if_stge.c revision 195049
1/*	$NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $	*/
2
3/*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Device driver for the Sundance Tech. TC9021 10/100/1000
41 * Ethernet controller.
42 */
43
44#include <sys/cdefs.h>
45__FBSDID("$FreeBSD: head/sys/dev/stge/if_stge.c 195049 2009-06-26 11:45:06Z rwatson $");
46
47#ifdef HAVE_KERNEL_OPTION_HEADERS
48#include "opt_device_polling.h"
49#endif
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/endian.h>
54#include <sys/mbuf.h>
55#include <sys/malloc.h>
56#include <sys/kernel.h>
57#include <sys/module.h>
58#include <sys/socket.h>
59#include <sys/sockio.h>
60#include <sys/sysctl.h>
61#include <sys/taskqueue.h>
62
63#include <net/bpf.h>
64#include <net/ethernet.h>
65#include <net/if.h>
66#include <net/if_dl.h>
67#include <net/if_media.h>
68#include <net/if_types.h>
69#include <net/if_vlan_var.h>
70
71#include <machine/bus.h>
72#include <machine/resource.h>
73#include <sys/bus.h>
74#include <sys/rman.h>
75
76#include <dev/mii/mii.h>
77#include <dev/mii/miivar.h>
78
79#include <dev/pci/pcireg.h>
80#include <dev/pci/pcivar.h>
81
82#include <dev/stge/if_stgereg.h>
83
84#define	STGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
85
86MODULE_DEPEND(stge, pci, 1, 1, 1);
87MODULE_DEPEND(stge, ether, 1, 1, 1);
88MODULE_DEPEND(stge, miibus, 1, 1, 1);
89
90/* "device miibus" required.  See GENERIC if you get errors here. */
91#include "miibus_if.h"
92
93/*
94 * Devices supported by this driver.
95 */
96static struct stge_product {
97	uint16_t	stge_vendorid;
98	uint16_t	stge_deviceid;
99	const char	*stge_name;
100} stge_products[] = {
101	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST1023,
102	  "Sundance ST-1023 Gigabit Ethernet" },
103
104	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST2021,
105	  "Sundance ST-2021 Gigabit Ethernet" },
106
107	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021,
108	  "Tamarack TC9021 Gigabit Ethernet" },
109
110	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021_ALT,
111	  "Tamarack TC9021 Gigabit Ethernet" },
112
113	/*
114	 * The Sundance sample boards use the Sundance vendor ID,
115	 * but the Tamarack product ID.
116	 */
117	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021,
118	  "Sundance TC9021 Gigabit Ethernet" },
119
120	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021_ALT,
121	  "Sundance TC9021 Gigabit Ethernet" },
122
123	{ VENDOR_DLINK,		DEVICEID_DLINK_DL4000,
124	  "D-Link DL-4000 Gigabit Ethernet" },
125
126	{ VENDOR_ANTARES,	DEVICEID_ANTARES_TC9021,
127	  "Antares Gigabit Ethernet" }
128};
129
130static int	stge_probe(device_t);
131static int	stge_attach(device_t);
132static int	stge_detach(device_t);
133static int	stge_shutdown(device_t);
134static int	stge_suspend(device_t);
135static int	stge_resume(device_t);
136
137static int	stge_encap(struct stge_softc *, struct mbuf **);
138static void	stge_start(struct ifnet *);
139static void	stge_start_locked(struct ifnet *);
140static void	stge_watchdog(struct stge_softc *);
141static int	stge_ioctl(struct ifnet *, u_long, caddr_t);
142static void	stge_init(void *);
143static void	stge_init_locked(struct stge_softc *);
144static void	stge_vlan_setup(struct stge_softc *);
145static void	stge_stop(struct stge_softc *);
146static void	stge_start_tx(struct stge_softc *);
147static void	stge_start_rx(struct stge_softc *);
148static void	stge_stop_tx(struct stge_softc *);
149static void	stge_stop_rx(struct stge_softc *);
150
151static void	stge_reset(struct stge_softc *, uint32_t);
152static int	stge_eeprom_wait(struct stge_softc *);
153static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
154static void	stge_tick(void *);
155static void	stge_stats_update(struct stge_softc *);
156static void	stge_set_filter(struct stge_softc *);
157static void	stge_set_multi(struct stge_softc *);
158
159static void	stge_link_task(void *, int);
160static void	stge_intr(void *);
161static __inline int stge_tx_error(struct stge_softc *);
162static void	stge_txeof(struct stge_softc *);
163static int	stge_rxeof(struct stge_softc *);
164static __inline void stge_discard_rxbuf(struct stge_softc *, int);
165static int	stge_newbuf(struct stge_softc *, int);
166#ifndef __NO_STRICT_ALIGNMENT
167static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
168#endif
169
170static void	stge_mii_sync(struct stge_softc *);
171static void	stge_mii_send(struct stge_softc *, uint32_t, int);
172static int	stge_mii_readreg(struct stge_softc *, struct stge_mii_frame *);
173static int	stge_mii_writereg(struct stge_softc *, struct stge_mii_frame *);
174static int	stge_miibus_readreg(device_t, int, int);
175static int	stge_miibus_writereg(device_t, int, int, int);
176static void	stge_miibus_statchg(device_t);
177static int	stge_mediachange(struct ifnet *);
178static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
179
180static void	stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
181static int	stge_dma_alloc(struct stge_softc *);
182static void	stge_dma_free(struct stge_softc *);
183static void	stge_dma_wait(struct stge_softc *);
184static void	stge_init_tx_ring(struct stge_softc *);
185static int	stge_init_rx_ring(struct stge_softc *);
186#ifdef DEVICE_POLLING
187static int	stge_poll(struct ifnet *, enum poll_cmd, int);
188#endif
189
190static void	stge_setwol(struct stge_softc *);
191static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
192static int	sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
193static int	sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
194
195static device_method_t stge_methods[] = {
196	/* Device interface */
197	DEVMETHOD(device_probe,		stge_probe),
198	DEVMETHOD(device_attach,	stge_attach),
199	DEVMETHOD(device_detach,	stge_detach),
200	DEVMETHOD(device_shutdown,	stge_shutdown),
201	DEVMETHOD(device_suspend,	stge_suspend),
202	DEVMETHOD(device_resume,	stge_resume),
203
204	/* MII interface */
205	DEVMETHOD(miibus_readreg,	stge_miibus_readreg),
206	DEVMETHOD(miibus_writereg,	stge_miibus_writereg),
207	DEVMETHOD(miibus_statchg,	stge_miibus_statchg),
208
209	{ 0, 0 }
210
211};
212
213static driver_t stge_driver = {
214	"stge",
215	stge_methods,
216	sizeof(struct stge_softc)
217};
218
219static devclass_t stge_devclass;
220
221DRIVER_MODULE(stge, pci, stge_driver, stge_devclass, 0, 0);
222DRIVER_MODULE(miibus, stge, miibus_driver, miibus_devclass, 0, 0);
223
224static struct resource_spec stge_res_spec_io[] = {
225	{ SYS_RES_IOPORT,	PCIR_BAR(0),	RF_ACTIVE },
226	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
227	{ -1,			0,		0 }
228};
229
230static struct resource_spec stge_res_spec_mem[] = {
231	{ SYS_RES_MEMORY,	PCIR_BAR(1),	RF_ACTIVE },
232	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
233	{ -1,			0,		0 }
234};
235
236#define	MII_SET(x)	\
237	CSR_WRITE_1(sc, STGE_PhyCtrl, CSR_READ_1(sc, STGE_PhyCtrl) | (x))
238#define	MII_CLR(x)	\
239	CSR_WRITE_1(sc, STGE_PhyCtrl, CSR_READ_1(sc, STGE_PhyCtrl) & ~(x))
240
241/*
242 * Sync the PHYs by setting data bit and strobing the clock 32 times.
243 */
244static void
245stge_mii_sync(struct stge_softc	*sc)
246{
247	int i;
248
249	MII_SET(PC_MgmtDir | PC_MgmtData);
250
251	for (i = 0; i < 32; i++) {
252		MII_SET(PC_MgmtClk);
253		DELAY(1);
254		MII_CLR(PC_MgmtClk);
255		DELAY(1);
256	}
257}
258
259/*
260 * Clock a series of bits through the MII.
261 */
262static void
263stge_mii_send(struct stge_softc *sc, uint32_t bits, int cnt)
264{
265	int i;
266
267	MII_CLR(PC_MgmtClk);
268
269	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
270		if (bits & i)
271			MII_SET(PC_MgmtData);
272                else
273			MII_CLR(PC_MgmtData);
274		DELAY(1);
275		MII_CLR(PC_MgmtClk);
276		DELAY(1);
277		MII_SET(PC_MgmtClk);
278	}
279}
280
281/*
282 * Read an PHY register through the MII.
283 */
284static int
285stge_mii_readreg(struct stge_softc *sc, struct stge_mii_frame *frame)
286{
287	int i, ack;
288
289	/*
290	 * Set up frame for RX.
291	 */
292	frame->mii_stdelim = STGE_MII_STARTDELIM;
293	frame->mii_opcode = STGE_MII_READOP;
294	frame->mii_turnaround = 0;
295	frame->mii_data = 0;
296
297	CSR_WRITE_1(sc, STGE_PhyCtrl, 0 | sc->sc_PhyCtrl);
298	/*
299 	 * Turn on data xmit.
300	 */
301	MII_SET(PC_MgmtDir);
302
303	stge_mii_sync(sc);
304
305	/*
306	 * Send command/address info.
307	 */
308	stge_mii_send(sc, frame->mii_stdelim, 2);
309	stge_mii_send(sc, frame->mii_opcode, 2);
310	stge_mii_send(sc, frame->mii_phyaddr, 5);
311	stge_mii_send(sc, frame->mii_regaddr, 5);
312
313	/* Turn off xmit. */
314	MII_CLR(PC_MgmtDir);
315
316	/* Idle bit */
317	MII_CLR((PC_MgmtClk | PC_MgmtData));
318	DELAY(1);
319	MII_SET(PC_MgmtClk);
320	DELAY(1);
321
322	/* Check for ack */
323	MII_CLR(PC_MgmtClk);
324	DELAY(1);
325	ack = CSR_READ_1(sc, STGE_PhyCtrl) & PC_MgmtData;
326	MII_SET(PC_MgmtClk);
327	DELAY(1);
328
329	/*
330	 * Now try reading data bits. If the ack failed, we still
331	 * need to clock through 16 cycles to keep the PHY(s) in sync.
