rxint_nframe);
489	if (error == 0) {
490		if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN ||
491		    sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) {
492			device_printf(dev, "rxint_nframe value out of range; "
493			    "using default: %d\n", STGE_RXINT_NFRAME_DEFAULT);
494			sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
495		}
496	}
497
498	sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
499	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
500	    "rxint_dmawait", &sc->sc_rxint_dmawait);
501	if (error == 0) {
502		if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN ||
503		    sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) {
504			device_printf(dev, "rxint_dmawait value out of range; "
505			    "using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT);
506			sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
507		}
508	}
509
510	if ((error = stge_dma_alloc(sc)) != 0)
511		goto fail;
512
513	/*
514	 * Determine if we're copper or fiber.  It affects how we
515	 * reset the card.
516	 */
517	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
518		sc->sc_usefiber = 1;
519	else
520		sc->sc_usefiber = 0;
521
522	/* Load LED configuration from EEPROM. */
523	stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
524
525	/*
526	 * Reset the chip to a known state.
527	 */
528	STGE_LOCK(sc);
529	stge_reset(sc, STGE_RESET_FULL);
530	STGE_UNLOCK(sc);
531
532	/*
533	 * Reading the station address from the EEPROM doesn't seem
534	 * to work, at least on my sample boards.  Instead, since
535	 * the reset sequence does AutoInit, read it from the station
536	 * address registers. For Sundance 1023 you can only read it
537	 * from EEPROM.
538	 */
539	if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
540		uint16_t v;
541
542		v = CSR_READ_2(sc, STGE_StationAddress0);
543		enaddr[0] = v & 0xff;
544		enaddr[1] = v >> 8;
545		v = CSR_READ_2(sc, STGE_StationAddress1);
546		enaddr[2] = v & 0xff;
547		enaddr[3] = v >> 8;
548		v = CSR_READ_2(sc, STGE_StationAddress2);
549		enaddr[4] = v & 0xff;
550		enaddr[5] = v >> 8;
551		sc->sc_stge1023 = 0;
552	} else {
553		uint16_t myaddr[ETHER_ADDR_LEN / 2];
554		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
555			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
556			    &myaddr[i]);
557			myaddr[i] = le16toh(myaddr[i]);
558		}
559		bcopy(myaddr, enaddr, sizeof(enaddr));
560		sc->sc_stge1023 = 1;
561	}
562
563	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
564	if (ifp == NULL) {
565		device_printf(sc->sc_dev, "failed to if_alloc()\n");
566		error = ENXIO;
567		goto fail;
568	}
569
570	ifp->if_softc = sc;
571	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
572	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
573	ifp->if_ioctl = stge_ioctl;
574	ifp->if_start = stge_start;
575	ifp->if_init = stge_init;
576	ifp->if_snd.ifq_drv_maxlen = STGE_TX_RING_CNT - 1;
577	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
578	IFQ_SET_READY(&ifp->if_snd);
579	/* Revision B3 and earlier chips have checksum bug. */
580	if (sc->sc_rev >= 0x0c) {
581		ifp->if_hwassist = STGE_CSUM_FEATURES;
582		ifp->if_capabilities = IFCAP_HWCSUM;
583	} else {
584		ifp->if_hwassist = 0;
585		ifp->if_capabilities = 0;
586	}
587	ifp->if_capabilities |= IFCAP_WOL_MAGIC;
588	ifp->if_capenable = ifp->if_capabilities;
589
590	/*
591	 * Read some important bits from the PhyCtrl register.
592	 */
593	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
594	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
595
596	/* Set up MII bus. */
597	flags = MIIF_DOPAUSE;
598	if (sc->sc_rev >= 0x40 && sc->sc_rev <= 0x4e)
599		flags |= MIIF_MACPRIV0;
600	error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, stge_mediachange,
601	    stge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
602	    flags);
603	if (error != 0) {
604		device_printf(sc->sc_dev, "attaching PHYs failed\n");
605		goto fail;
606	}
607
608	ether_ifattach(ifp, enaddr);
609
610	/* VLAN capability setup */
611	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
612	if (sc->sc_rev >= 0x0c)
613		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
614	ifp->if_capenable = ifp->if_capabilities;
615#ifdef DEVICE_POLLING
616	ifp->if_capabilities |= IFCAP_POLLING;
617#endif
618	/*
619	 * Tell the upper layer(s) we support long frames.
620	 * Must appear after the call to ether_ifattach() because
621	 * ether_ifattach() sets ifi_hdrlen to the default value.
622	 */
623	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
624
625	/*
626	 * The manual recommends disabling early transmit, so we
627	 * do.  It's disabled anyway, if using IP checksumming,
628	 * since the entire packet must be in the FIFO in order
629	 * for the chip to perform the checksum.
630	 */
631	sc->sc_txthresh = 0x0fff;
632
633	/*
634	 * Disable MWI if the PCI layer tells us to.
635	 */
636	sc->sc_DMACtrl = 0;
637	if ((cmd & PCIM_CMD_MWRICEN) == 0)
638		sc->sc_DMACtrl |= DMAC_MWIDisable;
639
640	/*
641	 * Hookup IRQ
642	 */
643	error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE,
644	    NULL, stge_intr, sc, &sc->sc_ih);
645	if (error != 0) {
646		ether_ifdetach(ifp);
647		device_printf(sc->sc_dev, "couldn't set up IRQ\n");
648		sc->sc_ifp = NULL;
649		goto fail;
650	}
651
652fail:
653	if (error != 0)
654		stge_detach(dev);
655
656	return (error);
657}
658
659static int
660stge_detach(device_t dev)
661{
662	struct stge_softc *sc;
663	struct ifnet *ifp;
664
665	sc = device_get_softc(dev);
666
667	ifp = sc->sc_ifp;
668#ifdef DEVICE_POLLING
669	if (ifp && ifp->if_capenable & IFCAP_POLLING)
670		ether_poll_deregister(ifp);
671#endif
672	if (device_is_attached(dev)) {
673		STGE_LOCK(sc);
674		/* XXX */
675		sc->sc_detach = 1;
676		stge_stop(sc);
677		STGE_UNLOCK(sc);
678		callout_drain(&sc->sc_tick_ch);
679		taskqueue_drain(taskqueue_swi, &sc->sc_link_task);
680		ether_ifdetach(ifp);
681	}
682
683	if (sc->sc_miibus != NULL) {
684		device_delete_child(dev, sc->sc_miibus);
685		sc->sc_miibus = NULL;
686	}
687	bus_generic_detach(dev);
688	stge_dma_free(sc);
689
690	if (ifp != NULL) {
691		if_free(ifp);
692		sc->sc_ifp = NULL;
693	}
694
695	if (sc->sc_ih) {
696		bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih);
697		sc->sc_ih = NULL;
698	}
699	bus_release_resources(dev, sc->sc_spec, sc->sc_res);
700
701	mtx_destroy(&sc->sc_mii_mtx);
702	mtx_destroy(&sc->sc_mtx);
703
704	return (0);
705}
706
707struct stge_dmamap_arg {
708	bus_addr_t	stge_busaddr;
709};
710
711static void
712stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
713{
714	struct stge_dmamap_arg *ctx;
715
716	if (error != 0)
717		return;
718
719	ctx = (struct stge_dmamap_arg *)arg;
720	ctx->stge_busaddr = segs[0].ds_addr;
721}
722
723static int
724stge_dma_alloc(struct stge_softc *sc)
725{
726	struct stge_dmamap_arg ctx;
727	struct stge_txdesc *txd;
728	struct stge_rxdesc *rxd;
729	int error, i;
730
731	/* create parent tag. */
732	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */
733		    1, 0,			/* algnmnt, boundary */
734		    STGE_DMA_MAXADDR,		/* lowaddr */
735		    BUS_SPACE_MAXADDR,		/* highaddr */
736		    NULL, NULL,			/* filter, filterarg */
737		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
738		    0,				/* nsegments */
739		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
740		    0,				/* flags */
741		    NULL, NULL,			/* lockfunc, lockarg */
742		    &sc->sc_cdata.stge_parent_tag);
743	if (error != 0) {
744		device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
745		goto fail;
746	}
747	/* create tag for Tx ring. */
748	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
749		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
