1/*-
2 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/*
28 * feeder_rate: (Codename: Z Resampler), which means any effort to create
29 *              future replacement for this resampler are simply absurd unless
30 *              the world decide to add new alphabet after Z.
31 *
32 * FreeBSD bandlimited sinc interpolator, technically based on
33 * "Digital Audio Resampling" by Julius O. Smith III
34 *  - http://ccrma.stanford.edu/~jos/resample/
35 *
36 * The Good:
37 * + all out fixed point integer operations, no soft-float or anything like
38 *   that.
39 * + classic polyphase converters with high quality coefficient's polynomial
40 *   interpolators.
41 * + fast, faster, or the fastest of its kind.
42 * + compile time configurable.
43 * + etc etc..
44 *
45 * The Bad:
46 * - The z, z_, and Z_ . Due to mental block (or maybe just 0x7a69), I
47 *   couldn't think of anything simpler than that (feeder_rate_xxx is just
48 *   too long). Expect possible clashes with other zitizens (any?).
49 */
50
51#ifdef _KERNEL
52#ifdef HAVE_KERNEL_OPTION_HEADERS
53#include "opt_snd.h"
54#endif
55#include <dev/sound/pcm/sound.h>
56#include <dev/sound/pcm/pcm.h>
57#include "feeder_if.h"
58
59#define SND_USE_FXDIV
60#include "snd_fxdiv_gen.h"
61
62SND_DECLARE_FILE("$FreeBSD$");
63#endif
64
65#include "feeder_rate_gen.h"
66
67#if !defined(_KERNEL) && defined(SND_DIAGNOSTIC)
68#undef Z_DIAGNOSTIC
69#define Z_DIAGNOSTIC		1
70#elif defined(_KERNEL)
71#undef Z_DIAGNOSTIC
72#endif
73
74#ifndef Z_QUALITY_DEFAULT
75#define Z_QUALITY_DEFAULT	Z_QUALITY_LINEAR
76#endif
77
78#define Z_RESERVOIR		2048
79#define Z_RESERVOIR_MAX		131072
80
81#define Z_SINC_MAX		0x3fffff
82#define Z_SINC_DOWNMAX		48		/* 384000 / 8000 */
83
84#ifdef _KERNEL
85#define Z_POLYPHASE_MAX		183040		/* 286 taps, 640 phases */
86#else
87#define Z_POLYPHASE_MAX		1464320		/* 286 taps, 5120 phases */
88#endif
89
90#define Z_RATE_DEFAULT		48000
91
92#define Z_RATE_MIN		FEEDRATE_RATEMIN
93#define Z_RATE_MAX		FEEDRATE_RATEMAX
94#define Z_ROUNDHZ		FEEDRATE_ROUNDHZ
95#define Z_ROUNDHZ_MIN		FEEDRATE_ROUNDHZ_MIN
96#define Z_ROUNDHZ_MAX		FEEDRATE_ROUNDHZ_MAX
97
98#define Z_RATE_SRC		FEEDRATE_SRC
99#define Z_RATE_DST		FEEDRATE_DST
100#define Z_RATE_QUALITY		FEEDRATE_QUALITY
101#define Z_RATE_CHANNELS		FEEDRATE_CHANNELS
102
103#define Z_PARANOID		1
104
105#define Z_MULTIFORMAT		1
106
107#ifdef _KERNEL
108#undef Z_USE_ALPHADRIFT
109#define Z_USE_ALPHADRIFT	1
110#endif
111
112#define Z_FACTOR_MIN		1
113#define Z_FACTOR_MAX		Z_MASK
114#define Z_FACTOR_SAFE(v)	(!((v) < Z_FACTOR_MIN || (v) > Z_FACTOR_MAX))
115
116struct z_info;
117
118typedef void (*z_resampler_t)(struct z_info *, uint8_t *);
119
120struct z_info {
121	int32_t rsrc, rdst;	/* original source / destination rates */
122	int32_t src, dst;	/* rounded source / destination rates */
123	int32_t channels;	/* total channels */
124	int32_t bps;		/* bytes-per-sample */
125	int32_t quality;	/* resampling quality */
126
127	int32_t z_gx, z_gy;	/* interpolation / decimation ratio */
128	int32_t z_alpha;	/* output sample time phase / drift */
129	uint8_t *z_delay;	/* FIR delay line / linear buffer */
130	int32_t *z_coeff;	/* FIR coefficients */
131	int32_t *z_dcoeff;	/* FIR coefficients differences */
132	int32_t *z_pcoeff;	/* FIR polyphase coefficients */
133	int32_t z_scale;	/* output scaling */
134	int32_t z_dx;		/* input sample drift increment */
135	int32_t z_dy;		/* output sample drift increment */
136#ifdef Z_USE_ALPHADRIFT
137	int32_t z_alphadrift;	/* alpha drift rate */
138	int32_t z_startdrift;	/* buffer start position drift rate */
139#endif
140	int32_t z_mask;		/* delay line full length mask */
141	int32_t z_size;		/* half width of FIR taps */
142	int32_t z_full;		/* full size of delay line */
143	int32_t z_alloc;	/* largest allocated full size of delay line */
144	int32_t z_start;	/* buffer processing start position */
145	int32_t z_pos;		/* current position for the next feed */
146#ifdef Z_DIAGNOSTIC
147	uint32_t z_cycle;	/* output cycle, purely for statistical */
148#endif
149	int32_t z_maxfeed;	/* maximum feed to avoid 32bit overflow */
150
151	z_resampler_t z_resample;
152};
153
154int feeder_rate_min = Z_RATE_MIN;
155int feeder_rate_max = Z_RATE_MAX;
156int feeder_rate_round = Z_ROUNDHZ;
157int feeder_rate_quality = Z_QUALITY_DEFAULT;
158
159static int feeder_rate_polyphase_max = Z_POLYPHASE_MAX;
160
161#ifdef _KERNEL
162static char feeder_rate_presets[] = FEEDER_RATE_PRESETS;
163SYSCTL_STRING(_hw_snd, OID_AUTO, feeder_rate_presets, CTLFLAG_RD,
164    &feeder_rate_presets, 0, "compile-time rate presets");
165SYSCTL_INT(_hw_snd, OID_AUTO, feeder_rate_polyphase_max, CTLFLAG_RWTUN,
166    &feeder_rate_polyphase_max, 0, "maximum allowable polyphase entries");
167
168static int
169sysctl_hw_snd_feeder_rate_min(SYSCTL_HANDLER_ARGS)
170{
171	int err, val;
172
173	val = feeder_rate_min;
174	err = sysctl_handle_int(oidp, &val, 0, req);
175
176	if (err != 0 || req->newptr == NULL || val == feeder_rate_min)
177		return (err);
178
179	if (!(Z_FACTOR_SAFE(val) && val < feeder_rate_max))
180		return (EINVAL);
181
182	feeder_rate_min = val;
183
184	return (0);
185}
186SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_min, CTLTYPE_INT | CTLFLAG_RWTUN,
187    0, sizeof(int), sysctl_hw_snd_feeder_rate_min, "I",
188    "minimum allowable rate");
189
190static int
191sysctl_hw_snd_feeder_rate_max(SYSCTL_HANDLER_ARGS)
192{
193	int err, val;
194
195	val = feeder_rate_max;
196	err = sysctl_handle_int(oidp, &val, 0, req);
197
198	if (err != 0 || req->newptr == NULL || val == feeder_rate_max)
199		return (err);
200
201	if (!(Z_FACTOR_SAFE(val) && val > feeder_rate_min))
202		return (EINVAL);
203
204	feeder_rate_max = val;
205
206	return (0);
207}
208SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_max, CTLTYPE_INT | CTLFLAG_RWTUN,
209    0, sizeof(int), sysctl_hw_snd_feeder_rate_max, "I",
210    "maximum allowable rate");
211
212static int
213sysctl_hw_snd_feeder_rate_round(SYSCTL_HANDLER_ARGS)
214{
215	int err, val;
216
217	val = feeder_rate_round;
218	err = sysctl_handle_int(oidp, &val, 0, req);
219
220	if (err != 0 || req->newptr == NULL || val == feeder_rate_round)
221		return (err);
222
223	if (val < Z_ROUNDHZ_MIN || val > Z_ROUNDHZ_MAX)
224		return (EINVAL);
225
226	feeder_rate_round = val - (val % Z_ROUNDHZ);
227
228	return (0);
229}
230SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_round, CTLTYPE_INT | CTLFLAG_RWTUN,
231    0, sizeof(int), sysctl_hw_snd_feeder_rate_round, "I",
232    "sample rate converter rounding threshold");
233
234static int
235sysctl_hw_snd_feeder_rate_quality(SYSCTL_HANDLER_ARGS)
236{
237	struct snddev_info *d;
238	struct pcm_channel *c;
239	struct pcm_feeder *f;
240	int i, err, val;
241
242	val = feeder_rate_quality;
243	err = sysctl_handle_int(oidp, &val, 0, req);
244
245	if (err != 0 || req->newptr == NULL || val == feeder_rate_quality)
246		return (err);
247
248	if (val < Z_QUALITY_MIN || val > Z_QUALITY_MAX)
249		return (EINVAL);
250
251	feeder_rate_quality = val;
252
253	/*
254	 * Traverse all available channels on each device and try to
255	 * set resampler quality if and only if it is exist as
256	 * part of feeder chains and the channel is idle.
