feeder_rate.c revision 195689
1139749Simp/*-
2193640Sariff * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
375320Scg * All rights reserved.
475320Scg *
575320Scg * Redistribution and use in source and binary forms, with or without
675320Scg * modification, are permitted provided that the following conditions
775320Scg * are met:
875320Scg * 1. Redistributions of source code must retain the above copyright
975320Scg *    notice, this list of conditions and the following disclaimer.
1075320Scg * 2. Redistributions in binary form must reproduce the above copyright
1175320Scg *    notice, this list of conditions and the following disclaimer in the
1275320Scg *    documentation and/or other materials provided with the distribution.
1375320Scg *
1475320Scg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
1575320Scg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1675320Scg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1775320Scg * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
1875320Scg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
1975320Scg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2075320Scg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2175320Scg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2275320Scg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2375320Scg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
2475320Scg * SUCH DAMAGE.
25170206Sjoel */
26170206Sjoel
27170206Sjoel/*
28193640Sariff * feeder_rate: (Codename: Z Resampler), which means any effort to create
29193640Sariff *              future replacement for this resampler are simply absurd unless
30193640Sariff *              the world decide to add new alphabet after Z.
31164614Sariff *
32193640Sariff * FreeBSD bandlimited sinc interpolator, technically based on
33193640Sariff * "Digital Audio Resampling" by Julius O. Smith III
34193640Sariff *  - http://ccrma.stanford.edu/~jos/resample/
35164614Sariff *
36193640Sariff * The Good:
37193640Sariff * + all out fixed point integer operations, no soft-float or anything like
38193640Sariff *   that.
39193640Sariff * + classic polyphase converters with high quality coefficient's polynomial
40193640Sariff *   interpolators.
41193640Sariff * + fast, faster, or the fastest of its kind.
42193640Sariff * + compile time configurable.
43193640Sariff * + etc etc..
44109547Sorion *
45193640Sariff * The Bad:
46193640Sariff * - The z, z_, and Z_ . Due to mental block (or maybe just 0x7a69), I
47193640Sariff *   couldn't think of anything simpler than that (feeder_rate_xxx is just
48193640Sariff *   too long). Expect possible clashes with other zitizens (any?).
4975320Scg */
5075320Scg
51193640Sariff#ifdef _KERNEL
52193640Sariff#ifdef HAVE_KERNEL_OPTION_HEADERS
53193640Sariff#include "opt_snd.h"
54193640Sariff#endif
5575320Scg#include <dev/sound/pcm/sound.h>
56193640Sariff#include <dev/sound/pcm/pcm.h>
5775320Scg#include "feeder_if.h"
5875320Scg
59193640Sariff#define SND_USE_FXDIV
60193640Sariff#include "snd_fxdiv_gen.h"
61193640Sariff
6282180ScgSND_DECLARE_FILE("$FreeBSD: head/sys/dev/sound/pcm/feeder_rate.c 195689 2009-07-14 18:53:34Z ariff $");
63193640Sariff#endif
64110466Sorion
65193640Sariff#include "feeder_rate_gen.h"
66110466Sorion
67193640Sariff#if !defined(_KERNEL) && defined(SND_DIAGNOSTIC)
68193640Sariff#undef Z_DIAGNOSTIC
69193640Sariff#define Z_DIAGNOSTIC		1
70193640Sariff#elif defined(_KERNEL)
71193640Sariff#undef Z_DIAGNOSTIC
72193640Sariff#endif
7375320Scg
74193640Sariff#ifndef Z_QUALITY_DEFAULT
75193640Sariff#define Z_QUALITY_DEFAULT	Z_QUALITY_LINEAR
76193640Sariff#endif
77109547Sorion
78193640Sariff#define Z_RESERVOIR		2048
79193640Sariff#define Z_RESERVOIR_MAX		131072
80109547Sorion
81193640Sariff#define Z_SINC_MAX		0x3fffff
82193640Sariff#define Z_SINC_DOWNMAX		48		/* 384000 / 8000 */
83110466Sorion
84193640Sariff#ifdef _KERNEL
85193640Sariff#define Z_POLYPHASE_MAX		183040		/* 286 taps, 640 phases */
86193640Sariff#else
87193640Sariff#define Z_POLYPHASE_MAX		1464320		/* 286 taps, 5120 phases */
88167646Sariff#endif
89193640Sariff
90193640Sariff#define Z_RATE_DEFAULT		48000
91193640Sariff
92193640Sariff#define Z_RATE_MIN		FEEDRATE_RATEMIN
93193640Sariff#define Z_RATE_MAX		FEEDRATE_RATEMAX
94193640Sariff#define Z_ROUNDHZ		FEEDRATE_ROUNDHZ
95193640Sariff#define Z_ROUNDHZ_MIN		FEEDRATE_ROUNDHZ_MIN
96193640Sariff#define Z_ROUNDHZ_MAX		FEEDRATE_ROUNDHZ_MAX
97193640Sariff
98193640Sariff#define Z_RATE_SRC		FEEDRATE_SRC
99193640Sariff#define Z_RATE_DST		FEEDRATE_DST
100193640Sariff#define Z_RATE_QUALITY		FEEDRATE_QUALITY
101193640Sariff#define Z_RATE_CHANNELS		FEEDRATE_CHANNELS
102193640Sariff
103193640Sariff#define Z_PARANOID		1
104193640Sariff
105193640Sariff#define Z_MULTIFORMAT		1
106193640Sariff
107193640Sariff#ifdef _KERNEL
108193640Sariff#undef Z_USE_ALPHADRIFT
109193640Sariff#define Z_USE_ALPHADRIFT	1
110193640Sariff#endif
111193640Sariff
112193640Sariff#define Z_FACTOR_MIN		1
113193640Sariff#define Z_FACTOR_MAX		Z_MASK
114193640Sariff#define Z_FACTOR_SAFE(v)	(!((v) < Z_FACTOR_MIN || (v) > Z_FACTOR_MAX))
115193640Sariff
116193640Sariffstruct z_info;
117193640Sariff
118193640Sarifftypedef void (*z_resampler_t)(struct z_info *, uint8_t *);
119193640Sariff
120193640Sariffstruct z_info {
121193640Sariff	int32_t rsrc, rdst;	/* original source / destination rates */
122193640Sariff	int32_t src, dst;	/* rounded source / destination rates */
123193640Sariff	int32_t channels;	/* total channels */
124193640Sariff	int32_t bps;		/* bytes-per-sample */
125193640Sariff	int32_t quality;	/* resampling quality */
126193640Sariff
127193640Sariff	int32_t z_gx, z_gy;	/* interpolation / decimation ratio */
128193640Sariff	int32_t z_alpha;	/* output sample time phase / drift */
129193640Sariff	uint8_t *z_delay;	/* FIR delay line / linear buffer */
130193640Sariff	int32_t *z_coeff;	/* FIR coefficients */
131193640Sariff	int32_t *z_dcoeff;	/* FIR coefficients differences */
132193640Sariff	int32_t *z_pcoeff;	/* FIR polyphase coefficients */
133193640Sariff	int32_t z_scale;	/* output scaling */
134193640Sariff	int32_t z_dx;		/* input sample drift increment */
135193640Sariff	int32_t z_dy;		/* output sample drift increment */
136193640Sariff#ifdef Z_USE_ALPHADRIFT
137193640Sariff	int32_t z_alphadrift;	/* alpha drift rate */
138193640Sariff	int32_t z_startdrift;	/* buffer start position drift rate */
139193640Sariff#endif
140193640Sariff	int32_t z_mask;		/* delay line full length mask */
141193640Sariff	int32_t z_size;		/* half width of FIR taps */
142193640Sariff	int32_t z_full;		/* full size of delay line */
143193640Sariff	int32_t z_alloc;	/* largest allocated full size of delay line */
144193640Sariff	int32_t z_start;	/* buffer processing start position */
145193640Sariff	int32_t z_pos;		/* current position for the next feed */
146193640Sariff#ifdef Z_DIAGNOSTIC
147193640Sariff	uint32_t z_cycle;	/* output cycle, purely for statistical */
148193640Sariff#endif
149193640Sariff	int32_t z_maxfeed;	/* maximum feed to avoid 32bit overflow */
150193640Sariff
151193640Sariff	z_resampler_t z_resample;
152148606Snetchild};
153148606Snetchild
154193640Sariffint feeder_rate_min = Z_RATE_MIN;
155193640Sariffint feeder_rate_max = Z_RATE_MAX;
156193640Sariffint feeder_rate_round = Z_ROUNDHZ;
157193640Sariffint feeder_rate_quality = Z_QUALITY_DEFAULT;
158148606Snetchild
159193640Sariffstatic int feeder_rate_polyphase_max = Z_POLYPHASE_MAX;
160193640Sariff
161193640Sariff#ifdef _KERNEL
162193640Sariffstatic const char feeder_rate_presets[] = FEEDER_RATE_PRESETS;
163193640SariffSYSCTL_STRING(_hw_snd, OID_AUTO, feeder_rate_presets, CTLFLAG_RD,
164193640Sariff    &feeder_rate_presets, 0, "compile-time rate presets");
165193640Sariff
166164614SariffTUNABLE_INT("hw.snd.feeder_rate_min", &feeder_rate_min);
167164614SariffTUNABLE_INT("hw.snd.feeder_rate_max", &feeder_rate_max);
168164614SariffTUNABLE_INT("hw.snd.feeder_rate_round", &feeder_rate_round);
169193640SariffTUNABLE_INT("hw.snd.feeder_rate_quality", &feeder_rate_quality);
170109547Sorion
171193640SariffTUNABLE_INT("hw.snd.feeder_rate_polyphase_max", &feeder_rate_polyphase_max);
172193640SariffSYSCTL_INT(_hw_snd, OID_AUTO, feeder_rate_polyphase_max, CTLFLAG_RW,
173193640Sariff    &feeder_rate_polyphase_max, 0, "maximum allowable polyphase entries");
174193640Sariff
175148606Snetchildstatic int
176164614Sariffsysctl_hw_snd_feeder_rate_min(SYSCTL_HANDLER_ARGS)
177148606Snetchild{
178148606Snetchild	int err, val;
179109547Sorion
180164614Sariff	val = feeder_rate_min;
181170289Sdwmalone	err = sysctl_handle_int(oidp, &val, 0, req);
182193640Sariff
183193640Sariff	if (err != 0 || req->newptr == NULL || val == feeder_rate_min)
184167646Sariff		return (err);
185193640Sariff
186193640Sariff	if (!(Z_FACTOR_SAFE(val) && val < feeder_rate_max))
187193640Sariff		return (EINVAL);
188193640Sariff
189193640Sariff	feeder_rate_min = val;
190193640Sariff
191193640Sariff	return (0);
192148606Snetchild}
193164614SariffSYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_min, CTLTYPE_INT | CTLFLAG_RW,
194193640Sariff    0, sizeof(int), sysctl_hw_snd_feeder_rate_min, "I",
195193640Sariff    "minimum allowable rate");
196109547Sorion
197148606Snetchildstatic int
198164614Sariffsysctl_hw_snd_feeder_rate_max(SYSCTL_HANDLER_ARGS)
199148606Snetchild{
200148606Snetchild	int err, val;
201109547Sorion
202164614Sariff	val = feeder_rate_max;
203170289Sdwmalone	err = sysctl_handle_int(oidp, &val, 0, req);
204193640Sariff
205193640Sariff	if (err != 0 || req->newptr == NULL || val == feeder_rate_max)
206167646Sariff		return (err);
207193640Sariff
208193640Sariff	if (!(Z_FACTOR_SAFE(val) && val > feeder_rate_min))
209193640Sariff		return (EINVAL);
210193640Sariff
211193640Sariff	feeder_rate_max = val;
212193640Sariff
213193640Sariff	return (0);
214148606Snetchild}
215164614SariffSYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_max, CTLTYPE_INT | CTLFLAG_RW,
216193640Sariff    0, sizeof(int), sysctl_hw_snd_feeder_rate_max, "I",
217193640Sariff    "maximum allowable rate");
218148606Snetchild
219109547Sorionstatic int
220164614Sariffsysctl_hw_snd_feeder_rate_round(SYSCTL_HANDLER_ARGS)
221148606Snetchild{
222148606Snetchild	int err, val;
223109547Sorion
224164614Sariff	val = feeder_rate_round;
225170289Sdwmalone	err = sysctl_handle_int(oidp, &val, 0, req);
226193640Sariff
227193640Sariff	if (err != 0 || req->newptr == NULL || val == feeder_rate_round)
228167646Sariff		return (err);
229193640Sariff
230193640Sariff	if (val < Z_ROUNDHZ_MIN || val > Z_ROUNDHZ_MAX)
231193640Sariff		return (EINVAL);
232193640Sariff
233193640Sariff	feeder_rate_round = val - (val % Z_ROUNDHZ);
234193640Sariff
235193640Sariff	return (0);
236148606Snetchild}
237164614SariffSYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_round, CTLTYPE_INT | CTLFLAG_RW,
238193640Sariff    0, sizeof(int), sysctl_hw_snd_feeder_rate_round, "I",
239193640Sariff    "sample rate converter rounding threshold");
240109547Sorion
241193640Sariffstatic int
242193640Sariffsysctl_hw_snd_feeder_rate_quality(SYSCTL_HANDLER_ARGS)
243193640Sariff{
244193640Sariff	struct snddev_info *d;
245193640Sariff	struct pcm_channel *c;
246193640Sariff	struct pcm_feeder *f;
247193640Sariff	int i, err, val;
248193640Sariff
249193640Sariff	val = feeder_rate_quality;
250193640Sariff	err = sysctl_handle_int(oidp, &val, 0, req);
251193640Sariff
252193640Sariff	if (err != 0 || req->newptr == NULL || val == feeder_rate_quality)
253193640Sariff		return (err);
254193640Sariff
255193640Sariff	if (val < Z_QUALITY_MIN || val > Z_QUALITY_MAX)
256193640Sariff		return (EINVAL);
257193640Sariff
258193640Sariff	feeder_rate_quality = val;
259193640Sariff
260193640Sariff	/*
261193640Sariff	 * Traverse all available channels on each device and try to
262193640Sariff	 * set resampler quality if and only if it is exist as
263193640Sariff	 * part of feeder chains and the channel is idle.