750		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
751		    BUS_SPACE_MAXADDR,		/* highaddr */
752		    NULL, NULL,			/* filter, filterarg */
753		    STGE_TX_RING_SZ,		/* maxsize */
754		    1,				/* nsegments */
755		    STGE_TX_RING_SZ,		/* maxsegsize */
756		    0,				/* flags */
757		    NULL, NULL,			/* lockfunc, lockarg */
758		    &sc->sc_cdata.stge_tx_ring_tag);
759	if (error != 0) {
760		device_printf(sc->sc_dev,
761		    "failed to allocate Tx ring DMA tag\n");
762		goto fail;
763	}
764
765	/* create tag for Rx ring. */
766	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
767		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
768		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
769		    BUS_SPACE_MAXADDR,		/* highaddr */
770		    NULL, NULL,			/* filter, filterarg */
771		    STGE_RX_RING_SZ,		/* maxsize */
772		    1,				/* nsegments */
773		    STGE_RX_RING_SZ,		/* maxsegsize */
774		    0,				/* flags */
775		    NULL, NULL,			/* lockfunc, lockarg */
776		    &sc->sc_cdata.stge_rx_ring_tag);
777	if (error != 0) {
778		device_printf(sc->sc_dev,
779		    "failed to allocate Rx ring DMA tag\n");
780		goto fail;
781	}
782
783	/* create tag for Tx buffers. */
784	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
785		    1, 0,			/* algnmnt, boundary */
786		    BUS_SPACE_MAXADDR,		/* lowaddr */
787		    BUS_SPACE_MAXADDR,		/* highaddr */
788		    NULL, NULL,			/* filter, filterarg */
789		    MCLBYTES * STGE_MAXTXSEGS,	/* maxsize */
790		    STGE_MAXTXSEGS,		/* nsegments */
791		    MCLBYTES,			/* maxsegsize */
792		    0,				/* flags */
793		    NULL, NULL,			/* lockfunc, lockarg */
794		    &sc->sc_cdata.stge_tx_tag);
795	if (error != 0) {
796		device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
797		goto fail;
798	}
799
800	/* create tag for Rx buffers. */
801	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
802		    1, 0,			/* algnmnt, boundary */
803		    BUS_SPACE_MAXADDR,		/* lowaddr */
804		    BUS_SPACE_MAXADDR,		/* highaddr */
805		    NULL, NULL,			/* filter, filterarg */
806		    MCLBYTES,			/* maxsize */
807		    1,				/* nsegments */
808		    MCLBYTES,			/* maxsegsize */
809		    0,				/* flags */
810		    NULL, NULL,			/* lockfunc, lockarg */
811		    &sc->sc_cdata.stge_rx_tag);
812	if (error != 0) {
813		device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
814		goto fail;
815	}
816
817	/* allocate DMA'able memory and load the DMA map for Tx ring. */
818	error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
819	    (void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT |
820	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_tx_ring_map);
821	if (error != 0) {
822		device_printf(sc->sc_dev,
823		    "failed to allocate DMA'able memory for Tx ring\n");
824		goto fail;
825	}
826
827	ctx.stge_busaddr = 0;
828	error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
829	    sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
830	    STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
831	if (error != 0 || ctx.stge_busaddr == 0) {
832		device_printf(sc->sc_dev,
833		    "failed to load DMA'able memory for Tx ring\n");
834		goto fail;
835	}
836	sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
837
838	/* allocate DMA'able memory and load the DMA map for Rx ring. */
839	error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
840	    (void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT |
841	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_rx_ring_map);
842	if (error != 0) {
843		device_printf(sc->sc_dev,
844		    "failed to allocate DMA'able memory for Rx ring\n");
845		goto fail;
846	}
847
848	ctx.stge_busaddr = 0;
849	error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
850	    sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
851	    STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
852	if (error != 0 || ctx.stge_busaddr == 0) {
853		device_printf(sc->sc_dev,
854		    "failed to load DMA'able memory for Rx ring\n");
855		goto fail;
856	}
857	sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
858
859	/* create DMA maps for Tx buffers. */
860	for (i = 0; i < STGE_TX_RING_CNT; i++) {
861		txd = &sc->sc_cdata.stge_txdesc[i];
862		txd->tx_m = NULL;
863		txd->tx_dmamap = 0;
864		error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
865		    &txd->tx_dmamap);
866		if (error != 0) {
867			device_printf(sc->sc_dev,
868			    "failed to create Tx dmamap\n");
869			goto fail;
870		}
871	}
872	/* create DMA maps for Rx buffers. */
873	if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
874	    &sc->sc_cdata.stge_rx_sparemap)) != 0) {
875		device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
876		goto fail;
877	}
878	for (i = 0; i < STGE_RX_RING_CNT; i++) {
879		rxd = &sc->sc_cdata.stge_rxdesc[i];
880		rxd->rx_m = NULL;
881		rxd->rx_dmamap = 0;
882		error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
883		    &rxd->rx_dmamap);
884		if (error != 0) {
885			device_printf(sc->sc_dev,
886			    "failed to create Rx dmamap\n");
887			goto fail;
888		}
889	}
890
891fail:
892	return (error);
893}
894
895static void
896stge_dma_free(struct stge_softc *sc)
897{
898	struct stge_txdesc *txd;
899	struct stge_rxdesc *rxd;
900	int i;
901
902	/* Tx ring */
903	if (sc->sc_cdata.stge_tx_ring_tag) {
904		if (sc->sc_rdata.stge_tx_ring_paddr)
905			bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
906			    sc->sc_cdata.stge_tx_ring_map);
907		if (sc->sc_rdata.stge_tx_ring)
908			bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
909			    sc->sc_rdata.stge_tx_ring,
910			    sc->sc_cdata.stge_tx_ring_map);
911		sc->sc_rdata.stge_tx_ring = NULL;
912		sc->sc_rdata.stge_tx_ring_paddr = 0;
913		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
914		sc->sc_cdata.stge_tx_ring_tag = NULL;
915	}
916	/* Rx ring */
917	if (sc->sc_cdata.stge_rx_ring_tag) {
918		if (sc->sc_rdata.stge_rx_ring_paddr)
919			bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
920			    sc->sc_cdata.stge_rx_ring_map);
921		if (sc->sc_rdata.stge_rx_ring)
922			bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
923			    sc->sc_rdata.stge_rx_ring,
924			    sc->sc_cdata.stge_rx_ring_map);
925		sc->sc_rdata.stge_rx_ring = NULL;
926		sc->sc_rdata.stge_rx_ring_paddr = 0;
927		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
928		sc->sc_cdata.stge_rx_ring_tag = NULL;
929	}
930	/* Tx buffers */
931	if (sc->sc_cdata.stge_tx_tag) {
932		for (i = 0; i < STGE_TX_RING_CNT; i++) {
933			txd = &sc->sc_cdata.stge_txdesc[i];
934			if (txd->tx_dmamap) {
935				bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
936				    txd->tx_dmamap);
937				txd->tx_dmamap = 0;
938			}
939		}
940		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
941		sc->sc_cdata.stge_tx_tag = NULL;
942	}
943	/* Rx buffers */
944	if (sc->sc_cdata.stge_rx_tag) {
945		for (i = 0; i < STGE_RX_RING_CNT; i++) {
946			rxd = &sc->sc_cdata.stge_rxdesc[i];
947			if (rxd->rx_dmamap) {
948				bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
949				    rxd->rx_dmamap);
950				rxd->rx_dmamap = 0;
951			}
952		}
953		if (sc->sc_cdata.stge_rx_sparemap) {
954			bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
955			    sc->sc_cdata.stge_rx_sparemap);
956			sc->sc_cdata.stge_rx_sparemap = 0;
957		}
958		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
959		sc->sc_cdata.stge_rx_tag = NULL;
960	}
961
962	if (sc->sc_cdata.stge_parent_tag) {
963		bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
964		sc->sc_cdata.stge_parent_tag = NULL;
965	}
966}
967
968/*
969 * stge_shutdown:
970 *
971 *	Make sure the interface is stopped at reboot time.