332	 */
333	if (ack) {
334		for(i = 0; i < 16; i++) {
335			MII_CLR(PC_MgmtClk);
336			DELAY(1);
337			MII_SET(PC_MgmtClk);
338			DELAY(1);
339		}
340		goto fail;
341	}
342
343	for (i = 0x8000; i; i >>= 1) {
344		MII_CLR(PC_MgmtClk);
345		DELAY(1);
346		if (!ack) {
347			if (CSR_READ_1(sc, STGE_PhyCtrl) & PC_MgmtData)
348				frame->mii_data |= i;
349			DELAY(1);
350		}
351		MII_SET(PC_MgmtClk);
352		DELAY(1);
353	}
354
355fail:
356	MII_CLR(PC_MgmtClk);
357	DELAY(1);
358	MII_SET(PC_MgmtClk);
359	DELAY(1);
360
361	if (ack)
362		return(1);
363	return(0);
364}
365
366/*
367 * Write to a PHY register through the MII.
368 */
369static int
370stge_mii_writereg(struct stge_softc *sc, struct stge_mii_frame *frame)
371{
372
373	/*
374	 * Set up frame for TX.
375	 */
376	frame->mii_stdelim = STGE_MII_STARTDELIM;
377	frame->mii_opcode = STGE_MII_WRITEOP;
378	frame->mii_turnaround = STGE_MII_TURNAROUND;
379
380	/*
381 	 * Turn on data output.
382	 */
383	MII_SET(PC_MgmtDir);
384
385	stge_mii_sync(sc);
386
387	stge_mii_send(sc, frame->mii_stdelim, 2);
388	stge_mii_send(sc, frame->mii_opcode, 2);
389	stge_mii_send(sc, frame->mii_phyaddr, 5);
390	stge_mii_send(sc, frame->mii_regaddr, 5);
391	stge_mii_send(sc, frame->mii_turnaround, 2);
392	stge_mii_send(sc, frame->mii_data, 16);
393
394	/* Idle bit. */
395	MII_SET(PC_MgmtClk);
396	DELAY(1);
397	MII_CLR(PC_MgmtClk);
398	DELAY(1);
399
400	/*
401	 * Turn off xmit.
402	 */
403	MII_CLR(PC_MgmtDir);
404
405	return(0);
406}
407
408/*
409 * sc_miibus_readreg:	[mii interface function]
410 *
411 *	Read a PHY register on the MII of the TC9021.
412 */
413static int
414stge_miibus_readreg(device_t dev, int phy, int reg)
415{
416	struct stge_softc *sc;
417	struct stge_mii_frame frame;
418	int error;
419
420	sc = device_get_softc(dev);
421
422	if (reg == STGE_PhyCtrl) {
423		/* XXX allow ip1000phy read STGE_PhyCtrl register. */
424		STGE_MII_LOCK(sc);
425		error = CSR_READ_1(sc, STGE_PhyCtrl);
426		STGE_MII_UNLOCK(sc);
427		return (error);
428	}
429	bzero(&frame, sizeof(frame));
430	frame.mii_phyaddr = phy;
431	frame.mii_regaddr = reg;
432
433	STGE_MII_LOCK(sc);
434	error = stge_mii_readreg(sc, &frame);
435	STGE_MII_UNLOCK(sc);
436
437	if (error != 0) {
438		/* Don't show errors for PHY probe request */
439		if (reg != 1)
440			device_printf(sc->sc_dev, "phy read fail\n");
441		return (0);
442	}
443	return (frame.mii_data);
444}
445
446/*
447 * stge_miibus_writereg:	[mii interface function]
448 *
449 *	Write a PHY register on the MII of the TC9021.
450 */
451static int
452stge_miibus_writereg(device_t dev, int phy, int reg, int val)
453{
454	struct stge_softc *sc;
455	struct stge_mii_frame frame;
456	int error;
457
458	sc = device_get_softc(dev);
459
460	bzero(&frame, sizeof(frame));
461	frame.mii_phyaddr = phy;
462	frame.mii_regaddr = reg;
463	frame.mii_data = val;
464
465	STGE_MII_LOCK(sc);
466	error = stge_mii_writereg(sc, &frame);
467	STGE_MII_UNLOCK(sc);
468
469	if (error != 0)
470		device_printf(sc->sc_dev, "phy write fail\n");
471	return (0);
472}
473
474/*
475 * stge_miibus_statchg:	[mii interface function]
476 *
477 *	Callback from MII layer when media changes.
478 */
479static void
480stge_miibus_statchg(device_t dev)
481{
482	struct stge_softc *sc;
483
484	sc = device_get_softc(dev);
485	taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task);
486}
487
488/*
489 * stge_mediastatus:	[ifmedia interface function]
490 *
491 *	Get the current interface media status.
492 */
493static void
494stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
495{
496	struct stge_softc *sc;
497	struct mii_data *mii;
498
499	sc = ifp->if_softc;
500	mii = device_get_softc(sc->sc_miibus);
501
502	mii_pollstat(mii);
503	ifmr->ifm_status = mii->mii_media_status;
504	ifmr->ifm_active = mii->mii_media_active;
505}
506
507/*
508 * stge_mediachange:	[ifmedia interface function]
509 *
510 *	Set hardware to newly-selected media.
511 */
512static int
513stge_mediachange(struct ifnet *ifp)
514{
515	struct stge_softc *sc;
516	struct mii_data *mii;
517
518	sc = ifp->if_softc;
519	mii = device_get_softc(sc->sc_miibus);
520	mii_mediachg(mii);
521
522	return (0);
523}
524
525static int
526stge_eeprom_wait(struct stge_softc *sc)
527{
528	int i;
529
530	for (i = 0; i < STGE_TIMEOUT; i++) {
531		DELAY(1000);
532		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
533			return (0);
534	}
535	return (1);
536}
537
538/*
539 * stge_read_eeprom:
540 *
541 *	Read data from the serial EEPROM.
542 */
543static void
544stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
545{
546
547	if (stge_eeprom_wait(sc))
548		device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
549
550	CSR_WRITE_2(sc, STGE_EepromCtrl,
551	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
552	if (stge_eeprom_wait(sc))
553		device_printf(sc->sc_dev, "EEPROM read timed out\n");
554	*data = CSR_READ_2(sc, STGE_EepromData);
555}
556
557
558static int
559stge_probe(device_t dev)
560{
561	struct stge_product *sp;
562	int i;
563	uint16_t vendor, devid;
564
565	vendor = pci_get_vendor(dev);
566	devid = pci_get_device(dev);
567	sp = stge_products;
568	for (i = 0; i < sizeof(stge_products)/sizeof(stge_products[0]);
569	    i++, sp++) {
570		if (vendor == sp->stge_vendorid &&
571		    devid == sp->stge_deviceid) {
572			device_set_desc(dev, sp->stge_name);
573			return (BUS_PROBE_DEFAULT);
574		}
575	}
576
577	return (ENXIO);
578}
579
580static int
581stge_attach(device_t dev)
582{
583	struct stge_softc *sc;
584	struct ifnet *ifp;
585	uint8_t enaddr[ETHER_ADDR_LEN];
586	int error, i;
587	uint16_t cmd;
588	uint32_t val;
589
590	error = 0;
591	sc = device_get_softc(dev);
592	sc->sc_dev = dev;
593
594	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
595	    MTX_DEF);
596	mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF);
597	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
598	TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc);
599
600	/*
601	 * Map the device.
602	 */
603	pci_enable_busmaster(dev);
604	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
605	val = pci_read_config(dev, PCIR_BAR(1), 4);
606	if ((val & 0x01) != 0)
607		sc->sc_spec = stge_res_spec_mem;
608	else {
609		val = pci_read_config(dev, PCIR_BAR(0), 4);
610		if ((val & 0x01) == 0) {
611			device_printf(sc->sc_dev, "couldn't locate IO BAR\n");
612			error = ENXIO;
613			goto fail;
614		}
615		sc->sc_spec = stge_res_spec_io;
616	}
617	error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res);
618	if (error != 0) {
619		device_printf(dev, "couldn't allocate %s resources\n",
620		    sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O");
621		goto fail;
622	}
623	sc->sc_rev = pci_get_revid(dev);
624
625	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
626	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
627	    "rxint_nframe", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_nframe, 0,
628	    sysctl_hw_stge_rxint_nframe, "I", "stge rx interrupt nframe");
629
630	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
631	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
632	    "rxint_dmawait", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_dmawait, 0,
633	    sysctl_hw_stge_rxint_dmawait, "I", "stge rx interrupt dmawait");
634
635	/* Pull in device tunables. */
636	sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
637	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
638	    "rxint_nframe", &sc->sc_rxint_nframe);
639	if (error == 0) {
640		if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN ||
641		    sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) {
642			device_printf(dev, "rxint_nframe value out of range; "
643			    "using default: %d\n", STGE_RXINT_NFRAME_DEFAULT);
644			sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
645		}
646	}
647
648	sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
649	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
650	    "rxint_dmawait", &sc->sc_rxint_dmawait);
651	if (error == 0) {
652		if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN ||
653		    sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) {
654			device_printf(dev, "rxint_dmawait value out of range; "
655			    "using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT);
656			sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
657		}
658	}
659
660	if ((error = stge_dma_alloc(sc) != 0))
661		goto fail;
662
663	/*
664	 * Determine if we're copper or fiber.  It affects how we
665	 * reset the card.
666	 */
667	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
668		sc->sc_usefiber = 1;
669	else
670		sc->sc_usefiber = 0;
671
672	/* Load LED configuration from EEPROM. */
673	stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
674
675	/*
676	 * Reset the chip to a known state.
677	 */
678	STGE_LOCK(sc);
679	stge_reset(sc, STGE_RESET_FULL);
680	STGE_UNLOCK(sc);
681
682	/*
683	 * Reading the station address from the EEPROM doesn't seem
684	 * to work, at least on my sample boards.  Instead, since
685	 * the reset sequence does AutoInit, read it from the station
686	 * address registers. For Sundance 1023 you can only read it
687	 * from EEPROM.