264193640Sariff	 */
265193640Sariff	for (i = 0; pcm_devclass != NULL &&
266193640Sariff	    i < devclass_get_maxunit(pcm_devclass); i++) {
267193640Sariff		d = devclass_get_softc(pcm_devclass, i);
268193640Sariff		if (!PCM_REGISTERED(d))
269193640Sariff			continue;
270193640Sariff		PCM_LOCK(d);
271193640Sariff		PCM_WAIT(d);
272193640Sariff		PCM_ACQUIRE(d);
273193640Sariff		CHN_FOREACH(c, d, channels.pcm) {
274193640Sariff			CHN_LOCK(c);
275193640Sariff			f = chn_findfeeder(c, FEEDER_RATE);
276193640Sariff			if (f == NULL || f->data == NULL || CHN_STARTED(c)) {
277193640Sariff				CHN_UNLOCK(c);
278193640Sariff				continue;
279193640Sariff			}
280193640Sariff			(void)FEEDER_SET(f, FEEDRATE_QUALITY, val);
281193640Sariff			CHN_UNLOCK(c);
282193640Sariff		}
283193640Sariff		PCM_RELEASE(d);
284193640Sariff		PCM_UNLOCK(d);
285193640Sariff	}
286193640Sariff
287193640Sariff	return (0);
288148606Snetchild}
289193640SariffSYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_quality, CTLTYPE_INT | CTLFLAG_RW,
290193640Sariff    0, sizeof(int), sysctl_hw_snd_feeder_rate_quality, "I",
291193640Sariff    "sample rate converter quality ("__XSTRING(Z_QUALITY_MIN)"=low .. "
292193640Sariff    __XSTRING(Z_QUALITY_MAX)"=high)");
293193640Sariff#endif	/* _KERNEL */
294109547Sorion
295164614Sariff
296193640Sariff/*
297193640Sariff * Resampler type.
298193640Sariff */
299193640Sariff#define Z_IS_ZOH(i)		((i)->quality == Z_QUALITY_ZOH)
300193640Sariff#define Z_IS_LINEAR(i)		((i)->quality == Z_QUALITY_LINEAR)
301193640Sariff#define Z_IS_SINC(i)		((i)->quality > Z_QUALITY_LINEAR)
302193640Sariff
303193640Sariff/*
304193640Sariff * Macroses for accurate sample time drift calculations.
305193640Sariff *
306193640Sariff * gy2gx : given the amount of output, return the _exact_ required amount of
307193640Sariff *         input.
308193640Sariff * gx2gy : given the amount of input, return the _maximum_ amount of output
309193640Sariff *         that will be generated.
310193640Sariff * drift : given the amount of input and output, return the elapsed
311193640Sariff *         sample-time.
312193640Sariff */
313193640Sariff#define _Z_GCAST(x)		((uint64_t)(x))
314193640Sariff
315193640Sariff#if defined(__GNUCLIKE_ASM) && defined(__i386__)
316193640Sariff/*
317193640Sariff * This is where i386 being beaten to a pulp. Fortunately this function is
318193640Sariff * rarely being called and if it is, it will decide the best (hopefully)
319193640Sariff * fastest way to do the division. If we can ensure that everything is dword
320193640Sariff * aligned, letting the compiler to call udivdi3 to do the division can be
321193640Sariff * faster compared to this.
322193640Sariff *
323193640Sariff * amd64 is the clear winner here, no question about it.
324193640Sariff */
325193640Sariffstatic __inline uint32_t
326193640SariffZ_DIV(uint64_t v, uint32_t d)
327109547Sorion{
328193640Sariff	uint32_t hi, lo, quo, rem;
329148606Snetchild
330193640Sariff	hi = v >> 32;
331193640Sariff	lo = v & 0xffffffff;
332193640Sariff
333193640Sariff	/*
334193640Sariff	 * As much as we can, try to avoid long division like a plague.
335193640Sariff	 */
336193640Sariff	if (hi == 0)
337193640Sariff		quo = lo / d;
338193640Sariff	else
339193640Sariff		__asm("divl %2"
340193640Sariff		    : "=a" (quo), "=d" (rem)
341193640Sariff		    : "r" (d), "0" (lo), "1" (hi));
342193640Sariff
343193640Sariff	return (quo);
344193640Sariff}
345193640Sariff#else
346193640Sariff#define Z_DIV(x, y)		((x) / (y))
347193640Sariff#endif
348193640Sariff
349193640Sariff#define _Z_GY2GX(i, a, v)						\
350193640Sariff	Z_DIV(((_Z_GCAST((i)->z_gx) * (v)) + ((i)->z_gy - (a) - 1)),	\
351193640Sariff	(i)->z_gy)
352193640Sariff
353193640Sariff#define _Z_GX2GY(i, a, v)						\
354193640Sariff	Z_DIV(((_Z_GCAST((i)->z_gy) * (v)) + (a)), (i)->z_gx)
355193640Sariff
356193640Sariff#define _Z_DRIFT(i, x, y)						\
357193640Sariff	((_Z_GCAST((i)->z_gy) * (x)) - (_Z_GCAST((i)->z_gx) * (y)))
358193640Sariff
359193640Sariff#define z_gy2gx(i, v)		_Z_GY2GX(i, (i)->z_alpha, v)
360193640Sariff#define z_gx2gy(i, v)		_Z_GX2GY(i, (i)->z_alpha, v)
361193640Sariff#define z_drift(i, x, y)	_Z_DRIFT(i, x, y)
362193640Sariff
363193640Sariff/*
364193640Sariff * Macroses for SINC coefficients table manipulations.. whatever.
365193640Sariff */
366193640Sariff#define Z_SINC_COEFF_IDX(i)	((i)->quality - Z_QUALITY_LINEAR - 1)
367193640Sariff
368193640Sariff#define Z_SINC_LEN(i)							\
369193640Sariff	((int32_t)(((uint64_t)z_coeff_tab[Z_SINC_COEFF_IDX(i)].len <<	\
370193640Sariff	    Z_SHIFT) / (i)->z_dy))
371193640Sariff
372193640Sariff#define Z_SINC_BASE_LEN(i)						\
373193640Sariff	((z_coeff_tab[Z_SINC_COEFF_IDX(i)].len - 1) >> (Z_DRIFT_SHIFT - 1))
374193640Sariff
375193640Sariff/*
376193640Sariff * Macroses for linear delay buffer operations. Alignment is not
377193640Sariff * really necessary since we're not using true circular buffer, but it
378193640Sariff * will help us guard against possible trespasser. To be honest,
379193640Sariff * the linear block operations does not need guarding at all due to
380193640Sariff * accurate drifting!
381193640Sariff */
382193640Sariff#define z_align(i, v)		((v) & (i)->z_mask)
383193640Sariff#define z_next(i, o, v)		z_align(i, (o) + (v))
384193640Sariff#define z_prev(i, o, v)		z_align(i, (o) - (v))
385193640Sariff#define z_fetched(i)		(z_align(i, (i)->z_pos - (i)->z_start) - 1)
386193640Sariff#define z_free(i)		((i)->z_full - (i)->z_pos)
387193640Sariff
388193640Sariff/*
389193640Sariff * Macroses for Bla Bla .. :)
390193640Sariff */
391193640Sariff#define z_copy(src, dst, sz)	(void)memcpy(dst, src, sz)
392193640Sariff#define z_feed(...)		FEEDER_FEED(__VA_ARGS__)
393193640Sariff
394193640Sariffstatic __inline uint32_t
395193640Sariffz_min(uint32_t x, uint32_t y)
396193640Sariff{
397193640Sariff
398193640Sariff	return ((x < y) ? x : y);
399193640Sariff}
400193640Sariff
401193640Sariffstatic int32_t
402193640Sariffz_gcd(int32_t x, int32_t y)
403193640Sariff{
404193640Sariff	int32_t w;
405193640Sariff
406110108Sorion	while (y != 0) {
407110108Sorion		w = x % y;
408110108Sorion		x = y;
409110108Sorion		y = w;
410110108Sorion	}
411193640Sariff
412193640Sariff	return (x);
413109547Sorion}
414109547Sorion
415193640Sariffstatic int32_t
416193640Sariffz_roundpow2(int32_t v)
417193640Sariff{
418193640Sariff	int32_t i;
419193640Sariff
420193640Sariff	i = 1;
421193640Sariff
422193640Sariff	/*
423193640Sariff	 * Let it overflow at will..
424193640Sariff	 */
425193640Sariff	while (i > 0 && i < v)
426193640Sariff		i <<= 1;
427193640Sariff
428193640Sariff	return (i);
429193640Sariff}
430193640Sariff
431193640Sariff/*
432193640Sariff * Zero Order Hold, the worst of the worst, an insult against quality,
433193640Sariff * but super fast.
434193640Sariff */
435148606Snetchildstatic void
436193640Sariffz_feed_zoh(struct z_info *info, uint8_t *dst)
437148606Snetchild{
438193640Sariff#if 0
439193640Sariff	z_copy(info->z_delay +
440193640Sariff	    (info->z_start * info->channels * info->bps), dst,
441193640Sariff	    info->channels * info->bps);
442193640Sariff#else
443193640Sariff	uint32_t cnt;
444193640Sariff	uint8_t *src;
445193640Sariff
446193640Sariff	cnt = info->channels * info->bps;
447193640Sariff	src = info->z_delay + (info->z_start * cnt);
448193640Sariff
449193640Sariff	/*
450193640Sariff	 * This is a bit faster than doing bcopy() since we're dealing
451193640Sariff	 * with possible unaligned samples.
452193640Sariff	 */
453193640Sariff	do {
454193640Sariff		*dst++ = *src++;
455193640Sariff	} while (--cnt != 0);
456167646Sariff#endif
457148606Snetchild}
458148606Snetchild
459193640Sariff/*
460193640Sariff * Linear Interpolation. This at least sounds better (perceptually) and fast,
461193640Sariff * but without any proper filtering which means aliasing still exist and
462193640Sariff * could become worst with a right sample. Interpolation centered within
463193640Sariff * Z_LINEAR_ONE between the present and previous sample and everything is
464193640Sariff * done with simple 32bit scaling arithmetic.