972 */
973static int
974stge_shutdown(device_t dev)
975{
976
977	return (stge_suspend(dev));
978}
979
980static void
981stge_setwol(struct stge_softc *sc)
982{
983	struct ifnet *ifp;
984	uint8_t v;
985
986	STGE_LOCK_ASSERT(sc);
987
988	ifp = sc->sc_ifp;
989	v = CSR_READ_1(sc, STGE_WakeEvent);
990	/* Disable all WOL bits. */
991	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
992	    WE_WakeOnLanEnable);
993	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
994		v |= WE_MagicPktEnable | WE_WakeOnLanEnable;
995	CSR_WRITE_1(sc, STGE_WakeEvent, v);
996	/* Reset Tx and prevent transmission. */
997	CSR_WRITE_4(sc, STGE_AsicCtrl,
998	    CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset);
999	/*
1000	 * TC9021 automatically reset link speed to 100Mbps when it's put
1001	 * into sleep so there is no need to try to resetting link speed.
1002	 */
1003}
1004
1005static int
1006stge_suspend(device_t dev)
1007{
1008	struct stge_softc *sc;
1009
1010	sc = device_get_softc(dev);
1011
1012	STGE_LOCK(sc);
1013	stge_stop(sc);
1014	sc->sc_suspended = 1;
1015	stge_setwol(sc);
1016	STGE_UNLOCK(sc);
1017
1018	return (0);
1019}
1020
1021static int
1022stge_resume(device_t dev)
1023{
1024	struct stge_softc *sc;
1025	struct ifnet *ifp;
1026	uint8_t v;
1027
1028	sc = device_get_softc(dev);
1029
1030	STGE_LOCK(sc);
1031	/*
1032	 * Clear WOL bits, so special frames wouldn't interfere
1033	 * normal Rx operation anymore.
1034	 */
1035	v = CSR_READ_1(sc, STGE_WakeEvent);
1036	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1037	    WE_WakeOnLanEnable);
1038	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1039	ifp = sc->sc_ifp;
1040	if (ifp->if_flags & IFF_UP)
1041		stge_init_locked(sc);
1042
1043	sc->sc_suspended = 0;
1044	STGE_UNLOCK(sc);
1045
1046	return (0);
1047}
1048
1049static void
1050stge_dma_wait(struct stge_softc *sc)
1051{
1052	int i;
1053
1054	for (i = 0; i < STGE_TIMEOUT; i++) {
1055		DELAY(2);
1056		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
1057			break;
1058	}
1059
1060	if (i == STGE_TIMEOUT)
1061		device_printf(sc->sc_dev, "DMA wait timed out\n");
1062}
1063
1064static int
1065stge_encap(struct stge_softc *sc, struct mbuf **m_head)
1066{
1067	struct stge_txdesc *txd;
1068	struct stge_tfd *tfd;
1069	struct mbuf *m;
1070	bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
1071	int error, i, nsegs, si;
1072	uint64_t csum_flags, tfc;
1073
1074	STGE_LOCK_ASSERT(sc);
1075
1076	if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
1077		return (ENOBUFS);
1078
1079	error =  bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1080	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1081	if (error == EFBIG) {
1082		m = m_collapse(*m_head, M_NOWAIT, STGE_MAXTXSEGS);
1083		if (m == NULL) {
1084			m_freem(*m_head);
1085			*m_head = NULL;
1086			return (ENOMEM);
1087		}
1088		*m_head = m;
1089		error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1090		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1091		if (error != 0) {
1092			m_freem(*m_head);
1093			*m_head = NULL;
1094			return (error);
1095		}
1096	} else if (error != 0)
1097		return (error);
1098	if (nsegs == 0) {
1099		m_freem(*m_head);
1100		*m_head = NULL;
1101		return (EIO);
1102	}
1103
1104	m = *m_head;
1105	csum_flags = 0;
1106	if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
1107		if (m->m_pkthdr.csum_flags & CSUM_IP)
1108			csum_flags |= TFD_IPChecksumEnable;
1109		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1110			csum_flags |= TFD_TCPChecksumEnable;
1111		else if (m->m_pkthdr.csum_flags & CSUM_UDP)
1112			csum_flags |= TFD_UDPChecksumEnable;
1113	}
1114
1115	si = sc->sc_cdata.stge_tx_prod;
1116	tfd = &sc->sc_rdata.stge_tx_ring[si];
1117	for (i = 0; i < nsegs; i++)
1118		tfd->tfd_frags[i].frag_word0 =
1119		    htole64(FRAG_ADDR(txsegs[i].ds_addr) |
1120		    FRAG_LEN(txsegs[i].ds_len));
1121	sc->sc_cdata.stge_tx_cnt++;
1122
1123	tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
1124	    TFD_FragCount(nsegs) | csum_flags;
1125	if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
1126		tfc |= TFD_TxDMAIndicate;
1127
1128	/* Update producer index. */
1129	sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
1130
1131	/* Check if we have a VLAN tag to insert. */
1132	if (m->m_flags & M_VLANTAG)
1133		tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag));
1134	tfd->tfd_control = htole64(tfc);
1135
1136	/* Update Tx Queue. */
1137	STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
1138	STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
1139	txd->tx_m = m;
1140
1141	/* Sync descriptors. */
1142	bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1143	    BUS_DMASYNC_PREWRITE);
1144	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1145	    sc->sc_cdata.stge_tx_ring_map,
1146	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1147
1148	return (0);
1149}
1150
1151/*
1152 * stge_start:		[ifnet interface function]
1153 *
1154 *	Start packet transmission on the interface.
1155 */
1156static void
1157stge_start(struct ifnet *ifp)
1158{
1159	struct stge_softc *sc;
1160
1161	sc = ifp->if_softc;
1162	STGE_LOCK(sc);
1163	stge_start_locked(ifp);
1164	STGE_UNLOCK(sc);
1165}
1166
1167static void
1168stge_start_locked(struct ifnet *ifp)
1169{
1170        struct stge_softc *sc;
1171        struct mbuf *m_head;
1172	int enq;
1173
1174	sc = ifp->if_softc;
1175
1176	STGE_LOCK_ASSERT(sc);
1177
1178	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1179	    IFF_DRV_RUNNING || sc->sc_link == 0)
1180		return;
1181
1182	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1183		if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
1184			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1185			break;
1186		}
1187
1188		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1189		if (m_head == NULL)
1190			break;
1191		/*
1192		 * Pack the data into the transmit ring. If we
1193		 * don't have room, set the OACTIVE flag and wait
1194		 * for the NIC to drain the ring.
1195		 */
1196		if (stge_encap(sc, &m_head)) {
1197			if (m_head == NULL)
1198				break;
1199			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1200			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1201			break;
1202		}
1203
1204		enq++;
1205		/*
1206		 * If there's a BPF listener, bounce a copy of this frame
1207		 * to him.
1208		 */
1209		ETHER_BPF_MTAP(ifp, m_head);
1210	}
1211
1212	if (enq > 0) {
1213		/* Transmit */
1214		CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
1215
1216		/* Set a timeout in case the chip goes out to lunch. */
1217		sc->sc_watchdog_timer = 5;
1218	}
1219}
1220
1221/*
1222 * stge_watchdog:
1223 *
1224 *	Watchdog timer handler.
1225 */
1226static void
1227stge_watchdog(struct stge_softc *sc)
1228{
1229	struct ifnet *ifp;
1230
1231	STGE_LOCK_ASSERT(sc);
1232
1233	if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
1234		return;
1235
1236	ifp = sc->sc_ifp;
1237	if_printf(sc->sc_ifp, "device timeout\n");
1238	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1239	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1240	stge_init_locked(sc);
1241	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1242		stge_start_locked(ifp);
1243}
1244
1245/*
1246 * stge_ioctl:		[ifnet interface function]
1247 *
1248 *	Handle control requests from the operator.