257	 */
258	for (i = 0; pcm_devclass != NULL &&
259	    i < devclass_get_maxunit(pcm_devclass); i++) {
260		d = devclass_get_softc(pcm_devclass, i);
261		if (!PCM_REGISTERED(d))
262			continue;
263		PCM_LOCK(d);
264		PCM_WAIT(d);
265		PCM_ACQUIRE(d);
266		CHN_FOREACH(c, d, channels.pcm) {
267			CHN_LOCK(c);
268			f = chn_findfeeder(c, FEEDER_RATE);
269			if (f == NULL || f->data == NULL || CHN_STARTED(c)) {
270				CHN_UNLOCK(c);
271				continue;
272			}
273			(void)FEEDER_SET(f, FEEDRATE_QUALITY, val);
274			CHN_UNLOCK(c);
275		}
276		PCM_RELEASE(d);
277		PCM_UNLOCK(d);
278	}
279
280	return (0);
281}
282SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_quality, CTLTYPE_INT | CTLFLAG_RWTUN,
283    0, sizeof(int), sysctl_hw_snd_feeder_rate_quality, "I",
284    "sample rate converter quality ("__XSTRING(Z_QUALITY_MIN)"=low .. "
285    __XSTRING(Z_QUALITY_MAX)"=high)");
286#endif	/* _KERNEL */
287
288
289/*
290 * Resampler type.
291 */
292#define Z_IS_ZOH(i)		((i)->quality == Z_QUALITY_ZOH)
293#define Z_IS_LINEAR(i)		((i)->quality == Z_QUALITY_LINEAR)
294#define Z_IS_SINC(i)		((i)->quality > Z_QUALITY_LINEAR)
295
296/*
297 * Macroses for accurate sample time drift calculations.
298 *
299 * gy2gx : given the amount of output, return the _exact_ required amount of
300 *         input.
301 * gx2gy : given the amount of input, return the _maximum_ amount of output
302 *         that will be generated.
303 * drift : given the amount of input and output, return the elapsed
304 *         sample-time.
305 */
306#define _Z_GCAST(x)		((uint64_t)(x))
307
308#if defined(__GNUCLIKE_ASM) && defined(__i386__)
309/*
310 * This is where i386 being beaten to a pulp. Fortunately this function is
311 * rarely being called and if it is, it will decide the best (hopefully)
312 * fastest way to do the division. If we can ensure that everything is dword
313 * aligned, letting the compiler to call udivdi3 to do the division can be
314 * faster compared to this.
315 *
316 * amd64 is the clear winner here, no question about it.
317 */
318static __inline uint32_t
319Z_DIV(uint64_t v, uint32_t d)
320{
321	uint32_t hi, lo, quo, rem;
322
323	hi = v >> 32;
324	lo = v & 0xffffffff;
325
326	/*
327	 * As much as we can, try to avoid long division like a plague.
328	 */
329	if (hi == 0)
330		quo = lo / d;
331	else
332		__asm("divl %2"
333		    : "=a" (quo), "=d" (rem)
334		    : "r" (d), "0" (lo), "1" (hi));
335
336	return (quo);
337}
338#else
339#define Z_DIV(x, y)		((x) / (y))
340#endif
341
342#define _Z_GY2GX(i, a, v)						\
343	Z_DIV(((_Z_GCAST((i)->z_gx) * (v)) + ((i)->z_gy - (a) - 1)),	\
344	(i)->z_gy)
345
346#define _Z_GX2GY(i, a, v)						\
347	Z_DIV(((_Z_GCAST((i)->z_gy) * (v)) + (a)), (i)->z_gx)
348
349#define _Z_DRIFT(i, x, y)						\
350	((_Z_GCAST((i)->z_gy) * (x)) - (_Z_GCAST((i)->z_gx) * (y)))
351
352#define z_gy2gx(i, v)		_Z_GY2GX(i, (i)->z_alpha, v)
353#define z_gx2gy(i, v)		_Z_GX2GY(i, (i)->z_alpha, v)
354#define z_drift(i, x, y)	_Z_DRIFT(i, x, y)
355
356/*
357 * Macroses for SINC coefficients table manipulations.. whatever.
358 */
359#define Z_SINC_COEFF_IDX(i)	((i)->quality - Z_QUALITY_LINEAR - 1)
360
361#define Z_SINC_LEN(i)							\
362	((int32_t)(((uint64_t)z_coeff_tab[Z_SINC_COEFF_IDX(i)].len <<	\
363	    Z_SHIFT) / (i)->z_dy))
364
365#define Z_SINC_BASE_LEN(i)						\
366	((z_coeff_tab[Z_SINC_COEFF_IDX(i)].len - 1) >> (Z_DRIFT_SHIFT - 1))
367
368/*
369 * Macroses for linear delay buffer operations. Alignment is not
370 * really necessary since we're not using true circular buffer, but it
371 * will help us guard against possible trespasser. To be honest,
372 * the linear block operations does not need guarding at all due to
373 * accurate drifting!
374 */
375#define z_align(i, v)		((v) & (i)->z_mask)
376#define z_next(i, o, v)		z_align(i, (o) + (v))
377#define z_prev(i, o, v)		z_align(i, (o) - (v))
378#define z_fetched(i)		(z_align(i, (i)->z_pos - (i)->z_start) - 1)
379#define z_free(i)		((i)->z_full - (i)->z_pos)
380
381/*
382 * Macroses for Bla Bla .. :)
383 */
384#define z_copy(src, dst, sz)	(void)memcpy(dst, src, sz)
385#define z_feed(...)		FEEDER_FEED(__VA_ARGS__)
386
387static __inline uint32_t
388z_min(uint32_t x, uint32_t y)
389{
390
391	return ((x < y) ? x : y);
392}
393
394static int32_t
395z_gcd(int32_t x, int32_t y)
396{
397	int32_t w;
398
399	while (y != 0) {
400		w = x % y;
401		x = y;
402		y = w;
403	}
404
405	return (x);
406}
407
408static int32_t
409z_roundpow2(int32_t v)
410{
411	int32_t i;
412
413	i = 1;
414
415	/*
416	 * Let it overflow at will..
417	 */
418	while (i > 0 && i < v)
419		i <<= 1;
420
421	return (i);
422}
423
424/*
425 * Zero Order Hold, the worst of the worst, an insult against quality,
426 * but super fast.
427 */
428static void
429z_feed_zoh(struct z_info *info, uint8_t *dst)
430{
431#if 0
432	z_copy(info->z_delay +
433	    (info->z_start * info->channels * info->bps), dst,
434	    info->channels * info->bps);
435#else
436	uint32_t cnt;
437	uint8_t *src;
438
439	cnt = info->channels * info->bps;
440	src = info->z_delay + (info->z_start * cnt);
441
442	/*
443	 * This is a bit faster than doing bcopy() since we're dealing
444	 * with possible unaligned samples.
445	 */
446	do {
447		*dst++ = *src++;
448	} while (--cnt != 0);
449#endif
450}
451
452/*
453 * Linear Interpolation. This at least sounds better (perceptually) and fast,
454 * but without any proper filtering which means aliasing still exist and
455 * could become worst with a right sample. Interpolation centered within
456 * Z_LINEAR_ONE between the present and previous sample and everything is
457 * done with simple 32bit scaling arithmetic.
458 */
459#define Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN)					\
460static void									\
461z_feed_linear_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst)		\
462{										\
463	int32_t z;								\
464	intpcm_t x, y;								\
465	uint32_t ch;								\
466	uint8_t *sx, *sy;							\
467										\
468	z = ((uint32_t)info->z_alpha * info->z_dx) >> Z_LINEAR_UNSHIFT;		\
469										\
470	sx = info->z_delay + (info->z_start * info->channels *			\
471	    PCM_##BIT##_BPS);							\
472	sy = sx - (info->channels * PCM_##BIT##_BPS);				\
473										\
474	ch = info->channels;							\
475										\
476	do {									\
477		x = _PCM_READ_##SIGN##BIT##_##ENDIAN(sx);			\
478		y = _PCM_READ_##SIGN##BIT##_##ENDIAN(sy);			\
479		x = Z_LINEAR_INTERPOLATE_##BIT(z, x, y);			\
480		_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x);			\
481		sx += PCM_##BIT##_BPS;						\
482		sy += PCM_##BIT##_BPS;						\
483		dst += PCM_##BIT##_BPS;						\
484	} while (--ch != 0);							\
485}
486
487/*
488 * Userland clipping diagnostic check, not enabled in kernel compilation.