688	 */
689	if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
690		uint16_t v;
691
692		v = CSR_READ_2(sc, STGE_StationAddress0);
693		enaddr[0] = v & 0xff;
694		enaddr[1] = v >> 8;
695		v = CSR_READ_2(sc, STGE_StationAddress1);
696		enaddr[2] = v & 0xff;
697		enaddr[3] = v >> 8;
698		v = CSR_READ_2(sc, STGE_StationAddress2);
699		enaddr[4] = v & 0xff;
700		enaddr[5] = v >> 8;
701		sc->sc_stge1023 = 0;
702	} else {
703		uint16_t myaddr[ETHER_ADDR_LEN / 2];
704		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
705			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
706			    &myaddr[i]);
707			myaddr[i] = le16toh(myaddr[i]);
708		}
709		bcopy(myaddr, enaddr, sizeof(enaddr));
710		sc->sc_stge1023 = 1;
711	}
712
713	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
714	if (ifp == NULL) {
715		device_printf(sc->sc_dev, "failed to if_alloc()\n");
716		error = ENXIO;
717		goto fail;
718	}
719
720	ifp->if_softc = sc;
721	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
722	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
723	ifp->if_ioctl = stge_ioctl;
724	ifp->if_start = stge_start;
725	ifp->if_timer = 0;
726	ifp->if_watchdog = NULL;
727	ifp->if_init = stge_init;
728	ifp->if_mtu = ETHERMTU;
729	ifp->if_snd.ifq_drv_maxlen = STGE_TX_RING_CNT - 1;
730	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
731	IFQ_SET_READY(&ifp->if_snd);
732	/* Revision B3 and earlier chips have checksum bug. */
733	if (sc->sc_rev >= 0x0c) {
734		ifp->if_hwassist = STGE_CSUM_FEATURES;
735		ifp->if_capabilities = IFCAP_HWCSUM;
736	} else {
737		ifp->if_hwassist = 0;
738		ifp->if_capabilities = 0;
739	}
740	ifp->if_capabilities |= IFCAP_WOL_MAGIC;
741	ifp->if_capenable = ifp->if_capabilities;
742
743	/*
744	 * Read some important bits from the PhyCtrl register.
745	 */
746	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
747	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
748
749	/* Set up MII bus. */
750	if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, stge_mediachange,
751	    stge_mediastatus)) != 0) {
752		device_printf(sc->sc_dev, "no PHY found!\n");
753		goto fail;
754	}
755
756	ether_ifattach(ifp, enaddr);
757
758	/* VLAN capability setup */
759	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
760	if (sc->sc_rev >= 0x0c)
761		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
762	ifp->if_capenable = ifp->if_capabilities;
763#ifdef DEVICE_POLLING
764	ifp->if_capabilities |= IFCAP_POLLING;
765#endif
766	/*
767	 * Tell the upper layer(s) we support long frames.
768	 * Must appear after the call to ether_ifattach() because
769	 * ether_ifattach() sets ifi_hdrlen to the default value.
770	 */
771	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
772
773	/*
774	 * The manual recommends disabling early transmit, so we
775	 * do.  It's disabled anyway, if using IP checksumming,
776	 * since the entire packet must be in the FIFO in order
777	 * for the chip to perform the checksum.
778	 */
779	sc->sc_txthresh = 0x0fff;
780
781	/*
782	 * Disable MWI if the PCI layer tells us to.
783	 */
784	sc->sc_DMACtrl = 0;
785	if ((cmd & PCIM_CMD_MWRICEN) == 0)
786		sc->sc_DMACtrl |= DMAC_MWIDisable;
787
788	/*
789	 * Hookup IRQ
790	 */
791	error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE,
792	    NULL, stge_intr, sc, &sc->sc_ih);
793	if (error != 0) {
794		ether_ifdetach(ifp);
795		device_printf(sc->sc_dev, "couldn't set up IRQ\n");
796		sc->sc_ifp = NULL;
797		goto fail;
798	}
799
800fail:
801	if (error != 0)
802		stge_detach(dev);
803
804	return (error);
805}
806
807static int
808stge_detach(device_t dev)
809{
810	struct stge_softc *sc;
811	struct ifnet *ifp;
812
813	sc = device_get_softc(dev);
814
815	ifp = sc->sc_ifp;
816#ifdef DEVICE_POLLING
817	if (ifp && ifp->if_capenable & IFCAP_POLLING)
818		ether_poll_deregister(ifp);
819#endif
820	if (device_is_attached(dev)) {
821		STGE_LOCK(sc);
822		/* XXX */
823		sc->sc_detach = 1;
824		stge_stop(sc);
825		STGE_UNLOCK(sc);
826		callout_drain(&sc->sc_tick_ch);
827		taskqueue_drain(taskqueue_swi, &sc->sc_link_task);
828		ether_ifdetach(ifp);
829	}
830
831	if (sc->sc_miibus != NULL) {
832		device_delete_child(dev, sc->sc_miibus);
833		sc->sc_miibus = NULL;
834	}
835	bus_generic_detach(dev);
836	stge_dma_free(sc);
837
838	if (ifp != NULL) {
839		if_free(ifp);
840		sc->sc_ifp = NULL;
841	}
842
843	if (sc->sc_ih) {
844		bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih);
845		sc->sc_ih = NULL;
846	}
847	bus_release_resources(dev, sc->sc_spec, sc->sc_res);
848
849	mtx_destroy(&sc->sc_mii_mtx);
850	mtx_destroy(&sc->sc_mtx);
851
852	return (0);
853}
854
855struct stge_dmamap_arg {
856	bus_addr_t	stge_busaddr;
857};
858
859static void
860stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
861{
862	struct stge_dmamap_arg *ctx;
863
864	if (error != 0)
865		return;
866
867	ctx = (struct stge_dmamap_arg *)arg;
868	ctx->stge_busaddr = segs[0].ds_addr;
869}
870
871static int
872stge_dma_alloc(struct stge_softc *sc)
873{
874	struct stge_dmamap_arg ctx;
875	struct stge_txdesc *txd;
876	struct stge_rxdesc *rxd;
877	int error, i;
878
879	/* create parent tag. */
880	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */
881		    1, 0,			/* algnmnt, boundary */
882		    STGE_DMA_MAXADDR,		/* lowaddr */
883		    BUS_SPACE_MAXADDR,		/* highaddr */
884		    NULL, NULL,			/* filter, filterarg */
885		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
886		    0,				/* nsegments */
887		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
888		    0,				/* flags */
889		    NULL, NULL,			/* lockfunc, lockarg */
890		    &sc->sc_cdata.stge_parent_tag);
891	if (error != 0) {
892		device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
893		goto fail;
894	}
895	/* create tag for Tx ring. */
896	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
897		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
898		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
899		    BUS_SPACE_MAXADDR,		/* highaddr */
900		    NULL, NULL,			/* filter, filterarg */
901		    STGE_TX_RING_SZ,		/* maxsize */
902		    1,				/* nsegments */
903		    STGE_TX_RING_SZ,		/* maxsegsize */
904		    0,				/* flags */
905		    NULL, NULL,			/* lockfunc, lockarg */
906		    &sc->sc_cdata.stge_tx_ring_tag);
907	if (error != 0) {
908		device_printf(sc->sc_dev,
909		    "failed to allocate Tx ring DMA tag\n");
910		goto fail;
911	}
912
913	/* create tag for Rx ring. */
914	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
915		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
916		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
917		    BUS_SPACE_MAXADDR,		/* highaddr */
918		    NULL, NULL,			/* filter, filterarg */
919		    STGE_RX_RING_SZ,		/* maxsize */
920		    1,				/* nsegments */
921		    STGE_RX_RING_SZ,		/* maxsegsize */
922		    0,				/* flags */
923		    NULL, NULL,			/* lockfunc, lockarg */
924		    &sc->sc_cdata.stge_rx_ring_tag);
925	if (error != 0) {
926		device_printf(sc->sc_dev,
927		    "failed to allocate Rx ring DMA tag\n");
928		goto fail;
929	}
930
931	/* create tag for Tx buffers. */
932	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
933		    1, 0,			/* algnmnt, boundary */
934		    BUS_SPACE_MAXADDR,		/* lowaddr */
935		    BUS_SPACE_MAXADDR,		/* highaddr */
936		    NULL, NULL,			/* filter, filterarg */
937		    MCLBYTES * STGE_MAXTXSEGS,	/* maxsize */
938		    STGE_MAXTXSEGS,		/* nsegments */
939		    MCLBYTES,			/* maxsegsize */
940		    0,				/* flags */
941		    NULL, NULL,			/* lockfunc, lockarg */
942		    &sc->sc_cdata.stge_tx_tag);
943	if (error != 0) {
944		device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
945		goto fail;
946	}
947
948	/* create tag for Rx buffers. */
949	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
950		    1, 0,			/* algnmnt, boundary */
951		    BUS_SPACE_MAXADDR,		/* lowaddr */
952		    BUS_SPACE_MAXADDR,		/* highaddr */
953		    NULL, NULL,			/* filter, filterarg */
954		    MCLBYTES,			/* maxsize */
955		    1,				/* nsegments */
956		    MCLBYTES,			/* maxsegsize */
957		    0,				/* flags */
958		    NULL, NULL,			/* lockfunc, lockarg */
959		    &sc->sc_cdata.stge_rx_tag);
960	if (error != 0) {
961		device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
962		goto fail;
963	}
964
965	/* allocate DMA'able memory and load the DMA map for Tx ring. */
966	error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
967	    (void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
968	    &sc->sc_cdata.stge_tx_ring_map);
969	if (error != 0) {
970		device_printf(sc->sc_dev,
971		    "failed to allocate DMA'able memory for Tx ring\n");
972		goto fail;
973	}
974
975	ctx.stge_busaddr = 0;
976	error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
977	    sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
978	    STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
979	if (error != 0 || ctx.stge_busaddr == 0) {
980		device_printf(sc->sc_dev,
981		    "failed to load DMA'able memory for Tx ring\n");
982		goto fail;
983	}
984	sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
985
986	/* allocate DMA'able memory and load the DMA map for Rx ring. */
987	error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
988	    (void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
989	    &sc->sc_cdata.stge_rx_ring_map);
990	if (error != 0) {
991		device_printf(sc->sc_dev,
992		    "failed to allocate DMA'able memory for Rx ring\n");
993		goto fail;
994	}
995
996	ctx.stge_busaddr = 0;
997	error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
998	    sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
999	    STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1000	if (error != 0 || ctx.stge_busaddr == 0) {
1001		device_printf(sc->sc_dev,
1002		    "failed to load DMA'able memory for Rx ring\n");
1003		goto fail;
1004	}