1249 */
1250static int
1251stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1252{
1253	struct stge_softc *sc;
1254	struct ifreq *ifr;
1255	struct mii_data *mii;
1256	int error, mask;
1257
1258	sc = ifp->if_softc;
1259	ifr = (struct ifreq *)data;
1260	error = 0;
1261	switch (cmd) {
1262	case SIOCSIFMTU:
1263		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
1264			error = EINVAL;
1265		else if (ifp->if_mtu != ifr->ifr_mtu) {
1266			ifp->if_mtu = ifr->ifr_mtu;
1267			STGE_LOCK(sc);
1268			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1269				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1270				stge_init_locked(sc);
1271			}
1272			STGE_UNLOCK(sc);
1273		}
1274		break;
1275	case SIOCSIFFLAGS:
1276		STGE_LOCK(sc);
1277		if ((ifp->if_flags & IFF_UP) != 0) {
1278			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1279				if (((ifp->if_flags ^ sc->sc_if_flags)
1280				    & IFF_PROMISC) != 0)
1281					stge_set_filter(sc);
1282			} else {
1283				if (sc->sc_detach == 0)
1284					stge_init_locked(sc);
1285			}
1286		} else {
1287			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1288				stge_stop(sc);
1289		}
1290		sc->sc_if_flags = ifp->if_flags;
1291		STGE_UNLOCK(sc);
1292		break;
1293	case SIOCADDMULTI:
1294	case SIOCDELMULTI:
1295		STGE_LOCK(sc);
1296		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1297			stge_set_multi(sc);
1298		STGE_UNLOCK(sc);
1299		break;
1300	case SIOCSIFMEDIA:
1301	case SIOCGIFMEDIA:
1302		mii = device_get_softc(sc->sc_miibus);
1303		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1304		break;
1305	case SIOCSIFCAP:
1306		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1307#ifdef DEVICE_POLLING
1308		if ((mask & IFCAP_POLLING) != 0) {
1309			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1310				error = ether_poll_register(stge_poll, ifp);
1311				if (error != 0)
1312					break;
1313				STGE_LOCK(sc);
1314				CSR_WRITE_2(sc, STGE_IntEnable, 0);
1315				ifp->if_capenable |= IFCAP_POLLING;
1316				STGE_UNLOCK(sc);
1317			} else {
1318				error = ether_poll_deregister(ifp);
1319				if (error != 0)
1320					break;
1321				STGE_LOCK(sc);
1322				CSR_WRITE_2(sc, STGE_IntEnable,
1323				    sc->sc_IntEnable);
1324				ifp->if_capenable &= ~IFCAP_POLLING;
1325				STGE_UNLOCK(sc);
1326			}
1327		}
1328#endif
1329		if ((mask & IFCAP_HWCSUM) != 0) {
1330			ifp->if_capenable ^= IFCAP_HWCSUM;
1331			if ((IFCAP_HWCSUM & ifp->if_capenable) != 0 &&
1332			    (IFCAP_HWCSUM & ifp->if_capabilities) != 0)
1333				ifp->if_hwassist = STGE_CSUM_FEATURES;
1334			else
1335				ifp->if_hwassist = 0;
1336		}
1337		if ((mask & IFCAP_WOL) != 0 &&
1338		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
1339			if ((mask & IFCAP_WOL_MAGIC) != 0)
1340				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1341		}
1342		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
1343			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1344			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1345				STGE_LOCK(sc);
1346				stge_vlan_setup(sc);
1347				STGE_UNLOCK(sc);
1348			}
1349		}
1350		VLAN_CAPABILITIES(ifp);
1351		break;
1352	default:
1353		error = ether_ioctl(ifp, cmd, data);
1354		break;
1355	}
1356
1357	return (error);
1358}
1359
1360static void
1361stge_link_task(void *arg, int pending)
1362{
1363	struct stge_softc *sc;
1364	struct mii_data *mii;
1365	uint32_t v, ac;
1366	int i;
1367
1368	sc = (struct stge_softc *)arg;
1369	STGE_LOCK(sc);
1370
1371	mii = device_get_softc(sc->sc_miibus);
1372	if (mii->mii_media_status & IFM_ACTIVE) {
1373		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1374			sc->sc_link = 1;
1375	} else
1376		sc->sc_link = 0;
1377
1378	sc->sc_MACCtrl = 0;
1379	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
1380		sc->sc_MACCtrl |= MC_DuplexSelect;
1381	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_RXPAUSE) != 0)
1382		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1383	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_TXPAUSE) != 0)
1384		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1385	/*
1386	 * Update STGE_MACCtrl register depending on link status.
1387	 * (duplex, flow control etc)
1388	 */
1389	v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
1390	v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
1391	v |= sc->sc_MACCtrl;
1392	CSR_WRITE_4(sc, STGE_MACCtrl, v);
1393	if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
1394		/* Duplex setting changed, reset Tx/Rx functions. */
1395		ac = CSR_READ_4(sc, STGE_AsicCtrl);
1396		ac |= AC_TxReset | AC_RxReset;
1397		CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1398		for (i = 0; i < STGE_TIMEOUT; i++) {
1399			DELAY(100);
1400			if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1401				break;
1402		}
1403		if (i == STGE_TIMEOUT)
1404			device_printf(sc->sc_dev, "reset failed to complete\n");
1405	}
1406	STGE_UNLOCK(sc);
1407}
1408
1409static __inline int
1410stge_tx_error(struct stge_softc *sc)
1411{
1412	uint32_t txstat;
1413	int error;
1414
1415	for (error = 0;;) {
1416		txstat = CSR_READ_4(sc, STGE_TxStatus);
1417		if ((txstat & TS_TxComplete) == 0)
1418			break;
1419		/* Tx underrun */
1420		if ((txstat & TS_TxUnderrun) != 0) {
1421			/*
1422			 * XXX
1423			 * There should be a more better way to recover
1424			 * from Tx underrun instead of a full reset.
1425			 */
1426			if (sc->sc_nerr++ < STGE_MAXERR)
1427				device_printf(sc->sc_dev, "Tx underrun, "
1428				    "resetting...\n");
1429			if (sc->sc_nerr == STGE_MAXERR)
1430				device_printf(sc->sc_dev, "too many errors; "
1431				    "not reporting any more\n");
1432			error = -1;
1433			break;
1434		}
1435		/* Maximum/Late collisions, Re-enable Tx MAC. */
1436		if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
1437			CSR_WRITE_4(sc, STGE_MACCtrl,
1438			    (CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
1439			    MC_TxEnable);
1440	}
1441
1442	return (error);
1443}
1444
1445/*
1446 * stge_intr:
1447 *
1448 *	Interrupt service routine.
1449 */
1450static void
1451stge_intr(void *arg)
1452{
1453	struct stge_softc *sc;
1454	struct ifnet *ifp;
1455	int reinit;
1456	uint16_t status;
1457
1458	sc = (struct stge_softc *)arg;
1459	ifp = sc->sc_ifp;
1460
1461	STGE_LOCK(sc);
1462
1463#ifdef DEVICE_POLLING
1464	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1465		goto done_locked;
1466#endif
1467	status = CSR_READ_2(sc, STGE_IntStatus);
1468	if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
1469		goto done_locked;
1470
1471	/* Disable interrupts. */
1472	for (reinit = 0;;) {
1473		status = CSR_READ_2(sc, STGE_IntStatusAck);
1474		status &= sc->sc_IntEnable;
1475		if (status == 0)
1476			break;
1477		/* Host interface errors. */
1478		if ((status & IS_HostError) != 0) {
1479			device_printf(sc->sc_dev,
1480			    "Host interface error, resetting...\n");
1481			reinit = 1;
1482			goto force_init;
1483		}
1484
1485		/* Receive interrupts. */
1486		if ((status & IS_RxDMAComplete) != 0) {
1487			stge_rxeof(sc);
1488			if ((status & IS_RFDListEnd) != 0)
1489				CSR_WRITE_4(sc, STGE_DMACtrl,
1490				    DMAC_RxDMAPollNow);
1491		}
1492
1493		/* Transmit interrupts. */
1494		if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
1495			stge_txeof(sc);
1496
1497		/* Transmission errors.*/
1498		if ((status & IS_TxComplete) != 0) {
1499			if ((reinit = stge_tx_error(sc)) != 0)
1500				break;
1501		}
1502	}
1503
1504force_init:
1505	if (reinit != 0) {
1506		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1507		stge_init_locked(sc);
1508	}
1509
1510	/* Re-enable interrupts. */
1511	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1512
1513	/* Try to get more packets going. */
1514	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1515		stge_start_locked(ifp);
1516
1517done_locked:
1518	STGE_UNLOCK(sc);
1519}
1520
1521/*
1522 * stge_txeof:
1523 *
1524 *	Helper; handle transmit interrupts.