489 * While doing sinc interpolation, unrealistic samples like full scale sine
490 * wav will clip, but for other things this will not make any noise at all.
491 * Everybody should learn how to normalized perceived loudness of their own
492 * music/sounds/samples (hint: ReplayGain).
493 */
494#ifdef Z_DIAGNOSTIC
495#define Z_CLIP_CHECK(v, BIT)	do {					\
496	if ((v) > PCM_S##BIT##_MAX) {					\
497		fprintf(stderr, "Overflow: v=%jd, max=%jd\n",		\
498		    (intmax_t)(v), (intmax_t)PCM_S##BIT##_MAX);		\
499	} else if ((v) < PCM_S##BIT##_MIN) {				\
500		fprintf(stderr, "Underflow: v=%jd, min=%jd\n",		\
501		    (intmax_t)(v), (intmax_t)PCM_S##BIT##_MIN);		\
502	}								\
503} while (0)
504#else
505#define Z_CLIP_CHECK(...)
506#endif
507
508#define Z_CLAMP(v, BIT)							\
509	(((v) > PCM_S##BIT##_MAX) ? PCM_S##BIT##_MAX :			\
510	(((v) < PCM_S##BIT##_MIN) ? PCM_S##BIT##_MIN : (v)))
511
512/*
513 * Sine Cardinal (SINC) Interpolation. Scaling is done in 64 bit, so
514 * there's no point to hold the plate any longer. All samples will be
515 * shifted to a full 32 bit, scaled and restored during write for
516 * maximum dynamic range (only for downsampling).
517 */
518#define _Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, adv)			\
519	c += z >> Z_SHIFT;						\
520	z &= Z_MASK;							\
521	coeff = Z_COEFF_INTERPOLATE(z, z_coeff[c], z_dcoeff[c]);	\
522	x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p);			\
523	v += Z_NORM_##BIT((intpcm64_t)x * coeff);			\
524	z += info->z_dy;						\
525	p adv##= info->channels * PCM_##BIT##_BPS
526
527/*
528 * XXX GCC4 optimization is such a !@#$%, need manual unrolling.
529 */
530#if defined(__GNUC__) && __GNUC__ >= 4
531#define Z_SINC_ACCUMULATE(...)	do {					\
532	_Z_SINC_ACCUMULATE(__VA_ARGS__);				\
533	_Z_SINC_ACCUMULATE(__VA_ARGS__);				\
534} while (0)
535#define Z_SINC_ACCUMULATE_DECR		2
536#else
537#define Z_SINC_ACCUMULATE(...)	do {					\
538	_Z_SINC_ACCUMULATE(__VA_ARGS__);				\
539} while (0)
540#define Z_SINC_ACCUMULATE_DECR		1
541#endif
542
543#define Z_DECLARE_SINC(SIGN, BIT, ENDIAN)					\
544static void									\
545z_feed_sinc_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst)		\
546{										\
547	intpcm64_t v;								\
548	intpcm_t x;								\
549	uint8_t *p;								\
550	int32_t coeff, z, *z_coeff, *z_dcoeff;					\
551	uint32_t c, center, ch, i;						\
552										\
553	z_coeff = info->z_coeff;						\
554	z_dcoeff = info->z_dcoeff;						\
555	center = z_prev(info, info->z_start, info->z_size);			\
556	ch = info->channels * PCM_##BIT##_BPS;					\
557	dst += ch;								\
558										\
559	do {									\
560		dst -= PCM_##BIT##_BPS;						\
561		ch -= PCM_##BIT##_BPS;						\
562		v = 0;								\
563		z = info->z_alpha * info->z_dx;					\
564		c = 0;								\
565		p = info->z_delay + (z_next(info, center, 1) *			\
566		    info->channels * PCM_##BIT##_BPS) + ch;			\
567		for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) 	\
568			Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, +);		\
569		z = info->z_dy - (info->z_alpha * info->z_dx);			\
570		c = 0;								\
571		p = info->z_delay + (center * info->channels *			\
572		    PCM_##BIT##_BPS) + ch;					\
573		for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) 	\
574			Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, -);		\
575		if (info->z_scale != Z_ONE)					\
576			v = Z_SCALE_##BIT(v, info->z_scale);			\
577		else								\
578			v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT;		\
579		Z_CLIP_CHECK(v, BIT);						\
580		_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT));	\
581	} while (ch != 0);							\
582}
583
584#define Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN)				\
585static void									\
586z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst)	\
587{										\
588	intpcm64_t v;								\
589	intpcm_t x;								\
590	uint8_t *p;								\
591	int32_t ch, i, start, *z_pcoeff;					\
592										\
593	ch = info->channels * PCM_##BIT##_BPS;					\
594	dst += ch;								\
595	start = z_prev(info, info->z_start, (info->z_size << 1) - 1) * ch;	\
596										\
597	do {									\
598		dst -= PCM_##BIT##_BPS;						\
599		ch -= PCM_##BIT##_BPS;						\
600		v = 0;								\
601		p = info->z_delay + start + ch;					\
602		z_pcoeff = info->z_pcoeff +					\
603		    ((info->z_alpha * info->z_size) << 1);			\
604		for (i = info->z_size; i != 0; i--) {				\
605			x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p);		\
606			v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff);		\
607			z_pcoeff++;						\
608			p += info->channels * PCM_##BIT##_BPS;			\
609			x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p);		\
610			v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff);		\
611			z_pcoeff++;						\
612			p += info->channels * PCM_##BIT##_BPS;			\
613		}								\
614		if (info->z_scale != Z_ONE)					\
615			v = Z_SCALE_##BIT(v, info->z_scale);			\
616		else								\
617			v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT;		\
618		Z_CLIP_CHECK(v, BIT);						\
619		_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT));	\
620	} while (ch != 0);							\
621}
622
623#define Z_DECLARE(SIGN, BIT, ENDIAN)					\
624	Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN)				\
625	Z_DECLARE_SINC(SIGN, BIT, ENDIAN)				\
626	Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN)
627
628#if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
629Z_DECLARE(S, 16, LE)
630Z_DECLARE(S, 32, LE)
631#endif
632#if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
633Z_DECLARE(S, 16, BE)
634Z_DECLARE(S, 32, BE)
635#endif
636#ifdef SND_FEEDER_MULTIFORMAT
637Z_DECLARE(S,  8, NE)
638Z_DECLARE(S, 24, LE)
639Z_DECLARE(S, 24, BE)
640Z_DECLARE(U,  8, NE)
641Z_DECLARE(U, 16, LE)
642Z_DECLARE(U, 24, LE)
643Z_DECLARE(U, 32, LE)
644Z_DECLARE(U, 16, BE)
645Z_DECLARE(U, 24, BE)
646Z_DECLARE(U, 32, BE)
647#endif
648
649enum {
650	Z_RESAMPLER_ZOH,
651	Z_RESAMPLER_LINEAR,
652	Z_RESAMPLER_SINC,
653	Z_RESAMPLER_SINC_POLYPHASE,
654	Z_RESAMPLER_LAST
655};
656
657#define Z_RESAMPLER_IDX(i)						\
658	(Z_IS_SINC(i) ? Z_RESAMPLER_SINC : (i)->quality)
659
660#define Z_RESAMPLER_ENTRY(SIGN, BIT, ENDIAN)					\
661	{									\
662	    AFMT_##SIGN##BIT##_##ENDIAN,					\
663	    {									\
664		[Z_RESAMPLER_ZOH]    = z_feed_zoh,				\
665		[Z_RESAMPLER_LINEAR] = z_feed_linear_##SIGN##BIT##ENDIAN,	\
666		[Z_RESAMPLER_SINC]   = z_feed_sinc_##SIGN##BIT##ENDIAN,		\
667		[Z_RESAMPLER_SINC_POLYPHASE]   =				\
668		    z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN			\
669	    }									\
670	}
671
672static const struct {
673	uint32_t format;
674	z_resampler_t resampler[Z_RESAMPLER_LAST];
675} z_resampler_tab[] = {
676#if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
677	Z_RESAMPLER_ENTRY(S, 16, LE),
678	Z_RESAMPLER_ENTRY(S, 32, LE),
679#endif
680#if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
681	Z_RESAMPLER_ENTRY(S, 16, BE),
682	Z_RESAMPLER_ENTRY(S, 32, BE),
683#endif
684#ifdef SND_FEEDER_MULTIFORMAT
685	Z_RESAMPLER_ENTRY(S,  8, NE),
686	Z_RESAMPLER_ENTRY(S, 24, LE),
687	Z_RESAMPLER_ENTRY(S, 24, BE),
688	Z_RESAMPLER_ENTRY(U,  8, NE),
689	Z_RESAMPLER_ENTRY(U, 16, LE),
690	Z_RESAMPLER_ENTRY(U, 24, LE),
691	Z_RESAMPLER_ENTRY(U, 32, LE),
692	Z_RESAMPLER_ENTRY(U, 16, BE),
693	Z_RESAMPLER_ENTRY(U, 24, BE),
694	Z_RESAMPLER_ENTRY(U, 32, BE),
695#endif
696};
697
698#define Z_RESAMPLER_TAB_SIZE						\
699	((int32_t)(sizeof(z_resampler_tab) / sizeof(z_resampler_tab[0])))
700
701static void
702z_resampler_reset(struct z_info *info)
703{
704
705	info->src = info->rsrc - (info->rsrc % ((feeder_rate_round > 0 &&
706	    info->rsrc > feeder_rate_round) ? feeder_rate_round : 1));
707	info->dst = info->rdst - (info->rdst % ((feeder_rate_round > 0 &&
708	    info->rdst > feeder_rate_round) ? feeder_rate_round : 1));
709	info->z_gx = 1;
710	info->z_gy = 1;
711	info->z_alpha = 0;
712	info->z_resample = NULL;
713	info->z_size = 1;
714	info->z_coeff = NULL;
715	info->z_dcoeff = NULL;
716	if (info->z_pcoeff != NULL) {
717		free(info->z_pcoeff, M_DEVBUF);
718		info->z_pcoeff = NULL;
719	}
720	info->z_scale = Z_ONE;
721	info->z_dx = Z_FULL_ONE;
722	info->z_dy = Z_FULL_ONE;
723#ifdef Z_DIAGNOSTIC
724	info->z_cycle = 0;
725#endif
726	if (info->quality < Z_QUALITY_MIN)
727		info->quality = Z_QUALITY_MIN;
728	else if (info->quality > Z_QUALITY_MAX)
729		info->quality = Z_QUALITY_MAX;
730}
731
732#ifdef Z_PARANOID
733static int32_t
734z_resampler_sinc_len(struct z_info *info)
735{
736	int32_t c, z, len, lmax;
737
738	if (!Z_IS_SINC(info))
739		return (1);
740
741	/*
742	 * A rather careful (or useless) way to calculate filter length.