1005	sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
1006
1007	/* create DMA maps for Tx buffers. */
1008	for (i = 0; i < STGE_TX_RING_CNT; i++) {
1009		txd = &sc->sc_cdata.stge_txdesc[i];
1010		txd->tx_m = NULL;
1011		txd->tx_dmamap = 0;
1012		error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
1013		    &txd->tx_dmamap);
1014		if (error != 0) {
1015			device_printf(sc->sc_dev,
1016			    "failed to create Tx dmamap\n");
1017			goto fail;
1018		}
1019	}
1020	/* create DMA maps for Rx buffers. */
1021	if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
1022	    &sc->sc_cdata.stge_rx_sparemap)) != 0) {
1023		device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
1024		goto fail;
1025	}
1026	for (i = 0; i < STGE_RX_RING_CNT; i++) {
1027		rxd = &sc->sc_cdata.stge_rxdesc[i];
1028		rxd->rx_m = NULL;
1029		rxd->rx_dmamap = 0;
1030		error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
1031		    &rxd->rx_dmamap);
1032		if (error != 0) {
1033			device_printf(sc->sc_dev,
1034			    "failed to create Rx dmamap\n");
1035			goto fail;
1036		}
1037	}
1038
1039fail:
1040	return (error);
1041}
1042
1043static void
1044stge_dma_free(struct stge_softc *sc)
1045{
1046	struct stge_txdesc *txd;
1047	struct stge_rxdesc *rxd;
1048	int i;
1049
1050	/* Tx ring */
1051	if (sc->sc_cdata.stge_tx_ring_tag) {
1052		if (sc->sc_cdata.stge_tx_ring_map)
1053			bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
1054			    sc->sc_cdata.stge_tx_ring_map);
1055		if (sc->sc_cdata.stge_tx_ring_map &&
1056		    sc->sc_rdata.stge_tx_ring)
1057			bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
1058			    sc->sc_rdata.stge_tx_ring,
1059			    sc->sc_cdata.stge_tx_ring_map);
1060		sc->sc_rdata.stge_tx_ring = NULL;
1061		sc->sc_cdata.stge_tx_ring_map = 0;
1062		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
1063		sc->sc_cdata.stge_tx_ring_tag = NULL;
1064	}
1065	/* Rx ring */
1066	if (sc->sc_cdata.stge_rx_ring_tag) {
1067		if (sc->sc_cdata.stge_rx_ring_map)
1068			bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
1069			    sc->sc_cdata.stge_rx_ring_map);
1070		if (sc->sc_cdata.stge_rx_ring_map &&
1071		    sc->sc_rdata.stge_rx_ring)
1072			bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
1073			    sc->sc_rdata.stge_rx_ring,
1074			    sc->sc_cdata.stge_rx_ring_map);
1075		sc->sc_rdata.stge_rx_ring = NULL;
1076		sc->sc_cdata.stge_rx_ring_map = 0;
1077		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
1078		sc->sc_cdata.stge_rx_ring_tag = NULL;
1079	}
1080	/* Tx buffers */
1081	if (sc->sc_cdata.stge_tx_tag) {
1082		for (i = 0; i < STGE_TX_RING_CNT; i++) {
1083			txd = &sc->sc_cdata.stge_txdesc[i];
1084			if (txd->tx_dmamap) {
1085				bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
1086				    txd->tx_dmamap);
1087				txd->tx_dmamap = 0;
1088			}
1089		}
1090		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
1091		sc->sc_cdata.stge_tx_tag = NULL;
1092	}
1093	/* Rx buffers */
1094	if (sc->sc_cdata.stge_rx_tag) {
1095		for (i = 0; i < STGE_RX_RING_CNT; i++) {
1096			rxd = &sc->sc_cdata.stge_rxdesc[i];
1097			if (rxd->rx_dmamap) {
1098				bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
1099				    rxd->rx_dmamap);
1100				rxd->rx_dmamap = 0;
1101			}
1102		}
1103		if (sc->sc_cdata.stge_rx_sparemap) {
1104			bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
1105			    sc->sc_cdata.stge_rx_sparemap);
1106			sc->sc_cdata.stge_rx_sparemap = 0;
1107		}
1108		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
1109		sc->sc_cdata.stge_rx_tag = NULL;
1110	}
1111
1112	if (sc->sc_cdata.stge_parent_tag) {
1113		bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
1114		sc->sc_cdata.stge_parent_tag = NULL;
1115	}
1116}
1117
1118/*
1119 * stge_shutdown:
1120 *
1121 *	Make sure the interface is stopped at reboot time.
1122 */
1123static int
1124stge_shutdown(device_t dev)
1125{
1126
1127	return (stge_suspend(dev));
1128}
1129
1130static void
1131stge_setwol(struct stge_softc *sc)
1132{
1133	struct ifnet *ifp;
1134	uint8_t v;
1135
1136	STGE_LOCK_ASSERT(sc);
1137
1138	ifp = sc->sc_ifp;
1139	v = CSR_READ_1(sc, STGE_WakeEvent);
1140	/* Disable all WOL bits. */
1141	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1142	    WE_WakeOnLanEnable);
1143	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1144		v |= WE_MagicPktEnable | WE_WakeOnLanEnable;
1145	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1146	/* Reset Tx and prevent transmission. */
1147	CSR_WRITE_4(sc, STGE_AsicCtrl,
1148	    CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset);
1149	/*
1150	 * TC9021 automatically reset link speed to 100Mbps when it's put
1151	 * into sleep so there is no need to try to resetting link speed.
1152	 */
1153}
1154
1155static int
1156stge_suspend(device_t dev)
1157{
1158	struct stge_softc *sc;
1159
1160	sc = device_get_softc(dev);
1161
1162	STGE_LOCK(sc);
1163	stge_stop(sc);
1164	sc->sc_suspended = 1;
1165	stge_setwol(sc);
1166	STGE_UNLOCK(sc);
1167
1168	return (0);
1169}
1170
1171static int
1172stge_resume(device_t dev)
1173{
1174	struct stge_softc *sc;
1175	struct ifnet *ifp;
1176	uint8_t v;
1177
1178	sc = device_get_softc(dev);
1179
1180	STGE_LOCK(sc);
1181	/*
1182	 * Clear WOL bits, so special frames wouldn't interfere
1183	 * normal Rx operation anymore.
1184	 */
1185	v = CSR_READ_1(sc, STGE_WakeEvent);
1186	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1187	    WE_WakeOnLanEnable);
1188	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1189	ifp = sc->sc_ifp;
1190	if (ifp->if_flags & IFF_UP)
1191		stge_init_locked(sc);
1192
1193	sc->sc_suspended = 0;
1194	STGE_UNLOCK(sc);
1195
1196	return (0);
1197}
1198
1199static void
1200stge_dma_wait(struct stge_softc *sc)
1201{
1202	int i;
1203
1204	for (i = 0; i < STGE_TIMEOUT; i++) {
1205		DELAY(2);
1206		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
1207			break;
1208	}
1209
1210	if (i == STGE_TIMEOUT)
1211		device_printf(sc->sc_dev, "DMA wait timed out\n");
1212}
1213
1214static int
1215stge_encap(struct stge_softc *sc, struct mbuf **m_head)
1216{
1217	struct stge_txdesc *txd;
1218	struct stge_tfd *tfd;
1219	struct mbuf *m;
1220	bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
1221	int error, i, nsegs, si;
1222	uint64_t csum_flags, tfc;
1223
1224	STGE_LOCK_ASSERT(sc);
1225
1226	if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
1227		return (ENOBUFS);
1228
1229	error =  bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1230	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1231	if (error == EFBIG) {
1232		m = m_collapse(*m_head, M_DONTWAIT, STGE_MAXTXSEGS);
1233		if (m == NULL) {
1234			m_freem(*m_head);
1235			*m_head = NULL;
1236			return (ENOMEM);
1237		}
1238		*m_head = m;
1239		error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1240		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1241		if (error != 0) {
1242			m_freem(*m_head);
1243			*m_head = NULL;
1244			return (error);
1245		}
1246	} else if (error != 0)
1247		return (error);
1248	if (nsegs == 0) {
1249		m_freem(*m_head);
1250		*m_head = NULL;
1251		return (EIO);
1252	}
1253
1254	m = *m_head;
1255	csum_flags = 0;
1256	if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
1257		if (m->m_pkthdr.csum_flags & CSUM_IP)
1258			csum_flags |= TFD_IPChecksumEnable;
1259		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1260			csum_flags |= TFD_TCPChecksumEnable;
1261		else if (m->m_pkthdr.csum_flags & CSUM_UDP)
1262			csum_flags |= TFD_UDPChecksumEnable;
1263	}
1264
1265	si = sc->sc_cdata.stge_tx_prod;
1266	tfd = &sc->sc_rdata.stge_tx_ring[si];
1267	for (i = 0; i < nsegs; i++)
1268		tfd->tfd_frags[i].frag_word0 =
1269		    htole64(FRAG_ADDR(txsegs[i].ds_addr) |
1270		    FRAG_LEN(txsegs[i].ds_len));
1271	sc->sc_cdata.stge_tx_cnt++;
1272
1273	tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
1274	    TFD_FragCount(nsegs) | csum_flags;
1275	if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
1276		tfc |= TFD_TxDMAIndicate;
1277
1278	/* Update producer index. */
1279	sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
1280
1281	/* Check if we have a VLAN tag to insert. */
1282	if (m->m_flags & M_VLANTAG)
1283		tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag));
1284	tfd->tfd_control = htole64(tfc);
1285
1286	/* Update Tx Queue. */
1287	STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
1288	STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
1289	txd->tx_m = m;
1290
1291	/* Sync descriptors. */
1292	bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1293	    BUS_DMASYNC_PREWRITE);
1294	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1295	    sc->sc_cdata.stge_tx_ring_map,
1296	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1297
1298	return (0);
1299}
1300
1301/*
1302 * stge_start:		[ifnet interface function]
1303 *
1304 *	Start packet transmission on the interface.
1305 */
1306static void
1307stge_start(struct ifnet *ifp)
1308{
1309	struct stge_softc *sc;
1310
1311	sc = ifp->if_softc;
1312	STGE_LOCK(sc);
1313	stge_start_locked(ifp);
1314	STGE_UNLOCK(sc);
1315}
1316
1317static void
1318stge_start_locked(struct ifnet *ifp)
1319{
1320        struct stge_softc *sc;
1321        struct mbuf *m_head;
1322	int enq;
1323
1324	sc = ifp->if_softc;
1325
1326	STGE_LOCK_ASSERT(sc);
1327
1328	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1329	    IFF_DRV_RUNNING || sc->sc_link == 0)
1330		return;
1331
1332	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1333		if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
1334			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1335			break;
1336		}
1337
1338		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1339		if (m_head == NULL)
1340			break;
1341		/*
1342		 * Pack the data into the transmit ring. If we
1343		 * don't have room, set the OACTIVE flag and wait
1344		 * for the NIC to drain the ring.