1525 */
1526static void
1527stge_txeof(struct stge_softc *sc)
1528{
1529	struct ifnet *ifp;
1530	struct stge_txdesc *txd;
1531	uint64_t control;
1532	int cons;
1533
1534	STGE_LOCK_ASSERT(sc);
1535
1536	ifp = sc->sc_ifp;
1537
1538	txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1539	if (txd == NULL)
1540		return;
1541	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1542	    sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
1543
1544	/*
1545	 * Go through our Tx list and free mbufs for those
1546	 * frames which have been transmitted.
1547	 */
1548	for (cons = sc->sc_cdata.stge_tx_cons;;
1549	    cons = (cons + 1) % STGE_TX_RING_CNT) {
1550		if (sc->sc_cdata.stge_tx_cnt <= 0)
1551			break;
1552		control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
1553		if ((control & TFD_TFDDone) == 0)
1554			break;
1555		sc->sc_cdata.stge_tx_cnt--;
1556		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1557
1558		bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1559		    BUS_DMASYNC_POSTWRITE);
1560		bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
1561
1562		/* Output counter is updated with statistics register */
1563		m_freem(txd->tx_m);
1564		txd->tx_m = NULL;
1565		STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
1566		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
1567		txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1568	}
1569	sc->sc_cdata.stge_tx_cons = cons;
1570	if (sc->sc_cdata.stge_tx_cnt == 0)
1571		sc->sc_watchdog_timer = 0;
1572
1573        bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1574	    sc->sc_cdata.stge_tx_ring_map,
1575	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1576}
1577
1578static __inline void
1579stge_discard_rxbuf(struct stge_softc *sc, int idx)
1580{
1581	struct stge_rfd *rfd;
1582
1583	rfd = &sc->sc_rdata.stge_rx_ring[idx];
1584	rfd->rfd_status = 0;
1585}
1586
1587#ifndef __NO_STRICT_ALIGNMENT
1588/*
1589 * It seems that TC9021's DMA engine has alignment restrictions in
1590 * DMA scatter operations. The first DMA segment has no address
1591 * alignment restrictins but the rest should be aligned on 4(?) bytes
1592 * boundary. Otherwise it would corrupt random memory. Since we don't
1593 * know which one is used for the first segment in advance we simply
1594 * don't align at all.
1595 * To avoid copying over an entire frame to align, we allocate a new
1596 * mbuf and copy ethernet header to the new mbuf. The new mbuf is
1597 * prepended into the existing mbuf chain.
1598 */
1599static __inline struct mbuf *
1600stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
1601{
1602	struct mbuf *n;
1603
1604	n = NULL;
1605	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
1606		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
1607		m->m_data += ETHER_HDR_LEN;
1608		n = m;
1609	} else {
1610		MGETHDR(n, M_NOWAIT, MT_DATA);
1611		if (n != NULL) {
1612			bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
1613			m->m_data += ETHER_HDR_LEN;
1614			m->m_len -= ETHER_HDR_LEN;
1615			n->m_len = ETHER_HDR_LEN;
1616			M_MOVE_PKTHDR(n, m);
1617			n->m_next = m;
1618		} else
1619			m_freem(m);
1620	}
1621
1622	return (n);
1623}
1624#endif
1625
1626/*
1627 * stge_rxeof:
1628 *
1629 *	Helper; handle receive interrupts.
1630 */
1631static int
1632stge_rxeof(struct stge_softc *sc)
1633{
1634	struct ifnet *ifp;
1635	struct stge_rxdesc *rxd;
1636	struct mbuf *mp, *m;
1637	uint64_t status64;
1638	uint32_t status;
1639	int cons, prog, rx_npkts;
1640
1641	STGE_LOCK_ASSERT(sc);
1642
1643	rx_npkts = 0;
1644	ifp = sc->sc_ifp;
1645
1646	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1647	    sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
1648
1649	prog = 0;
1650	for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
1651	    prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
1652		status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
1653		status = RFD_RxStatus(status64);
1654		if ((status & RFD_RFDDone) == 0)
1655			break;
1656#ifdef DEVICE_POLLING
1657		if (ifp->if_capenable & IFCAP_POLLING) {
1658			if (sc->sc_cdata.stge_rxcycles <= 0)
1659				break;
1660			sc->sc_cdata.stge_rxcycles--;
1661		}
1662#endif
1663		prog++;
1664		rxd = &sc->sc_cdata.stge_rxdesc[cons];
1665		mp = rxd->rx_m;
1666
1667		/*
1668		 * If the packet had an error, drop it.  Note we count
1669		 * the error later in the periodic stats update.
1670		 */
1671		if ((status & RFD_FrameEnd) != 0 && (status &
1672		    (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1673		    RFD_RxAlignmentError | RFD_RxFCSError |
1674		    RFD_RxLengthError)) != 0) {
1675			stge_discard_rxbuf(sc, cons);
1676			if (sc->sc_cdata.stge_rxhead != NULL) {
1677				m_freem(sc->sc_cdata.stge_rxhead);
1678				STGE_RXCHAIN_RESET(sc);
1679			}
1680			continue;
1681		}
1682		/*
1683		 * Add a new receive buffer to the ring.
1684		 */
1685		if (stge_newbuf(sc, cons) != 0) {
1686			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1687			stge_discard_rxbuf(sc, cons);
1688			if (sc->sc_cdata.stge_rxhead != NULL) {
1689				m_freem(sc->sc_cdata.stge_rxhead);
1690				STGE_RXCHAIN_RESET(sc);
1691			}
1692			continue;
1693		}
1694
1695		if ((status & RFD_FrameEnd) != 0)
1696			mp->m_len = RFD_RxDMAFrameLen(status) -
1697			    sc->sc_cdata.stge_rxlen;
1698		sc->sc_cdata.stge_rxlen += mp->m_len;
1699
1700		/* Chain mbufs. */
1701		if (sc->sc_cdata.stge_rxhead == NULL) {
1702			sc->sc_cdata.stge_rxhead = mp;
1703			sc->sc_cdata.stge_rxtail = mp;
1704		} else {
1705			mp->m_flags &= ~M_PKTHDR;
1706			sc->sc_cdata.stge_rxtail->m_next = mp;
1707			sc->sc_cdata.stge_rxtail = mp;
1708		}
1709
1710		if ((status & RFD_FrameEnd) != 0) {
1711			m = sc->sc_cdata.stge_rxhead;
1712			m->m_pkthdr.rcvif = ifp;
1713			m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
1714
1715			if (m->m_pkthdr.len > sc->sc_if_framesize) {
1716				m_freem(m);
1717				STGE_RXCHAIN_RESET(sc);
1718				continue;
1719			}
1720			/*
1721			 * Set the incoming checksum information for
1722			 * the packet.