743	 * Z_SINC_LEN() itself is accurate enough to do its job. Extra
744	 * sanity checking is not going to hurt though..
745	 */
746	c = 0;
747	z = info->z_dy;
748	len = 0;
749	lmax = z_coeff_tab[Z_SINC_COEFF_IDX(info)].len;
750
751	do {
752		c += z >> Z_SHIFT;
753		z &= Z_MASK;
754		z += info->z_dy;
755	} while (c < lmax && ++len > 0);
756
757	if (len != Z_SINC_LEN(info)) {
758#ifdef _KERNEL
759		printf("%s(): sinc l=%d != Z_SINC_LEN=%d\n",
760		    __func__, len, Z_SINC_LEN(info));
761#else
762		fprintf(stderr, "%s(): sinc l=%d != Z_SINC_LEN=%d\n",
763		    __func__, len, Z_SINC_LEN(info));
764		return (-1);
765#endif
766	}
767
768	return (len);
769}
770#else
771#define z_resampler_sinc_len(i)		(Z_IS_SINC(i) ? Z_SINC_LEN(i) : 1)
772#endif
773
774#define Z_POLYPHASE_COEFF_SHIFT		0
775
776/*
777 * Pick suitable polynomial interpolators based on filter oversampled ratio
778 * (2 ^ Z_DRIFT_SHIFT).
779 */
780#if !(defined(Z_COEFF_INTERP_ZOH) || defined(Z_COEFF_INTERP_LINEAR) ||		\
781    defined(Z_COEFF_INTERP_QUADRATIC) || defined(Z_COEFF_INTERP_HERMITE) ||	\
782    defined(Z_COEFF_INTER_BSPLINE) || defined(Z_COEFF_INTERP_OPT32X) ||		\
783    defined(Z_COEFF_INTERP_OPT16X) || defined(Z_COEFF_INTERP_OPT8X) ||		\
784    defined(Z_COEFF_INTERP_OPT4X) || defined(Z_COEFF_INTERP_OPT2X))
785#if Z_DRIFT_SHIFT >= 6
786#define Z_COEFF_INTERP_BSPLINE		1
787#elif Z_DRIFT_SHIFT >= 5
788#define Z_COEFF_INTERP_OPT32X		1
789#elif Z_DRIFT_SHIFT == 4
790#define Z_COEFF_INTERP_OPT16X		1
791#elif Z_DRIFT_SHIFT == 3
792#define Z_COEFF_INTERP_OPT8X		1
793#elif Z_DRIFT_SHIFT == 2
794#define Z_COEFF_INTERP_OPT4X		1
795#elif Z_DRIFT_SHIFT == 1
796#define Z_COEFF_INTERP_OPT2X		1
797#else
798#error "Z_DRIFT_SHIFT screwed!"
799#endif
800#endif
801
802/*
803 * In classic polyphase mode, the actual coefficients for each phases need to
804 * be calculated based on default prototype filters. For highly oversampled
805 * filter, linear or quadradatic interpolator should be enough. Anything less
806 * than that require 'special' interpolators to reduce interpolation errors.
807 *
808 * "Polynomial Interpolators for High-Quality Resampling of Oversampled Audio"
809 *    by Olli Niemitalo
810 *    - http://www.student.oulu.fi/~oniemita/dsp/deip.pdf
811 *
812 */
813static int32_t
814z_coeff_interpolate(int32_t z, int32_t *z_coeff)
815{
816	int32_t coeff;
817#if defined(Z_COEFF_INTERP_ZOH)
818
819	/* 1-point, 0th-order (Zero Order Hold) */
820	z = z;
821	coeff = z_coeff[0];
822#elif defined(Z_COEFF_INTERP_LINEAR)
823	int32_t zl0, zl1;
824
825	/* 2-point, 1st-order Linear */
826	zl0 = z_coeff[0];
827	zl1 = z_coeff[1] - z_coeff[0];
828
829	coeff = Z_RSHIFT((int64_t)zl1 * z, Z_SHIFT) + zl0;
830#elif defined(Z_COEFF_INTERP_QUADRATIC)
831	int32_t zq0, zq1, zq2;
832
833	/* 3-point, 2nd-order Quadratic */
834	zq0 = z_coeff[0];
835	zq1 = z_coeff[1] - z_coeff[-1];
836	zq2 = z_coeff[1] + z_coeff[-1] - (z_coeff[0] << 1);
837
838	coeff = Z_RSHIFT((Z_RSHIFT((int64_t)zq2 * z, Z_SHIFT) +
839	    zq1) * z, Z_SHIFT + 1) + zq0;
840#elif defined(Z_COEFF_INTERP_HERMITE)
841	int32_t zh0, zh1, zh2, zh3;
842
843	/* 4-point, 3rd-order Hermite */
844	zh0 = z_coeff[0];
845	zh1 = z_coeff[1] - z_coeff[-1];
846	zh2 = (z_coeff[-1] << 1) - (z_coeff[0] * 5) + (z_coeff[1] << 2) -
847	    z_coeff[2];
848	zh3 = z_coeff[2] - z_coeff[-1] + ((z_coeff[0] - z_coeff[1]) * 3);
849
850	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zh3 * z, Z_SHIFT) +
851	    zh2) * z, Z_SHIFT) + zh1) * z, Z_SHIFT + 1) + zh0;
852#elif defined(Z_COEFF_INTERP_BSPLINE)
853	int32_t zb0, zb1, zb2, zb3;
854
855	/* 4-point, 3rd-order B-Spline */
856	zb0 = Z_RSHIFT(0x15555555LL * (((int64_t)z_coeff[0] << 2) +
857	    z_coeff[-1] + z_coeff[1]), 30);
858	zb1 = z_coeff[1] - z_coeff[-1];
859	zb2 = z_coeff[-1] + z_coeff[1] - (z_coeff[0] << 1);
860	zb3 = Z_RSHIFT(0x15555555LL * (((z_coeff[0] - z_coeff[1]) * 3) +
861	    z_coeff[2] - z_coeff[-1]), 30);
862
863	coeff = (Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zb3 * z, Z_SHIFT) +
864	    zb2) * z, Z_SHIFT) + zb1) * z, Z_SHIFT) + zb0 + 1) >> 1;
865#elif defined(Z_COEFF_INTERP_OPT32X)
866	int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
867	int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
868
869	/* 6-point, 5th-order Optimal 32x */
870	zoz = z - (Z_ONE >> 1);
871	zoe1 = z_coeff[1] + z_coeff[0];
872	zoe2 = z_coeff[2] + z_coeff[-1];
873	zoe3 = z_coeff[3] + z_coeff[-2];
874	zoo1 = z_coeff[1] - z_coeff[0];
875	zoo2 = z_coeff[2] - z_coeff[-1];
876	zoo3 = z_coeff[3] - z_coeff[-2];
877
878	zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) +
879	    (0x00170c29LL * zoe3), 30);
880	zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) +
881	    (0x008cd4dcLL * zoo3), 30);
882	zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) +
883	    (0x0160b5d0LL * zoe3), 30);
884	zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) +
885	    (0x01cfe914LL * zoo3), 30);
886	zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) +
887	    (0x015508ddLL * zoe3), 30);
888	zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) +
889	    (0x0082d81aLL * zoo3), 30);
890
891	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
892	    (int64_t)zoc5 * zoz, Z_SHIFT) +
893	    zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