1345		 */
1346		if (stge_encap(sc, &m_head)) {
1347			if (m_head == NULL)
1348				break;
1349			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1350			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1351			break;
1352		}
1353
1354		enq++;
1355		/*
1356		 * If there's a BPF listener, bounce a copy of this frame
1357		 * to him.
1358		 */
1359		ETHER_BPF_MTAP(ifp, m_head);
1360	}
1361
1362	if (enq > 0) {
1363		/* Transmit */
1364		CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
1365
1366		/* Set a timeout in case the chip goes out to lunch. */
1367		sc->sc_watchdog_timer = 5;
1368	}
1369}
1370
1371/*
1372 * stge_watchdog:
1373 *
1374 *	Watchdog timer handler.
1375 */
1376static void
1377stge_watchdog(struct stge_softc *sc)
1378{
1379	struct ifnet *ifp;
1380
1381	STGE_LOCK_ASSERT(sc);
1382
1383	if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
1384		return;
1385
1386	ifp = sc->sc_ifp;
1387	if_printf(sc->sc_ifp, "device timeout\n");
1388	ifp->if_oerrors++;
1389	stge_init_locked(sc);
1390	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1391		stge_start_locked(ifp);
1392}
1393
1394/*
1395 * stge_ioctl:		[ifnet interface function]
1396 *
1397 *	Handle control requests from the operator.
1398 */
1399static int
1400stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1401{
1402	struct stge_softc *sc;
1403	struct ifreq *ifr;
1404	struct mii_data *mii;
1405	int error, mask;
1406
1407	sc = ifp->if_softc;
1408	ifr = (struct ifreq *)data;
1409	error = 0;
1410	switch (cmd) {
1411	case SIOCSIFMTU:
1412		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
1413			error = EINVAL;
1414		else if (ifp->if_mtu != ifr->ifr_mtu) {
1415			ifp->if_mtu = ifr->ifr_mtu;
1416			STGE_LOCK(sc);
1417			stge_init_locked(sc);
1418			STGE_UNLOCK(sc);
1419		}
1420		break;
1421	case SIOCSIFFLAGS:
1422		STGE_LOCK(sc);
1423		if ((ifp->if_flags & IFF_UP) != 0) {
1424			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1425				if (((ifp->if_flags ^ sc->sc_if_flags)
1426				    & IFF_PROMISC) != 0)
1427					stge_set_filter(sc);
1428			} else {
1429				if (sc->sc_detach == 0)
1430					stge_init_locked(sc);
1431			}
1432		} else {
1433			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1434				stge_stop(sc);
1435		}
1436		sc->sc_if_flags = ifp->if_flags;
1437		STGE_UNLOCK(sc);
1438		break;
1439	case SIOCADDMULTI:
1440	case SIOCDELMULTI:
1441		STGE_LOCK(sc);
1442		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1443			stge_set_multi(sc);
1444		STGE_UNLOCK(sc);
1445		break;
1446	case SIOCSIFMEDIA:
1447	case SIOCGIFMEDIA:
1448		mii = device_get_softc(sc->sc_miibus);
1449		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1450		break;
1451	case SIOCSIFCAP:
1452		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1453#ifdef DEVICE_POLLING
1454		if ((mask & IFCAP_POLLING) != 0) {
1455			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1456				error = ether_poll_register(stge_poll, ifp);
1457				if (error != 0)
1458					break;
1459				STGE_LOCK(sc);
1460				CSR_WRITE_2(sc, STGE_IntEnable, 0);
1461				ifp->if_capenable |= IFCAP_POLLING;
1462				STGE_UNLOCK(sc);
1463			} else {
1464				error = ether_poll_deregister(ifp);
1465				if (error != 0)
1466					break;
1467				STGE_LOCK(sc);
1468				CSR_WRITE_2(sc, STGE_IntEnable,
1469				    sc->sc_IntEnable);
1470				ifp->if_capenable &= ~IFCAP_POLLING;
1471				STGE_UNLOCK(sc);
1472			}
1473		}
1474#endif
1475		if ((mask & IFCAP_HWCSUM) != 0) {
1476			ifp->if_capenable ^= IFCAP_HWCSUM;
1477			if ((IFCAP_HWCSUM & ifp->if_capenable) != 0 &&
1478			    (IFCAP_HWCSUM & ifp->if_capabilities) != 0)
1479				ifp->if_hwassist = STGE_CSUM_FEATURES;
1480			else
1481				ifp->if_hwassist = 0;
1482		}
1483		if ((mask & IFCAP_WOL) != 0 &&
1484		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
1485			if ((mask & IFCAP_WOL_MAGIC) != 0)
1486				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1487		}
1488		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
1489			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1490			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1491				STGE_LOCK(sc);
1492				stge_vlan_setup(sc);
1493				STGE_UNLOCK(sc);
1494			}
1495		}
1496		VLAN_CAPABILITIES(ifp);
1497		break;
1498	default:
1499		error = ether_ioctl(ifp, cmd, data);
1500		break;
1501	}
1502
1503	return (error);
1504}
1505
1506static void
1507stge_link_task(void *arg, int pending)
1508{
1509	struct stge_softc *sc;
1510	struct mii_data *mii;
1511	uint32_t v, ac;
1512	int i;
1513
1514	sc = (struct stge_softc *)arg;
1515	STGE_LOCK(sc);
1516
1517	mii = device_get_softc(sc->sc_miibus);
1518	if (mii->mii_media_status & IFM_ACTIVE) {
1519		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1520			sc->sc_link = 1;
1521	} else
1522		sc->sc_link = 0;
1523
1524	sc->sc_MACCtrl = 0;
1525	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
1526		sc->sc_MACCtrl |= MC_DuplexSelect;
1527	if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) != 0)
1528		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1529	if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) != 0)
1530		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1531	/*
1532	 * Update STGE_MACCtrl register depending on link status.
1533	 * (duplex, flow control etc)
1534	 */
1535	v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
1536	v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
1537	v |= sc->sc_MACCtrl;
1538	CSR_WRITE_4(sc, STGE_MACCtrl, v);
1539	if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
1540		/* Duplex setting changed, reset Tx/Rx functions. */
1541		ac = CSR_READ_4(sc, STGE_AsicCtrl);
1542		ac |= AC_TxReset | AC_RxReset;
1543		CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1544		for (i = 0; i < STGE_TIMEOUT; i++) {
1545			DELAY(100);
1546			if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1547				break;
1548		}
1549		if (i == STGE_TIMEOUT)
1550			device_printf(sc->sc_dev, "reset failed to complete\n");
1551	}
1552	STGE_UNLOCK(sc);
1553}
1554
1555static __inline int
1556stge_tx_error(struct stge_softc *sc)
1557{
1558	uint32_t txstat;
1559	int error;
1560
1561	for (error = 0;;) {
1562		txstat = CSR_READ_4(sc, STGE_TxStatus);
1563		if ((txstat & TS_TxComplete) == 0)
1564			break;
1565		/* Tx underrun */
1566		if ((txstat & TS_TxUnderrun) != 0) {
1567			/*
1568			 * XXX
1569			 * There should be a more better way to recover
1570			 * from Tx underrun instead of a full reset.
1571			 */
1572			if (sc->sc_nerr++ < STGE_MAXERR)
1573				device_printf(sc->sc_dev, "Tx underrun, "
1574				    "resetting...\n");
1575			if (sc->sc_nerr == STGE_MAXERR)
1576				device_printf(sc->sc_dev, "too many errors; "
1577				    "not reporting any more\n");
1578			error = -1;
1579			break;
1580		}
1581		/* Maximum/Late collisions, Re-enable Tx MAC. */
1582		if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
1583			CSR_WRITE_4(sc, STGE_MACCtrl,
1584			    (CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
1585			    MC_TxEnable);
1586	}
1587
1588	return (error);
1589}
1590
1591/*
1592 * stge_intr:
1593 *
1594 *	Interrupt service routine.
1595 */
1596static void
1597stge_intr(void *arg)
1598{
1599	struct stge_softc *sc;
1600	struct ifnet *ifp;
1601	int reinit;
1602	uint16_t status;
1603
1604	sc = (struct stge_softc *)arg;
1605	ifp = sc->sc_ifp;
1606
1607	STGE_LOCK(sc);
1608
1609#ifdef DEVICE_POLLING
1610	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1611		goto done_locked;
1612#endif
1613	status = CSR_READ_2(sc, STGE_IntStatus);
1614	if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
1615		goto done_locked;
1616
1617	/* Disable interrupts. */
1618	for (reinit = 0;;) {
1619		status = CSR_READ_2(sc, STGE_IntStatusAck);
1620		status &= sc->sc_IntEnable;
1621		if (status == 0)
1622			break;
1623		/* Host interface errors. */
1624		if ((status & IS_HostError) != 0) {
1625			device_printf(sc->sc_dev,
1626			    "Host interface error, resetting...\n");
1627			reinit = 1;
1628			goto force_init;
1629		}
1630
1631		/* Receive interrupts. */
1632		if ((status & IS_RxDMAComplete) != 0) {
1633			stge_rxeof(sc);
1634			if ((status & IS_RFDListEnd) != 0)
1635				CSR_WRITE_4(sc, STGE_DMACtrl,
1636				    DMAC_RxDMAPollNow);
1637		}
1638
1639		/* Transmit interrupts. */
1640		if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
1641			stge_txeof(sc);
1642
1643		/* Transmission errors.*/
1644		if ((status & IS_TxComplete) != 0) {
1645			if ((reinit = stge_tx_error(sc)) != 0)
1646				break;
1647		}
1648	}
1649
1650force_init:
1651	if (reinit != 0)
1652		stge_init_locked(sc);
1653
1654	/* Re-enable interrupts. */
1655	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1656
1657	/* Try to get more packets going. */
1658	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1659		stge_start_locked(ifp);
1660
1661done_locked:
1662	STGE_UNLOCK(sc);
1663}
1664
1665/*
1666 * stge_txeof:
1667 *
1668 *	Helper; handle transmit interrupts.
1669 */
1670static void
1671stge_txeof(struct stge_softc *sc)
1672{
1673	struct ifnet *ifp;
1674	struct stge_txdesc *txd;
1675	uint64_t control;
1676	int cons;
1677
1678	STGE_LOCK_ASSERT(sc);
1679
1680	ifp = sc->sc_ifp;
1681
1682	txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1683	if (txd == NULL)
1684		return;
1685	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1686	    sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
1687
1688	/*
1689	 * Go through our Tx list and free mbufs for those
1690	 * frames which have been transmitted.