465193640Sariff */
466193640Sariff#define Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN)					\
467193640Sariffstatic void									\
468193640Sariffz_feed_linear_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst)		\
469193640Sariff{										\
470193640Sariff	int32_t z;								\
471193640Sariff	intpcm_t x, y;								\
472193640Sariff	uint32_t ch;								\
473193640Sariff	uint8_t *sx, *sy;							\
474193640Sariff										\
475193640Sariff	z = ((uint32_t)info->z_alpha * info->z_dx) >> Z_LINEAR_UNSHIFT;		\
476193640Sariff										\
477193640Sariff	sx = info->z_delay + (info->z_start * info->channels *			\
478193640Sariff	    PCM_##BIT##_BPS);							\
479193640Sariff	sy = sx - (info->channels * PCM_##BIT##_BPS);				\
480193640Sariff										\
481193640Sariff	ch = info->channels;							\
482193640Sariff										\
483193640Sariff	do {									\
484193640Sariff		x = _PCM_READ_##SIGN##BIT##_##ENDIAN(sx);			\
485193640Sariff		y = _PCM_READ_##SIGN##BIT##_##ENDIAN(sy);			\
486193640Sariff		x = Z_LINEAR_INTERPOLATE_##BIT(z, x, y);			\
487193640Sariff		_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x);			\
488193640Sariff		sx += PCM_##BIT##_BPS;						\
489193640Sariff		sy += PCM_##BIT##_BPS;						\
490193640Sariff		dst += PCM_##BIT##_BPS;						\
491193640Sariff	} while (--ch != 0);							\
492193640Sariff}
493193640Sariff
494193640Sariff/*
495193640Sariff * Userland clipping diagnostic check, not enabled in kernel compilation.
496193640Sariff * While doing sinc interpolation, unrealistic samples like full scale sine
497193640Sariff * wav will clip, but for other things this will not make any noise at all.
498193640Sariff * Everybody should learn how to normalized perceived loudness of their own
499193640Sariff * music/sounds/samples (hint: ReplayGain).
500193640Sariff */
501193640Sariff#ifdef Z_DIAGNOSTIC
502193640Sariff#define Z_CLIP_CHECK(v, BIT)	do {					\
503193640Sariff	if ((v) > PCM_S##BIT##_MAX) {					\
504193640Sariff		fprintf(stderr, "Overflow: v=%jd, max=%jd\n",		\
505193640Sariff		    (intmax_t)(v), (intmax_t)PCM_S##BIT##_MAX);		\
506193640Sariff	} else if ((v) < PCM_S##BIT##_MIN) {				\
507193640Sariff		fprintf(stderr, "Underflow: v=%jd, min=%jd\n",		\
508193640Sariff		    (intmax_t)(v), (intmax_t)PCM_S##BIT##_MIN);		\
509193640Sariff	}								\
510193640Sariff} while (0)
511193640Sariff#else
512193640Sariff#define Z_CLIP_CHECK(...)
513193640Sariff#endif
514193640Sariff
515193640Sariff#define Z_CLAMP(v, BIT)							\
516193640Sariff	(((v) > PCM_S##BIT##_MAX) ? PCM_S##BIT##_MAX :			\
517193640Sariff	(((v) < PCM_S##BIT##_MIN) ? PCM_S##BIT##_MIN : (v)))
518193640Sariff
519193640Sariff/*
520193640Sariff * Sine Cardinal (SINC) Interpolation. Scaling is done in 64 bit, so
521193640Sariff * there's no point to hold the plate any longer. All samples will be
522193640Sariff * shifted to a full 32 bit, scaled and restored during write for
523193640Sariff * maximum dynamic range (only for downsampling).
524193640Sariff */
525193640Sariff#define _Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, adv)			\
526193640Sariff	c += z >> Z_SHIFT;						\
527193640Sariff	z &= Z_MASK;							\
528193640Sariff	coeff = Z_COEFF_INTERPOLATE(z, z_coeff[c], z_dcoeff[c]);	\
529193640Sariff	x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p);			\
530195378Sariff	v += Z_NORM_##BIT((intpcm64_t)x * coeff);			\
531193640Sariff	z += info->z_dy;						\
532193640Sariff	p adv##= info->channels * PCM_##BIT##_BPS
533193640Sariff
534193640Sariff/*
535193640Sariff * XXX GCC4 optimization is such a !@#$%, need manual unrolling.
536193640Sariff */
537193640Sariff#if defined(__GNUC__) && __GNUC__ >= 4
538193640Sariff#define Z_SINC_ACCUMULATE(...)	do {					\
539193640Sariff	_Z_SINC_ACCUMULATE(__VA_ARGS__);				\
540193640Sariff	_Z_SINC_ACCUMULATE(__VA_ARGS__);				\
541193640Sariff} while (0)
542193640Sariff#define Z_SINC_ACCUMULATE_DECR		2
543193640Sariff#else
544193640Sariff#define Z_SINC_ACCUMULATE(...)	do {					\
545193640Sariff	_Z_SINC_ACCUMULATE(__VA_ARGS__);				\
546193640Sariff} while (0)
547193640Sariff#define Z_SINC_ACCUMULATE_DECR		1
548193640Sariff#endif
549193640Sariff
550193640Sariff#define Z_DECLARE_SINC(SIGN, BIT, ENDIAN)					\
551193640Sariffstatic void									\
552193640Sariffz_feed_sinc_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst)		\
553193640Sariff{										\
554193640Sariff	intpcm64_t v;								\
555193640Sariff	intpcm_t x;								\
556193640Sariff	uint8_t *p;								\
557193640Sariff	int32_t coeff, z, *z_coeff, *z_dcoeff;					\
558193640Sariff	uint32_t c, center, ch, i;						\
559193640Sariff										\
560193640Sariff	z_coeff = info->z_coeff;						\
561193640Sariff	z_dcoeff = info->z_dcoeff;						\
562193640Sariff	center = z_prev(info, info->z_start, info->z_size);			\
563193640Sariff	ch = info->channels * PCM_##BIT##_BPS;					\
564193640Sariff	dst += ch;								\
565193640Sariff										\
566193640Sariff	do {									\
567193640Sariff		dst -= PCM_##BIT##_BPS;						\
568193640Sariff		ch -= PCM_##BIT##_BPS;						\
569193640Sariff		v = 0;								\
570193640Sariff		z = info->z_alpha * info->z_dx;					\
571193640Sariff		c = 0;								\
572193640Sariff		p = info->z_delay + (z_next(info, center, 1) *			\
573193640Sariff		    info->channels * PCM_##BIT##_BPS) + ch;			\
574193640Sariff		for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) 	\
575193640Sariff			Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, +);		\
576193640Sariff		z = info->z_dy - (info->z_alpha * info->z_dx);			\
577193640Sariff		c = 0;								\
578193640Sariff		p = info->z_delay + (center * info->channels *			\
579193640Sariff		    PCM_##BIT##_BPS) + ch;					\
580193640Sariff		for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) 	\
581193640Sariff			Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, -);		\
582193640Sariff		if (info->z_scale != Z_ONE)					\
583193640Sariff			v = Z_SCALE_##BIT(v, info->z_scale);			\
584193640Sariff		else								\
585195378Sariff			v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT;		\
586193640Sariff		Z_CLIP_CHECK(v, BIT);						\
587193640Sariff		_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT));	\
588193640Sariff	} while (ch != 0);							\
589193640Sariff}
590193640Sariff
591193640Sariff#define Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN)				\
592193640Sariffstatic void									\
593193640Sariffz_feed_sinc_polyphase_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst)	\
594193640Sariff{										\
595193640Sariff	intpcm64_t v;								\
596193640Sariff	intpcm_t x;								\
597193640Sariff	uint8_t *p;								\
598193640Sariff	int32_t ch, i, start, *z_pcoeff;					\
599193640Sariff										\
600193640Sariff	ch = info->channels * PCM_##BIT##_BPS;					\
601193640Sariff	dst += ch;								\
602193640Sariff	start = z_prev(info, info->z_start, (info->z_size << 1) - 1) * ch;	\
603193640Sariff										\
604193640Sariff	do {									\
605193640Sariff		dst -= PCM_##BIT##_BPS;						\
606193640Sariff		ch -= PCM_##BIT##_BPS;						\
607193640Sariff		v = 0;								\
608193640Sariff		p = info->z_delay + start + ch;					\
609193640Sariff		z_pcoeff = info->z_pcoeff +					\
610193640Sariff		    ((info->z_alpha * info->z_size) << 1);			\
611193640Sariff		for (i = info->z_size; i != 0; i--) {				\
612193640Sariff			x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p);		\
613195378Sariff			v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff);		\
614193640Sariff			z_pcoeff++;						\
615193640Sariff			p += info->channels * PCM_##BIT##_BPS;			\
616193640Sariff			x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p);		\
617195378Sariff			v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff);		\
618193640Sariff			z_pcoeff++;						\
619193640Sariff			p += info->channels * PCM_##BIT##_BPS;			\
620193640Sariff		}								\
621193640Sariff		if (info->z_scale != Z_ONE)					\
622193640Sariff			v = Z_SCALE_##BIT(v, info->z_scale);			\
623193640Sariff		else								\
624195378Sariff			v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT;		\
625193640Sariff		Z_CLIP_CHECK(v, BIT);						\
626193640Sariff		_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT));	\
627193640Sariff	} while (ch != 0);							\
628193640Sariff}
629193640Sariff
630193640Sariff#define Z_DECLARE(SIGN, BIT, ENDIAN)					\
631193640Sariff	Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN)				\
632193640Sariff	Z_DECLARE_SINC(SIGN, BIT, ENDIAN)				\
633193640Sariff	Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN)
634193640Sariff
635193640Sariff#if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
636193640SariffZ_DECLARE(S, 16, LE)
637193640SariffZ_DECLARE(S, 32, LE)
638193640Sariff#endif
639193640Sariff#if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
640193640SariffZ_DECLARE(S, 16, BE)
641193640SariffZ_DECLARE(S, 32, BE)
642193640Sariff#endif
643193640Sariff#ifdef SND_FEEDER_MULTIFORMAT
644193640SariffZ_DECLARE(S,  8, NE)
645193640SariffZ_DECLARE(S, 24, LE)
646193640SariffZ_DECLARE(S, 24, BE)
647193640SariffZ_DECLARE(U,  8, NE)