894	    zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
895#elif defined(Z_COEFF_INTERP_OPT16X)
896	int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
897	int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
898
899	/* 6-point, 5th-order Optimal 16x */
900	zoz = z - (Z_ONE >> 1);
901	zoe1 = z_coeff[1] + z_coeff[0];
902	zoe2 = z_coeff[2] + z_coeff[-1];
903	zoe3 = z_coeff[3] + z_coeff[-2];
904	zoo1 = z_coeff[1] - z_coeff[0];
905	zoo2 = z_coeff[2] - z_coeff[-1];
906	zoo3 = z_coeff[3] - z_coeff[-2];
907
908	zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) +
909	    (0x00170c29LL * zoe3), 30);
910	zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) +
911	    (0x008cd4dcLL * zoo3), 30);
912	zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) +
913	    (0x0160b5d0LL * zoe3), 30);
914	zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) +
915	    (0x01cfe914LL * zoo3), 30);
916	zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) +
917	    (0x015508ddLL * zoe3), 30);
918	zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) +
919	    (0x0082d81aLL * zoo3), 30);
920
921	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
922	    (int64_t)zoc5 * zoz, Z_SHIFT) +
923	    zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
924	    zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
925#elif defined(Z_COEFF_INTERP_OPT8X)
926	int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
927	int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
928
929	/* 6-point, 5th-order Optimal 8x */
930	zoz = z - (Z_ONE >> 1);
931	zoe1 = z_coeff[1] + z_coeff[0];
932	zoe2 = z_coeff[2] + z_coeff[-1];
933	zoe3 = z_coeff[3] + z_coeff[-2];
934	zoo1 = z_coeff[1] - z_coeff[0];
935	zoo2 = z_coeff[2] - z_coeff[-1];
936	zoo3 = z_coeff[3] - z_coeff[-2];
937
938	zoc0 = Z_RSHIFT((0x1aa9b47dLL * zoe1) + (0x053d9944LL * zoe2) +
939	    (0x0018b23fLL * zoe3), 30);
940	zoc1 = Z_RSHIFT((0x14a104d1LL * zoo1) + (0x0d7d2504LL * zoo2) +
941	    (0x0094b599LL * zoo3), 30);
942	zoc2 = Z_RSHIFT((-0x0d22530bLL * zoe1) + (0x0bb37a2cLL * zoe2) +
943	    (0x016ed8e0LL * zoe3), 30);
944	zoc3 = Z_RSHIFT((-0x0d744b1cLL * zoo1) + (0x01649591LL * zoo2) +
945	    (0x01dae93aLL * zoo3), 30);
946	zoc4 = Z_RSHIFT((0x02a7ee1bLL * zoe1) + (-0x03fbdb24LL * zoe2) +
947	    (0x0153ed07LL * zoe3), 30);
948	zoc5 = Z_RSHIFT((0x04cf9b6cLL * zoo1) + (-0x0266b378LL * zoo2) +
949	    (0x007a7c26LL * zoo3), 30);
950
951	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
952	    (int64_t)zoc5 * zoz, Z_SHIFT) +
953	    zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
954	    zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
955#elif defined(Z_COEFF_INTERP_OPT4X)
956	int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
957	int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
958
959	/* 6-point, 5th-order Optimal 4x */
960	zoz = z - (Z_ONE >> 1);
961	zoe1 = z_coeff[1] + z_coeff[0];
962	zoe2 = z_coeff[2] + z_coeff[-1];
963	zoe3 = z_coeff[3] + z_coeff[-2];
964	zoo1 = z_coeff[1] - z_coeff[0];
965	zoo2 = z_coeff[2] - z_coeff[-1];
966	zoo3 = z_coeff[3] - z_coeff[-2];
967
968	zoc0 = Z_RSHIFT((0x1a8eda43LL * zoe1) + (0x0556ee38LL * zoe2) +
969	    (0x001a3784LL * zoe3), 30);
970	zoc1 = Z_RSHIFT((0x143d863eLL * zoo1) + (0x0d910e36LL * zoo2) +
971	    (0x009ca889LL * zoo3), 30);
972	zoc2 = Z_RSHIFT((-0x0d026821LL * zoe1) + (0x0b837773LL * zoe2) +
973	    (0x017ef0c6LL * zoe3), 30);
974	zoc3 = Z_RSHIFT((-0x0cef1502LL * zoo1) + (0x01207a8eLL * zoo2) +
975	    (0x01e936dbLL * zoo3), 30);
976	zoc4 = Z_RSHIFT((0x029fe643LL * zoe1) + (-0x03ef3fc8LL * zoe2) +
977	    (0x014f5923LL * zoe3), 30);
978	zoc5 = Z_RSHIFT((0x043a9d08LL * zoo1) + (-0x02154febLL * zoo2) +
979	    (0x00670dbdLL * zoo3), 30);
980
981	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
982	    (int64_t)zoc5 * zoz, Z_SHIFT) +
983	    zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
984	    zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
985#elif defined(Z_COEFF_INTERP_OPT2X)
986	int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
987	int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
988
989	/* 6-point, 5th-order Optimal 2x */
990	zoz = z - (Z_ONE >> 1);
991	zoe1 = z_coeff[1] + z_coeff[0];
992	zoe2 = z_coeff[2] + z_coeff[-1];
993	zoe3 = z_coeff[3] + z_coeff[-2];
994	zoo1 = z_coeff[1] - z_coeff[0];
995	zoo2 = z_coeff[2] - z_coeff[-1];
996	zoo3 = z_coeff[3] - z_coeff[-2];
997
998	zoc0 = Z_RSHIFT((0x19edb6fdLL * zoe1) + (0x05ebd062LL * zoe2) +
999	    (0x00267881LL * zoe3), 30);
1000	zoc1 = Z_RSHIFT((0x1223af76LL * zoo1) + (0x0de3dd6bLL * zoo2) +
1001	    (0x00d683cdLL * zoo3), 30);
1002	zoc2 = Z_RSHIFT((-0x0c3ee068LL * zoe1) + (0x0a5c3769LL * zoe2) +
1003	    (0x01e2aceaLL * zoe3), 30);
1004	zoc3 = Z_RSHIFT((-0x0a8ab614LL * zoo1) + (-0x0019522eLL * zoo2) +
1005	    (0x022cefc7LL * zoo3), 30);
1006	zoc4 = Z_RSHIFT((0x0276187dLL * zoe1) + (-0x03a801e8LL * zoe2) +
1007	    (0x0131d935LL * zoe3), 30);
1008	zoc5 = Z_RSHIFT((0x02c373f5LL * zoo1) + (-0x01275f83LL * zoo2) +
1009	    (0x0018ee79LL * zoo3), 30);
1010
1011	coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
1012	    (int64_t)zoc5 * zoz, Z_SHIFT) +
1013	    zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
1014	    zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
1015#else
1016#error "Interpolation type screwed!"