1691	 */
1692	for (cons = sc->sc_cdata.stge_tx_cons;;
1693	    cons = (cons + 1) % STGE_TX_RING_CNT) {
1694		if (sc->sc_cdata.stge_tx_cnt <= 0)
1695			break;
1696		control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
1697		if ((control & TFD_TFDDone) == 0)
1698			break;
1699		sc->sc_cdata.stge_tx_cnt--;
1700		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1701
1702		bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1703		    BUS_DMASYNC_POSTWRITE);
1704		bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
1705
1706		/* Output counter is updated with statistics register */
1707		m_freem(txd->tx_m);
1708		txd->tx_m = NULL;
1709		STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
1710		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
1711		txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1712	}
1713	sc->sc_cdata.stge_tx_cons = cons;
1714	if (sc->sc_cdata.stge_tx_cnt == 0)
1715		sc->sc_watchdog_timer = 0;
1716
1717        bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1718	    sc->sc_cdata.stge_tx_ring_map,
1719	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1720}
1721
1722static __inline void
1723stge_discard_rxbuf(struct stge_softc *sc, int idx)
1724{
1725	struct stge_rfd *rfd;
1726
1727	rfd = &sc->sc_rdata.stge_rx_ring[idx];
1728	rfd->rfd_status = 0;
1729}
1730
1731#ifndef __NO_STRICT_ALIGNMENT
1732/*
1733 * It seems that TC9021's DMA engine has alignment restrictions in
1734 * DMA scatter operations. The first DMA segment has no address
1735 * alignment restrictins but the rest should be aligned on 4(?) bytes
1736 * boundary. Otherwise it would corrupt random memory. Since we don't
1737 * know which one is used for the first segment in advance we simply
1738 * don't align at all.
1739 * To avoid copying over an entire frame to align, we allocate a new
1740 * mbuf and copy ethernet header to the new mbuf. The new mbuf is
1741 * prepended into the existing mbuf chain.
1742 */
1743static __inline struct mbuf *
1744stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
1745{
1746	struct mbuf *n;
1747
1748	n = NULL;
1749	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
1750		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
1751		m->m_data += ETHER_HDR_LEN;
1752		n = m;
1753	} else {
1754		MGETHDR(n, M_DONTWAIT, MT_DATA);
1755		if (n != NULL) {
1756			bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
1757			m->m_data += ETHER_HDR_LEN;
1758			m->m_len -= ETHER_HDR_LEN;
1759			n->m_len = ETHER_HDR_LEN;
1760			M_MOVE_PKTHDR(n, m);
1761			n->m_next = m;
1762		} else
1763			m_freem(m);
1764	}
1765
1766	return (n);
1767}
1768#endif
1769
1770/*
1771 * stge_rxeof:
1772 *
1773 *	Helper; handle receive interrupts.
1774 */
1775static int
1776stge_rxeof(struct stge_softc *sc)
1777{
1778	struct ifnet *ifp;
1779	struct stge_rxdesc *rxd;
1780	struct mbuf *mp, *m;
1781	uint64_t status64;
1782	uint32_t status;
1783	int cons, prog, rx_npkts;
1784
1785	STGE_LOCK_ASSERT(sc);
1786
1787	rx_npkts = 0;
1788	ifp = sc->sc_ifp;
1789
1790	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1791	    sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
1792
1793	prog = 0;
1794	for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
1795	    prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
1796		status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
1797		status = RFD_RxStatus(status64);
1798		if ((status & RFD_RFDDone) == 0)
1799			break;
1800#ifdef DEVICE_POLLING
1801		if (ifp->if_capenable & IFCAP_POLLING) {
1802			if (sc->sc_cdata.stge_rxcycles <= 0)
1803				break;
1804			sc->sc_cdata.stge_rxcycles--;
1805		}
1806#endif
1807		prog++;
1808		rxd = &sc->sc_cdata.stge_rxdesc[cons];
1809		mp = rxd->rx_m;
1810
1811		/*
1812		 * If the packet had an error, drop it.  Note we count
1813		 * the error later in the periodic stats update.
1814		 */
1815		if ((status & RFD_FrameEnd) != 0 && (status &
1816		    (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1817		    RFD_RxAlignmentError | RFD_RxFCSError |
1818		    RFD_RxLengthError)) != 0) {
1819			stge_discard_rxbuf(sc, cons);
1820			if (sc->sc_cdata.stge_rxhead != NULL) {
1821				m_freem(sc->sc_cdata.stge_rxhead);
1822				STGE_RXCHAIN_RESET(sc);
1823			}
1824			continue;
1825		}
1826		/*
1827		 * Add a new receive buffer to the ring.
1828		 */
1829		if (stge_newbuf(sc, cons) != 0) {
1830			ifp->if_iqdrops++;
1831			stge_discard_rxbuf(sc, cons);
1832			if (sc->sc_cdata.stge_rxhead != NULL) {
1833				m_freem(sc->sc_cdata.stge_rxhead);
1834				STGE_RXCHAIN_RESET(sc);
1835			}
1836			continue;
1837		}
1838
1839		if ((status & RFD_FrameEnd) != 0)
1840			mp->m_len = RFD_RxDMAFrameLen(status) -
1841			    sc->sc_cdata.stge_rxlen;
1842		sc->sc_cdata.stge_rxlen += mp->m_len;
1843
1844		/* Chain mbufs. */
1845		if (sc->sc_cdata.stge_rxhead == NULL) {
1846			sc->sc_cdata.stge_rxhead = mp;
1847			sc->sc_cdata.stge_rxtail = mp;
1848		} else {
1849			mp->m_flags &= ~M_PKTHDR;
1850			sc->sc_cdata.stge_rxtail->m_next = mp;
1851			sc->sc_cdata.stge_rxtail = mp;
1852		}
1853
1854		if ((status & RFD_FrameEnd) != 0) {
1855			m = sc->sc_cdata.stge_rxhead;
1856			m->m_pkthdr.rcvif = ifp;
1857			m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
1858
1859			if (m->m_pkthdr.len > sc->sc_if_framesize) {
1860				m_freem(m);
1861				STGE_RXCHAIN_RESET(sc);
1862				continue;
1863			}
1864			/*
1865			 * Set the incoming checksum information for
1866			 * the packet.
1867			 */
1868			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1869				if ((status & RFD_IPDetected) != 0) {
1870					m->m_pkthdr.csum_flags |=
1871						CSUM_IP_CHECKED;
1872					if ((status & RFD_IPError) == 0)
1873						m->m_pkthdr.csum_flags |=
1874						    CSUM_IP_VALID;
1875				}
1876				if (((status & RFD_TCPDetected) != 0 &&
1877				    (status & RFD_TCPError) == 0) ||
1878				    ((status & RFD_UDPDetected) != 0 &&
1879				    (status & RFD_UDPError) == 0)) {
1880					m->m_pkthdr.csum_flags |=
1881					    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1882					m->m_pkthdr.csum_data = 0xffff;
1883				}
1884			}
1885
1886#ifndef __NO_STRICT_ALIGNMENT
1887			if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
1888				if ((m = stge_fixup_rx(sc, m)) == NULL) {
1889					STGE_RXCHAIN_RESET(sc);
1890					continue;
1891				}
1892			}
1893#endif
1894			/* Check for VLAN tagged packets. */
1895			if ((status & RFD_VLANDetected) != 0 &&
1896			    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1897				m->m_pkthdr.ether_vtag = RFD_TCI(status64);
1898				m->m_flags |= M_VLANTAG;
1899			}
1900
1901			STGE_UNLOCK(sc);
1902			/* Pass it on. */
1903			(*ifp->if_input)(ifp, m);
1904			STGE_LOCK(sc);
1905			rx_npkts++;
1906
1907			STGE_RXCHAIN_RESET(sc);
1908		}
1909	}
1910
1911	if (prog > 0) {
1912		/* Update the consumer index. */
1913		sc->sc_cdata.stge_rx_cons = cons;
1914		bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1915		    sc->sc_cdata.stge_rx_ring_map,
1916		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1917	}
1918	return (rx_npkts);
1919}
1920
1921#ifdef DEVICE_POLLING
1922static int
1923stge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1924{
1925	struct stge_softc *sc;
1926	uint16_t status;
1927	int rx_npkts;
1928
1929	rx_npkts = 0;
1930	sc = ifp->if_softc;
1931	STGE_LOCK(sc);
1932	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1933		STGE_UNLOCK(sc);
1934		return (rx_npkts);
1935	}
1936
1937	sc->sc_cdata.stge_rxcycles = count;
1938	rx_npkts = stge_rxeof(sc);
1939	stge_txeof(sc);
1940
1941	if (cmd == POLL_AND_CHECK_STATUS) {
1942		status = CSR_READ_2(sc, STGE_IntStatus);
1943		status &= sc->sc_IntEnable;
1944		if (status != 0) {
1945			if ((status & IS_HostError) != 0) {
1946				device_printf(sc->sc_dev,
1947				    "Host interface error, resetting...\n");
1948				stge_init_locked(sc);
1949			}
1950			if ((status & IS_TxComplete) != 0) {
1951				if (stge_tx_error(sc) != 0)
1952					stge_init_locked(sc);
1953			}
1954		}
1955
1956	}
1957
1958	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1959		stge_start_locked(ifp);
1960
1961	STGE_UNLOCK(sc);
1962	return (rx_npkts);
1963}
1964#endif	/* DEVICE_POLLING */
1965
1966/*
1967 * stge_tick:
1968 *
1969 *	One second timer, used to tick the MII.
1970 */
1971static void
1972stge_tick(void *arg)
1973{
1974	struct stge_softc *sc;
1975	struct mii_data *mii;
1976
1977	sc = (struct stge_softc *)arg;
1978
1979	STGE_LOCK_ASSERT(sc);
1980
1981	mii = device_get_softc(sc->sc_miibus);
1982	mii_tick(mii);
1983
1984	/* Update statistics counters. */
1985	stge_stats_update(sc);
1986
1987	/*
1988	 * Relcaim any pending Tx descriptors to release mbufs in a
1989	 * timely manner as we don't generate Tx completion interrupts
1990	 * for every frame. This limits the delay to a maximum of one
1991	 * second.
1992	 */
1993	if (sc->sc_cdata.stge_tx_cnt != 0)
1994		stge_txeof(sc);
1995
1996	stge_watchdog(sc);
1997
1998	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1999}
2000
2001/*
2002 * stge_stats_update:
2003 *
2004 *	Read the TC9021 statistics counters.