1723			 */
1724			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1725				if ((status & RFD_IPDetected) != 0) {
1726					m->m_pkthdr.csum_flags |=
1727						CSUM_IP_CHECKED;
1728					if ((status & RFD_IPError) == 0)
1729						m->m_pkthdr.csum_flags |=
1730						    CSUM_IP_VALID;
1731				}
1732				if (((status & RFD_TCPDetected) != 0 &&
1733				    (status & RFD_TCPError) == 0) ||
1734				    ((status & RFD_UDPDetected) != 0 &&
1735				    (status & RFD_UDPError) == 0)) {
1736					m->m_pkthdr.csum_flags |=
1737					    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1738					m->m_pkthdr.csum_data = 0xffff;
1739				}
1740			}
1741
1742#ifndef __NO_STRICT_ALIGNMENT
1743			if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
1744				if ((m = stge_fixup_rx(sc, m)) == NULL) {
1745					STGE_RXCHAIN_RESET(sc);
1746					continue;
1747				}
1748			}
1749#endif
1750			/* Check for VLAN tagged packets. */
1751			if ((status & RFD_VLANDetected) != 0 &&
1752			    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1753				m->m_pkthdr.ether_vtag = RFD_TCI(status64);
1754				m->m_flags |= M_VLANTAG;
1755			}
1756
1757			STGE_UNLOCK(sc);
1758			/* Pass it on. */
1759			(*ifp->if_input)(ifp, m);
1760			STGE_LOCK(sc);
1761			rx_npkts++;
1762
1763			STGE_RXCHAIN_RESET(sc);
1764		}
1765	}
1766
1767	if (prog > 0) {
1768		/* Update the consumer index. */
1769		sc->sc_cdata.stge_rx_cons = cons;
1770		bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1771		    sc->sc_cdata.stge_rx_ring_map,
1772		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1773	}
1774	return (rx_npkts);
1775}
1776
1777#ifdef DEVICE_POLLING
1778static int
1779stge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1780{
1781	struct stge_softc *sc;
1782	uint16_t status;
1783	int rx_npkts;
1784
1785	rx_npkts = 0;
1786	sc = ifp->if_softc;
1787	STGE_LOCK(sc);
1788	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1789		STGE_UNLOCK(sc);
1790		return (rx_npkts);
1791	}
1792
1793	sc->sc_cdata.stge_rxcycles = count;
1794	rx_npkts = stge_rxeof(sc);
1795	stge_txeof(sc);
1796
1797	if (cmd == POLL_AND_CHECK_STATUS) {
1798		status = CSR_READ_2(sc, STGE_IntStatus);
1799		status &= sc->sc_IntEnable;
1800		if (status != 0) {
1801			if ((status & IS_HostError) != 0) {
1802				device_printf(sc->sc_dev,
1803				    "Host interface error, resetting...\n");
1804				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1805				stge_init_locked(sc);
1806			}
1807			if ((status & IS_TxComplete) != 0) {
1808				if (stge_tx_error(sc) != 0) {
1809					ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1810					stge_init_locked(sc);
1811				}
1812			}
1813		}
1814
1815	}
1816
1817	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1818		stge_start_locked(ifp);
1819
1820	STGE_UNLOCK(sc);
1821	return (rx_npkts);
1822}
1823#endif	/* DEVICE_POLLING */
1824
1825/*
1826 * stge_tick:
1827 *
1828 *	One second timer, used to tick the MII.
1829 */
1830static void
1831stge_tick(void *arg)
1832{
1833	struct stge_softc *sc;
1834	struct mii_data *mii;
1835
1836	sc = (struct stge_softc *)arg;
1837
1838	STGE_LOCK_ASSERT(sc);
1839
1840	mii = device_get_softc(sc->sc_miibus);
1841	mii_tick(mii);
1842
1843	/* Update statistics counters. */
1844	stge_stats_update(sc);
1845
1846	/*
1847	 * Relcaim any pending Tx descriptors to release mbufs in a
1848	 * timely manner as we don't generate Tx completion interrupts
1849	 * for every frame. This limits the delay to a maximum of one
1850	 * second.
1851	 */
1852	if (sc->sc_cdata.stge_tx_cnt != 0)
1853		stge_txeof(sc);
1854
1855	stge_watchdog(sc);
1856
1857	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1858}
1859
1860/*
1861 * stge_stats_update:
1862 *
1863 *	Read the TC9021 statistics counters.
1864 */
1865static void
1866stge_stats_update(struct stge_softc *sc)
1867{
1868	struct ifnet *ifp;
1869
1870	STGE_LOCK_ASSERT(sc);
1871
1872	ifp = sc->sc_ifp;
1873
1874	CSR_READ_4(sc,STGE_OctetRcvOk);
1875
1876	if_inc_counter(ifp, IFCOUNTER_IPACKETS, CSR_READ_4(sc, STGE_FramesRcvdOk));
1877
1878	if_inc_counter(ifp, IFCOUNTER_IERRORS, CSR_READ_2(sc, STGE_FramesLostRxErrors));
1879
1880	CSR_READ_4(sc, STGE_OctetXmtdOk);
1881
1882	if_inc_counter(ifp, IFCOUNTER_OPACKETS, CSR_READ_4(sc, STGE_FramesXmtdOk));
1883
1884	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1885	    CSR_READ_4(sc, STGE_LateCollisions) +
1886	    CSR_READ_4(sc, STGE_MultiColFrames) +
1887	    CSR_READ_4(sc, STGE_SingleColFrames));
1888
1889	if_inc_counter(ifp, IFCOUNTER_OERRORS,
1890	    CSR_READ_2(sc, STGE_FramesAbortXSColls) +
1891	    CSR_READ_2(sc, STGE_FramesWEXDeferal));
1892}
1893
1894/*
1895 * stge_reset:
1896 *
1897 *	Perform a soft reset on the TC9021.
1898 */
1899static void
1900stge_reset(struct stge_softc *sc, uint32_t how)
1901{
1902	uint32_t ac;
1903	uint8_t v;
1904	int i, dv;
1905
1906	STGE_LOCK_ASSERT(sc);
1907
1908	dv = 5000;
1909	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1910	switch (how) {
1911	case STGE_RESET_TX:
1912		ac |= AC_TxReset | AC_FIFO;
1913		dv = 100;
1914		break;
1915	case STGE_RESET_RX:
1916		ac |= AC_RxReset | AC_FIFO;
1917		dv = 100;
1918		break;
1919	case STGE_RESET_FULL:
1920	default:
1921		/*
1922		 * Only assert RstOut if we're fiber.  We need GMII clocks
1923		 * to be present in order for the reset to complete on fiber
1924		 * cards.
1925		 */
1926		ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
1927		    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1928		    (sc->sc_usefiber ? AC_RstOut : 0);
1929		break;
1930	}
1931
1932	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1933
1934	/* Account for reset problem at 10Mbps. */
1935	DELAY(dv);
1936
1937	for (i = 0; i < STGE_TIMEOUT; i++) {
1938		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1939			break;
1940		DELAY(dv);
1941	}
1942
1943	if (i == STGE_TIMEOUT)
1944		device_printf(sc->sc_dev, "reset failed to complete\n");
1945
1946	/* Set LED, from Linux IPG driver. */
1947	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1948	ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
1949	if ((sc->sc_led & 0x01) != 0)
1950		ac |= AC_LEDMode;
1951	if ((sc->sc_led & 0x03) != 0)
1952		ac |= AC_LEDModeBit1;
1953	if ((sc->sc_led & 0x08) != 0)
1954		ac |= AC_LEDSpeed;
1955	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1956
1957	/* Set PHY, from Linux IPG driver */
1958	v = CSR_READ_1(sc, STGE_PhySet);
1959	v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
1960	v |= ((sc->sc_led & 0x70) >> 4);
1961	CSR_WRITE_1(sc, STGE_PhySet, v);
1962}
1963
1964/*
1965 * stge_init:		[ ifnet interface function ]
1966 *
1967 *	Initialize the interface.
1968 */
1969static void
1970stge_init(void *xsc)
1971{
1972	struct stge_softc *sc;
1973
1974	sc = (struct stge_softc *)xsc;
1975	STGE_LOCK(sc);
1976	stge_init_locked(sc);
1977	STGE_UNLOCK(sc);
1978}
1979
1980static void
1981stge_init_locked(struct stge_softc *sc)
1982{
1983	struct ifnet *ifp;
1984	struct mii_data *mii;
1985	uint16_t eaddr[3];
1986	uint32_t v;
1987	int error;
1988
1989	STGE_LOCK_ASSERT(sc);
1990
1991	ifp = sc->sc_ifp;
1992	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1993		return;
1994	mii = device_get_softc(sc->sc_miibus);
1995
1996	/*
1997	 * Cancel any pending I/O.
1998	 */
1999	stge_stop(sc);
2000
2001	/*
2002	 * Reset the chip to a known state.
2003	 */
2004	stge_reset(sc, STGE_RESET_FULL);
2005
2006	/* Init descriptors. */
2007	error = stge_init_rx_ring(sc);
2008        if (error != 0) {
2009                device_printf(sc->sc_dev,
2010                    "initialization failed: no memory for rx buffers\n");
2011                stge_stop(sc);
2012		goto out;
2013        }
2014	stge_init_tx_ring(sc);
2015
2016	/* Set the station address. */
2017	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2018	CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
2019	CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
2020	CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
2021
2022	/*
2023	 * Set the statistics masks.  Disable all the RMON stats,
2024	 * and disable selected stats in the non-RMON stats registers.