1017#endif
1018
1019#if Z_POLYPHASE_COEFF_SHIFT > 0
1020	coeff = Z_RSHIFT(coeff, Z_POLYPHASE_COEFF_SHIFT);
1021#endif
1022	return (coeff);
1023}
1024
1025static int
1026z_resampler_build_polyphase(struct z_info *info)
1027{
1028	int32_t alpha, c, i, z, idx;
1029
1030	/* Let this be here first. */
1031	if (info->z_pcoeff != NULL) {
1032		free(info->z_pcoeff, M_DEVBUF);
1033		info->z_pcoeff = NULL;
1034	}
1035
1036	if (feeder_rate_polyphase_max < 1)
1037		return (ENOTSUP);
1038
1039	if (((int64_t)info->z_size * info->z_gy * 2) >
1040	    feeder_rate_polyphase_max) {
1041#ifndef _KERNEL
1042		fprintf(stderr, "Polyphase entries exceed: [%d/%d] %jd > %d\n",
1043		    info->z_gx, info->z_gy,
1044		    (intmax_t)info->z_size * info->z_gy * 2,
1045		    feeder_rate_polyphase_max);
1046#endif
1047		return (E2BIG);
1048	}
1049
1050	info->z_pcoeff = malloc(sizeof(int32_t) *
1051	    info->z_size * info->z_gy * 2, M_DEVBUF, M_NOWAIT | M_ZERO);
1052	if (info->z_pcoeff == NULL)
1053		return (ENOMEM);
1054
1055	for (alpha = 0; alpha < info->z_gy; alpha++) {
1056		z = alpha * info->z_dx;
1057		c = 0;
1058		for (i = info->z_size; i != 0; i--) {
1059			c += z >> Z_SHIFT;
1060			z &= Z_MASK;
1061			idx = (alpha * info->z_size * 2) +
1062			    (info->z_size * 2) - i;
1063			info->z_pcoeff[idx] =
1064			    z_coeff_interpolate(z, info->z_coeff + c);
1065			z += info->z_dy;
1066		}
1067		z = info->z_dy - (alpha * info->z_dx);
1068		c = 0;
1069		for (i = info->z_size; i != 0; i--) {
1070			c += z >> Z_SHIFT;
1071			z &= Z_MASK;
1072			idx = (alpha * info->z_size * 2) + i - 1;
1073			info->z_pcoeff[idx] =
1074			    z_coeff_interpolate(z, info->z_coeff + c);
1075			z += info->z_dy;
1076		}
1077	}
1078
1079#ifndef _KERNEL
1080	fprintf(stderr, "Polyphase: [%d/%d] %d entries\n",
1081	    info->z_gx, info->z_gy, info->z_size * info->z_gy * 2);
1082#endif
1083
1084	return (0);
1085}
1086
1087static int
1088z_resampler_setup(struct pcm_feeder *f)
1089{
1090	struct z_info *info;
1091	int64_t gy2gx_max, gx2gy_max;
1092	uint32_t format;
1093	int32_t align, i, z_scale;
1094	int adaptive;
1095
1096	info = f->data;
1097	z_resampler_reset(info);
1098
1099	if (info->src == info->dst)
1100		return (0);
1101
1102	/* Shrink by greatest common divisor. */
1103	i = z_gcd(info->src, info->dst);
1104	info->z_gx = info->src / i;
1105	info->z_gy = info->dst / i;
1106
1107	/* Too big, or too small. Bail out. */
1108	if (!(Z_FACTOR_SAFE(info->z_gx) && Z_FACTOR_SAFE(info->z_gy)))
1109		return (EINVAL);
1110
1111	format = f->desc->in;
1112	adaptive = 0;
1113	z_scale = 0;
1114
1115	/*
1116	 * Setup everything: filter length, conversion factor, etc.
1117	 */
1118	if (Z_IS_SINC(info)) {
1119		/*
1120		 * Downsampling, or upsampling scaling factor. As long as the
1121		 * factor can be represented by a fraction of 1 << Z_SHIFT,
1122		 * we're pretty much in business. Scaling is not needed for
1123		 * upsampling, so we just slap Z_ONE there.
1124		 */
1125		if (info->z_gx > info->z_gy)
1126			/*
1127			 * If the downsampling ratio is beyond sanity,
1128			 * enable semi-adaptive mode. Although handling
1129			 * extreme ratio is possible, the result of the
1130			 * conversion is just pointless, unworthy,
1131			 * nonsensical noises, etc.
1132			 */
1133			if ((info->z_gx / info->z_gy) > Z_SINC_DOWNMAX)
1134				z_scale = Z_ONE / Z_SINC_DOWNMAX;
1135			else
1136				z_scale = ((uint64_t)info->z_gy << Z_SHIFT) /
1137				    info->z_gx;
1138		else
1139			z_scale = Z_ONE;
1140
1141		/*
1142		 * This is actually impossible, unless anything above
1143		 * overflow.
1144		 */
1145		if (z_scale < 1)
1146			return (E2BIG);
1147
1148		/*
1149		 * Calculate sample time/coefficients index drift. It is
1150		 * a constant for upsampling, but downsampling require
1151		 * heavy duty filtering with possible too long filters.
1152		 * If anything goes wrong, revisit again and enable
1153		 * adaptive mode.
1154		 */
1155z_setup_adaptive_sinc:
1156		if (info->z_pcoeff != NULL) {
1157			free(info->z_pcoeff, M_DEVBUF);
1158			info->z_pcoeff = NULL;
1159		}
1160
1161		if (adaptive == 0) {
1162			info->z_dy = z_scale << Z_DRIFT_SHIFT;
1163			if (info->z_dy < 1)
1164				return (E2BIG);
1165			info->z_scale = z_scale;
1166		} else {
1167			info->z_dy = Z_FULL_ONE;
1168			info->z_scale = Z_ONE;
1169		}
1170
1171#if 0
1172#define Z_SCALE_DIV	10000
1173#define Z_SCALE_LIMIT(s, v)						\
1174	((((uint64_t)(s) * (v)) + (Z_SCALE_DIV >> 1)) / Z_SCALE_DIV)
1175
1176		info->z_scale = Z_SCALE_LIMIT(info->z_scale, 9780);
1177#endif
1178
1179		/* Smallest drift increment. */
1180		info->z_dx = info->z_dy / info->z_gy;
1181
1182		/*
1183		 * Overflow or underflow. Try adaptive, let it continue and
1184		 * retry.
1185		 */
1186		if (info->z_dx < 1) {
1187			if (adaptive == 0) {
1188				adaptive = 1;
1189				goto z_setup_adaptive_sinc;
1190			}
1191			return (E2BIG);
1192		}
1193
1194		/*
1195		 * Round back output drift.
1196		 */
1197		info->z_dy = info->z_dx * info->z_gy;
1198
1199		for (i = 0; i < Z_COEFF_TAB_SIZE; i++) {
1200			if (Z_SINC_COEFF_IDX(info) != i)
1201				continue;
1202			/*
1203			 * Calculate required filter length and guard
1204			 * against possible abusive result. Note that
1205			 * this represents only 1/2 of the entire filter
1206			 * length.
1207			 */
1208			info->z_size = z_resampler_sinc_len(info);
1209
1210			/*
1211			 * Multiple of 2 rounding, for better accumulator
1212			 * performance.
1213			 */
1214			info->z_size &= ~1;
1215
1216			if (info->z_size < 2 || info->z_size > Z_SINC_MAX) {
1217				if (adaptive == 0) {
1218					adaptive = 1;
1219					goto z_setup_adaptive_sinc;
1220				}
1221				return (E2BIG);
1222			}
1223			info->z_coeff = z_coeff_tab[i].coeff + Z_COEFF_OFFSET;
1224			info->z_dcoeff = z_coeff_tab[i].dcoeff;
1225			break;
1226		}
1227
1228		if (info->z_coeff == NULL || info->z_dcoeff == NULL)
1229			return (EINVAL);
1230	} else if (Z_IS_LINEAR(info)) {
1231		/*
1232		 * Don't put much effort if we're doing linear interpolation.
1233		 * Just center the interpolation distance within Z_LINEAR_ONE,
1234		 * and be happy about it.
1235		 */
1236		info->z_dx = Z_LINEAR_FULL_ONE / info->z_gy;
1237	}
1238
1239	/*
1240	 * We're safe for now, lets continue.. Look for our resampler
1241	 * depending on configured format and quality.
1242	 */
1243	for (i = 0; i < Z_RESAMPLER_TAB_SIZE; i++) {
1244		int ridx;
1245
1246		if (AFMT_ENCODING(format) != z_resampler_tab[i].format)
1247			continue;
1248		if (Z_IS_SINC(info) && adaptive == 0 &&
1249		    z_resampler_build_polyphase(info) == 0)
1250			ridx = Z_RESAMPLER_SINC_POLYPHASE;
1251		else
1252			ridx = Z_RESAMPLER_IDX(info);
1253		info->z_resample = z_resampler_tab[i].resampler[ridx];
1254		break;
1255	}
1256
1257	if (info->z_resample == NULL)
1258		return (EINVAL);
1259
1260	info->bps = AFMT_BPS(format);
1261	align = info->channels * info->bps;
1262
1263	/*
1264	 * Calculate largest value that can be fed into z_gy2gx() and
1265	 * z_gx2gy() without causing (signed) 32bit overflow. z_gy2gx() will
1266	 * be called early during feeding process to determine how much input
1267	 * samples that is required to generate requested output, while
1268	 * z_gx2gy() will be called just before samples filtering /
1269	 * accumulation process based on available samples that has been
1270	 * calculated using z_gx2gy().
1271	 *
1272	 * Now that is damn confusing, I guess ;-) .