648193640SariffZ_DECLARE(U, 16, LE)
649193640SariffZ_DECLARE(U, 24, LE)
650193640SariffZ_DECLARE(U, 32, LE)
651193640SariffZ_DECLARE(U, 16, BE)
652193640SariffZ_DECLARE(U, 24, BE)
653193640SariffZ_DECLARE(U, 32, BE)
654193640Sariff#endif
655193640Sariff
656193640Sariffenum {
657193640Sariff	Z_RESAMPLER_ZOH,
658193640Sariff	Z_RESAMPLER_LINEAR,
659193640Sariff	Z_RESAMPLER_SINC,
660193640Sariff	Z_RESAMPLER_SINC_POLYPHASE,
661193640Sariff	Z_RESAMPLER_LAST
662193640Sariff};
663193640Sariff
664193640Sariff#define Z_RESAMPLER_IDX(i)						\
665193640Sariff	(Z_IS_SINC(i) ? Z_RESAMPLER_SINC : (i)->quality)
666193640Sariff
667193640Sariff#define Z_RESAMPLER_ENTRY(SIGN, BIT, ENDIAN)					\
668193640Sariff	{									\
669193640Sariff	    AFMT_##SIGN##BIT##_##ENDIAN,					\
670193640Sariff	    {									\
671193640Sariff		[Z_RESAMPLER_ZOH]    = z_feed_zoh,				\
672193640Sariff		[Z_RESAMPLER_LINEAR] = z_feed_linear_##SIGN##BIT##ENDIAN,	\
673193640Sariff		[Z_RESAMPLER_SINC]   = z_feed_sinc_##SIGN##BIT##ENDIAN,		\
674193640Sariff		[Z_RESAMPLER_SINC_POLYPHASE]   =				\
675193640Sariff		    z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN			\
676193640Sariff	    }									\
677193640Sariff	}
678193640Sariff
679193640Sariffstatic const struct {
680193640Sariff	uint32_t format;
681193640Sariff	z_resampler_t resampler[Z_RESAMPLER_LAST];
682193640Sariff} z_resampler_tab[] = {
683193640Sariff#if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
684193640Sariff	Z_RESAMPLER_ENTRY(S, 16, LE),
685193640Sariff	Z_RESAMPLER_ENTRY(S, 32, LE),
686193640Sariff#endif
687193640Sariff#if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
688193640Sariff	Z_RESAMPLER_ENTRY(S, 16, BE),
689193640Sariff	Z_RESAMPLER_ENTRY(S, 32, BE),
690193640Sariff#endif
691193640Sariff#ifdef SND_FEEDER_MULTIFORMAT
692193640Sariff	Z_RESAMPLER_ENTRY(S,  8, NE),
693193640Sariff	Z_RESAMPLER_ENTRY(S, 24, LE),
694193640Sariff	Z_RESAMPLER_ENTRY(S, 24, BE),
695193640Sariff	Z_RESAMPLER_ENTRY(U,  8, NE),
696193640Sariff	Z_RESAMPLER_ENTRY(U, 16, LE),
697193640Sariff	Z_RESAMPLER_ENTRY(U, 24, LE),
698193640Sariff	Z_RESAMPLER_ENTRY(U, 32, LE),
699193640Sariff	Z_RESAMPLER_ENTRY(U, 16, BE),
700193640Sariff	Z_RESAMPLER_ENTRY(U, 24, BE),
701193640Sariff	Z_RESAMPLER_ENTRY(U, 32, BE),
702193640Sariff#endif
703193640Sariff};
704193640Sariff
705193640Sariff#define Z_RESAMPLER_TAB_SIZE						\
706193640Sariff	((int32_t)(sizeof(z_resampler_tab) / sizeof(z_resampler_tab[0])))
707193640Sariff
708193640Sariffstatic void
709193640Sariffz_resampler_reset(struct z_info *info)
71075320Scg{
71175320Scg
712193640Sariff	info->src = info->rsrc - (info->rsrc % ((feeder_rate_round > 0 &&
713193640Sariff	    info->rsrc > feeder_rate_round) ? feeder_rate_round : 1));
714193640Sariff	info->dst = info->rdst - (info->rdst % ((feeder_rate_round > 0 &&
715193640Sariff	    info->rdst > feeder_rate_round) ? feeder_rate_round : 1));
716193640Sariff	info->z_gx = 1;
717193640Sariff	info->z_gy = 1;
718193640Sariff	info->z_alpha = 0;
719193640Sariff	info->z_resample = NULL;
720193640Sariff	info->z_size = 1;
721193640Sariff	info->z_coeff = NULL;
722193640Sariff	info->z_dcoeff = NULL;
723193640Sariff	if (info->z_pcoeff != NULL) {
724193640Sariff		free(info->z_pcoeff, M_DEVBUF);
725193640Sariff		info->z_pcoeff = NULL;
726193640Sariff	}
727193640Sariff	info->z_scale = Z_ONE;
728193640Sariff	info->z_dx = Z_FULL_ONE;
729193640Sariff	info->z_dy = Z_FULL_ONE;
730193640Sariff#ifdef Z_DIAGNOSTIC
731193640Sariff	info->z_cycle = 0;
732193640Sariff#endif
733193640Sariff	if (info->quality < Z_QUALITY_MIN)
734193640Sariff		info->quality = Z_QUALITY_MIN;
735193640Sariff	else if (info->quality > Z_QUALITY_MAX)
736193640Sariff		info->quality = Z_QUALITY_MAX;
737193640Sariff}
738164614Sariff
739193640Sariff#ifdef Z_PARANOID
740193640Sariffstatic int32_t
741193640Sariffz_resampler_sinc_len(struct z_info *info)
742193640Sariff{
743193640Sariff	int32_t c, z, len, lmax;
744164614Sariff
745193640Sariff	if (!Z_IS_SINC(info))
746193640Sariff		return (1);
747193640Sariff
748193640Sariff	/*
749193640Sariff	 * A rather careful (or useless) way to calculate filter length.
750193640Sariff	 * Z_SINC_LEN() itself is accurate enough to do its job. Extra
751193640Sariff	 * sanity checking is not going to hurt though..
752193640Sariff	 */
753193640Sariff	c = 0;
754193640Sariff	z = info->z_dy;
755193640Sariff	len = 0;
756193640Sariff	lmax = z_coeff_tab[Z_SINC_COEFF_IDX(info)].len;
757193640Sariff
758193640Sariff	do {
759193640Sariff		c += z >> Z_SHIFT;
760193640Sariff		z &= Z_MASK;
761193640Sariff		z += info->z_dy;
762193640Sariff	} while (c < lmax && ++len > 0);
763193640Sariff
764193640Sariff	if (len != Z_SINC_LEN(info)) {
765193640Sariff#ifdef _KERNEL
766193640Sariff		printf("%s(): sinc l=%d != Z_SINC_LEN=%d\n",
767193640Sariff		    __func__, len, Z_SINC_LEN(info));
768193640Sariff#else
769193640Sariff		fprintf(stderr, "%s(): sinc l=%d != Z_SINC_LEN=%d\n",
770193640Sariff		    __func__, len, Z_SINC_LEN(info));
771167646Sariff		return (-1);
772193640Sariff#endif
773193640Sariff	}
774164614Sariff
775193640Sariff	return (len);
776193640Sariff}
777193640Sariff#else
778193640Sariff#define z_resampler_sinc_len(i)		(Z_IS_SINC(i) ? Z_SINC_LEN(i) : 1)
779193640Sariff#endif
780193640Sariff
781193640Sariff#define Z_POLYPHASE_COEFF_SHIFT		0
782193640Sariff
783193640Sariff/*
784193640Sariff * Pick suitable polynomial interpolators based on filter oversampled ratio
785193640Sariff * (2 ^ Z_DRIFT_SHIFT).
786193640Sariff */
787193640Sariff#if !(defined(Z_COEFF_INTERP_ZOH) || defined(Z_COEFF_INTERP_LINEAR) ||		\
788193640Sariff    defined(Z_COEFF_INTERP_QUADRATIC) || defined(Z_COEFF_INTERP_HERMITE) ||	\
789193640Sariff    defined(Z_COEFF_INTER_BSPLINE) || defined(Z_COEFF_INTERP_OPT32X) ||		\
790193640Sariff    defined(Z_COEFF_INTERP_OPT16X) || defined(Z_COEFF_INTERP_OPT8X) ||		\
791193640Sariff    defined(Z_COEFF_INTERP_OPT4X) || defined(Z_COEFF_INTERP_OPT2X))
792195689Sariff#if Z_DRIFT_SHIFT >= 6
793195689Sariff#define Z_COEFF_INTERP_BSPLINE		1
794194232Sariff#elif Z_DRIFT_SHIFT >= 5
795193640Sariff#define Z_COEFF_INTERP_OPT32X		1
796193640Sariff#elif Z_DRIFT_SHIFT == 4
797193640Sariff#define Z_COEFF_INTERP_OPT16X		1
798193640Sariff#elif Z_DRIFT_SHIFT == 3
799193640Sariff#define Z_COEFF_INTERP_OPT8X		1
800193640Sariff#elif Z_DRIFT_SHIFT == 2
801193640Sariff#define Z_COEFF_INTERP_OPT4X		1
802193640Sariff#elif Z_DRIFT_SHIFT == 1
803193640Sariff#define Z_COEFF_INTERP_OPT2X		1
804193640Sariff#else
805193640Sariff#error "Z_DRIFT_SHIFT screwed!"
806193640Sariff#endif
807193640Sariff#endif
808193640Sariff
809193640Sariff/*
810193640Sariff * In classic polyphase mode, the actual coefficients for each phases need to
811193640Sariff * be calculated based on default prototype filters. For highly oversampled
812193640Sariff * filter, linear or quadradatic interpolator should be enough. Anything less
813193640Sariff * than that require 'special' interpolators to reduce interpolation errors.
814193640Sariff *
815193640Sariff * "Polynomial Interpolators for High-Quality Resampling of Oversampled Audio"
816193640Sariff *    by Olli Niemitalo
817193640Sariff *    - http://www.student.oulu.fi/~oniemita/dsp/deip.pdf
818193640Sariff *
819193640Sariff */
820193640Sariffstatic int32_t
821193640Sariffz_coeff_interpolate(int32_t z, int32_t *z_coeff)
822193640Sariff{
823193640Sariff	int32_t coeff;
824193640Sariff#if defined(Z_COEFF_INTERP_ZOH)
825193640Sariff
826193640Sariff	/* 1-point, 0th-order (Zero Order Hold) */
827193640Sariff	z = z;
828193640Sariff	coeff = z_coeff[0];
829193640Sariff#elif defined(Z_COEFF_INTERP_LINEAR)
830193640Sariff	int32_t zl0, zl1;
831193640Sariff
832193640Sariff	/* 2-point, 1st-order Linear */
833193640Sariff	zl0 = z_coeff[0];
834193640Sariff	zl1 = z_coeff[1] - z_coeff[0];
835193640Sariff
836195689Sariff	coeff = Z_RSHIFT((int64_t)zl1 * z, Z_SHIFT) + zl0;
837193640Sariff#elif defined(Z_COEFF_INTERP_QUADRATIC)
838193640Sariff	int32_t zq0, zq1, zq2;
839193640Sariff
840193640Sariff	/* 3-point, 2nd-order Quadratic */
841193640Sariff	zq0 = z_coeff[0];
842193640Sariff	zq1 = z_coeff[1] - z_coeff[-1];
843193640Sariff	zq2 = z_coeff[1] + z_coeff[-1] - (z_coeff[0] << 1);
844193640Sariff
845195689Sariff	coeff = Z_RSHIFT((Z_RSHIFT((int64_t)zq2 * z, Z_SHIFT) +
846195689Sariff	    zq1) * z, Z_SHIFT + 1) + zq0;
847193640Sariff#elif defined(Z_COEFF_INTERP_HERMITE)
848193640Sariff	int32_t zh0, zh1, zh2, zh3;
849193640Sariff
850193640Sariff	/* 4-point, 3rd-order Hermite */
851193640Sariff	zh0 = z_coeff[0];
852193640Sariff	zh1 = z_coeff[1] - z_coeff[-1];
853193640Sariff	zh2 = (z_coeff[-1] << 1) - (z_coeff[0] * 5) + (z_coeff[1] << 2) -
854193640Sariff	    z_coeff[2];
855193640Sariff	zh3 = z_coeff[2] - z_coeff[-1] + ((z_coeff[0] - z_coeff[1]) * 3);
856193640Sariff
857195689Sariff	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zh3 * z, Z_SHIFT) +
858195689Sariff	    zh2) * z, Z_SHIFT) + zh1) * z, Z_SHIFT + 1) + zh0;
859193640Sariff#elif defined(Z_COEFF_INTERP_BSPLINE)
860193640Sariff	int32_t zb0, zb1, zb2, zb3;