2025	 */
2026	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
2027	CSR_WRITE_4(sc, STGE_StatisticsMask,
2028	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
2029	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
2030	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
2031	    (1U << 21));
2032
2033	/* Set up the receive filter. */
2034	stge_set_filter(sc);
2035	/* Program multicast filter. */
2036	stge_set_multi(sc);
2037
2038	/*
2039	 * Give the transmit and receive ring to the chip.
2040	 */
2041	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
2042	    STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
2043	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
2044	    STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
2045
2046	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
2047	    STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
2048	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
2049	    STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
2050
2051	/*
2052	 * Initialize the Tx auto-poll period.  It's OK to make this number
2053	 * large (255 is the max, but we use 127) -- we explicitly kick the
2054	 * transmit engine when there's actually a packet.
2055	 */
2056	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2057
2058	/* ..and the Rx auto-poll period. */
2059	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2060
2061	/* Initialize the Tx start threshold. */
2062	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
2063
2064	/* Rx DMA thresholds, from Linux */
2065	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
2066	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
2067
2068	/* Rx early threhold, from Linux */
2069	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
2070
2071	/* Tx DMA thresholds, from Linux */
2072	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
2073	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
2074
2075	/*
2076	 * Initialize the Rx DMA interrupt control register.  We
2077	 * request an interrupt after every incoming packet, but
2078	 * defer it for sc_rxint_dmawait us. When the number of
2079	 * interrupts pending reaches STGE_RXINT_NFRAME, we stop
2080	 * deferring the interrupt, and signal it immediately.
2081	 */
2082	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
2083	    RDIC_RxFrameCount(sc->sc_rxint_nframe) |
2084	    RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
2085
2086	/*
2087	 * Initialize the interrupt mask.
2088	 */
2089	sc->sc_IntEnable = IS_HostError | IS_TxComplete |
2090	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
2091#ifdef DEVICE_POLLING
2092	/* Disable interrupts if we are polling. */
2093	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2094		CSR_WRITE_2(sc, STGE_IntEnable, 0);
2095	else
2096#endif
2097	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
2098
2099	/*
2100	 * Configure the DMA engine.
2101	 * XXX Should auto-tune TxBurstLimit.
2102	 */
2103	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
2104
2105	/*
2106	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
2107	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
2108	 * in the Rx FIFO.
2109	 */
2110	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
2111	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
2112
2113	/*
2114	 * Set the maximum frame size.
2115	 */
2116	sc->sc_if_framesize = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2117	CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
2118
2119	/*
2120	 * Initialize MacCtrl -- do it before setting the media,
2121	 * as setting the media will actually program the register.
2122	 *
2123	 * Note: We have to poke the IFS value before poking
2124	 * anything else.
2125	 */
2126	/* Tx/Rx MAC should be disabled before programming IFS.*/
2127	CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
2128
2129	stge_vlan_setup(sc);
2130
2131	if (sc->sc_rev >= 6) {		/* >= B.2 */
2132		/* Multi-frag frame bug work-around. */
2133		CSR_WRITE_2(sc, STGE_DebugCtrl,
2134		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
2135
2136		/* Tx Poll Now bug work-around. */
2137		CSR_WRITE_2(sc, STGE_DebugCtrl,
2138		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
2139		/* Tx Poll Now bug work-around. */
2140		CSR_WRITE_2(sc, STGE_DebugCtrl,
2141		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
2142	}
2143
2144	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2145	v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
2146	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2147	/*
2148	 * It seems that transmitting frames without checking the state of
2149	 * Rx/Tx MAC wedge the hardware.
2150	 */
2151	stge_start_tx(sc);
2152	stge_start_rx(sc);
2153
2154	sc->sc_link = 0;
2155	/*
2156	 * Set the current media.
2157	 */
2158	mii_mediachg(mii);
2159
2160	/*
2161	 * Start the one second MII clock.
2162	 */
2163	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
2164
2165	/*
2166	 * ...all done!
2167	 */
2168	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2169	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2170
2171 out:
2172	if (error != 0)
2173		device_printf(sc->sc_dev, "interface not running\n");
2174}
2175
2176static void
2177stge_vlan_setup(struct stge_softc *sc)
2178{
2179	struct ifnet *ifp;
2180	uint32_t v;
2181
2182	ifp = sc->sc_ifp;
2183	/*
2184	 * The NIC always copy a VLAN tag regardless of STGE_MACCtrl
2185	 * MC_AutoVLANuntagging bit.
2186	 * MC_AutoVLANtagging bit selects which VLAN source to use
2187	 * between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
2188	 * bit has priority over MC_AutoVLANtagging bit. So we always
2189	 * use TFC instead of STGE_VLANTag register.
2190	 */
2191	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2192	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2193		v |= MC_AutoVLANuntagging;
2194	else
2195		v &= ~MC_AutoVLANuntagging;
2196	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2197}
2198
2199/*
2200 *	Stop transmission on the interface.
2201 */
2202static void
2203stge_stop(struct stge_softc *sc)
2204{
2205	struct ifnet *ifp;
2206	struct stge_txdesc *txd;
2207	struct stge_rxdesc *rxd;
2208	uint32_t v;
2209	int i;
2210
2211	STGE_LOCK_ASSERT(sc);
2212	/*
2213	 * Stop the one second clock.
2214	 */
2215	callout_stop(&sc->sc_tick_ch);
2216	sc->sc_watchdog_timer = 0;
2217
2218	/*
2219	 * Disable interrupts.
2220	 */
2221	CSR_WRITE_2(sc, STGE_IntEnable, 0);
2222
2223	/*
2224	 * Stop receiver, transmitter, and stats update.
2225	 */
2226	stge_stop_rx(sc);
2227	stge_stop_tx(sc);
2228	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2229	v |= MC_StatisticsDisable;
2230	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2231
2232	/*
2233	 * Stop the transmit and receive DMA.
2234	 */
2235	stge_dma_wait(sc);
2236	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
2237	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
2238	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
2239	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
2240
2241	/*
2242	 * Free RX and TX mbufs still in the queues.
2243	 */
2244	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2245		rxd = &sc->sc_cdata.stge_rxdesc[i];
2246		if (rxd->rx_m != NULL) {
2247			bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
2248			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2249			bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
2250			    rxd->rx_dmamap);
2251			m_freem(rxd->rx_m);
2252			rxd->rx_m = NULL;
2253		}
2254        }
2255	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2256		txd = &sc->sc_cdata.stge_txdesc[i];
2257		if (txd->tx_m != NULL) {
2258			bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
2259			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2260			bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
2261			    txd->tx_dmamap);
2262			m_freem(txd->tx_m);
2263			txd->tx_m = NULL;
2264		}
2265        }
2266
2267	/*
2268	 * Mark the interface down and cancel the watchdog timer.