1273	 */
1274	gy2gx_max = (((uint64_t)info->z_gy * INT32_MAX) - info->z_gy + 1) /
1275	    info->z_gx;
1276
1277	if ((gy2gx_max * align) > SND_FXDIV_MAX)
1278		gy2gx_max = SND_FXDIV_MAX / align;
1279
1280	if (gy2gx_max < 1)
1281		return (E2BIG);
1282
1283	gx2gy_max = (((uint64_t)info->z_gx * INT32_MAX) - info->z_gy) /
1284	    info->z_gy;
1285
1286	if (gx2gy_max > INT32_MAX)
1287		gx2gy_max = INT32_MAX;
1288
1289	if (gx2gy_max < 1)
1290		return (E2BIG);
1291
1292	/*
1293	 * Ensure that z_gy2gx() at its largest possible calculated value
1294	 * (alpha = 0) will not cause overflow further late during z_gx2gy()
1295	 * stage.
1296	 */
1297	if (z_gy2gx(info, gy2gx_max) > _Z_GCAST(gx2gy_max))
1298		return (E2BIG);
1299
1300	info->z_maxfeed = gy2gx_max * align;
1301
1302#ifdef Z_USE_ALPHADRIFT
1303	info->z_startdrift = z_gy2gx(info, 1);
1304	info->z_alphadrift = z_drift(info, info->z_startdrift, 1);
1305#endif
1306
1307	i = z_gy2gx(info, 1);
1308	info->z_full = z_roundpow2((info->z_size << 1) + i);
1309
1310	/*
1311	 * Too big to be true, and overflowing left and right like mad ..
1312	 */
1313	if ((info->z_full * align) < 1) {
1314		if (adaptive == 0 && Z_IS_SINC(info)) {
1315			adaptive = 1;
1316			goto z_setup_adaptive_sinc;
1317		}
1318		return (E2BIG);
1319	}
1320
1321	/*
1322	 * Increase full buffer size if its too small to reduce cyclic
1323	 * buffer shifting in main conversion/feeder loop.
1324	 */
1325	while (info->z_full < Z_RESERVOIR_MAX &&
1326	    (info->z_full - (info->z_size << 1)) < Z_RESERVOIR)
1327		info->z_full <<= 1;
1328
1329	/* Initialize buffer position. */
1330	info->z_mask = info->z_full - 1;
1331	info->z_start = z_prev(info, info->z_size << 1, 1);
1332	info->z_pos = z_next(info, info->z_start, 1);
1333
1334	/*
1335	 * Allocate or reuse delay line buffer, whichever makes sense.
1336	 */
1337	i = info->z_full * align;
1338	if (i < 1)
1339		return (E2BIG);
1340
1341	if (info->z_delay == NULL || info->z_alloc < i ||
1342	    i <= (info->z_alloc >> 1)) {
1343		if (info->z_delay != NULL)
1344			free(info->z_delay, M_DEVBUF);
1345		info->z_delay = malloc(i, M_DEVBUF, M_NOWAIT | M_ZERO);
1346		if (info->z_delay == NULL)
1347			return (ENOMEM);
1348		info->z_alloc = i;
1349	}
1350
1351	/*
1352	 * Zero out head of buffer to avoid pops and clicks.
1353	 */
1354	memset(info->z_delay, sndbuf_zerodata(f->desc->out),
1355	    info->z_pos * align);
1356
1357#ifdef Z_DIAGNOSTIC
1358	/*
1359	 * XXX Debuging mess !@#$%^
1360	 */
1361#define dumpz(x)	fprintf(stderr, "\t%12s = %10u : %-11d\n",	\
1362			    "z_"__STRING(x), (uint32_t)info->z_##x,	\
1363			    (int32_t)info->z_##x)
1364	fprintf(stderr, "\n%s():\n", __func__);
1365	fprintf(stderr, "\tchannels=%d, bps=%d, format=0x%08x, quality=%d\n",
1366	    info->channels, info->bps, format, info->quality);
1367	fprintf(stderr, "\t%d (%d) -> %d (%d), ",
1368	    info->src, info->rsrc, info->dst, info->rdst);
1369	fprintf(stderr, "[%d/%d]\n", info->z_gx, info->z_gy);
1370	fprintf(stderr, "\tminreq=%d, ", z_gy2gx(info, 1));
1371	if (adaptive != 0)
1372		z_scale = Z_ONE;
1373	fprintf(stderr, "factor=0x%08x/0x%08x (%f)\n",
1374	    z_scale, Z_ONE, (double)z_scale / Z_ONE);
1375	fprintf(stderr, "\tbase_length=%d, ", Z_SINC_BASE_LEN(info));
1376	fprintf(stderr, "adaptive=%s\n", (adaptive != 0) ? "YES" : "NO");
1377	dumpz(size);
1378	dumpz(alloc);
1379	if (info->z_alloc < 1024)
1380		fprintf(stderr, "\t%15s%10d Bytes\n",
1381		    "", info->z_alloc);
1382	else if (info->z_alloc < (1024 << 10))
1383		fprintf(stderr, "\t%15s%10d KBytes\n",
1384		    "", info->z_alloc >> 10);
1385	else if (info->z_alloc < (1024 << 20))
1386		fprintf(stderr, "\t%15s%10d MBytes\n",
1387		    "", info->z_alloc >> 20);
1388	else
1389		fprintf(stderr, "\t%15s%10d GBytes\n",
1390		    "", info->z_alloc >> 30);
1391	fprintf(stderr, "\t%12s   %10d (min output samples)\n",
1392	    "",
1393	    (int32_t)z_gx2gy(info, info->z_full - (info->z_size << 1)));
1394	fprintf(stderr, "\t%12s   %10d (min allocated output samples)\n",
1395	    "",
1396	    (int32_t)z_gx2gy(info, (info->z_alloc / align) -
1397	    (info->z_size << 1)));
1398	fprintf(stderr, "\t%12s = %10d\n",
1399	    "z_gy2gx()", (int32_t)z_gy2gx(info, 1));
1400	fprintf(stderr, "\t%12s = %10d -> z_gy2gx() -> %d\n",
1401	    "Max", (int32_t)gy2gx_max, (int32_t)z_gy2gx(info, gy2gx_max));
1402	fprintf(stderr, "\t%12s = %10d\n",
1403	    "z_gx2gy()", (int32_t)z_gx2gy(info, 1));
1404	fprintf(stderr, "\t%12s = %10d -> z_gx2gy() -> %d\n",
1405	    "Max", (int32_t)gx2gy_max, (int32_t)z_gx2gy(info, gx2gy_max));
1406	dumpz(maxfeed);
1407	dumpz(full);
1408	dumpz(start);
1409	dumpz(pos);
1410	dumpz(scale);
1411	fprintf(stderr, "\t%12s   %10f\n", "",
1412	    (double)info->z_scale / Z_ONE);
1413	dumpz(dx);
1414	fprintf(stderr, "\t%12s   %10f\n", "",
1415	    (double)info->z_dx / info->z_dy);
1416	dumpz(dy);
1417	fprintf(stderr, "\t%12s   %10d (drift step)\n", "",
1418	    info->z_dy >> Z_SHIFT);
1419	fprintf(stderr, "\t%12s   %10d (scaling differences)\n", "",
1420	    (z_scale << Z_DRIFT_SHIFT) - info->z_dy);
1421	fprintf(stderr, "\t%12s = %u bytes\n",
1422	    "intpcm32_t", sizeof(intpcm32_t));
1423	fprintf(stderr, "\t%12s = 0x%08x, smallest=%.16lf\n",
1424	    "Z_ONE", Z_ONE, (double)1.0 / (double)Z_ONE);
1425#endif
1426
1427	return (0);
1428}
1429
1430static int
1431z_resampler_set(struct pcm_feeder *f, int what, int32_t value)
1432{
1433	struct z_info *info;
1434	int32_t oquality;
1435
1436	info = f->data;
1437
1438	switch (what) {
1439	case Z_RATE_SRC:
1440		if (value < feeder_rate_min || value > feeder_rate_max)
1441			return (E2BIG);
1442		if (value == info->rsrc)
1443			return (0);
1444		info->rsrc = value;
1445		break;
1446	case Z_RATE_DST:
1447		if (value < feeder_rate_min || value > feeder_rate_max)
1448			return (E2BIG);
1449		if (value == info->rdst)
1450			return (0);
1451		info->rdst = value;
1452		break;
1453	case Z_RATE_QUALITY:
1454		if (value < Z_QUALITY_MIN || value > Z_QUALITY_MAX)
1455			return (EINVAL);
1456		if (value == info->quality)
1457			return (0);
1458		/*
1459		 * If we failed to set the requested quality, restore
1460		 * the old one. We cannot afford leaving it broken since
1461		 * passive feeder chains like vchans never reinitialize
1462		 * itself.