861193640Sariff
862193640Sariff	/* 4-point, 3rd-order B-Spline */
863195689Sariff	zb0 = Z_RSHIFT(0x15555555LL * (((int64_t)z_coeff[0] << 2) +
864195689Sariff	    z_coeff[-1] + z_coeff[1]), 30);
865193640Sariff	zb1 = z_coeff[1] - z_coeff[-1];
866193640Sariff	zb2 = z_coeff[-1] + z_coeff[1] - (z_coeff[0] << 1);
867195689Sariff	zb3 = Z_RSHIFT(0x15555555LL * (((z_coeff[0] - z_coeff[1]) * 3) +
868195689Sariff	    z_coeff[2] - z_coeff[-1]), 30);
869193640Sariff
870195689Sariff	coeff = (Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zb3 * z, Z_SHIFT) +
871195689Sariff	    zb2) * z, Z_SHIFT) + zb1) * z, Z_SHIFT) + zb0 + 1) >> 1;
872193640Sariff#elif defined(Z_COEFF_INTERP_OPT32X)
873193640Sariff	int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
874193640Sariff	int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
875193640Sariff
876193640Sariff	/* 6-point, 5th-order Optimal 32x */
877193640Sariff	zoz = z - (Z_ONE >> 1);
878193640Sariff	zoe1 = z_coeff[1] + z_coeff[0];
879193640Sariff	zoe2 = z_coeff[2] + z_coeff[-1];
880193640Sariff	zoe3 = z_coeff[3] + z_coeff[-2];
881193640Sariff	zoo1 = z_coeff[1] - z_coeff[0];
882193640Sariff	zoo2 = z_coeff[2] - z_coeff[-1];
883193640Sariff	zoo3 = z_coeff[3] - z_coeff[-2];
884193640Sariff
885195689Sariff	zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) +
886195689Sariff	    (0x00170c29LL * zoe3), 30);
887195689Sariff	zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) +
888195689Sariff	    (0x008cd4dcLL * zoo3), 30);
889195689Sariff	zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) +
890195689Sariff	    (0x0160b5d0LL * zoe3), 30);
891195689Sariff	zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) +
892195689Sariff	    (0x01cfe914LL * zoo3), 30);
893195689Sariff	zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) +
894195689Sariff	    (0x015508ddLL * zoe3), 30);
895195689Sariff	zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) +
896195689Sariff	    (0x0082d81aLL * zoo3), 30);
897193640Sariff
898195689Sariff	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
899195689Sariff	    (int64_t)zoc5 * zoz, Z_SHIFT) +
900195689Sariff	    zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
901195689Sariff	    zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
902193640Sariff#elif defined(Z_COEFF_INTERP_OPT16X)
903193640Sariff	int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
904193640Sariff	int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
905193640Sariff
906193640Sariff	/* 6-point, 5th-order Optimal 16x */
907193640Sariff	zoz = z - (Z_ONE >> 1);
908193640Sariff	zoe1 = z_coeff[1] + z_coeff[0];
909193640Sariff	zoe2 = z_coeff[2] + z_coeff[-1];
910193640Sariff	zoe3 = z_coeff[3] + z_coeff[-2];
911193640Sariff	zoo1 = z_coeff[1] - z_coeff[0];
912193640Sariff	zoo2 = z_coeff[2] - z_coeff[-1];
913193640Sariff	zoo3 = z_coeff[3] - z_coeff[-2];
914193640Sariff
915195689Sariff	zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) +
916195689Sariff	    (0x00170c29LL * zoe3), 30);
917195689Sariff	zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) +
918195689Sariff	    (0x008cd4dcLL * zoo3), 30);
919195689Sariff	zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) +
920195689Sariff	    (0x0160b5d0LL * zoe3), 30);
921195689Sariff	zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) +
922195689Sariff	    (0x01cfe914LL * zoo3), 30);
923195689Sariff	zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) +
924195689Sariff	    (0x015508ddLL * zoe3), 30);
925195689Sariff	zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) +
926195689Sariff	    (0x0082d81aLL * zoo3), 30);
927193640Sariff
928195689Sariff	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
929195689Sariff	    (int64_t)zoc5 * zoz, Z_SHIFT) +
930195689Sariff	    zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
931195689Sariff	    zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
932193640Sariff#elif defined(Z_COEFF_INTERP_OPT8X)
933193640Sariff	int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
934193640Sariff	int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
935193640Sariff
936193640Sariff	/* 6-point, 5th-order Optimal 8x */
937193640Sariff	zoz = z - (Z_ONE >> 1);
938193640Sariff	zoe1 = z_coeff[1] + z_coeff[0];
939193640Sariff	zoe2 = z_coeff[2] + z_coeff[-1];
940193640Sariff	zoe3 = z_coeff[3] + z_coeff[-2];
941193640Sariff	zoo1 = z_coeff[1] - z_coeff[0];
942193640Sariff	zoo2 = z_coeff[2] - z_coeff[-1];
943193640Sariff	zoo3 = z_coeff[3] - z_coeff[-2];
944193640Sariff
945195689Sariff	zoc0 = Z_RSHIFT((0x1aa9b47dLL * zoe1) + (0x053d9944LL * zoe2) +
946195689Sariff	    (0x0018b23fLL * zoe3), 30);
947195689Sariff	zoc1 = Z_RSHIFT((0x14a104d1LL * zoo1) + (0x0d7d2504LL * zoo2) +
948195689Sariff	    (0x0094b599LL * zoo3), 30);
949195689Sariff	zoc2 = Z_RSHIFT((-0x0d22530bLL * zoe1) + (0x0bb37a2cLL * zoe2) +
950195689Sariff	    (0x016ed8e0LL * zoe3), 30);
951195689Sariff	zoc3 = Z_RSHIFT((-0x0d744b1cLL * zoo1) + (0x01649591LL * zoo2) +
952195689Sariff	    (0x01dae93aLL * zoo3), 30);
953195689Sariff	zoc4 = Z_RSHIFT((0x02a7ee1bLL * zoe1) + (-0x03fbdb24LL * zoe2) +
954195689Sariff	    (0x0153ed07LL * zoe3), 30);
955195689Sariff	zoc5 = Z_RSHIFT((0x04cf9b6cLL * zoo1) + (-0x0266b378LL * zoo2) +
956195689Sariff	    (0x007a7c26LL * zoo3), 30);
957193640Sariff
958195689Sariff	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
959195689Sariff	    (int64_t)zoc5 * zoz, Z_SHIFT) +
960195689Sariff	    zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
961195689Sariff	    zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
962193640Sariff#elif defined(Z_COEFF_INTERP_OPT4X)
963193640Sariff	int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
964193640Sariff	int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
965193640Sariff
966193640Sariff	/* 6-point, 5th-order Optimal 4x */
967193640Sariff	zoz = z - (Z_ONE >> 1);
968193640Sariff	zoe1 = z_coeff[1] + z_coeff[0];
969193640Sariff	zoe2 = z_coeff[2] + z_coeff[-1];
970193640Sariff	zoe3 = z_coeff[3] + z_coeff[-2];
971193640Sariff	zoo1 = z_coeff[1] - z_coeff[0];
972193640Sariff	zoo2 = z_coeff[2] - z_coeff[-1];
973193640Sariff	zoo3 = z_coeff[3] - z_coeff[-2];
974193640Sariff
975195689Sariff	zoc0 = Z_RSHIFT((0x1a8eda43LL * zoe1) + (0x0556ee38LL * zoe2) +
976195689Sariff	    (0x001a3784LL * zoe3), 30);
977195689Sariff	zoc1 = Z_RSHIFT((0x143d863eLL * zoo1) + (0x0d910e36LL * zoo2) +
978195689Sariff	    (0x009ca889LL * zoo3), 30);
979195689Sariff	zoc2 = Z_RSHIFT((-0x0d026821LL * zoe1) + (0x0b837773LL * zoe2) +
980195689Sariff	    (0x017ef0c6LL * zoe3), 30);
981195689Sariff	zoc3 = Z_RSHIFT((-0x0cef1502LL * zoo1) + (0x01207a8eLL * zoo2) +
982195689Sariff	    (0x01e936dbLL * zoo3), 30);
983195689Sariff	zoc4 = Z_RSHIFT((0x029fe643LL * zoe1) + (-0x03ef3fc8LL * zoe2) +
984195689Sariff	    (0x014f5923LL * zoe3), 30);
985195689Sariff	zoc5 = Z_RSHIFT((0x043a9d08LL * zoo1) + (-0x02154febLL * zoo2) +
986195689Sariff	    (0x00670dbdLL * zoo3), 30);
987193640Sariff
988195689Sariff	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
989195689Sariff	    (int64_t)zoc5 * zoz, Z_SHIFT) +
990195689Sariff	    zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
991195689Sariff	    zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
992193640Sariff#elif defined(Z_COEFF_INTERP_OPT2X)
993193640Sariff	int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
994193640Sariff	int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
995193640Sariff
996193640Sariff	/* 6-point, 5th-order Optimal 2x */
997193640Sariff	zoz = z - (Z_ONE >> 1);
998193640Sariff	zoe1 = z_coeff[1] + z_coeff[0];
999193640Sariff	zoe2 = z_coeff[2] + z_coeff[-1];
1000193640Sariff	zoe3 = z_coeff[3] + z_coeff[-2];
1001193640Sariff	zoo1 = z_coeff[1] - z_coeff[0];
1002193640Sariff	zoo2 = z_coeff[2] - z_coeff[-1];
1003193640Sariff	zoo3 = z_coeff[3] - z_coeff[-2];
1004193640Sariff
1005195689Sariff	zoc0 = Z_RSHIFT((0x19edb6fdLL * zoe1) + (0x05ebd062LL * zoe2) +
1006195689Sariff	    (0x00267881LL * zoe3), 30);
1007195689Sariff	zoc1 = Z_RSHIFT((0x1223af76LL * zoo1) + (0x0de3dd6bLL * zoo2) +
1008195689Sariff	    (0x00d683cdLL * zoo3), 30);
1009195689Sariff	zoc2 = Z_RSHIFT((-0x0c3ee068LL * zoe1) + (0x0a5c3769LL * zoe2) +
1010195689Sariff	    (0x01e2aceaLL * zoe3), 30);
1011195689Sariff	zoc3 = Z_RSHIFT((-0x0a8ab614LL * zoo1) + (-0x0019522eLL * zoo2) +
1012195689Sariff	    (0x022cefc7LL * zoo3), 30);
1013195689Sariff	zoc4 = Z_RSHIFT((0x0276187dLL * zoe1) + (-0x03a801e8LL * zoe2) +
1014195689Sariff	    (0x0131d935LL * zoe3), 30);
1015195689Sariff	zoc5 = Z_RSHIFT((0x02c373f5LL * zoo1) + (-0x01275f83LL * zoo2) +
1016195689Sariff	    (0x0018ee79LL * zoo3), 30);
1017193640Sariff
1018195689Sariff	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
1019195689Sariff	    (int64_t)zoc5 * zoz, Z_SHIFT) +
1020195689Sariff	    zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
1021195689Sariff	    zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
1022193640Sariff#else
1023193640Sariff#error "Interpolation type screwed!"