2269	 */
2270	ifp = sc->sc_ifp;
2271	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2272	sc->sc_link = 0;
2273}
2274
2275static void
2276stge_start_tx(struct stge_softc *sc)
2277{
2278	uint32_t v;
2279	int i;
2280
2281	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2282	if ((v & MC_TxEnabled) != 0)
2283		return;
2284	v |= MC_TxEnable;
2285	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2286	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2287	for (i = STGE_TIMEOUT; i > 0; i--) {
2288		DELAY(10);
2289		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2290		if ((v & MC_TxEnabled) != 0)
2291			break;
2292	}
2293	if (i == 0)
2294		device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
2295}
2296
2297static void
2298stge_start_rx(struct stge_softc *sc)
2299{
2300	uint32_t v;
2301	int i;
2302
2303	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2304	if ((v & MC_RxEnabled) != 0)
2305		return;
2306	v |= MC_RxEnable;
2307	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2308	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2309	for (i = STGE_TIMEOUT; i > 0; i--) {
2310		DELAY(10);
2311		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2312		if ((v & MC_RxEnabled) != 0)
2313			break;
2314	}
2315	if (i == 0)
2316		device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
2317}
2318
2319static void
2320stge_stop_tx(struct stge_softc *sc)
2321{
2322	uint32_t v;
2323	int i;
2324
2325	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2326	if ((v & MC_TxEnabled) == 0)
2327		return;
2328	v |= MC_TxDisable;
2329	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2330	for (i = STGE_TIMEOUT; i > 0; i--) {
2331		DELAY(10);
2332		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2333		if ((v & MC_TxEnabled) == 0)
2334			break;
2335	}
2336	if (i == 0)
2337		device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
2338}
2339
2340static void
2341stge_stop_rx(struct stge_softc *sc)
2342{
2343	uint32_t v;
2344	int i;
2345
2346	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2347	if ((v & MC_RxEnabled) == 0)
2348		return;
2349	v |= MC_RxDisable;
2350	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2351	for (i = STGE_TIMEOUT; i > 0; i--) {
2352		DELAY(10);
2353		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2354		if ((v & MC_RxEnabled) == 0)
2355			break;
2356	}
2357	if (i == 0)
2358		device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
2359}
2360
2361static void
2362stge_init_tx_ring(struct stge_softc *sc)
2363{
2364	struct stge_ring_data *rd;
2365	struct stge_txdesc *txd;
2366	bus_addr_t addr;
2367	int i;
2368
2369	STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
2370	STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
2371
2372	sc->sc_cdata.stge_tx_prod = 0;
2373	sc->sc_cdata.stge_tx_cons = 0;
2374	sc->sc_cdata.stge_tx_cnt = 0;
2375
2376	rd = &sc->sc_rdata;
2377	bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
2378	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2379		if (i == (STGE_TX_RING_CNT - 1))
2380			addr = STGE_TX_RING_ADDR(sc, 0);
2381		else
2382			addr = STGE_TX_RING_ADDR(sc, i + 1);
2383		rd->stge_tx_ring[i].tfd_next = htole64(addr);
2384		rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
2385		txd = &sc->sc_cdata.stge_txdesc[i];
2386		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
2387	}
2388
2389	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
2390	    sc->sc_cdata.stge_tx_ring_map,
2391	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2392
2393}
2394
2395static int
2396stge_init_rx_ring(struct stge_softc *sc)
2397{
2398	struct stge_ring_data *rd;
2399	bus_addr_t addr;
2400	int i;
2401
2402	sc->sc_cdata.stge_rx_cons = 0;
2403	STGE_RXCHAIN_RESET(sc);
2404
2405	rd = &sc->sc_rdata;
2406	bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
2407	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2408		if (stge_newbuf(sc, i) != 0)
2409			return (ENOBUFS);
2410		if (i == (STGE_RX_RING_CNT - 1))
2411			addr = STGE_RX_RING_ADDR(sc, 0);
2412		else
2413			addr = STGE_RX_RING_ADDR(sc, i + 1);
2414		rd->stge_rx_ring[i].rfd_next = htole64(addr);
2415		rd->stge_rx_ring[i].rfd_status = 0;
2416	}
2417
2418	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
2419	    sc->sc_cdata.stge_rx_ring_map,
2420	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2421
2422	return (0);
2423}
2424
2425/*
2426 * stge_newbuf:
2427 *
2428 *	Add a receive buffer to the indicated descriptor.
2429 */
2430static int
2431stge_newbuf(struct stge_softc *sc, int idx)
2432{
2433	struct stge_rxdesc *rxd;
2434	struct stge_rfd *rfd;
2435	struct mbuf *m;
2436	bus_dma_segment_t segs[1];
2437	bus_dmamap_t map;
2438	int nsegs;
2439
2440	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2441	if (m == NULL)
2442		return (ENOBUFS);
2443	m->m_len = m->m_pkthdr.len = MCLBYTES;
2444	/*
2445	 * The hardware requires 4bytes aligned DMA address when JUMBO
2446	 * frame is used.
2447	 */
2448	if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
2449		m_adj(m, ETHER_ALIGN);
2450
2451	if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag,
2452	    sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2453		m_freem(m);
2454		return (ENOBUFS);
2455	}
2456	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2457
2458	rxd = &sc->sc_cdata.stge_rxdesc[idx];
2459	if (rxd->rx_m != NULL) {
2460		bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2461		    BUS_DMASYNC_POSTREAD);
2462		bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
2463	}
2464	map = rxd->rx_dmamap;
2465	rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
2466	sc->sc_cdata.stge_rx_sparemap = map;
2467	bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2468	    BUS_DMASYNC_PREREAD);
2469	rxd->rx_m = m;
2470
2471	rfd = &sc->sc_rdata.stge_rx_ring[idx];
2472	rfd->rfd_frag.frag_word0 =
2473	    htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
2474	rfd->rfd_status = 0;
2475
2476	return (0);
2477}
2478
2479/*
2480 * stge_set_filter:
2481 *
2482 *	Set up the receive filter.
2483 */
2484static void
2485stge_set_filter(struct stge_softc *sc)
2486{
2487	struct ifnet *ifp;
2488	uint16_t mode;
2489
2490	STGE_LOCK_ASSERT(sc);
2491
2492	ifp = sc->sc_ifp;
2493
2494	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2495	mode |= RM_ReceiveUnicast;
2496	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2497		mode |= RM_ReceiveBroadcast;
2498	else
2499		mode &= ~RM_ReceiveBroadcast;
2500	if ((ifp->if_flags & IFF_PROMISC) != 0)
2501		mode |= RM_ReceiveAllFrames;
2502	else
2503		mode &= ~RM_ReceiveAllFrames;
2504
2505	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2506}
2507
2508static void
2509stge_set_multi(struct stge_softc *sc)
2510{
2511	struct ifnet *ifp;
2512	struct ifmultiaddr *ifma;
2513	uint32_t crc;
2514	uint32_t mchash[2];
2515	uint16_t mode;
2516	int count;
2517
2518	STGE_LOCK_ASSERT(sc);
2519
2520	ifp = sc->sc_ifp;
2521
2522	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2523	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2524		if ((ifp->if_flags & IFF_PROMISC) != 0)
2525			mode |= RM_ReceiveAllFrames;
2526		else if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2527			mode |= RM_ReceiveMulticast;
2528		CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2529		return;
2530	}
2531
2532	/* clear existing filters. */
2533	CSR_WRITE_4(sc, STGE_HashTable0, 0);
2534	CSR_WRITE_4(sc, STGE_HashTable1, 0);
2535
2536	/*
2537	 * Set up the multicast address filter by passing all multicast
2538	 * addresses through a CRC generator, and then using the low-order
2539	 * 6 bits as an index into the 64 bit multicast hash table.  The
2540	 * high order bits select the register, while the rest of the bits
2541	 * select the bit within the register.
2542	 */
2543
2544	bzero(mchash, sizeof(mchash));
2545
2546	count = 0;
2547	if_maddr_rlock(sc->sc_ifp);
2548	TAILQ_FOREACH(ifma, &sc->sc_ifp->if_multiaddrs, ifma_link) {
2549		if (ifma->ifma_addr->sa_family != AF_LINK)
2550			continue;
2551		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2552		    ifma->ifma_addr), ETHER_ADDR_LEN);
2553
2554		/* Just want the 6 least significant bits. */
2555		crc &= 0x3f;
2556
2557		/* Set the corresponding bit in the hash table. */
2558		mchash[crc >> 5] |= 1 << (crc & 0x1f);
2559		count++;
2560	}
2561	if_maddr_runlock(ifp);
2562
2563	mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
2564	if (count > 0)
2565		mode |= RM_ReceiveMulticastHash;
2566	else
2567		mode &= ~RM_ReceiveMulticastHash;
2568
2569	CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
2570	CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
2571	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2572}
2573
2574static int
2575sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2576{
2577	int error, value;
2578
2579	if (!arg1)
2580		return (EINVAL);
2581	value = *(int *)arg1;
2582	error = sysctl_handle_int(oidp, &value, 0, req);
2583	if (error || !req->newptr)
2584		return (error);
2585	if (value < low || value > high)
2586		return (EINVAL);
2587        *(int *)arg1 = value;
2588
2589        return (0);
2590}
2591
2592static int
2593sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
2594{
2595	return (sysctl_int_range(oidp, arg1, arg2, req,
2596	    STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
2597}
2598
2599static int
2600sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
2601{
2602	return (sysctl_int_range(oidp, arg1, arg2, req,
2603	    STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));
2604}
2605