2005 */
2006static void
2007stge_stats_update(struct stge_softc *sc)
2008{
2009	struct ifnet *ifp;
2010
2011	STGE_LOCK_ASSERT(sc);
2012
2013	ifp = sc->sc_ifp;
2014
2015	CSR_READ_4(sc,STGE_OctetRcvOk);
2016
2017	ifp->if_ipackets += CSR_READ_4(sc, STGE_FramesRcvdOk);
2018
2019	ifp->if_ierrors += CSR_READ_2(sc, STGE_FramesLostRxErrors);
2020
2021	CSR_READ_4(sc, STGE_OctetXmtdOk);
2022
2023	ifp->if_opackets += CSR_READ_4(sc, STGE_FramesXmtdOk);
2024
2025	ifp->if_collisions +=
2026	    CSR_READ_4(sc, STGE_LateCollisions) +
2027	    CSR_READ_4(sc, STGE_MultiColFrames) +
2028	    CSR_READ_4(sc, STGE_SingleColFrames);
2029
2030	ifp->if_oerrors +=
2031	    CSR_READ_2(sc, STGE_FramesAbortXSColls) +
2032	    CSR_READ_2(sc, STGE_FramesWEXDeferal);
2033}
2034
2035/*
2036 * stge_reset:
2037 *
2038 *	Perform a soft reset on the TC9021.
2039 */
2040static void
2041stge_reset(struct stge_softc *sc, uint32_t how)
2042{
2043	uint32_t ac;
2044	uint8_t v;
2045	int i, dv;
2046
2047	STGE_LOCK_ASSERT(sc);
2048
2049	dv = 5000;
2050	ac = CSR_READ_4(sc, STGE_AsicCtrl);
2051	switch (how) {
2052	case STGE_RESET_TX:
2053		ac |= AC_TxReset | AC_FIFO;
2054		dv = 100;
2055		break;
2056	case STGE_RESET_RX:
2057		ac |= AC_RxReset | AC_FIFO;
2058		dv = 100;
2059		break;
2060	case STGE_RESET_FULL:
2061	default:
2062		/*
2063		 * Only assert RstOut if we're fiber.  We need GMII clocks
2064		 * to be present in order for the reset to complete on fiber
2065		 * cards.
2066		 */
2067		ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
2068		    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
2069		    (sc->sc_usefiber ? AC_RstOut : 0);
2070		break;
2071	}
2072
2073	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
2074
2075	/* Account for reset problem at 10Mbps. */
2076	DELAY(dv);
2077
2078	for (i = 0; i < STGE_TIMEOUT; i++) {
2079		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
2080			break;
2081		DELAY(dv);
2082	}
2083
2084	if (i == STGE_TIMEOUT)
2085		device_printf(sc->sc_dev, "reset failed to complete\n");
2086
2087	/* Set LED, from Linux IPG driver. */
2088	ac = CSR_READ_4(sc, STGE_AsicCtrl);
2089	ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
2090	if ((sc->sc_led & 0x01) != 0)
2091		ac |= AC_LEDMode;
2092	if ((sc->sc_led & 0x03) != 0)
2093		ac |= AC_LEDModeBit1;
2094	if ((sc->sc_led & 0x08) != 0)
2095		ac |= AC_LEDSpeed;
2096	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
2097
2098	/* Set PHY, from Linux IPG driver */
2099	v = CSR_READ_1(sc, STGE_PhySet);
2100	v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
2101	v |= ((sc->sc_led & 0x70) >> 4);
2102	CSR_WRITE_1(sc, STGE_PhySet, v);
2103}
2104
2105/*
2106 * stge_init:		[ ifnet interface function ]
2107 *
2108 *	Initialize the interface.
2109 */
2110static void
2111stge_init(void *xsc)
2112{
2113	struct stge_softc *sc;
2114
2115	sc = (struct stge_softc *)xsc;
2116	STGE_LOCK(sc);
2117	stge_init_locked(sc);
2118	STGE_UNLOCK(sc);
2119}
2120
2121static void
2122stge_init_locked(struct stge_softc *sc)
2123{
2124	struct ifnet *ifp;
2125	struct mii_data *mii;
2126	uint16_t eaddr[3];
2127	uint32_t v;
2128	int error;
2129
2130	STGE_LOCK_ASSERT(sc);
2131
2132	ifp = sc->sc_ifp;
2133	mii = device_get_softc(sc->sc_miibus);
2134
2135	/*
2136	 * Cancel any pending I/O.
2137	 */
2138	stge_stop(sc);
2139
2140	/*
2141	 * Reset the chip to a known state.
2142	 */
2143	stge_reset(sc, STGE_RESET_FULL);
2144
2145	/* Init descriptors. */
2146	error = stge_init_rx_ring(sc);
2147        if (error != 0) {
2148                device_printf(sc->sc_dev,
2149                    "initialization failed: no memory for rx buffers\n");
2150                stge_stop(sc);
2151		goto out;
2152        }
2153	stge_init_tx_ring(sc);
2154
2155	/* Set the station address. */
2156	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2157	CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
2158	CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
2159	CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
2160
2161	/*
2162	 * Set the statistics masks.  Disable all the RMON stats,
2163	 * and disable selected stats in the non-RMON stats registers.
2164	 */
2165	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
2166	CSR_WRITE_4(sc, STGE_StatisticsMask,
2167	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
2168	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
2169	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
2170	    (1U << 21));
2171
2172	/* Set up the receive filter. */
2173	stge_set_filter(sc);
2174	/* Program multicast filter. */
2175	stge_set_multi(sc);
2176
2177	/*
2178	 * Give the transmit and receive ring to the chip.
2179	 */
2180	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
2181	    STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
2182	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
2183	    STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
2184
2185	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
2186	    STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
2187	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
2188	    STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
2189
2190	/*
2191	 * Initialize the Tx auto-poll period.  It's OK to make this number
2192	 * large (255 is the max, but we use 127) -- we explicitly kick the
2193	 * transmit engine when there's actually a packet.
2194	 */
2195	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2196
2197	/* ..and the Rx auto-poll period. */
2198	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2199
2200	/* Initialize the Tx start threshold. */
2201	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
2202
2203	/* Rx DMA thresholds, from Linux */
2204	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
2205	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
2206
2207	/* Rx early threhold, from Linux */
2208	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
2209
2210	/* Tx DMA thresholds, from Linux */
2211	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
2212	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
2213
2214	/*
2215	 * Initialize the Rx DMA interrupt control register.  We
2216	 * request an interrupt after every incoming packet, but
2217	 * defer it for sc_rxint_dmawait us. When the number of
2218	 * interrupts pending reaches STGE_RXINT_NFRAME, we stop
2219	 * deferring the interrupt, and signal it immediately.
2220	 */
2221	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
2222	    RDIC_RxFrameCount(sc->sc_rxint_nframe) |
2223	    RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
2224
2225	/*
2226	 * Initialize the interrupt mask.
2227	 */
2228	sc->sc_IntEnable = IS_HostError | IS_TxComplete |
2229	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
2230#ifdef DEVICE_POLLING
2231	/* Disable interrupts if we are polling. */
2232	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2233		CSR_WRITE_2(sc, STGE_IntEnable, 0);
2234	else
2235#endif
2236	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
2237
2238	/*
2239	 * Configure the DMA engine.
2240	 * XXX Should auto-tune TxBurstLimit.
2241	 */
2242	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
2243
2244	/*
2245	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
2246	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
2247	 * in the Rx FIFO.
2248	 */
2249	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
2250	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
2251
2252	/*
2253	 * Set the maximum frame size.
2254	 */
2255	sc->sc_if_framesize = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2256	CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
2257
2258	/*
2259	 * Initialize MacCtrl -- do it before setting the media,
2260	 * as setting the media will actually program the register.
2261	 *
2262	 * Note: We have to poke the IFS value before poking
2263	 * anything else.
2264	 */
2265	/* Tx/Rx MAC should be disabled before programming IFS.*/
2266	CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
2267
2268	stge_vlan_setup(sc);
2269
2270	if (sc->sc_rev >= 6) {		/* >= B.2 */
2271		/* Multi-frag frame bug work-around. */
2272		CSR_WRITE_2(sc, STGE_DebugCtrl,
2273		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
2274
2275		/* Tx Poll Now bug work-around. */
2276		CSR_WRITE_2(sc, STGE_DebugCtrl,
2277		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
2278		/* Tx Poll Now bug work-around. */
2279		CSR_WRITE_2(sc, STGE_DebugCtrl,
2280		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
2281	}
2282
2283	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2284	v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
2285	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2286	/*
2287	 * It seems that transmitting frames without checking the state of
2288	 * Rx/Tx MAC wedge the hardware.
2289	 */
2290	stge_start_tx(sc);
2291	stge_start_rx(sc);
2292
2293	sc->sc_link = 0;
2294	/*
2295	 * Set the current media.
2296	 */
2297	mii_mediachg(mii);
2298
2299	/*
2300	 * Start the one second MII clock.
2301	 */
2302	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
2303
2304	/*
2305	 * ...all done!
2306	 */
2307	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2308	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2309
2310 out:
2311	if (error != 0)
2312		device_printf(sc->sc_dev, "interface not running\n");
2313}
2314
2315static void
2316stge_vlan_setup(struct stge_softc *sc)
2317{
2318	struct ifnet *ifp;
2319	uint32_t v;
2320
2321	ifp = sc->sc_ifp;
2322	/*
2323	 * The NIC always copy a VLAN tag regardless of STGE_MACCtrl
2324	 * MC_AutoVLANuntagging bit.
2325	 * MC_AutoVLANtagging bit selects which VLAN source to use
2326	 * between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
2327	 * bit has priority over MC_AutoVLANtagging bit. So we always
2328	 * use TFC instead of STGE_VLANTag register.
2329	 */
2330	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2331	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2332		v |= MC_AutoVLANuntagging;
2333	else
2334		v &= ~MC_AutoVLANuntagging;
2335	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2336}
2337
2338/*
2339 *	Stop transmission on the interface.
2340 */
2341static void
2342stge_stop(struct stge_softc *sc)
2343{
2344	struct ifnet *ifp;
2345	struct stge_txdesc *txd;
2346	struct stge_rxdesc *rxd;
2347	uint32_t v;
2348	int i;
2349
2350	STGE_LOCK_ASSERT(sc);
2351	/*
2352	 * Stop the one second clock.
2353	 */
2354	callout_stop(&sc->sc_tick_ch);
2355	sc->sc_watchdog_timer = 0;
2356
2357	/*
2358	 * Disable interrupts.
2359	 */
2360	CSR_WRITE_2(sc, STGE_IntEnable, 0);
2361
2362	/*
2363	 * Stop receiver, transmitter, and stats update.