1024193640Sariff#endif
1025193640Sariff
1026193640Sariff#if Z_POLYPHASE_COEFF_SHIFT > 0
1027193640Sariff	coeff = Z_RSHIFT(coeff, Z_POLYPHASE_COEFF_SHIFT);
1028193640Sariff#endif
1029193640Sariff	return (coeff);
1030193640Sariff}
1031193640Sariff
1032193640Sariffstatic int
1033193640Sariffz_resampler_build_polyphase(struct z_info *info)
1034193640Sariff{
1035193640Sariff	int32_t alpha, c, i, z, idx;
1036193640Sariff
1037193640Sariff	/* Let this be here first. */
1038193640Sariff	if (info->z_pcoeff != NULL) {
1039193640Sariff		free(info->z_pcoeff, M_DEVBUF);
1040193640Sariff		info->z_pcoeff = NULL;
1041193640Sariff	}
1042193640Sariff
1043193640Sariff	if (feeder_rate_polyphase_max < 1)
1044193640Sariff		return (ENOTSUP);
1045193640Sariff
1046193640Sariff	if (((int64_t)info->z_size * info->z_gy * 2) >
1047193640Sariff	    feeder_rate_polyphase_max) {
1048193640Sariff#ifndef _KERNEL
1049193640Sariff		fprintf(stderr, "Polyphase entries exceed: [%d/%d] %jd > %d\n",
1050193640Sariff		    info->z_gx, info->z_gy,
1051193640Sariff		    (intmax_t)info->z_size * info->z_gy * 2,
1052193640Sariff		    feeder_rate_polyphase_max);
1053193640Sariff#endif
1054193640Sariff		return (E2BIG);
1055193640Sariff	}
1056193640Sariff
1057193640Sariff	info->z_pcoeff = malloc(sizeof(int32_t) *
1058193640Sariff	    info->z_size * info->z_gy * 2, M_DEVBUF, M_NOWAIT | M_ZERO);
1059193640Sariff	if (info->z_pcoeff == NULL)
1060193640Sariff		return (ENOMEM);
1061193640Sariff
1062193640Sariff	for (alpha = 0; alpha < info->z_gy; alpha++) {
1063193640Sariff		z = alpha * info->z_dx;
1064193640Sariff		c = 0;
1065193640Sariff		for (i = info->z_size; i != 0; i--) {
1066193640Sariff			c += z >> Z_SHIFT;
1067193640Sariff			z &= Z_MASK;
1068193640Sariff			idx = (alpha * info->z_size * 2) +
1069193640Sariff			    (info->z_size * 2) - i;
1070193640Sariff			info->z_pcoeff[idx] =
1071193640Sariff			    z_coeff_interpolate(z, info->z_coeff + c);
1072193640Sariff			z += info->z_dy;
1073193640Sariff		}
1074193640Sariff		z = info->z_dy - (alpha * info->z_dx);
1075193640Sariff		c = 0;
1076193640Sariff		for (i = info->z_size; i != 0; i--) {
1077193640Sariff			c += z >> Z_SHIFT;
1078193640Sariff			z &= Z_MASK;
1079193640Sariff			idx = (alpha * info->z_size * 2) + i - 1;
1080193640Sariff			info->z_pcoeff[idx] =
1081193640Sariff			    z_coeff_interpolate(z, info->z_coeff + c);
1082193640Sariff			z += info->z_dy;
1083193640Sariff		}
1084193640Sariff	}
1085193640Sariff
1086193640Sariff#ifndef _KERNEL
1087193640Sariff	fprintf(stderr, "Polyphase: [%d/%d] %d entries\n",
1088193640Sariff	    info->z_gx, info->z_gy, info->z_size * info->z_gy * 2);
1089193640Sariff#endif
1090193640Sariff
1091193640Sariff	return (0);
1092193640Sariff}
1093193640Sariff
1094193640Sariffstatic int
1095193640Sariffz_resampler_setup(struct pcm_feeder *f)
1096193640Sariff{
1097193640Sariff	struct z_info *info;
1098193640Sariff	int64_t gy2gx_max, gx2gy_max;
1099193640Sariff	uint32_t format;
1100193640Sariff	int32_t align, i, z_scale;
1101193640Sariff	int adaptive;
1102193640Sariff
1103193640Sariff	info = f->data;
1104193640Sariff	z_resampler_reset(info);
1105193640Sariff
1106193640Sariff	if (info->src == info->dst)
1107193640Sariff		return (0);
1108193640Sariff
1109193640Sariff	/* Shrink by greatest common divisor. */
1110193640Sariff	i = z_gcd(info->src, info->dst);
1111193640Sariff	info->z_gx = info->src / i;
1112193640Sariff	info->z_gy = info->dst / i;
1113193640Sariff
1114193640Sariff	/* Too big, or too small. Bail out. */
1115193640Sariff	if (!(Z_FACTOR_SAFE(info->z_gx) && Z_FACTOR_SAFE(info->z_gy)))
1116193640Sariff		return (EINVAL);
1117193640Sariff
1118193640Sariff	format = f->desc->in;
1119193640Sariff	adaptive = 0;
1120193640Sariff	z_scale = 0;
1121193640Sariff
1122193640Sariff	/*
1123193640Sariff	 * Setup everything: filter length, conversion factor, etc.
1124193640Sariff	 */
1125193640Sariff	if (Z_IS_SINC(info)) {
1126193640Sariff		/*
1127193640Sariff		 * Downsampling, or upsampling scaling factor. As long as the
1128193640Sariff		 * factor can be represented by a fraction of 1 << Z_SHIFT,
1129193640Sariff		 * we're pretty much in business. Scaling is not needed for
1130193640Sariff		 * upsampling, so we just slap Z_ONE there.
1131193640Sariff		 */
1132193640Sariff		if (info->z_gx > info->z_gy)
1133193640Sariff			/*
1134193640Sariff			 * If the downsampling ratio is beyond sanity,
1135193640Sariff			 * enable semi-adaptive mode. Although handling
1136193640Sariff			 * extreme ratio is possible, the result of the
1137193640Sariff			 * conversion is just pointless, unworthy,
1138193640Sariff			 * nonsensical noises, etc.
1139193640Sariff			 */
1140193640Sariff			if ((info->z_gx / info->z_gy) > Z_SINC_DOWNMAX)
1141193640Sariff				z_scale = Z_ONE / Z_SINC_DOWNMAX;
1142193640Sariff			else
1143193640Sariff				z_scale = ((uint64_t)info->z_gy << Z_SHIFT) /
1144193640Sariff				    info->z_gx;
1145193640Sariff		else
1146193640Sariff			z_scale = Z_ONE;
1147193640Sariff
1148193640Sariff		/*
1149193640Sariff		 * This is actually impossible, unless anything above
1150193640Sariff		 * overflow.
1151193640Sariff		 */
1152193640Sariff		if (z_scale < 1)
1153193640Sariff			return (E2BIG);
1154193640Sariff
1155193640Sariff		/*
1156193640Sariff		 * Calculate sample time/coefficients index drift. It is
1157193640Sariff		 * a constant for upsampling, but downsampling require
1158193640Sariff		 * heavy duty filtering with possible too long filters.
1159193640Sariff		 * If anything goes wrong, revisit again and enable
1160193640Sariff		 * adaptive mode.
1161193640Sariff		 */
1162193640Sariffz_setup_adaptive_sinc:
1163193640Sariff		if (info->z_pcoeff != NULL) {
1164193640Sariff			free(info->z_pcoeff, M_DEVBUF);
1165193640Sariff			info->z_pcoeff = NULL;
1166193640Sariff		}
1167193640Sariff
1168193640Sariff		if (adaptive == 0) {
1169193640Sariff			info->z_dy = z_scale << Z_DRIFT_SHIFT;
1170193640Sariff			if (info->z_dy < 1)
1171193640Sariff				return (E2BIG);
1172193640Sariff			info->z_scale = z_scale;
1173193640Sariff		} else {
1174193640Sariff			info->z_dy = Z_FULL_ONE;
1175193640Sariff			info->z_scale = Z_ONE;
1176193640Sariff		}
1177193640Sariff
1178193640Sariff#if 0
1179193640Sariff#define Z_SCALE_DIV	10000
1180193640Sariff#define Z_SCALE_LIMIT(s, v)						\
1181193640Sariff	((((uint64_t)(s) * (v)) + (Z_SCALE_DIV >> 1)) / Z_SCALE_DIV)
1182193640Sariff
1183193640Sariff		info->z_scale = Z_SCALE_LIMIT(info->z_scale, 9780);
1184193640Sariff#endif
1185193640Sariff
1186193640Sariff		/* Smallest drift increment. */
1187193640Sariff		info->z_dx = info->z_dy / info->z_gy;
1188193640Sariff
1189193640Sariff		/*
1190193640Sariff		 * Overflow or underflow. Try adaptive, let it continue and
1191193640Sariff		 * retry.
1192193640Sariff		 */
1193193640Sariff		if (info->z_dx < 1) {
1194193640Sariff			if (adaptive == 0) {
1195193640Sariff				adaptive = 1;
1196193640Sariff				goto z_setup_adaptive_sinc;
1197193640Sariff			}
1198193640Sariff			return (E2BIG);
1199193640Sariff		}
1200193640Sariff
1201193640Sariff		/*
1202193640Sariff		 * Round back output drift.
1203193640Sariff		 */
1204193640Sariff		info->z_dy = info->z_dx * info->z_gy;
1205193640Sariff
1206193640Sariff		for (i = 0; i < Z_COEFF_TAB_SIZE; i++) {
1207193640Sariff			if (Z_SINC_COEFF_IDX(info) != i)
1208193640Sariff				continue;
1209193640Sariff			/*
1210193640Sariff			 * Calculate required filter length and guard
1211193640Sariff			 * against possible abusive result. Note that
1212193640Sariff			 * this represents only 1/2 of the entire filter
1213193640Sariff			 * length.
1214193640Sariff			 */
1215193640Sariff			info->z_size = z_resampler_sinc_len(info);
1216193640Sariff
1217193640Sariff			/*
1218193640Sariff			 * Multiple of 2 rounding, for better accumulator
1219193640Sariff			 * performance.
1220193640Sariff			 */
1221193640Sariff			info->z_size &= ~1;
1222193640Sariff
1223193640Sariff			if (info->z_size < 2 || info->z_size > Z_SINC_MAX) {
1224193640Sariff				if (adaptive == 0) {
1225193640Sariff					adaptive = 1;
1226193640Sariff					goto z_setup_adaptive_sinc;
1227193640Sariff				}
1228193640Sariff				return (E2BIG);
1229193640Sariff			}
1230193640Sariff			info->z_coeff = z_coeff_tab[i].coeff + Z_COEFF_OFFSET;
1231193640Sariff			info->z_dcoeff = z_coeff_tab[i].dcoeff;
1232164614Sariff			break;
1233148606Snetchild		}
1234193640Sariff
1235193640Sariff		if (info->z_coeff == NULL || info->z_dcoeff == NULL)
1236193640Sariff			return (EINVAL);
1237193640Sariff	} else if (Z_IS_LINEAR(info)) {
1238193640Sariff		/*
1239193640Sariff		 * Don't put much effort if we're doing linear interpolation.
1240193640Sariff		 * Just center the interpolation distance within Z_LINEAR_ONE,
1241193640Sariff		 * and be happy about it.
1242193640Sariff		 */
1243193640Sariff		info->z_dx = Z_LINEAR_FULL_ONE / info->z_gy;
1244109547Sorion	}
1245164614Sariff
1246164614Sariff	/*
1247193640Sariff	 * We're safe for now, lets continue.. Look for our resampler
1248193640Sariff	 * depending on configured format and quality.
1249164614Sariff	 */
1250193640Sariff	for (i = 0; i < Z_RESAMPLER_TAB_SIZE; i++) {
1251193640Sariff		int ridx;
1252164614Sariff
1253193640Sariff		if (AFMT_ENCODING(format) != z_resampler_tab[i].format)
1254193640Sariff			continue;
1255193640Sariff		if (Z_IS_SINC(info) && adaptive == 0 &&
1256193640Sariff		    z_resampler_build_polyphase(info) == 0)
1257193640Sariff			ridx = Z_RESAMPLER_SINC_POLYPHASE;
1258193640Sariff		else
1259193640Sariff			ridx = Z_RESAMPLER_IDX(info);
1260193640Sariff		info->z_resample = z_resampler_tab[i].resampler[ridx];
1261193640Sariff		break;
1262193640Sariff	}
1263164614Sariff
1264193640Sariff	if (info->z_resample == NULL)
1265193640Sariff		return (EINVAL);
1266164614Sariff
1267193640Sariff	info->bps = AFMT_BPS(format);
1268193640Sariff	align = info->channels * info->bps;
1269164614Sariff
1270193640Sariff	/*
1271193640Sariff	 * Calculate largest value that can be fed into z_gy2gx() and
1272193640Sariff	 * z_gx2gy() without causing (signed) 32bit overflow. z_gy2gx() will
1273193640Sariff	 * be called early during feeding process to determine how much input
1274193640Sariff	 * samples that is required to generate requested output, while
1275193640Sariff	 * z_gx2gy() will be called just before samples filtering /
1276193640Sariff	 * accumulation process based on available samples that has been
1277193640Sariff	 * calculated using z_gx2gy().
1278193640Sariff	 *
1279193640Sariff	 * Now that is damn confusing, I guess ;-) .