1463		 */
1464		oquality = info->quality;
1465		info->quality = value;
1466		if (z_resampler_setup(f) == 0)
1467			return (0);
1468		info->quality = oquality;
1469		break;
1470	case Z_RATE_CHANNELS:
1471		if (value < SND_CHN_MIN || value > SND_CHN_MAX)
1472			return (EINVAL);
1473		if (value == info->channels)
1474			return (0);
1475		info->channels = value;
1476		break;
1477	default:
1478		return (EINVAL);
1479		break;
1480	}
1481
1482	return (z_resampler_setup(f));
1483}
1484
1485static int
1486z_resampler_get(struct pcm_feeder *f, int what)
1487{
1488	struct z_info *info;
1489
1490	info = f->data;
1491
1492	switch (what) {
1493	case Z_RATE_SRC:
1494		return (info->rsrc);
1495		break;
1496	case Z_RATE_DST:
1497		return (info->rdst);
1498		break;
1499	case Z_RATE_QUALITY:
1500		return (info->quality);
1501		break;
1502	case Z_RATE_CHANNELS:
1503		return (info->channels);
1504		break;
1505	default:
1506		break;
1507	}
1508
1509	return (-1);
1510}
1511
1512static int
1513z_resampler_init(struct pcm_feeder *f)
1514{
1515	struct z_info *info;
1516	int ret;
1517
1518	if (f->desc->in != f->desc->out)
1519		return (EINVAL);
1520
1521	info = malloc(sizeof(*info), M_DEVBUF, M_NOWAIT | M_ZERO);
1522	if (info == NULL)
1523		return (ENOMEM);
1524
1525	info->rsrc = Z_RATE_DEFAULT;
1526	info->rdst = Z_RATE_DEFAULT;
1527	info->quality = feeder_rate_quality;
1528	info->channels = AFMT_CHANNEL(f->desc->in);
1529
1530	f->data = info;
1531
1532	ret = z_resampler_setup(f);
1533	if (ret != 0) {
1534		if (info->z_pcoeff != NULL)
1535			free(info->z_pcoeff, M_DEVBUF);
1536		if (info->z_delay != NULL)
1537			free(info->z_delay, M_DEVBUF);
1538		free(info, M_DEVBUF);
1539		f->data = NULL;
1540	}
1541
1542	return (ret);
1543}
1544
1545static int
1546z_resampler_free(struct pcm_feeder *f)
1547{
1548	struct z_info *info;
1549
1550	info = f->data;
1551	if (info != NULL) {
1552		if (info->z_pcoeff != NULL)
1553			free(info->z_pcoeff, M_DEVBUF);
1554		if (info->z_delay != NULL)
1555			free(info->z_delay, M_DEVBUF);
1556		free(info, M_DEVBUF);
1557	}
1558
1559	f->data = NULL;
1560
1561	return (0);
1562}
1563
1564static uint32_t
1565z_resampler_feed_internal(struct pcm_feeder *f, struct pcm_channel *c,
1566    uint8_t *b, uint32_t count, void *source)
1567{
1568	struct z_info *info;
1569	int32_t alphadrift, startdrift, reqout, ocount, reqin, align;
1570	int32_t fetch, fetched, start, cp;
1571	uint8_t *dst;
1572
1573	info = f->data;
1574	if (info->z_resample == NULL)
1575		return (z_feed(f->source, c, b, count, source));
1576
1577	/*
1578	 * Calculate sample size alignment and amount of sample output.
1579	 * We will do everything in sample domain, but at the end we
1580	 * will jump back to byte domain.
1581	 */
1582	align = info->channels * info->bps;
1583	ocount = SND_FXDIV(count, align);
1584	if (ocount == 0)
1585		return (0);
1586
1587	/*
1588	 * Calculate amount of input samples that is needed to generate
1589	 * exact amount of output.
1590	 */
1591	reqin = z_gy2gx(info, ocount) - z_fetched(info);
1592
1593#ifdef Z_USE_ALPHADRIFT
1594	startdrift = info->z_startdrift;
1595	alphadrift = info->z_alphadrift;
1596#else
1597	startdrift = _Z_GY2GX(info, 0, 1);
1598	alphadrift = z_drift(info, startdrift, 1);
1599#endif
1600
1601	dst = b;
1602
1603	do {
1604		if (reqin != 0) {
1605			fetch = z_min(z_free(info), reqin);
1606			if (fetch == 0) {
1607				/*
1608				 * No more free spaces, so wind enough
1609				 * samples back to the head of delay line
1610				 * in byte domain.
1611				 */
1612				fetched = z_fetched(info);
1613				start = z_prev(info, info->z_start,
1614				    (info->z_size << 1) - 1);
1615				cp = (info->z_size << 1) + fetched;
1616				z_copy(info->z_delay + (start * align),
1617				    info->z_delay, cp * align);
1618				info->z_start =
1619				    z_prev(info, info->z_size << 1, 1);
1620				info->z_pos =
1621				    z_next(info, info->z_start, fetched + 1);
1622				fetch = z_min(z_free(info), reqin);
1623#ifdef Z_DIAGNOSTIC
1624				if (1) {
1625					static uint32_t kk = 0;
1626					fprintf(stderr,
1627					    "Buffer Move: "
1628					    "start=%d fetched=%d cp=%d "
1629					    "cycle=%u [%u]\r",
1630					    start, fetched, cp, info->z_cycle,
1631					    ++kk);
1632				}
1633				info->z_cycle = 0;
1634#endif
1635			}
1636			if (fetch != 0) {
1637				/*
1638				 * Fetch in byte domain and jump back
1639				 * to sample domain.
1640				 */
1641				fetched = SND_FXDIV(z_feed(f->source, c,
1642				    info->z_delay + (info->z_pos * align),
1643				    fetch * align, source), align);
1644				/*
1645				 * Prepare to convert fetched buffer,
1646				 * or mark us done if we cannot fulfill
1647				 * the request.
1648				 */
1649				reqin -= fetched;
1650				info->z_pos += fetched;
1651				if (fetched != fetch)
1652					reqin = 0;
1653			}
1654		}
1655
1656		reqout = z_min(z_gx2gy(info, z_fetched(info)), ocount);
1657		if (reqout != 0) {
1658			ocount -= reqout;
1659
1660			/*
1661			 * Drift.. drift.. drift..
1662			 *
1663			 * Notice that there are 2 methods of doing the drift
1664			 * operations: The former is much cleaner (in a sense
1665			 * of mathematical readings of my eyes), but slower
1666			 * due to integer division in z_gy2gx(). Nevertheless,
1667			 * both should give the same exact accurate drifting
1668			 * results, so the later is favourable.
1669			 */
1670			do {
1671				info->z_resample(info, dst);
1672#if 0
1673				startdrift = z_gy2gx(info, 1);
1674				alphadrift = z_drift(info, startdrift, 1);
1675				info->z_start += startdrift;
1676				info->z_alpha += alphadrift;
1677#else
1678				info->z_alpha += alphadrift;
1679				if (info->z_alpha < info->z_gy)
1680					info->z_start += startdrift;
1681				else {
1682					info->z_start += startdrift - 1;
1683					info->z_alpha -= info->z_gy;
1684				}
1685#endif
1686				dst += align;
1687#ifdef Z_DIAGNOSTIC
1688				info->z_cycle++;
1689#endif
1690			} while (--reqout != 0);
1691		}
1692	} while (reqin != 0 && ocount != 0);
1693
1694	/*
1695	 * Back to byte domain..
1696	 */
1697	return (dst - b);
1698}
1699
1700static int
1701z_resampler_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
1702    uint32_t count, void *source)
1703{
1704	uint32_t feed, maxfeed, left;
1705
1706	/*
1707	 * Split count to smaller chunks to avoid possible 32bit overflow.
1708	 */
1709	maxfeed = ((struct z_info *)(f->data))->z_maxfeed;
1710	left = count;
1711
1712	do {
1713		feed = z_resampler_feed_internal(f, c, b,
1714		    z_min(maxfeed, left), source);
1715		b += feed;
1716		left -= feed;
1717	} while (left != 0 && feed != 0);
1718
1719	return (count - left);
1720}
1721
1722static struct pcm_feederdesc feeder_rate_desc[] = {
1723	{ FEEDER_RATE, 0, 0, 0, 0 },
1724	{ 0, 0, 0, 0, 0 },
1725};
1726
1727static kobj_method_t feeder_rate_methods[] = {
1728	KOBJMETHOD(feeder_init,		z_resampler_init),
1729	KOBJMETHOD(feeder_free,		z_resampler_free),
1730	KOBJMETHOD(feeder_set,		z_resampler_set),
1731	KOBJMETHOD(feeder_get,		z_resampler_get),
1732	KOBJMETHOD(feeder_feed,		z_resampler_feed),
1733	KOBJMETHOD_END
1734};
1735
1736FEEDER_DECLARE(feeder_rate, NULL);
1737