2364	 */
2365	stge_stop_rx(sc);
2366	stge_stop_tx(sc);
2367	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2368	v |= MC_StatisticsDisable;
2369	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2370
2371	/*
2372	 * Stop the transmit and receive DMA.
2373	 */
2374	stge_dma_wait(sc);
2375	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
2376	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
2377	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
2378	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
2379
2380	/*
2381	 * Free RX and TX mbufs still in the queues.
2382	 */
2383	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2384		rxd = &sc->sc_cdata.stge_rxdesc[i];
2385		if (rxd->rx_m != NULL) {
2386			bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
2387			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2388			bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
2389			    rxd->rx_dmamap);
2390			m_freem(rxd->rx_m);
2391			rxd->rx_m = NULL;
2392		}
2393        }
2394	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2395		txd = &sc->sc_cdata.stge_txdesc[i];
2396		if (txd->tx_m != NULL) {
2397			bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
2398			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2399			bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
2400			    txd->tx_dmamap);
2401			m_freem(txd->tx_m);
2402			txd->tx_m = NULL;
2403		}
2404        }
2405
2406	/*
2407	 * Mark the interface down and cancel the watchdog timer.
2408	 */
2409	ifp = sc->sc_ifp;
2410	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2411	sc->sc_link = 0;
2412}
2413
2414static void
2415stge_start_tx(struct stge_softc *sc)
2416{
2417	uint32_t v;
2418	int i;
2419
2420	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2421	if ((v & MC_TxEnabled) != 0)
2422		return;
2423	v |= MC_TxEnable;
2424	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2425	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2426	for (i = STGE_TIMEOUT; i > 0; i--) {
2427		DELAY(10);
2428		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2429		if ((v & MC_TxEnabled) != 0)
2430			break;
2431	}
2432	if (i == 0)
2433		device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
2434}
2435
2436static void
2437stge_start_rx(struct stge_softc *sc)
2438{
2439	uint32_t v;
2440	int i;
2441
2442	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2443	if ((v & MC_RxEnabled) != 0)
2444		return;
2445	v |= MC_RxEnable;
2446	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2447	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2448	for (i = STGE_TIMEOUT; i > 0; i--) {
2449		DELAY(10);
2450		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2451		if ((v & MC_RxEnabled) != 0)
2452			break;
2453	}
2454	if (i == 0)
2455		device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
2456}
2457
2458static void
2459stge_stop_tx(struct stge_softc *sc)
2460{
2461	uint32_t v;
2462	int i;
2463
2464	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2465	if ((v & MC_TxEnabled) == 0)
2466		return;
2467	v |= MC_TxDisable;
2468	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2469	for (i = STGE_TIMEOUT; i > 0; i--) {
2470		DELAY(10);
2471		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2472		if ((v & MC_TxEnabled) == 0)
2473			break;
2474	}
2475	if (i == 0)
2476		device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
2477}
2478
2479static void
2480stge_stop_rx(struct stge_softc *sc)
2481{
2482	uint32_t v;
2483	int i;
2484
2485	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2486	if ((v & MC_RxEnabled) == 0)
2487		return;
2488	v |= MC_RxDisable;
2489	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2490	for (i = STGE_TIMEOUT; i > 0; i--) {
2491		DELAY(10);
2492		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2493		if ((v & MC_RxEnabled) == 0)
2494			break;
2495	}
2496	if (i == 0)
2497		device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
2498}
2499
2500static void
2501stge_init_tx_ring(struct stge_softc *sc)
2502{
2503	struct stge_ring_data *rd;
2504	struct stge_txdesc *txd;
2505	bus_addr_t addr;
2506	int i;
2507
2508	STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
2509	STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
2510
2511	sc->sc_cdata.stge_tx_prod = 0;
2512	sc->sc_cdata.stge_tx_cons = 0;
2513	sc->sc_cdata.stge_tx_cnt = 0;
2514
2515	rd = &sc->sc_rdata;
2516	bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
2517	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2518		if (i == (STGE_TX_RING_CNT - 1))
2519			addr = STGE_TX_RING_ADDR(sc, 0);
2520		else
2521			addr = STGE_TX_RING_ADDR(sc, i + 1);
2522		rd->stge_tx_ring[i].tfd_next = htole64(addr);
2523		rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
2524		txd = &sc->sc_cdata.stge_txdesc[i];
2525		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
2526	}
2527
2528	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
2529	    sc->sc_cdata.stge_tx_ring_map,
2530	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2531
2532}
2533
2534static int
2535stge_init_rx_ring(struct stge_softc *sc)
2536{
2537	struct stge_ring_data *rd;
2538	bus_addr_t addr;
2539	int i;
2540
2541	sc->sc_cdata.stge_rx_cons = 0;
2542	STGE_RXCHAIN_RESET(sc);
2543
2544	rd = &sc->sc_rdata;
2545	bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
2546	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2547		if (stge_newbuf(sc, i) != 0)
2548			return (ENOBUFS);
2549		if (i == (STGE_RX_RING_CNT - 1))
2550			addr = STGE_RX_RING_ADDR(sc, 0);
2551		else
2552			addr = STGE_RX_RING_ADDR(sc, i + 1);
2553		rd->stge_rx_ring[i].rfd_next = htole64(addr);
2554		rd->stge_rx_ring[i].rfd_status = 0;
2555	}
2556
2557	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
2558	    sc->sc_cdata.stge_rx_ring_map,
2559	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2560
2561	return (0);
2562}
2563
2564/*
2565 * stge_newbuf:
2566 *
2567 *	Add a receive buffer to the indicated descriptor.
2568 */
2569static int
2570stge_newbuf(struct stge_softc *sc, int idx)
2571{
2572	struct stge_rxdesc *rxd;
2573	struct stge_rfd *rfd;
2574	struct mbuf *m;
2575	bus_dma_segment_t segs[1];
2576	bus_dmamap_t map;
2577	int nsegs;
2578
2579	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2580	if (m == NULL)
2581		return (ENOBUFS);
2582	m->m_len = m->m_pkthdr.len = MCLBYTES;
2583	/*
2584	 * The hardware requires 4bytes aligned DMA address when JUMBO
2585	 * frame is used.
2586	 */
2587	if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
2588		m_adj(m, ETHER_ALIGN);
2589
2590	if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag,
2591	    sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2592		m_freem(m);
2593		return (ENOBUFS);
2594	}
2595	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2596
2597	rxd = &sc->sc_cdata.stge_rxdesc[idx];
2598	if (rxd->rx_m != NULL) {
2599		bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2600		    BUS_DMASYNC_POSTREAD);
2601		bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
2602	}
2603	map = rxd->rx_dmamap;
2604	rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
2605	sc->sc_cdata.stge_rx_sparemap = map;
2606	bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2607	    BUS_DMASYNC_PREREAD);
2608	rxd->rx_m = m;
2609
2610	rfd = &sc->sc_rdata.stge_rx_ring[idx];
2611	rfd->rfd_frag.frag_word0 =
2612	    htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
2613	rfd->rfd_status = 0;
2614
2615	return (0);
2616}
2617
2618/*
2619 * stge_set_filter:
2620 *
2621 *	Set up the receive filter.
2622 */
2623static void
2624stge_set_filter(struct stge_softc *sc)
2625{
2626	struct ifnet *ifp;
2627	uint16_t mode;
2628
2629	STGE_LOCK_ASSERT(sc);
2630
2631	ifp = sc->sc_ifp;
2632
2633	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2634	mode |= RM_ReceiveUnicast;
2635	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2636		mode |= RM_ReceiveBroadcast;
2637	else
2638		mode &= ~RM_ReceiveBroadcast;
2639	if ((ifp->if_flags & IFF_PROMISC) != 0)
2640		mode |= RM_ReceiveAllFrames;
2641	else
2642		mode &= ~RM_ReceiveAllFrames;
2643
2644	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2645}
2646
2647static void
2648stge_set_multi(struct stge_softc *sc)
2649{
2650	struct ifnet *ifp;
2651	struct ifmultiaddr *ifma;
2652	uint32_t crc;
2653	uint32_t mchash[2];
2654	uint16_t mode;
2655	int count;
2656
2657	STGE_LOCK_ASSERT(sc);
2658
2659	ifp = sc->sc_ifp;
2660
2661	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2662	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2663		if ((ifp->if_flags & IFF_PROMISC) != 0)
2664			mode |= RM_ReceiveAllFrames;
2665		else if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2666			mode |= RM_ReceiveMulticast;
2667		CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2668		return;
2669	}
2670
2671	/* clear existing filters. */
2672	CSR_WRITE_4(sc, STGE_HashTable0, 0);
2673	CSR_WRITE_4(sc, STGE_HashTable1, 0);
2674
2675	/*
2676	 * Set up the multicast address filter by passing all multicast
2677	 * addresses through a CRC generator, and then using the low-order
2678	 * 6 bits as an index into the 64 bit multicast hash table.  The
2679	 * high order bits select the register, while the rest of the bits
2680	 * select the bit within the register.
2681	 */
2682
2683	bzero(mchash, sizeof(mchash));
2684
2685	count = 0;
2686	if_maddr_rlock(sc->sc_ifp);
2687	TAILQ_FOREACH(ifma, &sc->sc_ifp->if_multiaddrs, ifma_link) {
2688		if (ifma->ifma_addr->sa_family != AF_LINK)
2689			continue;
2690		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2691		    ifma->ifma_addr), ETHER_ADDR_LEN);
2692
2693		/* Just want the 6 least significant bits. */
2694		crc &= 0x3f;
2695
2696		/* Set the corresponding bit in the hash table. */
2697		mchash[crc >> 5] |= 1 << (crc & 0x1f);
2698		count++;
2699	}
2700	if_maddr_runlock(ifp);
2701
2702	mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
2703	if (count > 0)
2704		mode |= RM_ReceiveMulticastHash;
2705	else
2706		mode &= ~RM_ReceiveMulticastHash;
2707
2708	CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
2709	CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
2710	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2711}
2712
2713static int
2714sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2715{
2716	int error, value;
2717
2718	if (!arg1)
2719		return (EINVAL);
2720	value = *(int *)arg1;
2721	error = sysctl_handle_int(oidp, &value, 0, req);
2722	if (error || !req->newptr)
2723		return (error);
2724	if (value < low || value > high)
2725		return (EINVAL);
2726        *(int *)arg1 = value;
2727
2728        return (0);
2729}
2730
2731static int
2732sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
2733{
2734	return (sysctl_int_range(oidp, arg1, arg2, req,
2735	    STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
2736}
2737
2738static int
2739sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
2740{
2741	return (sysctl_int_range(oidp, arg1, arg2, req,
2742	    STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));
2743}
2744