1280193640Sariff	 */
1281193640Sariff	gy2gx_max = (((uint64_t)info->z_gy * INT32_MAX) - info->z_gy + 1) /
1282193640Sariff	    info->z_gx;
1283193640Sariff
1284193640Sariff	if ((gy2gx_max * align) > SND_FXDIV_MAX)
1285193640Sariff		gy2gx_max = SND_FXDIV_MAX / align;
1286193640Sariff
1287193640Sariff	if (gy2gx_max < 1)
1288193640Sariff		return (E2BIG);
1289193640Sariff
1290193640Sariff	gx2gy_max = (((uint64_t)info->z_gx * INT32_MAX) - info->z_gy) /
1291193640Sariff	    info->z_gy;
1292193640Sariff
1293193640Sariff	if (gx2gy_max > INT32_MAX)
1294193640Sariff		gx2gy_max = INT32_MAX;
1295193640Sariff
1296193640Sariff	if (gx2gy_max < 1)
1297193640Sariff		return (E2BIG);
1298193640Sariff
1299193640Sariff	/*
1300193640Sariff	 * Ensure that z_gy2gx() at its largest possible calculated value
1301193640Sariff	 * (alpha = 0) will not cause overflow further late during z_gx2gy()
1302193640Sariff	 * stage.
1303193640Sariff	 */
1304193640Sariff	if (z_gy2gx(info, gy2gx_max) > _Z_GCAST(gx2gy_max))
1305193640Sariff		return (E2BIG);
1306193640Sariff
1307193640Sariff	info->z_maxfeed = gy2gx_max * align;
1308193640Sariff
1309193640Sariff#ifdef Z_USE_ALPHADRIFT
1310193640Sariff	info->z_startdrift = z_gy2gx(info, 1);
1311193640Sariff	info->z_alphadrift = z_drift(info, info->z_startdrift, 1);
1312193640Sariff#endif
1313193640Sariff
1314193640Sariff	i = z_gy2gx(info, 1);
1315193640Sariff	info->z_full = z_roundpow2((info->z_size << 1) + i);
1316193640Sariff
1317193640Sariff	/*
1318193640Sariff	 * Too big to be true, and overflowing left and right like mad ..
1319193640Sariff	 */
1320193640Sariff	if ((info->z_full * align) < 1) {
1321193640Sariff		if (adaptive == 0 && Z_IS_SINC(info)) {
1322193640Sariff			adaptive = 1;
1323193640Sariff			goto z_setup_adaptive_sinc;
1324193640Sariff		}
1325193640Sariff		return (E2BIG);
1326193640Sariff	}
1327193640Sariff
1328193640Sariff	/*
1329193640Sariff	 * Increase full buffer size if its too small to reduce cyclic
1330193640Sariff	 * buffer shifting in main conversion/feeder loop.
1331193640Sariff	 */
1332193640Sariff	while (info->z_full < Z_RESERVOIR_MAX &&
1333193640Sariff	    (info->z_full - (info->z_size << 1)) < Z_RESERVOIR)
1334193640Sariff		info->z_full <<= 1;
1335193640Sariff
1336193640Sariff	/* Initialize buffer position. */
1337193640Sariff	info->z_mask = info->z_full - 1;
1338193640Sariff	info->z_start = z_prev(info, info->z_size << 1, 1);
1339193640Sariff	info->z_pos = z_next(info, info->z_start, 1);
1340193640Sariff
1341193640Sariff	/*
1342193640Sariff	 * Allocate or reuse delay line buffer, whichever makes sense.
1343193640Sariff	 */
1344193640Sariff	i = info->z_full * align;
1345193640Sariff	if (i < 1)
1346193640Sariff		return (E2BIG);
1347193640Sariff
1348193640Sariff	if (info->z_delay == NULL || info->z_alloc < i ||
1349193640Sariff	    i <= (info->z_alloc >> 1)) {
1350193640Sariff		if (info->z_delay != NULL)
1351193640Sariff			free(info->z_delay, M_DEVBUF);
1352193640Sariff		info->z_delay = malloc(i, M_DEVBUF, M_NOWAIT | M_ZERO);
1353193640Sariff		if (info->z_delay == NULL)
1354193640Sariff			return (ENOMEM);
1355193640Sariff		info->z_alloc = i;
1356193640Sariff	}
1357193640Sariff
1358193640Sariff	/*
1359193640Sariff	 * Zero out head of buffer to avoid pops and clicks.
1360193640Sariff	 */
1361193640Sariff	memset(info->z_delay, sndbuf_zerodata(f->desc->out),
1362193640Sariff	    info->z_pos * align);
1363193640Sariff
1364193640Sariff#ifdef Z_DIAGNOSTIC
1365193640Sariff	/*
1366193640Sariff	 * XXX Debuging mess !@#$%^
1367193640Sariff	 */
1368193640Sariff#define dumpz(x)	fprintf(stderr, "\t%12s = %10u : %-11d\n",	\
1369193640Sariff			    "z_"__STRING(x), (uint32_t)info->z_##x,	\
1370193640Sariff			    (int32_t)info->z_##x)
1371193640Sariff	fprintf(stderr, "\n%s():\n", __func__);
1372193640Sariff	fprintf(stderr, "\tchannels=%d, bps=%d, format=0x%08x, quality=%d\n",
1373193640Sariff	    info->channels, info->bps, format, info->quality);
1374193640Sariff	fprintf(stderr, "\t%d (%d) -> %d (%d), ",
1375193640Sariff	    info->src, info->rsrc, info->dst, info->rdst);
1376193640Sariff	fprintf(stderr, "[%d/%d]\n", info->z_gx, info->z_gy);
1377193640Sariff	fprintf(stderr, "\tminreq=%d, ", z_gy2gx(info, 1));
1378193640Sariff	if (adaptive != 0)
1379193640Sariff		z_scale = Z_ONE;
1380193640Sariff	fprintf(stderr, "factor=0x%08x/0x%08x (%f)\n",
1381193640Sariff	    z_scale, Z_ONE, (double)z_scale / Z_ONE);
1382193640Sariff	fprintf(stderr, "\tbase_length=%d, ", Z_SINC_BASE_LEN(info));
1383193640Sariff	fprintf(stderr, "adaptive=%s\n", (adaptive != 0) ? "YES" : "NO");
1384193640Sariff	dumpz(size);
1385193640Sariff	dumpz(alloc);
1386193640Sariff	if (info->z_alloc < 1024)
1387193640Sariff		fprintf(stderr, "\t%15s%10d Bytes\n",
1388193640Sariff		    "", info->z_alloc);
1389193640Sariff	else if (info->z_alloc < (1024 << 10))
1390193640Sariff		fprintf(stderr, "\t%15s%10d KBytes\n",
1391193640Sariff		    "", info->z_alloc >> 10);
1392193640Sariff	else if (info->z_alloc < (1024 << 20))
1393193640Sariff		fprintf(stderr, "\t%15s%10d MBytes\n",
1394193640Sariff		    "", info->z_alloc >> 20);
1395193640Sariff	else
1396193640Sariff		fprintf(stderr, "\t%15s%10d GBytes\n",
1397193640Sariff		    "", info->z_alloc >> 30);
1398193640Sariff	fprintf(stderr, "\t%12s   %10d (min output samples)\n",
1399193640Sariff	    "",
1400193640Sariff	    (int32_t)z_gx2gy(info, info->z_full - (info->z_size << 1)));
1401193640Sariff	fprintf(stderr, "\t%12s   %10d (min allocated output samples)\n",
1402193640Sariff	    "",
1403193640Sariff	    (int32_t)z_gx2gy(info, (info->z_alloc / align) -
1404193640Sariff	    (info->z_size << 1)));
1405193640Sariff	fprintf(stderr, "\t%12s = %10d\n",
1406193640Sariff	    "z_gy2gx()", (int32_t)z_gy2gx(info, 1));
1407193640Sariff	fprintf(stderr, "\t%12s = %10d -> z_gy2gx() -> %d\n",
1408193640Sariff	    "Max", (int32_t)gy2gx_max, (int32_t)z_gy2gx(info, gy2gx_max));
1409193640Sariff	fprintf(stderr, "\t%12s = %10d\n",
1410193640Sariff	    "z_gx2gy()", (int32_t)z_gx2gy(info, 1));
1411193640Sariff	fprintf(stderr, "\t%12s = %10d -> z_gx2gy() -> %d\n",
1412193640Sariff	    "Max", (int32_t)gx2gy_max, (int32_t)z_gx2gy(info, gx2gy_max));
1413193640Sariff	dumpz(maxfeed);
1414193640Sariff	dumpz(full);
1415193640Sariff	dumpz(start);
1416193640Sariff	dumpz(pos);
1417193640Sariff	dumpz(scale);
1418193640Sariff	fprintf(stderr, "\t%12s   %10f\n", "",
1419193640Sariff	    (double)info->z_scale / Z_ONE);
1420193640Sariff	dumpz(dx);
1421193640Sariff	fprintf(stderr, "\t%12s   %10f\n", "",
1422193640Sariff	    (double)info->z_dx / info->z_dy);
1423193640Sariff	dumpz(dy);
1424193640Sariff	fprintf(stderr, "\t%12s   %10d (drift step)\n", "",
1425193640Sariff	    info->z_dy >> Z_SHIFT);
1426193640Sariff	fprintf(stderr, "\t%12s   %10d (scaling differences)\n", "",
1427193640Sariff	    (z_scale << Z_DRIFT_SHIFT) - info->z_dy);
1428193640Sariff	fprintf(stderr, "\t%12s = %u bytes\n",
1429193640Sariff	    "intpcm32_t", sizeof(intpcm32_t));
1430193640Sariff	fprintf(stderr, "\t%12s = 0x%08x, smallest=%.16lf\n",
1431193640Sariff	    "Z_ONE", Z_ONE, (double)1.0 / (double)Z_ONE);
1432193640Sariff#endif
1433193640Sariff
1434167646Sariff	return (0);
143575320Scg}
143675320Scg
143775320Scgstatic int
1438193640Sariffz_resampler_set(struct pcm_feeder *f, int what, int32_t value)
143975320Scg{
1440193640Sariff	struct z_info *info;
1441193640Sariff	int32_t oquality;
1442148606Snetchild
1443193640Sariff	info = f->data;
1444164614Sariff
1445148606Snetchild	switch (what) {
1446193640Sariff	case Z_RATE_SRC:
1447193640Sariff		if (value < feeder_rate_min || value > feeder_rate_max)
1448193640Sariff			return (E2BIG);
1449193640Sariff		if (value == info->rsrc)
1450193640Sariff			return (0);
1451164614Sariff		info->rsrc = value;
1452164614Sariff		break;
1453193640Sariff	case Z_RATE_DST:
1454193640Sariff		if (value < feeder_rate_min || value > feeder_rate_max)
1455193640Sariff			return (E2BIG);
1456193640Sariff		if (value == info->rdst)
1457193640Sariff			return (0);
1458164614Sariff		info->rdst = value;
1459164614Sariff		break;
1460193640Sariff	case Z_RATE_QUALITY:
1461193640Sariff		if (value < Z_QUALITY_MIN || value > Z_QUALITY_MAX)
1462193640Sariff			return (EINVAL);
1463193640Sariff		if (value == info->quality)
1464193640Sariff			return (0);
1465193640Sariff		/*
1466193640Sariff		 * If we failed to set the requested quality, restore
1467193640Sariff		 * the old one. We cannot afford leaving it broken since
1468193640Sariff		 * passive feeder chains like vchans never reinitialize
1469193640Sariff		 * itself.
1470193640Sariff		 */
1471193640Sariff		oquality = info->quality;
1472193640Sariff		info->quality = value;
1473193640Sariff		if (z_resampler_setup(f) == 0)
1474193640Sariff			return (0);
1475193640Sariff		info->quality = oquality;
1476193640Sariff		break;
1477193640Sariff	case Z_RATE_CHANNELS:
1478193640Sariff		if (value < SND_CHN_MIN || value > SND_CHN_MAX)
1479193640Sariff			return (EINVAL);
1480193640Sariff		if (value == info->channels)
1481193640Sariff			return (0);
1482193640Sariff		info->channels = value;
1483193640Sariff		break;
1484164614Sariff	default:
1485193640Sariff		return (EINVAL);
1486193640Sariff		break;
1487110108Sorion	}
1488193640Sariff
1489193640Sariff	return (z_resampler_setup(f));
149075320Scg}
149175320Scg
149275320Scgstatic int
1493193640Sariffz_resampler_get(struct pcm_feeder *f, int what)
149477266Scg{
1495193640Sariff	struct z_info *info;
149677266Scg
1497193640Sariff	info = f->data;
1498193640Sariff
1499148606Snetchild	switch (what) {
1500193640Sariff	case Z_RATE_SRC:
1501167646Sariff		return (info->rsrc);
1502193640Sariff		break;
1503193640Sariff	case Z_RATE_DST:
1504167646Sariff		return (info->rdst);
1505193640Sariff		break;
1506193640Sariff	case Z_RATE_QUALITY:
1507193640Sariff		return (info->quality);
1508193640Sariff		break;
1509193640Sariff	case Z_RATE_CHANNELS:
1510193640Sariff		return (info->channels);
1511193640Sariff		break;
1512164614Sariff	default:
1513193640Sariff		break;
151477266Scg	}
1515193640Sariff
1516167646Sariff	return (-1);
151777266Scg}
151877266Scg
151977266Scgstatic int
1520193640Sariffz_resampler_init(struct pcm_feeder *f)
152175320Scg{
1522193640Sariff	struct z_info *info;
1523193640Sariff	int ret;
152475320Scg
1525193640Sariff	if (f->desc->in != f->desc->out)
1526167646Sariff		return (EINVAL);
1527164614Sariff
1528193640Sariff	info = malloc(sizeof(*info), M_DEVBUF, M_NOWAIT | M_ZERO);
1529113752Sorion	if (info == NULL)
1530167646Sariff		return (ENOMEM);
1531193640Sariff
1532193640Sariff	info->rsrc = Z_RATE_DEFAULT;
1533193640Sariff	info->rdst = Z_RATE_DEFAULT;
1534193640Sariff	info->quality = feeder_rate_quality;
1535193640Sariff	info->channels = AFMT_CHANNEL(f->desc->in);
1536193640Sariff
1537193640Sariff	f->data = info;
1538193640Sariff
1539193640Sariff	ret = z_resampler_setup(f);
1540193640Sariff	if (ret != 0) {
1541193640Sariff		if (info->z_pcoeff != NULL)
1542193640Sariff			free(info->z_pcoeff, M_DEVBUF);
1543193640Sariff		if (info->z_delay != NULL)
1544193640Sariff			free(info->z_delay, M_DEVBUF);
1545193640Sariff		free(info, M_DEVBUF);
1546193640Sariff		f->data = NULL;
1547148606Snetchild	}
1548193640Sariff
1549193640Sariff	return (ret);
155075320Scg}
155175320Scg
155275320Scgstatic int
1553193640Sariffz_resampler_free(struct pcm_feeder *f)
155475320Scg{
1555193640Sariff	struct z_info *info;
155675320Scg
1557193640Sariff	info = f->data;
1558167646Sariff	if (info != NULL) {
1559193640Sariff		if (info->z_pcoeff != NULL)
1560193640Sariff			free(info->z_pcoeff, M_DEVBUF);
1561193640Sariff		if (info->z_delay != NULL)
1562193640Sariff			free(info->z_delay, M_DEVBUF);
1563193640Sariff		free(info, M_DEVBUF);
156475320Scg	}
1565193640Sariff
156675320Scg	f->data = NULL;
1567193640Sariff
1568167646Sariff	return (0);
156975320Scg}
157075320Scg
1571193640Sariffstatic uint32_t
1572193640Sariffz_resampler_feed_internal(struct pcm_feeder *f, struct pcm_channel *c,
1573193640Sariff    uint8_t *b, uint32_t count, void *source)
1574109547Sorion{
1575193640Sariff	struct z_info *info;
1576193640Sariff	int32_t alphadrift, startdrift, reqout, ocount, reqin, align;
1577193640Sariff	int32_t fetch, fetched, start, cp;
1578193640Sariff	uint8_t *dst;
1579164614Sariff
1580193640Sariff	info = f->data;
1581193640Sariff	if (info->z_resample == NULL)
1582193640Sariff		return (z_feed(f->source, c, b, count, source));
1583164614Sariff
1584148606Snetchild	/*
1585193640Sariff	 * Calculate sample size alignment and amount of sample output.
1586193640Sariff	 * We will do everything in sample domain, but at the end we
1587193640Sariff	 * will jump back to byte domain.
1588148606Snetchild	 */
1589193640Sariff	align = info->channels * info->bps;
1590193640Sariff	ocount = SND_FXDIV(count, align);
1591193640Sariff	if (ocount == 0)
1592167646Sariff		return (0);
1593193640Sariff
1594148606Snetchild	/*
1595193640Sariff	 * Calculate amount of input samples that is needed to generate
1596193640Sariff	 * exact amount of output.
1597148606Snetchild	 */
1598193640Sariff	reqin = z_gy2gx(info, ocount) - z_fetched(info);
1599193640Sariff
1600193640Sariff#ifdef Z_USE_ALPHADRIFT
1601193640Sariff	startdrift = info->z_startdrift;
1602193640Sariff	alphadrift = info->z_alphadrift;
1603167646Sariff#else
1604193640Sariff	startdrift = _Z_GY2GX(info, 0, 1);
1605193640Sariff	alphadrift = z_drift(info, startdrift, 1);
1606167646Sariff#endif
1607193640Sariff
1608193640Sariff	dst = b;
1609193640Sariff
1610193640Sariff	do {
1611193640Sariff		if (reqin != 0) {
1612193640Sariff			fetch = z_min(z_free(info), reqin);
1613193640Sariff			if (fetch == 0) {
1614193640Sariff				/*
1615193640Sariff				 * No more free spaces, so wind enough
1616193640Sariff				 * samples back to the head of delay line
1617193640Sariff				 * in byte domain.
1618193640Sariff				 */
1619193640Sariff				fetched = z_fetched(info);
1620193640Sariff				start = z_prev(info, info->z_start,
1621193640Sariff				    (info->z_size << 1) - 1);
1622193640Sariff				cp = (info->z_size << 1) + fetched;
1623193640Sariff				z_copy(info->z_delay + (start * align),
1624193640Sariff				    info->z_delay, cp * align);
1625193640Sariff				info->z_start =
1626193640Sariff				    z_prev(info, info->z_size << 1, 1);
1627193640Sariff				info->z_pos =
1628193640Sariff				    z_next(info, info->z_start, fetched + 1);
1629193640Sariff				fetch = z_min(z_free(info), reqin);
1630193640Sariff#ifdef Z_DIAGNOSTIC
1631193640Sariff				if (1) {
1632193640Sariff					static uint32_t kk = 0;
1633193640Sariff					fprintf(stderr,
1634193640Sariff					    "Buffer Move: "
1635193640Sariff					    "start=%d fetched=%d cp=%d "
1636193640Sariff					    "cycle=%u [%u]\r",
1637193640Sariff					    start, fetched, cp, info->z_cycle,
1638193640Sariff					    ++kk);
1639193640Sariff				}
1640193640Sariff				info->z_cycle = 0;
1641167646Sariff#endif
1642193640Sariff			}
1643193640Sariff			if (fetch != 0) {
1644193640Sariff				/*
1645193640Sariff				 * Fetch in byte domain and jump back
1646193640Sariff				 * to sample domain.
1647193640Sariff				 */
1648193640Sariff				fetched = SND_FXDIV(z_feed(f->source, c,
1649193640Sariff				    info->z_delay + (info->z_pos * align),
1650193640Sariff				    fetch * align, source), align);
1651193640Sariff				/*
1652193640Sariff				 * Prepare to convert fetched buffer,
1653193640Sariff				 * or mark us done if we cannot fulfill
1654193640Sariff				 * the request.
1655193640Sariff				 */
1656193640Sariff				reqin -= fetched;
1657193640Sariff				info->z_pos += fetched;
1658193640Sariff				if (fetched != fetch)
1659193640Sariff					reqin = 0;
1660193640Sariff			}
1661109547Sorion		}
1662193640Sariff
1663193640Sariff		reqout = z_min(z_gx2gy(info, z_fetched(info)), ocount);
1664193640Sariff		if (reqout != 0) {
1665193640Sariff			ocount -= reqout;
1666193640Sariff
1667148606Snetchild			/*
1668193640Sariff			 * Drift.. drift.. drift..
1669193640Sariff			 *
1670193640Sariff			 * Notice that there are 2 methods of doing the drift
1671193640Sariff			 * operations: The former is much cleaner (in a sense
1672194805Sariff			 * of mathematical readings of my eyes), but slower
1673194805Sariff			 * due to integer division in z_gy2gx(). Nevertheless,
1674194805Sariff			 * both should give the same exact accurate drifting
1675194805Sariff			 * results, so the later is favourable.
1676148606Snetchild			 */
1677193640Sariff			do {
1678193640Sariff				info->z_resample(info, dst);
1679193640Sariff#if 0
1680193640Sariff				startdrift = z_gy2gx(info, 1);
1681193640Sariff				alphadrift = z_drift(info, startdrift, 1);
1682193640Sariff				info->z_start += startdrift;
1683193640Sariff				info->z_alpha += alphadrift;
1684193640Sariff#else
1685193640Sariff				info->z_alpha += alphadrift;
1686193640Sariff				if (info->z_alpha < info->z_gy)
1687193640Sariff					info->z_start += startdrift;
1688193640Sariff				else {
1689193640Sariff					info->z_start += startdrift - 1;
1690193640Sariff					info->z_alpha -= info->z_gy;
1691193640Sariff				}
1692167646Sariff#endif
1693193640Sariff				dst += align;
1694193640Sariff#ifdef Z_DIAGNOSTIC
1695193640Sariff				info->z_cycle++;
1696193640Sariff#endif
1697193640Sariff			} while (--reqout != 0);
1698148606Snetchild		}
1699193640Sariff	} while (reqin != 0 && ocount != 0);
1700164614Sariff
1701193640Sariff	/*
1702193640Sariff	 * Back to byte domain..
1703193640Sariff	 */
1704193640Sariff	return (dst - b);
1705193640Sariff}
1706164614Sariff
1707193640Sariffstatic int
1708193640Sariffz_resampler_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
1709193640Sariff    uint32_t count, void *source)
1710193640Sariff{
1711193640Sariff	uint32_t feed, maxfeed, left;
1712164614Sariff
1713193640Sariff	/*
1714193640Sariff	 * Split count to smaller chunks to avoid possible 32bit overflow.
1715193640Sariff	 */
1716193640Sariff	maxfeed = ((struct z_info *)(f->data))->z_maxfeed;
1717193640Sariff	left = count;
1718193640Sariff
1719193640Sariff	do {
1720193640Sariff		feed = z_resampler_feed_internal(f, c, b,
1721193640Sariff		    z_min(maxfeed, left), source);
1722193640Sariff		b += feed;
1723193640Sariff		left -= feed;
1724193640Sariff	} while (left != 0 && feed != 0);
1725193640Sariff
1726193640Sariff	return (count - left);
1727109547Sorion}
1728109547Sorion
172975320Scgstatic struct pcm_feederdesc feeder_rate_desc[] = {
1730193640Sariff	{ FEEDER_RATE, 0, 0, 0, 0 },
1731193640Sariff	{ 0, 0, 0, 0, 0 },
173275320Scg};
1733164614Sariff
173475320Scgstatic kobj_method_t feeder_rate_methods[] = {
1735193640Sariff	KOBJMETHOD(feeder_init,		z_resampler_init),
1736193640Sariff	KOBJMETHOD(feeder_free,		z_resampler_free),
1737193640Sariff	KOBJMETHOD(feeder_set,		z_resampler_set),
1738193640Sariff	KOBJMETHOD(feeder_get,		z_resampler_get),
1739193640Sariff	KOBJMETHOD(feeder_feed,		z_resampler_feed),
1740193640Sariff	KOBJMETHOD_END
174175320Scg};
1742164614Sariff
1743193640SariffFEEDER_DECLARE(feeder_rate, NULL);
1744